Chapter 10

Algorithm Efficiency and Sorting
Measuring the Efficiency of Algorithms

• Analysis of algorithms
 – Provides tools for contrasting the efficiency of different methods of solution

• A comparison of algorithms
 – Should focus on significant differences in efficiency
 – Should not consider reductions in computing costs due to clever coding tricks
Measuring the Efficiency of Algorithms

• Three difficulties with comparing programs instead of algorithms
 – How are the algorithms coded?
 – What computer should you use?
 – What data should the programs use?

• Algorithm analysis should be independent of
 – Specific implementations
 – Computers
 – Data
The Execution Time of Algorithms

• Counting an algorithm's operations is a way to access its efficiency
 – An algorithm’s execution time is related to the number of operations it requires
 – Examples
 • Traversal of a linked list
 • The Towers of Hanoi
 • Nested Loops
Algorithm Growth Rates

• An algorithm’s time requirements can be measured as a function of the problem size

• An algorithm’s growth rate
 – Enables the comparison of one algorithm with another
 – Examples
 Algorithm A requires time proportional to n^2
 Algorithm B requires time proportional to n

• Algorithm efficiency is typically a concern for large problems only
Algorithm Growth Rates

Figure 10-1
Time requirements as a function of the problem size \(n \)
Order-of-Magnitude Analysis and Big O Notation

• Definition of the order of an algorithm
 Algorithm A is order \(f(n) \) – denoted \(O(f(n)) \) – if constants \(k \) and \(n_0 \) exist such that A requires no more than \(k \times f(n) \) time units to solve a problem of size \(n \geq n_0 \)

• Growth-rate function
 – A mathematical function used to specify an algorithm’s order in terms of the size of the problem

• Big O notation
 – A notation that uses the capital letter O to specify an algorithm’s order
 – Example: \(O(f(n)) \)
Order-of-Magnitude Analysis and Big O Notation

![Image](image.png)

Figure 10-3a

A comparison of growth-rate functions: a) in tabular form

<table>
<thead>
<tr>
<th>Function</th>
<th>10</th>
<th>100</th>
<th>1,000</th>
<th>10,000</th>
<th>100,000</th>
<th>1,000,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>(\log_2 n)</td>
<td>3</td>
<td>6</td>
<td>9</td>
<td>13</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>(n)</td>
<td>10</td>
<td>10^2</td>
<td>10^3</td>
<td>10^4</td>
<td>10^5</td>
<td>10^6</td>
</tr>
<tr>
<td>(n \times \log_2 n)</td>
<td>30</td>
<td>664</td>
<td>9,965</td>
<td>10^5</td>
<td>10^6</td>
<td>10^7</td>
</tr>
<tr>
<td>(n^2)</td>
<td>10^2</td>
<td>10^4</td>
<td>10^6</td>
<td>10^8</td>
<td>10^{10}</td>
<td>10^{12}</td>
</tr>
<tr>
<td>(n^3)</td>
<td>10^3</td>
<td>10^6</td>
<td>10^9</td>
<td>10^{12}</td>
<td>10^{15}</td>
<td>10^{18}</td>
</tr>
<tr>
<td>(2^n)</td>
<td>10^3</td>
<td>10^{30}</td>
<td>10^{301}</td>
<td>10^{3,010}</td>
<td>10^{30,103}</td>
<td>10^{301,030}</td>
</tr>
</tbody>
</table>
Order-of-Magnitude Analysis and Big O Notation

Figure 10-3b
A comparison of growth-rate functions: b) in graphical form
Order-of-Magnitude Analysis and Big O Notation

• Order of growth of some common functions
 \(O(1) < O(\log_2 n) < O(n) < O(n \times \log_2 n) < O(n^2) < O(n^3) < O(2^n) \)

• Properties of growth-rate functions
 – You can ignore low-order terms
 – You can ignore a multiplicative constant in the high-order term
 – \(O(f(n)) + O(g(n)) = O(f(n) + g(n)) \)
Order-of-Magnitude Analysis and Big O Notation

• Worst-case and average-case analyses
 – An algorithm can require different times to solve different problems of the same size

• Worst-case analysis
 – A determination of the maximum amount of time that an algorithm requires to solve problems of size n

• Average-case analysis
 – A determination of the average amount of time that an algorithm requires to solve problems of size n
Keeping Your Perspective

• Throughout the course of an analysis, keep in mind that you are interested only in significant differences in efficiency
• When choosing an ADT’s implementation, consider how frequently particular ADT operations occur in a given application
• Some seldom-used but critical operations must be efficient
Keeping Your Perspective

- If the problem size is always small, you can probably ignore an algorithm’s efficiency.
- Weigh the trade-offs between an algorithm’s time requirements and its memory requirements.
- Compare algorithms for both style and efficiency.
- Order-of-magnitude analysis focuses on large problems.
The Efficiency of Searching Algorithms

• Sequential search
 – Strategy
 • Look at each item in the data collection in turn, beginning with the first one
 • Stop when
 – You find the desired item
 – You reach the end of the data collection
The Efficiency of Searching Algorithms

- Sequential search
 - Efficiency
 - Worst case: O(n)
 - Average case: O(n)
 - Best case: O(1)
The Efficiency of Searching Algorithms

• Binary search
 – Strategy
 • To search a sorted array for a particular item
 – Repeatedly divide the array in half
 – Determine which half the item must be in, if it is indeed present, and discard the other half
 – Efficiency
 • Worst case: $O(\log_2 n)$

• For large arrays, the binary search has an enormous advantage over a sequential search
Sorting Algorithms and Their Efficiency

• Sorting
 – A process that organizes a collection of data into either ascending or descending order

• Categories of sorting algorithms
 – An internal sort
 • Requires that the collection of data fit entirely in the computer’s main memory
 – An external sort
 • The collection of data will not fit in the computer’s main memory all at once but must reside in secondary storage
Sorting Algorithms and Their Efficiency

• Data items to be sorted can be
 – Integers
 – Character strings
 – Objects

• Sort key
 – The part of a record that determines the sorted order of the entire record within a collection of records
Selection Sort

- Selection sort
 - Strategy
 - Select the largest item and put it in its correct place
 - Select the next largest item and put it in its correct place, etc.

Figure 10-4
A selection sort of an array of five integers
Selection Sort

• Analysis
 – Selection sort is $O(n^2)$

• Advantage of selection sort
 – It does not depend on the initial arrangement of the data

• Disadvantage of selection sort
 – It is only appropriate for small n
Bubble Sort

- Bubble sort
 - Strategy
 - Compare adjacent elements and exchange them if they are out of order
 - Comparing the first two elements, the second and third elements, and so on, will move the largest (or smallest) elements to the end of the array
 - Repeating this process will eventually sort the array into ascending (or descending) order
Bubble Sort

Figure 10-5
The first two passes of a bubble sort of an array of five integers: a) pass 1; b) pass 2
Bubble Sort

• Analysis
 – Worst case: $O(n^2)$
 – Best case: $O(n)$
Insertion Sort

• Insertion sort
 – Strategy
 • Partition the array into two regions: sorted and unsorted
 • Take each item from the unsorted region and insert it into its correct order in the sorted region

Figure 10-6
An insertion sort partitions the array into two regions
Insertion Sort

Initial array:

29 10 14 37 13

Copy 10

29 29 14 37 13

Shift 29

10 29 14 37 13

Insert 10; copy 14

10 29 29 37 13

Shift 29

10 14 29 37 13

Insert 14; copy 37, insert 37 on top of itself

10 14 29 37 13

Copy 13

10 14 14 29 37

Shift 37, 29, 14

10 13 14 29 37

Insert 13

Sorted array:

Copy 10

An insertion sort of an array of five integers.

Figure 10-7

© 2011 Pearson Addison-Wesley. All rights reserved
Insertion Sort

- Analysis
 - Worst case: $O(n^2)$
 - For small arrays
 - Insertion sort is appropriate due to its simplicity
 - For large arrays
 - Insertion sort is prohibitively inefficient
Mergesort

• Important divide-and-conquer sorting algorithms
 – Mergesort
 – Quicksort

• Mergesort
 – A recursive sorting algorithm
 – Gives the same performance, regardless of the initial order of the array items
 – Strategy
 • Divide an array into halves
 • Sort each half
 • Merge the sorted halves into one sorted array
Mergesort

Figure 10-8

A mergesort with an auxiliary temporary array
Mergesort

Figure 10-9
A mergesort of an array of six integers
Mergesort

• Analysis
 – Worst case: $O(n \times \log_2 n)$
 – Average case: $O(n \times \log_2 n)$
 – Advantage
 • It is an extremely efficient algorithm with respect to time
 – Drawback
 • It requires a second array as large as the original array
Quicksort

- Quicksort
 - A divide-and-conquer algorithm
 - Strategy
 - Partition an array into items that are less than the pivot and those that are greater than or equal to the pivot
 - Sort the left section
 - Sort the right section

Figure 10-12
A partition about a pivot
Quicksort

• Using an invariant to develop a partition algorithm
 – Invariant for the partition algorithm
 The items in region S_1 are all less than the pivot, and those in S_2 are all greater than or equal to the pivot

Figure 10-14
Invariant for the partition algorithm
Quicksort

- Analysis
 - Worst case
 - Quicksort is $O(n^2)$ when the array is already sorted and the smallest item is chosen as the pivot

Figure 10-19
A worst-case partitioning with quicksort
Quicksort

• Analysis
 – Average case
 • quicksort is $O(n \times \log_2 n)$ when S_1 and S_2 contain the same – or nearly the same – number of items arranged at random

Figure 10-20
A average-case partitioning with quicksort
Quicksort

• Analysis
 - quicksort is usually extremely fast in practice
 - Even if the worst case occurs, quicksort’s performance is acceptable for moderately large arrays
Radix Sort

• Radix sort
 – Treats each data element as a character string
 – Strategy
 • Repeatedly organize the data into groups according to the \(i^{th} \) character in each element

• Analysis
 – Radix sort is \(O(n) \)
Radix Sort

0123, 2154, 0222, 0004, 0283, 1560, 1061, 2150
(1560, 2150) (1061) (0222) (0123, 0283) (2154, 0004)
1560, 2150, 1061, 0222, 0123, 0283, 2154, 0004
(0004) (0222, 0123) (2150, 2154) (1560, 1061) (0283)
0004, 0222, 0123, 2150, 2154, 1560, 1061, 0283
(0004, 1061) (0123, 2150, 2154) (0222, 0283) (1560)
0004, 1061, 0123, 2150, 2154, 0222, 0283, 1560
(0004, 0123, 0222, 0283) (1061, 1560) (2150, 2154)
0004, 0123, 0222, 0283, 1061, 1560, 2150, 2154

<table>
<thead>
<tr>
<th>Original integers</th>
<th>Grouped by fourth digit</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grouped by third digit</td>
<td>Combined</td>
<td></td>
</tr>
<tr>
<td>Grouped by second digit</td>
<td>Combined</td>
<td></td>
</tr>
<tr>
<td>Grouped by first digit</td>
<td>Combined (sorted)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 10-21

A radix sort of eight integers
A Comparison of Sorting Algorithms

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Worst case</th>
<th>Average case</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selection sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Bubble sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Insertion sort</td>
<td>n^2</td>
<td>n^2</td>
</tr>
<tr>
<td>Mergesort</td>
<td>$n \times \log n$</td>
<td>$n \times \log n$</td>
</tr>
<tr>
<td>Quicksort</td>
<td>n^2</td>
<td>$n \times \log n$</td>
</tr>
<tr>
<td>Radix sort</td>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>Treesort</td>
<td>n^2</td>
<td>$n \times \log n$</td>
</tr>
<tr>
<td>Heapsort</td>
<td>$n \times \log n$</td>
<td>$n \times \log n$</td>
</tr>
</tbody>
</table>

Figure 10-22

Approximate growth rates of time required for eight sorting algorithms
Summary

• Order-of-magnitude analysis and Big O notation measure an algorithm’s time requirement as a function of the problem size by using a growth-rate function

• To compare the inherit efficiency of algorithms
 – Examine their growth-rate functions when the problems are large
 – Consider only significant differences in growth-rate functions
Summary

• Worst-case and average-case analyses
 – Worst-case analysis considers the maximum amount of work an algorithm requires on a problem of a given size
 – Average-case analysis considers the expected amount of work an algorithm requires on a problem of a given size

• Order-of-magnitude analysis can be used to choose an implementation for an abstract data type

• Selection sort, bubble sort, and insertion sort are all $O(n^2)$ algorithms

• Quicksort and mergesort are two very efficient sorting algorithms