Exam II
Computer Science 420
Dr. St. John
Lehman College
City University of New York
20 November 2001

NAME (Printed) ________________________________
NAME (Signed) ________________________________
E-mail ________________________________

Exam Rules

• Show all your work. Your grade will be based on the work shown.
• The exam is closed book and closed notes.
• When taking the exam, you may have with you pens or pencils, and an 8 1/2” x 11” piece of paper filled with notes, programs, etc.
• You may not use a computer or calculator.
• All books and bags must be left at the front of the classroom during this exam.
• Do not open this exams until instructed to do so.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
</tr>
<tr>
<td>8</td>
<td>15</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>
1. True or False:

(a) ___ Once created, database tables and schemas cannot be modified.
(b) ___ You cannot embed a query inside another query (ie a subquery) in SQL.
(c) ___ A superkey for a relation is a set of attributes that functionally determine all the attributes of the relation.
(d) ___ SQL regards relations as bags of tuples, not sets of tuples.
(e) ___ Every set is a bag.
(f) ___ Every functional dependency is a multi-valued dependency.
(g) ___ A view is a definition of how one relation (the view) may be constructed from tables stored in the database.
(h) ___ Views can be queried as if they were tables.
(i) ___ In SQL, the declarations UNIQUE and PRIMARY KEY have the same effect.
(j) ___ In SQL, the expression, \((\text{NULL AND TRUE}) \lor \text{FALSE}\) evaluates to \text{FALSE}.

2. Consider the following relational schema:

\[
\text{Name}(\text{ID}, \text{name}) \quad // \text{ID is a key} \\
\text{GPA}(\text{ID}, \text{gpa}) \quad // \text{ID is a key}
\]

(a) Write a relational algebra expression to find all students and their GPA. (That is, your answer should be a relation, with two attributes, one for the student name and one for the GPA).

(b) Write a relational algebra expression to find the names of all students with the highest GPA in the database:

3. Write a java program that prints "Hello, world" to the screen:
4. Suppose we have a relation \(R(A, B, C, D, E) \) with the following functional dependencies: \(AB \rightarrow C \), \(CD \rightarrow E \), \(C \rightarrow A \), and \(C \rightarrow D \).

 (a) What are all the keys for \(R \)?

 (b) Give an example of a functional dependency that is a BCNF violation for \(R \):

 (c) Into what two relations does this violation tell us to decompose \(R \)?

5. Suppose \(R \) and \(S \) are relations.

 (a) Suppose relations \(R \) and \(S \) have 1 tuple and 2 tuples, respectively.

 What is the minimum number of \(R \cup S \) could have, under the bag semantics?

 What is the minimum number of \(R \cup S \) could have, under set semantics?

 (b) Suppose relations \(R \) and \(S \) have 2 tuples and 3 tuples, respectively.

 What is the minimum number of \(R \cup S \) could have, under the bag semantics?

 What is the minimum number of \(R \cup S \) could have, under set semantics?

 (c) Suppose relations \(R \) and \(S \) have \(n \) tuples and \(m \) tuples,

 What is the minimum number of \(R \cup S \) could have, under the bag semantics?

 What is the minimum number of \(R \cup S \) could have, under set semantics?
6. Answer the questions below based on the following schema:

 companies(co_id, co_name, co_postcode, co_lastchg);
 products(pr_code, pr_desc);
 orders(ord_id, ord_company, ord_product, ord_qty, ord_placed,
 ord_delivered, ord_paid);
 diary(dy_id, dy_company, dy_timestamp, dy_type, dy_notes);

(a) Write a query that returns the product codes contained in the database:

(b) Write a query that returns the product codes and the average number ordered
 of each per order:

(c) Create a view that contains the name of each company and the total number of
 orders placed for that company:

(d) Create an index on ord_company:

(e) Write a query that select all orders that were placed in a different month from
 when the product was delivered. For example, the order is placed on 06-29-2001,
 and the product is delivered on 07-06-2001. Include in the output, the order ID,
 the product code, the date the order was placed and the date is was delivered:
7. Given two relations R and S:

(a) Give the definition of the natural join $R \bowtie S$:

(b) Give the definition of the theta-join $R \bowtie C S$:

(c) What is the difference between $R \bowtie S$ and $R \bowtie C S$ where the condition C is that $R.A = S.A$ for each attribute A appearing in the schemas of both R and S?

8. (a) Rewrite the following SQL query **without** using the INTERSECT or DIFFERENCE operators:

\[\text{(SELECT name, address FROM MovieStar WHERE gender = 'F')} \]

\[\text{INTERSECT} \]

\[\text{(SELECT name, address FROM MovieExec WHERE netWorth > 10000000);} \]

(b) Show how to express the relational-algebra query

\[\pi_L(\sigma_C(R_1 \times R_2)) \]

in SQL, where L is a list of attributes and C is an arbitrary condition: