Chapter 6

Recursion as a Problem-Solving Technique
Backtracking

• **Backtracking**
 – A strategy for guessing at a solution and backing up when an impasse is reached

• **Recursion and backtracking can be combined to solve problems**
The Eight Queens Problem

- **Problem**
 - Place eight queens on the chessboard so that no queen can attack any other queen

- **Strategy: guess at a solution**
 - There are 4,426,165,368 ways to arrange 8 queens on a chessboard of 64 squares
The Eight Queens Problem

• An observation that eliminates many arrangements from consideration
 – No queen can reside in a row or a column that contains another queen
• Now: only 40,320 arrangements of queens to be checked for attacks along diagonals
The Eight Queens Problem

- Providing organization for the guessing strategy
 - Place queens one column at a time
 - If you reach an impasse, backtrack to the previous column
The Eight Queens Problem

Figure 6-1

a) Five queens that cannot attack each other, but that can attack all of column 6; b) backtracking to column 5 to try another square for the queen; c) backtracking to column 4 to try another square for the queen and then considering column 5 again
The Eight Queens Problem

• A recursive algorithm that places a queen in a column
 – Base case
 • If there are no more columns to consider
 – You are finished
 – Recursive step
 • If you successfully place a queen in the current column
 – Consider the next column
 • If you cannot place a queen in the current column
 – You need to backtrack
The Eight Queens Problem

Figure 6-2
A solution to the Eight Queens problem
Defining Languages

• A language
 – A set of strings of symbols
 – Examples: English, Java
 – If a Java program is one long string of characters, the language `JavaPrograms` is defined as
 \[\text{JavaPrograms} = \{ \text{strings } w : w \text{ is a syntactically correct Java program} \} \]
Defining Languages

• A language does not have to be a programming or a communication language
 – Example
 • The set of algebraic expressions
 \[\text{AlgebraicExpressions} = \{w : w \text{ is an algebraic expression}\} \]
Defining Languages

• Grammar
 – States the rules for forming the strings in a language

• Benefit of recursive grammars
 – Ease of writing a recognition algorithm for the language
 • A recognition algorithm determines whether a given string is in the language
The Basics of Grammars

• Symbols used in grammars
 – \(x \mid y \) means \(x \) or \(y \)
 – \(x \ y \) means \(x \) followed by \(y \)
 (In \(x \cdot y \), the symbol \(\cdot \) means concatenate, or append)
 – \(< \text{word} >\) means any instance of word that the definition defines
The Basics of Grammars

• Java identifiers
 – A Java identifier begins with a letter and is followed by zero or more letters and digits

Figure 6-3
A syntax diagram for Java identifiers
The Basics of Grammars

• Java identifiers
 – Language
 JavaIds = \{w : w is a legal Java identifier\}
 – Grammar
 < identifier > = < letter > | < identifier > < letter > | < identifier > < digit>
 < letter > = a | b | … | z | A | B | … | Z | _ | $
 < digit > = 0 | 1 | … | 9
The Basics of Grammars

- Recognition algorithm

isId(w)

 if (w is of length 1) {
 if (w is a letter) {
 return true
 } else {
 return false
 }
 }
 else {
 return false
 }

 else if (the last character of w is a letter or a digit) {
 return isId(w minus its last character)
 }
 else {
 return false
 }
Two Simple Languages: Palindromes

• A string that reads the same from left to right as it does from right to left
• Examples: radar, deed
• Language
 Palindromes = \{w : w reads the same left to right as right to left\}
Palindromes

- **Grammar**

 \[
 \langle \text{pal} \rangle = \text{empty string} \mid \langle \text{ch} \rangle \mid a \langle \text{pal} \rangle a \mid b \langle \text{pal} \rangle b \mid \ldots \\
 \mid Z \langle \text{pal} \rangle Z \\
 \langle \text{ch} \rangle = a \mid b \mid \ldots \mid z \mid A \mid B \mid \ldots \mid Z
 \]
Palindromes

• Recognition algorithm

\[
\text{isPal}(w) \\
\quad \text{if (w is the empty string or w is of length 1) } \{ \\
\quad \quad \text{return true} \\
\quad \} \\
\quad \text{else if (w’s first and last characters are the } \\
\quad \quad \text{same letter) } \{ \\
\quad \quad \quad \text{return isPal(w minus its first and last } \\
\quad \quad \quad \text{characters)} \\
\quad \} \\
\quad \text{else } \{ \\
\quad \quad \text{return false} \\
\quad \} \\
\]
Strings of the form A^nB^n

- A^nB^n
 - The string that consists of n consecutive A’s followed by n consecutive B’s

- Language
 $L = \{w : w \text{ is of the form } A^nB^n \text{ for some } n \geq 0\}$

- Grammar
 $<\text{legal-word}> = \text{empty string} \mid A <\text{legal-word}> B$
Strings of the form A^nB^n

- **Recognition algorithm**

  ```java
  isAnBn(w)
  if (the length of w is zero) {
      return true
  }
  else if (w begins with the character A and ends with the character B) {
      return isAnBn(w minus its first and last characters)
  }
  else {
      return false
  }
  ```
Algebraic Expressions

- Three languages for algebraic expressions
 - Infix expressions
 - An operator appears between its operands
 - Example: a + b
 - Prefix expressions
 - An operator appears before its operands
 - Example: + a b
 - Postfix expressions
 - An operator appears after its operands
 - Example: a b +
Algebraic Expressions

• To convert a fully parenthesized infix expression to a prefix form
 – Move each operator to the position marked by its corresponding open parenthesis
 – Remove the parentheses
 – Example
 • Infix expression: ((a + b) * c
 • Prefix expression: * + a b c
Algebraic Expressions

• To convert a fully parenthesized infix expression to a postfix form
 – Move each operator to the position marked by its corresponding closing parenthesis
 – Remove the parentheses
 – Example
 • Infix form: \((a + b) * c\)
 • Postfix form: \(a b + c *\)
Algebraic Expressions

- Prefix and postfix expressions
 - Never need
 - Precedence rules
 - Association rules
 - Parentheses
 - Have
 - Simple grammar expressions
 - Straightforward recognition and evaluation algorithms
Prefix Expressions

• Grammar
 \[<\text{prefix}> = <\text{identifier}> | <\text{operator}> <\text{prefix}> <\text{prefix}>\]
 \[<\text{operator}> = + | - | * | /\]
 \[<\text{identifier}> = a | b | … | z\]

• A recognition algorithm

  ```plaintext
  isPre()
  size = length of expression strExp
  lastChar = endPre(0, size - 1)
  if (lastChar >= 0 and lastChar == size-1 { 
    return true
  }
  else { 
    return false
  }
  ```
Prefix Expressions

• An algorithm that evaluates a prefix expression

```plaintext
evaluatePrefix(strExp)
    ch = first character of expression strExp
    Delete first character from strExp
    if (ch is an identifier) {
        return value of the identifier
    }
    else if (ch is an operator named op) {
        operand1 = evaluatePrefix(strExp)
        operand2 = evaluatePrefix(strExp)
        return operand1 op operand2
    }
```
Postfix Expressions

• Grammar

\[< \text{postfix} > = < \text{identifier} > | < \text{postfix} > < \text{postfix} > < \text{operator} > \]
\[< \text{operator} > = + | - | * | / \]
\[< \text{identifier} > = a \mid b \mid \ldots \mid z \]

• At high-level, an algorithm that converts a prefix expression to postfix form

```c
if (exp is a single letter) {
    return exp
}
else {
    return postfix(prefix1) + postfix(prefix2) + operator
}
```
Postfix Expressions

- A recursive algorithm that converts a prefix expression to postfix form

```python
convert(pre)
    ch = first character of pre
    Delete first character of pre
    if (ch is a lowercase letter) {
        return ch as a string
    }
    else {
        postfix1 = convert(pre)
        postfix2 = convert(pre)
        return postfix1 + postfix2 + ch
    }
```
Fully Parenthesized Expressions

- To avoid ambiguity, infix notation normally requires
 - Precedence rules
 - Rules for association
 - Parentheses
- Fully parenthesized expressions do not require
 - Precedence rules
 - Rules for association
Fully Parenthesized Expressions

- Fully parenthesized expressions
 - A simple grammar
 \[
 \begin{align*}
 \text{< infix> } &= \text{< identifier> } | (\text{< infix> } \text{< operator> } \text{< infix> }) \\
 \text{< operator> } &= + | - | * | / \\
 \text{< identifier> } &= a | b | \ldots | z
 \end{align*}
 \]
 - Inconvenient for programmers
The Relationship Between Recursion and Mathematical Induction

• A strong relationship exists between recursion and mathematical induction

• Induction can be used to
 – Prove properties about recursive algorithms
 – Prove that a recursive algorithm performs a certain amount of work
The Correctness of the Recursive Factorial Method

- Pseudocode for a recursive method that computes the factorial of a nonnegative integer n

```
fact(n)
    if (n is 0) {
        return 1
    }
    else {
        return n * fact(n - 1)
    }
```
The Correctness of the Recursive Factorial Method

- Induction on n can prove that the method \texttt{fact} returns the values
 \[
 \text{fact}(0) = 0! = 1 \\
 \text{fact}(n) = n! = n \times (n-1) \times (n-2) \times \cdots \times 1 \quad \text{if } n > 0
 \]
The Cost of Towers of Hanoi

- Solution to the Towers of Hanoi problem

```java
solveTowers(count, source, destination, spare)
  if (count is 1) {
    Move a disk directly from source to destination
  }
  else {
    solveTowers(count-1, source, spare, destination)
    solveTowers(1, source, destination, spare)
    solveTowers(count-1, spare, destination, source)
  }
```
The Cost of Towers of Hanoi

• Question
 – If you begin with N disks, how many moves does `solveTowers` make to solve the problem?

• Let
 – `moves(N)` be the number of moves made starting with N disks

• When N = 1
 – `moves(1) = 1`
The Cost of Towers of Hanoi

- When \(N > 1 \)

 \[
 \text{moves}(N) = \text{moves}(N - 1) + \text{moves}(1) + \text{moves}(N - 1)
 \]

- Recurrence relation for the number of moves that \texttt{solveTowers} requires for \(N \) disks

 \[
 \text{moves}(1) = 1 \\
 \text{moves}(N) = 2 \times \text{moves}(N - 1) + 1 \quad \text{if } N > 1
 \]
The Cost of Towers of Hanoi

- A closed-form formula for the number of moves that `solveTowers` requires for N disks

 \[\text{moves}(N) = 2^N - 1, \text{ for all } N \geq 1 \]

- Induction on N can provide the proof that

 \[\text{moves}(N) = 2^N - 1 \]
Summary

- Backtracking is a solution strategy that involves both recursion and a sequence of guesses that ultimately lead to a solution.
- A grammar is a device for defining a language.
 - A language is a set of strings of symbols.
 - A recognition algorithm for a language can often be based directly on the grammar of the language.
 - Grammars are frequently recursive.
Summary

• Different languages of algebraic expressions have their relative advantages and disadvantages
 – Prefix expressions
 – Postfix expressions
 – Infix expressions

• A close relationship exists between mathematical induction and recursion
 – Induction can be used to prove properties about a recursive algorithm