Exam 1
Computer Science 751
Lehman College– CUNY
Thursday, 17 October 2002

NAME (Printed) ____________________________
NAME (Signed) ____________________________
Login ____________________________

Please show all your work and circle your answers. Your grade will be based on the work shown.

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>
Useful Formulas

\[\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \]
\[\sum_{i=1}^{n} \frac{1}{i} = \ln n + O(1) \]
\[\sum_{i=1}^{n} x^i = \frac{x^{n+1}-1}{x-1} \]
\[\sum_{i=1}^{\infty} \frac{1}{i} = \ln n + O(1) \]
\[\sum_{i=0}^{\infty} ix^i = \frac{x}{(1-x)^2} \]
\[e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots \]
\[\lim_{n \to \infty} (1 + \frac{x}{n})^n = e^x \]
\[n! = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n (1 + O(\frac{1}{n})) \]
\[n! = o(n^n) \]
\[n! = \omega(2^n) \]
\[\log(n!) = \Theta(n \log n) \]
\[\binom{n}{k} = \frac{n!}{k!(n-k)!} \]
\[\binom{n}{k} \leq \binom{en}{k} \]
\[E[X] = \sum_x x Pr[X = x] \]
1. True or False (2 point each):

 (a) \(\lg n = o(n^2) \).
 (b) \(\lg n = O(n^2) \).
 (c) \(3n^2 + 2n = \omega(n) \).
 (d) \(3n^2 + 2n = \Omega(n) \).
 (e) \(n! = \Omega(2^n) \).
 (f) \(\lg(n!) = \Theta(\lg(n^n)) \).
 (g) \(f(n) = o(g(n)) \) implies \(f(n) = O(g(n)) \).
 (h) \(f(n) = \Omega(g(n)) \) implies \(f(n) = \Theta(g(n)) \).
 (i) \(f(n) = \Theta(g(n)) \) implies \(f(n) = O(g(n)) \).
 (j) \(f(n) = \Theta(g(n)) \) implies \(f(n) = \omega(g(n)) \).

2. Assume that every statement takes a constant \(c \) time. Give tight bounds on the order of growth and justify your answer:

 (a) What is the output, assuming the following piece of code is embedded in a complete and correct program:

       ```cpp
       for ( int i = 5; i > 0; i--)
       {
           for ( int j = 0 ; j < i; j++)
               cout << '*';
           cout << endl;
       }
       ```

 (b) Assume \(A \) is an array of length \(n \):

       ```cpp
       FIND-MAX(A)
       1 max <- - infinity
       2 for i <- 1 to n
       3      do if A[i] > max
       4          then max <- A[i]
       5 return max
       ```

 (c) Assume \(A \) is an array and the function COMBINE takes \(\Theta(n) \) on a sublists \(A[p..r] \) and \(A[r+1..p] \) of combined length \(n \):

       ```cpp
       MSORT(A,p,q)
       1 if ( q - p > 1)
       2      do MSORT(A,p, q/2);
       3      MSORT(A,q/2+1,q);
       4      COMBINE(A,p,q/2,r);
       ```
3. Assume A is an array storing a heap and k is a key:

\[
\text{HEAP-INSERT}(A,k)
\]
\[
\begin{align*}
1 & \text{ heap-size}[A] \leftarrow \text{heap-size}[A] + 1 \\
2 & i \leftarrow \text{heap-size}[A] \\
3 & \text{while } i > 1 \text{ and } A[\text{PARENT}(i)] < k \\
4 & \quad \text{do } A[i] \leftarrow A[\text{PARENT}(i)] \\
5 & \quad i \leftarrow \text{PARENT}(i) \\
6 & A[i] \leftarrow k \\
\end{align*}
\]

(a) What does the heap look like inserting keys from the sequence: \{10, 3, 1, 12, 20, 18, 14, 16\}?

(b) What is the height of the heap from inserting keys from the sequence: \{10, 3, 1, 12, 20, 18, 14, 16\}?

(c) Write a function that will take a heap (stored in an array called A) and return the maximum value.
4. Give asymptotic upper and lower bounds for $T(n)$ for the following two recurrences. Make your bounds as tight as possible, and justify your answers:
Assume that $T(n)$ is constant for $n \leq 2$:

(a) $T(n) = 5T(n/3) + 1$

(b) $T(n) = 10T(n - 2) + n$
5. Assume $A[1..n]$ is an array.

FIND-KEY(A,k)
1 for i <- 1 to n
2 do if $A[i] = k$
3 then return i

(a) What are tight bounds on the worst case order of growth? Justify your answer:

(b) What are tight bounds on the best case order of growth? Justify your answer:

(c) What are tight bounds on the average case order of growth, assuming that all numbers in A are randomly drawn from the interval $[1, n]$? Justify your answer:
6. Suppose that we have an array of \(n \) objects to sort and that the key of each record has the value \(\{0, 1, \ldots, k\} \). Assume that \(k \) is much smaller than \(n \) (\(k = o(n) \)). Give a simple, linear-time algorithm for sorting the \(n \)-objects.

7. Suppose that we have an array of \(n \) objects to sort, and there are no conditions on the keys.

 (a) What is the lower bound on the worst case running time of a comparison sort of the array \(A \)?

 (b) Write a sorting algorithm that sorts a list with the worst case running time you stated above: