Chapter 14

Graphs
Terminology

• \(G = \{V, E\} \)
• A graph \(G \) consists of two sets
 – A set \(V \) of vertices, or nodes
 – A set \(E \) of edges
• A subgraph
 – Consists of a subset of a graph’s vertices and a subset of its edges
• Adjacent vertices
 – Two vertices that are joined by an edge
Terminology

Figure 14-2
a) A campus map as a graph; b) a subgraph
Terminology

• A path between two vertices
 – A sequence of edges that begins at one vertex and ends at another vertex
 – May pass through the same vertex more than once

• A simple path
 – A path that passes through a vertex only once

• A cycle
 – A path that begins and ends at the same vertex

• A simple cycle
 – A cycle that does not pass through a vertex more than once
Terminology

• A connected graph
 – A graph that has a path between each pair of distinct vertices

• A disconnected graph
 – A graph that has at least one pair of vertices without a path between them

• A complete graph
 – A graph that has an edge between each pair of distinct vertices
Figure 14-3
Graphs that are a) connected; b) disconnected; and c) complete
Terminology

- **Multigraph**
 - Not a graph
 - Allows multiple edges between vertices

Figure 14-4

a) A multigraph is not a graph; b) a self edge is not allowed in a graph
Terminology

- **Weighted graph**
 - A graph whose edges have numeric labels

Figure 14-5a

a) A weighted graph
Terminology

- Undirected graph
 - Edges do not indicate a direction

- Directed graph, or diagraph
 - Each edge is a directed edge

Figure 14-5b
b) A directed graph
Terminology

- Directed graph
 - Can have two edges between a pair of vertices, one in each direction
 - Directed path
 - A sequence of directed edges between two vertices
 - Vertex y is adjacent to vertex x if
 - There is a directed edge from x to y
Graphs As ADTs

• Graphs can be used as abstract data types
• Two options for defining graphs
 – Vertices contain values
 – Vertices do not contain values
• Operations of the ADT graph
 – Create an empty graph
 – Determine whether a graph is empty
 – Determine the number of vertices in a graph
 – Determine the number of edges in a graph
Graphs As ADTs

• Operations of the ADT graph (Continued)
 – Determine whether an edge exists between two given vertices; for weighted graphs, return weight value
 – Insert a vertex in a graph whose vertices have distinct search keys that differ from the new vertex’s search key
 – Insert an edge between two given vertices in a graph
 – Delete a particular vertex from a graph and any edges between the vertex and other vertices
 – Delete the edge between two given vertices in a graph
 – Retrieve from a graph the vertex that contains a given search key
Implementing Graphs

- Most common implementations of a graph
 - Adjacency matrix
 - Adjacency list

- Adjacency matrix
 - Adjacency matrix for a graph with n vertices numbered 0, 1, …, n – 1
 - An n by n array matrix such that matrix[i][j] is
 - 1 (or true) if there is an edge from vertex i to vertex j
 - 0 (or false) if there is no edge from vertex i to vertex j
Implementing Graphs

Figure 14-6

a) A directed graph and b) its adjacency matrix

© 2011 Pearson Addison-Wesley. All rights reserved
Implementing Graphs

• Adjacency matrix for a weighted graph with \(n \) vertices numbered \(0, 1, \ldots, n-1 \)
 – An \(n \) by \(n \) array matrix such that \(\text{matrix}[i][j] \) is
 • The weight that labels the edge from vertex \(i \) to vertex \(j \) if there is an edge from \(i \) to \(j \)
 • \(\infty \) if there is no edge from vertex \(i \) to vertex \(j \)

Figure 14-7
a) A weighted undirected graph and b) its adjacency matrix
Implementing Graphs

• Adjacency list
 - An adjacency list for a graph with \(n \) vertices numbered 0, 1, \(\ldots \), \(n - 1 \)
 - Consists of \(n \) linked lists
 - The \(i^{\text{th}} \) linked list has a node for vertex \(j \) if and only if the graph contains an edge from vertex \(i \) to vertex \(j \)
 - This node can contain either
 » Vertex \(j \)'s value, if any
 » An indication of vertex \(j \)'s identity
Implementing Graphs

Figure 14-8
a) A directed graph and
b) its adjacency list
Implementing Graphs

- Adjacency list for an undirected graph
 - Treats each edge as if it were two directed edges in opposite directions

Figure 14-9
a) A weighted undirected graph and b) its adjacency list
Implementing Graphs

- Adjacency matrix compared with adjacency list
 - Two common operations on graphs
 - Determine whether there is an edge from vertex i to vertex j
 - Find all vertices adjacent to a given vertex i
 - Adjacency matrix
 - Supports operation 1 more efficiently
 - Adjacency list
 - Supports operation 2 more efficiently
 - Often requires less space than an adjacency matrix
Implementing a Graph Class Using the JCF

• ADT graph not part of JCF
• Can implement a graph using an adjacency list consisting of a vector of maps
• Implementation presented uses TreeSet class
Graph Traversals

• A graph-traversal algorithm
 – Visits all the vertices that it can reach
 – Visits all vertices of the graph if and only if the graph is connected
 • A connected component
 – The subset of vertices visited during a traversal that begins at a given vertex
 – Can loop indefinitely if a graph contains a loop
 • To prevent this, the algorithm must
 – Mark each vertex during a visit, and
 – Never visit a vertex more than once
Graph Traversals

Figure 14-10
Visitation order for a) a depth-first search; b) a breadth-first search
Depth-First Search

• Depth-first search (DFS) traversal
 – Proceeds along a path from v as deeply into the graph as possible before backing up
 – Does not completely specify the order in which it should visit the vertices adjacent to v
 – A last visited, first explored strategy
Breadth-First Search

• Breadth-first search (BFS) traversal
 – Visits every vertex adjacent to a vertex \(v \) that it can before visiting any other vertex
 – A first visited, first explored strategy
 – An iterative form uses a queue
 – A recursive form is possible, but not simple
Implementing a BFS Iterator Class Using the JCF

- **BFSIterator class uses the ListIterator class**
 - As a queue to keep track of the order the vertices should be processed

- **BFSIterator constructor**
 - Initiates methods used to determine BFS order of vertices for the graph

- **Graph is searched by processing vertices from each vertex’s adjacency list**
 - In the order that they were pushed onto the queue
Applications of Graphs: Topological Sorting

- **Topological order**
 - A list of vertices in a directed graph without cycles such that vertex x precedes vertex y if there is a directed edge from x to y in the graph
 - There may be several topological orders in a given graph

- **Topological sorting**
 - Arranging the vertices into a topological order
Topological Sorting

Figure 14-14
A directed graph without cycles

Figure 14-15
The graph in Figure 14-14 arranged according to the topological orders a) a, g, d, b, e, c, f and b) a, b, g, d, e, f, c
Topological Sorting

- Simple algorithms for finding a topological order
 - topSort1
 - Find a vertex that has no successor
 - Remove from the graph that vertex and all edges that lead to it, and add the vertex to the beginning of a list of vertices
 - Add each subsequent vertex that has no successor to the beginning of the list
 - When the graph is empty, the list of vertices will be in topological order
Topological Sorting

• Simple algorithms for finding a topological order (Continued)
 – topSort2
 • A modification of the iterative DFS algorithm
 • Strategy
 – Push all vertices that have no predecessor onto a stack
 – Each time you pop a vertex from the stack, add it to the beginning of a list of vertices
 – When the traversal ends, the list of vertices will be in topological order
Spanning Trees

• A tree
 – An undirected connected graph without cycles

• A spanning tree of a connected undirected graph G
 – A subgraph of G that contains all of G’s vertices and enough of its edges to form a tree

• To obtain a spanning tree from a connected undirected graph with cycles
 – Remove edges until there are no cycles
Spanning Trees

- You can determine whether a connected graph contains a cycle by counting its vertices and edges
 - A connected undirected graph that has n vertices must have at least $n - 1$ edges
 - A connected undirected graph that has n vertices and exactly $n - 1$ edges cannot contain a cycle
 - A connected undirected graph that has n vertices and more than $n - 1$ edges must contain at least one cycle
Spanning Trees

Figure 14-19
Connected graphs that each have four vertices and three edges
The DFS Spanning Tree

- To create a depth-first search (DFS) spanning tree
 - Traverse the graph using a depth-first search and mark the edges that you follow
 - After the traversal is complete, the graph’s vertices and marked edges form the spanning tree
The BFS Spanning Tree

- To create a breath-first search (BFS) spanning tree
 - Traverse the graph using a bread-first search and mark the edges that you follow
 - When the traversal is complete, the graph’s vertices and marked edges form the spanning tree
Minimum Spanning Trees

• **Minimum spanning tree**
 – A spanning tree for which the sum of its edge weights is minimal

• **Prim’s algorithm**
 – Finds a minimal spanning tree that begins at any vertex
 – **Strategy**
 • Find the least-cost edge \((v, u)\) from a visited vertex \(v\) to some unvisited vertex \(u\)
 • Mark \(u\) as visited
 • Add the vertex \(u\) and the edge \((v, u)\) to the minimum spanning tree
 • Repeat the above steps until there are no more unvisited vertices
Shortest Paths

• Shortest path between two vertices in a weighted graph
 – The path that has the smallest sum of its edge weights

• Dijkstra’s shortest-path algorithm
 – Determines the shortest paths between a given origin and all other vertices
 – Uses
 • A set vertexSet of selected vertices
 • An array weight, where weight[v] is the weight of the shortest (cheapest) path from vertex 0 to vertex v that passes through vertices in vertexSet
Circuits

- A circuit
 - A special cycle that passes through every vertex (or edge) in a graph exactly once
- Euler circuit
 - A circuit that begins at a vertex v, passes through every edge exactly once, and terminates at v
 - Exists if and only if each vertex touches an even number of edges

Figure 14-27

a) Euler’s bridge problem
and b) its multigraph representation
Some Difficult Problems

• Three applications of graphs
 – The traveling salesperson problem
 – The three utilities problem
 – The four-color problem

• A Hamilton circuit
 – Begins at a vertex v, passes through every vertex exactly once, and terminates at v
Summary

• The two most common implementations of a graph are the adjacency matrix and the adjacency list

• Graph searching
 – Depth-first search goes as deep into the graph as it can before backtracking
 – Bread-first search visits all possible adjacent vertices before traversing further into the graph

• Topological sorting produces a linear order of the vertices in a directed graph without cycles
Summary

• Trees are connected undirected graphs without cycles
 – A spanning tree of a connected undirected graph is a subgraph that contains all the graph’s vertices and enough of its edges to form a tree
• A minimum spanning tree for a weighted undirected graph is a spanning tree whose edge-weight sum is minimal
• The shortest path between two vertices in a weighted directed graph is the path that has the smallest sum of its edge weights
Summary

- An Euler circuit in an undirected graph is a cycle that begins at vertex v, passes through every edge in the graph exactly once, and terminates at v.
- A Hamilton circuit in an undirected graph is a cycle that begins at vertex v, passes through every vertex in the graph exactly once, and terminates at v.