Final Exam
Computer Science 72700
Analysis of Algorithms
Dr. St. John
Graduate Center
City University of New York
18 December 2001

NAME (Printed) ____________________________
NAME (Signed) ____________________________
E-mail _________________________________

Exam Rules

• Show all your work. Your grade will be based on the work shown.
• The exam is closed book and closed notes.
• When taking the exam, you may have with you pens or pencils, and an 8 1/2” x 11” piece of paper filled with notes, programs, etc.
• You may not use a computer or calculator.
• Do not open this exam until instructed to do so.
• Please use a separate piece of paper for each problem!

<table>
<thead>
<tr>
<th>Question</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
</tr>
</tbody>
</table>
1. (a) Write the **quicksort** algorithm for sorting a list of n elements.
 (b) Analyse the worst-case behavior of this algorithm.
 (c) Write a **randomized** version of the quicksort algorithm.
 (d) Analyse the average-case behavior of this algorithm.

2. The **0-1 knapsack problem** is as follows: a thief robbing a store finds n items; the ith item is worth v_i dollars and weights w_i pounds, where v_i and w_i are integers. He can carry at most W pounds in knapsack and wants to take the most valuable load possible. What items should he take?

 In the **fractional knapsack problem**, the setup is the same, but the thief can take fractions of items, rather than having to make a binary (0-1) choice for each item.

 Both knapsack problems exhibit the optimal substructure property.

 (a) Show that the 0-1 knapsack problem does **not** have the greedy-choice property.
 (b) Show that the fractional knapsack problem has a greedy algorithm that is optimal (that is, it has the greedy-choice property).
 (c) What is the running time of the 0-1 knapsack problem? Justify your answer.
 (d) What is the running time of the fractional knapsack problem? Justify your answer.

3. The **diameter** of a tree $T = (V, E)$ is given by: $\max_{u,v \in V} \delta(u, v)$. That is, the diameter is the largest of all shortest-path distances in the tree. Give an efficient algorithm to compute the diameter of a tree, and analyze the running time of your algorithm.

4. A **hamiltonian path** in a graph is a simple path that visits every vertex exactly once. Show that the language

 $$ \text{HAM-PATH} = \{ < G, u, v > | \exists \text{hamiltonian path from } u \text{ to } v \text{ in } G \} $$

 belongs to NP.

5. Consider a machine with k fast memory locations and a large slow memory. The input is a sequence of page requests. If the page is fast memory, the request is satisfied. If it is not, a **page fault** occurs while some page is removed from main memory and the desired page is loaded into the empty spot. We measure the cost of an algorithm, A, on an input sequence σ, $C_A(\sigma)$ by the number of page faults required to service all the page requests.

 Let **FIFO** (First In First Out) be the algorithm that on a page fault, evicts the page that has been in memory the longest.

 Let **LRU** (Least Recently Used) be the algorithm that on a page fault, evicts the page in memory that was requested least recently.

 Let **LFU** (Least Frequently Used) be the algorithm that on a page fault, evicts the page in memory that was used least frequently.

 Fix the k, the number of fast memory registers. Prove or disprove:

 (a) FIFO is k-competitive.
 (b) LRU is k-competitive.
 (c) LFU is k-competitive.