Chapter 11

Trees
Terminology

• Definition of a general tree
 – A general tree T is a set of one or more nodes such that T is partitioned into disjoint subsets:
 • A single node r, the root
 • Sets that are general trees, called subtrees of r

• Definition of a binary tree
 – A binary tree is a set T of nodes such that either
 • T is empty, or
 • T is partitioned into three disjoint subsets:
 – A single node r, the root
 – Two possibly empty sets that are binary trees, called left and right subtrees of $r
Figure 11-4
Binary trees that represent algebraic expressions
Terminology

• A binary search tree
 – A binary tree that has the following properties for each node n
 • n’s value is greater than all values in its left subtree T_L
 • n’s value is less than all values in its right subtree T_R
 • Both T_L and T_R are binary search trees

Figure 11-5
A binary search tree of names
Terminology

• The height of trees
 – Level of a node n in a tree T
 • If n is the root of T, it is at level 1
 • If n is not the root of T, its level is 1 greater than the level of its parent
 – Height of a tree T defined in terms of the levels of its nodes
 • If T is empty, its height is 0
 • If T is not empty, its height is equal to the maximum level of its nodes
Terminology

Figure 11-6
Binary trees with the same nodes but different heights

© 2011 Pearson Addison-Wesley. All rights reserved
Terminology

• Full, complete, and balanced binary trees
 – Recursive definition of a full binary tree
 • If T is empty, T is a full binary tree of height 0
 • If T is not empty and has height $h > 0$, T is a full binary tree if its root’s subtrees are both full binary trees of height $h - 1$

Figure 11-7
A full binary tree of height 3
Terminology

• Complete binary trees
 – A binary tree T of height h is complete if
 • All nodes at level $h - 2$ and above have two children each, and
 • When a node at level $h - 1$ has children, all nodes to its left at the same level have two children each, and
 • When a node at level $h - 1$ has one child, it is a left child

Figure 11-8
A complete binary tree
Terminology

• Balanced binary trees
 – A binary tree is balanced if the height of any node’s right subtree differs from the height of the node’s left subtree by no more than 1

• Full binary trees are complete

• Complete binary trees are balanced
Terminology

• Summary of tree terminology
 – General tree
 • A set of one or more nodes, partitioned into a root node and subsets that are general subtrees of the root
 – Parent of node n
 • The node directly above node n in the tree
 – Child of node n
 • A node directly below node n in the tree
 – Root
 • The only node in the tree with no parent
Terminology

• Summary of tree terminology (Continued)
 – Leaf
 • A node with no children
 – Siblings
 • Nodes with a common parent
 – Ancestor of node n
 • A node on the path from the root to n
 – Descendant of node n
 • A node on a path from n to a leaf
 – Subtree of node n
 • A tree that consists of a child (if any) of n and the child’s descendants
Terminology

• Summary of tree terminology (Continued)
 – Height
 • The number of nodes on the longest path from the root to a leaf
 – Binary tree
 • A set of nodes that is either empty or partitioned into a root node and one or two subsets that are binary subtrees of the root
 • Each node has at most two children, the left child and the right child
 – Left (right) child of node n
 • A node directly below and to the left (right) of node n in a binary tree
Terminology

• Summary of tree terminology (Continued)
 – Left (right) subtree of node n
 • In a binary tree, the left (right) child (if any) of node n plus its descendants
 – Binary search tree
 • A binary tree where the value in any node n is greater than the value in every node in n’s left subtree, but less than the value of every node in n’s right subtree
 – Empty binary tree
 • A binary tree with no nodes
Terminology

• Summary of tree terminology (Continued)
 – Full binary tree
 • A binary tree of height h with no missing nodes
 • All leaves are at level h and all other nodes each have two children
 – Complete binary tree
 • A binary tree of height h that is full to level $h - 1$ and has level h filled in from left to right
 – Balanced binary tree
 • A binary tree in which the left and right subtrees of any node have heights that differ by at most 1
The ADT Binary Tree: Basic Operations of the ADT Binary Tree

• The operations available for a particular ADT binary tree depend on the type of binary tree being implemented

• Basic operations of the ADT binary tree
 - createBinaryTree()
 - createBinaryTree(rootItem)
 - makeEmpty()
 - isEmpty()
 - getRootItem() throws TreeException
General Operations of the ADT Binary Tree

- General operations of the ADT binary tree
 - createBinaryTree (rootItem, leftTree, rightTree)
 - setRootItem(newItem)
 - attachLeft(newItem) throws TreeException
 - attachRight(newItem) throws TreeException
 - attachLeftSubtree(leftTree) throws TreeException
 - attachRightSubtree(rightTree) throws TreeException
 - detachLeftSubtree() throws TreeException
 - detachRightSubtree() throws TreeException
Traversals of a Binary Tree

- A traversal algorithm for a binary tree visits each node in the tree
- Recursive traversal algorithms
 - Preorder traversal
 - Inorder traversal
 - Postorder traversal
- Traversal is O(n)
Traversals of a binary tree: a) preorder; b) inorder; c) postorder

(a) Preorder: 60, 20, 10, 40, 30, 50, 70
(b) Inorder: 10, 20, 30, 40, 50, 60, 70
(c) Postorder: 10, 30, 50, 40, 20, 70, 60

(Numbers beside nodes indicate traversal order.)

Figure 11-10

© 2011 Pearson Addison-Wesley. All rights reserved
Possible Representations of a Binary Tree

- An array-based representation
 - A Java class is used to define a node in the tree
 - A binary tree is represented by using an array of tree nodes
 - Each tree node contains a data portion and two indexes (one for each of the node’s children)
 - Requires the creation of a free list which keeps track of available nodes
Possible Representations of a Binary Tree

(a) A binary tree of names

(b) its array-based implementations

© 2011 Pearson Addison-Wesley. All rights reserved
Possible Representations of a Binary Tree

• An array-based representation of a complete tree
 – If the binary tree is complete and remains complete
• A memory-efficient array-based implementation can be used
Possible Representations of a Binary Tree

Figure 11-12
Level-by-level numbering of a complete binary tree

Figure 11-13
An array-based implementation of the complete binary tree in Figure 10-12
Possible Representations of a Binary Tree

- A reference-based representation
 - Java references can be used to link the nodes in the tree

Figure 11-14
A reference-based implementation of a binary tree
A Reference-Based Implementation of the ADT Binary Tree

- Classes that provide a reference-based implementation for the ADT binary tree
 - TreeNode
 - Represents a node in a binary tree
 - TreeException
 - An exception class
 - BinaryTreeBasis
 - An abstract class of basic tree operation
 - BinaryTree
 - Provides the general operations of a binary tree
 - Extends BinaryTreeBasis
Tree Traversals Using an Iterator

- **TreeIterator**
 - Implements the Java `Iterator` interface
 - Provides methods to set the iterator to the type of traversal desired
 - Uses a queue to maintain the current traversal of the nodes in the tree

- **Nonrecursive traversal (optional)**
 - An iterative method and an explicit stack can be used to mimic actions at a return from a recursive call to `inorder`
The ADT Binary Search Tree

• A deficiency of the ADT binary tree which is corrected by the ADT binary search tree
 – Searching for a particular item

• Each node n in a binary search tree satisfies the following properties
 – n’s value is greater than all values in its left subtree T_L
 – n’s value is less than all values in its right subtree T_R
 – Both T_L and T_R are binary search trees
The ADT Binary Search Tree

• **Record**
 – A group of related items, called fields, that are not necessarily of the same data type

• **Field**
 – A data element within a record

• **A data item in a binary search tree has a specially designated search key**
 – A search key is the part of a record that identifies it within a collection of records

• **KeyedItem class**
 – Contains the search key as a data field and a method for accessing the search key
 – Must be extended by classes for items that are in a binary search tree
The ADT Binary Search Tree

- Operations of the ADT binary search tree
 - Insert a new item into a binary search tree
 - Delete the item with a given search key from a binary search tree
 - Retrieve the item with a given search key from a binary search tree
 - Traverse the items in a binary search tree in preorder, inorder, or postorder

Figure 11-19
A binary search tree
Algorithms for the Operations of the ADT Binary Search Tree

• Since the binary search tree is recursive in nature, it is natural to formulate recursive algorithms for its operations

• A search algorithm
 - search(bst, searchKey)
 • Searches the binary search tree bst for the item whose search key is searchKey
Algorithms for the Operations of the ADT Binary Search Tree: Insertion

- `insertItem(treeNode, newItem)`
 - Inserts `newItem` into the binary search tree of which `treeNode` is the root

Figure 11-23a and 11-23b

(a) Insertion into an empty tree; b) search terminates at a leaf
Algorithms for the Operations of the ADT Binary Search Tree: Insertion

Figure 11-23c

c) insertion at a leaf
Algorithms for the Operations of the ADT Binary Search Tree: Deletion

• Steps for deletion
 – Use the search algorithm to locate the item with the specified key
 – If the item is found, remove the item from the tree

• Three possible cases for node N containing the item to be deleted
 – N is a leaf
 – N has only one child
 – N has two children
Algorithms for the Operations of the ADT Binary Search Tree: Deletion

• Strategies for deleting node N
 – If N is a leaf
 • Set the reference in N’s parent to null
 – If N has only one child
 • Let N’s parent adopt N’s child
 – If N has two children
 • Locate another node M that is easier to remove from the tree than the node N
 • Copy the item that is in M to N
 • Remove the node M from the tree
Algorithms for the Operations of the ADT Binary Search Tree: Retrieval

• Retrieval operation can be implemented by refining the search algorithm
 – Return the item with the desired search key if it exists
 – Otherwise, return a null reference
Algorithms for the Operations of the ADT Binary Search Tree: Traversal

- Traversals for a binary search tree are the same as the traversals for a binary tree
- Theorem 11-1
 The inorder traversal of a binary search tree T will visit its nodes in sorted search-key order
A Reference-Based Implementation of the ADT Binary Search Tree

• **BinarySearchTree**
 – **Extends** BinaryTreeBasis
 – **Inherits the following from** BinaryTreeBasis
 • isEmpty()
 • makeEmpty()
 • getRootItem()
 • The use of the constructors

• **TreeIterator**
 – **Can be used with** BinarySearchTree
The Efficiency of Binary Search Tree Operations

- The maximum number of comparisons for a retrieval, insertion, or deletion is the height of the tree.
- The maximum and minimum heights of a binary search tree
 - \(n \) is the maximum height of a binary tree with \(n \) nodes.

Figure 11-30
A maximum-height binary tree with seven nodes.
The Efficiency of Binary Search Tree Operations

- **Theorem 11-2**
 A full binary tree of height $h \geq 0$ has $2^h - 1$ nodes

- **Theorem 11-3**
 The maximum number of nodes that a binary tree of height h can have is $2^h - 1$

Figure 11-32
Counting the nodes in a full binary tree of height h
The Efficiency of Binary Search Tree Operations

- **Theorem 11-4**
 The minimum height of a binary tree with \(n \) nodes is \(\lceil \log_2(n+1) \rceil \)

- The height of a particular binary search tree depends on the order in which insertion and deletion operations are performed

<table>
<thead>
<tr>
<th>Operation</th>
<th>Average case</th>
<th>Worst case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retrieval</td>
<td>(O(\log n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>Insertion</td>
<td>(O(\log n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>Deletion</td>
<td>(O(\log n))</td>
<td>(O(n))</td>
</tr>
<tr>
<td>Traversal</td>
<td>(O(n))</td>
<td>(O(n))</td>
</tr>
</tbody>
</table>

Figure 11-34
The order of the retrieval, insertion, deletion, and traversal operations for the reference-based implementation of the ADT binary search tree
Treesort

- Treesort
 - Uses the ADT binary search tree to sort an array of records into search-key order
 - Efficiency
 - Average case: $O(n \times \log n)$
 - Worst case: $O(n^2)$
Saving a Binary Search Tree in a File

- Two algorithms for saving and restoring a binary search tree
 - Saving a binary search tree and then restoring it to its original shape
 - Uses preorder traversal to save the tree to a file
 - Saving a binary tree and then restoring it to a balanced shape
 - Uses inorder traversal to save the tree to a file
 - Can be accomplished if
 - The data is sorted
 - The number of nodes in the tree is known
The JCF Binary Search Algorithm

- JCF has two binary search methods
 - Based on the natural ordering of elements:
    ```java
    static <T> int binarySearch (List<? extends Comparable<? super T>> list, T key)
    ```
 - Based on a specified Comparator:
    ```java
    static <T> int binarySearch (List<? extends T> list, T key,
        Comparator<? super T> c)
    ```
General Trees

- **An n-ary tree**
 - A generalization of a binary tree whose nodes each can have no more than n children

Figure 11-38
A general tree

Figure 11-41
An implementation of the n-ary tree in Figure 11-38
Summary

• Binary trees provide a hierarchical organization of data

• Implementation of binary trees
 – The implementation of a binary tree is usually referenced-based
 – If the binary tree is complete, an efficient array-based implementation is possible

• Traversing a tree is a useful operation

• The binary search tree allows you to use a binary search-like algorithm to search for an item with a specified value
Summary

• Binary search trees come in many shapes
 – The height of a binary search tree with n nodes can range from a minimum of $\lceil \log_2(n + 1) \rceil$ to a maximum of n
 – The shape of a binary search tree determines the efficiency of its operations

• An inorder traversal of a binary search tree visits the tree’s nodes in sorted search-key order

• The treesort algorithm efficiently sorts an array by using the binary search tree’s insertion and traversal operations
Summary

• Saving a binary search tree to a file
 – To restore the tree as a binary search tree of minimum height
 • Perform inorder traversal while saving the tree to a file
 – To restore the tree to its original form
 • Perform preorder traversal while saving the tree to a file