import java.util.Scanner;
public class WhileDemo
{
 public static void main(String[] args)
 {
 int count, number;
 System.out.println("Enter a number");
 Scanner keyboard = new Scanner(System.in);
 number = keyboard.nextInt();
 count = 1;
 while (count <= number)
 {
 System.out.print(count + ", ");
 count++;
 }
 System.out.println();
 System.out.println("Buckle my shoe.");
 }
}
Sample Screen Output 1

Enter a number:
2
1, 2,
Buckle my shoe.

Sample Screen Output 2

Enter a number:
3
1, 2, 3,
Buckle my shoe.

Sample Screen Output 3

Enter a number:
0

Buckle my shoe.
FIGURE 4.1 The Action of the while Loop in Listing 4.1

while (count <= number)
{
 System.out.print(count + ", ");
 count++;
}

Start

Evaluate
count<=number

True

{ System.out.print(count + ", ");
 count++;

False

End loop
FIGURE 4.2 The Semantics of the \texttt{while} Statement

\texttt{while} (Boolean_Expression)
\hspace{1cm} Body

Start

Evaluate Boolean_Expression

True
\hspace{1cm} False

Execute Body

End loop
LISTING 4.2 A do-while Loop

import java.util.Scanner;
public class DoWhileDemo {
 public static void main(String[] args) {
 int count, number;
 System.out.println("Enter a number");
 Scanner keyboard = new Scanner(System.in);
 number = keyboard.nextInt();
 count = 1;
 do {
 System.out.print(count + ", ");
 count++;
 } while (count <= number);
 System.out.println();
 System.out.println("Buckle my shoe.");
 }
}

Sample Screen Output 1

Enter a number:
2
1, 2,
Buckle my shoe.

Sample Screen Output 2

Enter a number:
3
1, 2, 3,
Buckle my shoe.

Sample Screen Output 3

Enter a number:
0
1, 2, 3,
The loop body always executes at least once.
Buckle my shoe.
FIGURE 4.3 The Action of the do-while Loop in Listing 4.2

do
{
 System.out.print(count + ", ");
 count++;
} while (count <= number);

Start

Execute
{
 System.out.print(count + ", ");
 count++;
}

Evaluate
count<=number

True False

End loop
FIGURE 4.4 The Semantics of the do-while Statement

do
 Body
while (Boolean_Expression)

Start

Execute Body

Evaluate Boolean_Expression

True

False

End loop
LISTING 4.3 Roach Population Program (part 1 of 2)

import java.util.Scanner;

/**
 Program to calculate how long it will take a population of
 roaches to completely fill a house from floor to ceiling.
 */
public class BugTrouble
{

 public static final double GROWTH_RATE = 0.95; //95% per week
 public static final double ONE_BUG_VOLUME = 0.002; //cubic feet

 public static void main(String[] args)
 {
 System.out.println("Enter the total volume of your house");
 System.out.print(" in cubic feet: ");
 Scanner keyboard = new Scanner(System.in);
 double houseVolume = keyboard.nextDouble();

 System.out.println("Enter the estimated number of");
 System.out.print(" roaches in your house: ");
 int startPopulation = keyboard.nextInt();
 int countWeeks = 0;
 double population = startPopulation;
 double totalBugVolume = population * ONE_BUG_VOLUME;
 double newBugs, newBugVolume;

 while (totalBugVolume < houseVolume)
 {
 newBugs = population * GROWTH_RATE;
 newBugVolume = newBugs * ONE_BUG_VOLUME;
 population = population + newBugs;
 totalBugVolume = totalBugVolume + newBugVolume;
 countWeeks++;
 }
 }
}
System.out.println("Starting with a roach population of " +
 startPopulation);
System.out.println("and a house with a volume of " + houseVolume +
 " cubic feet.");
System.out.println("after " + countWeeks + " weeks,");
System.out.println("the house will be filled with " +
 (int)population + " roaches.");
System.out.println("They will fill a volume of " +
 (int)totalBugVolume + " cubic feet.");
System.out.println("Better call Debugging Experts Inc.");

Sample Screen Output

Enter the total volume of your house
in cubic feet: 20000
Enter the estimated number of
roaches in your house: 100
Starting with a roach population of 100
and a house with a volume of 20000.0 cubic feet,
after 18 weeks,
the house will be filled with 16619693 roaches.
They will fill a volume of 33239 cubic feet.
Better call Debugging Experts Inc.
import java.util.Scanner;
/**
 * Computes the average of a list of (nonnegative) exam scores.
 * Repeats computation for more exams until the user says to stop.
 */
public class ExamAverager
{
 public static void main(String[] args)
 {
 System.out.println("This program computes the average of");
 System.out.println("a list of (nonnegative) exam scores.");
 double sum;
 int numberOfStudents;
 double next;
 String answer;
 Scanner keyboard = new Scanner(System.in);
do
{
 System.out.println();
 System.out.println("Enter all the scores to be averaged.");
 System.out.println("Enter a negative number after");
 System.out.println("you have entered all the scores.");
 sum = 0;
 numberOfStudents = 0;
 next = keyboard.nextDouble();
 while (next >= 0)
 {
 sum = sum + next;
 numberOfStudents++;
 next = keyboard.nextDouble();
 }
 if (numberOfStudents > 0)
 System.out.println("The average is "+(sum / numberOfStudents));
 else
 System.out.println("No scores to average.");
 System.out.println("Want to average another exam? ");
 System.out.println("Enter yes or no.");
 answer = keyboard.next();
 } while (answer.equalsIgnoreCase("yes");
}
Sample Screen Output

This program computes the average of a list of (nonnegative) exam scores.
Enter all the scores to be averaged.
Enter a negative number after you have entered all the scores.
100
90
100
90
-1

The average is 95.0
Want to average another exam?
Enter yes or no.
yes

Enter all the scores to be averaged.
Enter a negative number after you have entered all the scores.
90
70
80
-1

The average is 80.0
Want to average another exam?
Enter yes or no.
no
LISTING 4.5 An Example of a for Statement

public class ForDemo
{
 public static void main(String[] args)
 {
 int countDown;
 for (countDown = 3; countDown >= 0; countDown--)
 {
 System.out.println(countDown);
 System.out.println("and counting.");
 }
 System.out.println("Blast off!");
 }
}

Screen Output

3
and counting.
2
and counting.
1
and counting.
0
and counting.
Blast off!
Figure 4.5 The Action of the for Loop in Listing 4.5

```java
for (countDown = 3; countDown >= 0; countDown--)
{
    System.out.println(countDown);
    System.out.println("and counting.");
}
```

Start

Evaluate

count >= 0

True

End loop

False

Execute

countDown = 3;

Execute

countDown--;

Execute

System.out.println(countDown);
System.out.println("and counting.");

System.out.println(countDown);
Figure 4.6 The Semantics of the for Statement

for (Initializing_Action; Boolean_Expression; Update_Action)
Body

Start

Execute Initializing_Action

Evaluate Boolean_Expression

True

Execute Body

End loop

False

Execute Update_Action
LISTING 4.6 Using a Boolean Variable to End a Loop

```java
import java.util.Scanner;
/**
 * Illustrates the use of a boolean variable to end loop iteration.
 */
public class BooleanDemo
{
    public static void main(String[] args)
    {
        System.out.println("Enter nonnegative numbers.");
        System.out.println("Place a negative number at the end");
        System.out.println("to serve as an end marker.");
        int sum = 0;
        boolean areMore = true;
        Scanner keyboard = new Scanner(System.in);
        while (areMore)
        {
            int next = keyboard.nextInt();
            if (next < 0)
                areMore = false;
            else
                sum = sum + next;
        }
        System.out.println("The sum of the numbers is "+ sum);
    }
}
```

Sample Screen Output

Enter nonnegative numbers.
Place a negative number at the end
to serve as an end marker.
1 2 3 -1
The sum of the numbers is 6
LISTING 4.7 Spending Spree Program (part 1 of 2)

import java.util.Scanner;
public class SpendingSpree{
 public static final int SPENDING_MONEY = 100;
 public static final int MAX_ITEMS = 3;
 public static void main(String[] args)
 {
 Scanner keyboard = new Scanner(System.in);
 boolean haveMoney = true;
 int leftToSpend = SPENDING_MONEY;
 int totalSpent = 0;
 int itemNumber = 1;
 while (haveMoney && (itemNumber <= MAX_ITEMS))
 {
 System.out.println("You may buy up to " +
 (MAX_ITEMS - itemNumber + 1) +
 " items");
 System.out.println("costing no more than $" +
 leftToSpend + ".");
 System.out.print("Enter cost of item #" +
 itemNumber + ": ");
 int itemCost = keyboard.nextInt();
 if (itemCost <= leftToSpend)
 {
 System.out.println("You may buy this item. ");
 totalSpent = totalSpent + itemCost;
 System.out.println("You spent $" + totalSpent +
 " so far.");
 leftToSpend = SPENDING_MONEY - totalSpent;
 if (leftToSpend > 0)
 itemNumber++;
 }
 else
 {
 System.out.println("You are out of money.");
 haveMoney = false;
 }
 }
 }
```java
else
    System.out.println("You cannot buy that item.");
}
System.out.println("You spent $" + totalSpent + ", and are done shopping.");
```
LISTING 4.8 Ending a Loop with a break Statement

```java
while (itemNumber <= MAX_ITEMS)
{
    // ...
    if (itemCost <= leftToSpend)
    {
        // ...
        if (leftToSpend > 0)
            itemNumber++;
        else
        {
            System.out.println("You are out of money.");
            break;
        }
    }
    else
    // ...
}
System.out.println("...");
```
LISTING 4.9 An Applet That Uses Looping and Branching (part 1 of 4)

```java
import javax.swing.JApplet;
import java.awt.Graphics;
import java.awt.Color;

public class MultipleFaces extends JApplet {
    public static final int FACE_DIAMETER = 50;
    public static final int X_FACE0 = 10;
    public static final int Y_FACE0 = 5;
    public static final int EYE_WIDTH = 5;
    public static final int EYE_HEIGHT = 10;
    public static final int X_RIGHT_EYE0 = 20;
    public static final int Y_RIGHT_EYE0 = 15;
    public static final int X_LEFT_EYE0 = 45;
    public static final int Y_LEFT_EYE0 = Y_RIGHT_EYE0;
    public static final int NOSE_DIAMETER = 5;
    public static final int X_NOSE0 = 32;
    public static final int Y_NOSE0 = 25;
    public static final int MOUTH_WIDTH = 30;
    public static final int MOUTH_HEIGHT = 0;
    public static final int X_MOUTH0 = 20;
    public static final int Y_MOUTH0 = 35;
    public static final int MOUTH_START_ANGLE = 180;
    public static final int MOUTH_EXTENT_ANGLE = 180;
```
public void paint(Graphics canvas) {
 int i, xOffset, yOffset; //Want i to exist after the loop ends
 for (i = 0; i <= 4; i++)
 {
 //Draw one face:
 xOffset = 50 * i;
 yOffset = 30 * i;

 //Draw face circle:
 if (i % 2 == 0) //if i is even
 {
 //Make face light gray
 canvas.setColor(Color.LIGHT_GRAY);
 canvas.fillOval(X_FACE0 + xOffset, Y_FACE0 + 30 * i,
 FACE_DIAMETER, FACE_DIAMETER);
 }
 canvas.setColor(Color.BLACK);
 canvas.drawOval(X_FACE0 + xOffset, Y_FACE0 + yOffset,
 FACE_DIAMETER, FACE_DIAMETER);
//Draw eyes:
canvas.setColor(Color.BLUE);
canvas.fillOval(X_RIGHT_EYE0 + xOffset, Y_RIGHT_EYE0 + yOffset, EYE_WIDTH, EYE_HEIGHT);
canvas.fillOval(X_LEFT_EYE0 + xOffset, Y_LEFT_EYE0 + yOffset, EYE_WIDTH, EYE_HEIGHT);

//Draw nose:
canvas.setColor(Color.BLACK);
canvas.fillOval(X_NOSE0 + xOffset, Y_NOSE0 + yOffset, NOSE_DIAMETER, NOSE_DIAMETER);

//Draw mouth:
canvas.setColor(Color.RED);
canvas.drawArc(X_MOUTH0 + xOffset, Y_MOUTH0 + yOffset, MOUTH_WIDTH, MOUTH_HEIGHT0 + 3 * i, MOUTH_START_ANGLE, MOUTH_EXTENT_ANGLE);

//i is 5 when the previous loop ends
xOffset = 50 * i;
yOffset = 30 * i;

//Draw kissing face:
//Draw face outline:
canvas.setColor(Color.BLACK);
canvas.drawOval(X_FACE0 + xOffset, Y_FACE0 + yOffset, FACE_DIAMETER, FACE_DIAMETER);

//Draw eyes:
canvas.setColor(Color.BLUE);
canvas.fillOval(X_RIGHT_EYE0 + xOffset, Y_RIGHT_EYE0 + yOffset, EYE_WIDTH, EYE_HEIGHT);
canvas.fillOval(X_LEFT_EYE0 + xOffset, Y_LEFT_EYE0 + yOffset, EYE_WIDTH, EYE_HEIGHT);

//Draw nose:
canvas.setColor(Color.BLACK);
canvas.fillOval(X_NOSE0 + xOffset, Y_NOSE0 + yOffset, NOSE_DIAMETER, NOSE_DIAMETER);

//Draw mouth in shape of a kiss:
canvas.setColor(Color.RED);
canvas.fillOval(X_MOUTH0 + xOffset + 10, Y_MOUTH0 + yOffset, MOUTH_WIDTH - 20, MOUTH_WIDTH - 20);

After the last iteration of the loop body, the value of i is incremented one last time to become 5.
//Add text:
canvas.drawString("Kiss, Kiss. ",
 X_FACE0 + xOffset + FACE_DIAMETER, Y_FACE0 + yOffset);

//Draw blushing face:
i++;
xOffset = 50 * i;
yOffset = 30 * i;

//Draw face circle:
canvas.setColor(Color.GRAY);
canvas.fillOval(X_FACE0 + xOffset, Y_FACE0 + yOffset,
 FACE_DIAMETER, FACE_DIAMETER);
canvas.setColor(Color.BLACK);
canvas.drawOval(X_FACE0 + xOffset, Y_FACE0 + yOffset,
 FACE_DIAMETER, FACE_DIAMETER);

//Draw eyes:
canvas.setColor(Color.BLACK);
canvas.fillOval(X_RIGHT_EYE0 + xOffset, Y_RIGHT_EYE0 +
 yOffset, EYE_WIDTH, EYE_HEIGHT);
canvas.fillOval(X_LEFT_EYE0 + xOffset, Y_LEFT_EYE0 + yOffset,
 EYE_WIDTH, EYE_HEIGHT);

//Draw nose:
canvas.setColor(Color.BLACK);
canvas.fillOval(X_NOSE0 + xOffset, Y_NOSE0 + yOffset,
 NOSE_DIAMETER, NOSE_DIAMETER);

//Draw mouth:
canvas.setColor(Color.BLACK);
canvas.fillOval(X_MOUTH0 + xOffset, Y_MOUTH0 + yOffset,
 MOUTH_WIDTH, MOUTH_HEIGHT0 + 3 * (i - 2),
 MOUTH_START_ANGLE, MOUTH_EXTENT_ANGLE);

//Add text:
canvas.drawString("Tee Hee.",
 X_FACE0 + xOffset + FACE_DIAMETER, Y_FACE0 + yOffset);
Applet Output

Applet Viewer: MultipleFaces.class

Applet stared.

Kiss, Kiss.

Tee Hee.