Python Programming: An Introduction to Computer Science

Chapter 3
Computing with Numbers
Objectives

- To understand the concept of data types.
- To be familiar with the basic numeric data types in Python.
- To understand the fundamental principles of how numbers are represented on a computer.
Objectives (cont.)

- To be able to use the Python math library.
- To understand the accumulator program pattern.
- To be able to read and write programs that process numerical data.
Numeric Data Types

- The information that is stored and manipulated by computers programs is referred to as *data*.

- There are two different kinds of numbers!
 - (5, 4, 3, 6) are whole numbers – they don’t have a fractional part
 - (.25, .10, .05, .01) are decimal fractions
Numeric Data Types

- Inside the computer, whole numbers and decimal fractions are represented quite differently!
- We say that decimal fractions and whole numbers are two different *data types*.
- The data type of an object determines what values it can have and what operations can be performed on it.
Numeric Data Types

- Whole numbers are represented using the *integer* (*int* for short) data type.
- These values can be positive or negative whole numbers.
Numeric Data Types

- Numbers that can have fractional parts are represented as *floating point* (or *float*) values.

- How can we tell which is which?
 - A numeric literal without a decimal point produces an int value
 - A literal that has a decimal point is represented by a float (even if the fractional part is 0)
Numeric Data Types

- Python has a special function to tell us the data type of any value.

```python
>>> type(3)
<class 'int'>
>>> type(3.1)
<class 'float'>
>>> type(3.0)
<class 'float'>
>>> myInt = 32
>>> type(myInt)
<class 'int'>
```
Numeric Data Types

- Why do we need two number types?
 - Values that represent counts can’t be fractional (you can’t have 3 \(\frac{1}{2} \) quarters)
 - Most mathematical algorithms are very efficient with integers
 - The float type stores only an approximation to the real number being represented!
 - Since floats aren’t exact, use an int whenever possible!
Numeric Data Types

- Operations on ints produce ints, operations on floats produce floats (except for `/`).

```python
>>> 3.0+4.0
7.0
>>> 3+4
7
>>> 3.0*4.0
12.0
>>> 3*4
12
>>> 10.0/3.0
3.3333333333333335
>>> 10/3
3.3333333333333335
>>> 10 // 3
3
>>> 10.0 // 3.0
3.0
```
Numeric Data Types

- Integer division produces a whole number.
- That’s why \(10//3 = 3\)!
- Think of it as ‘gozinta’, where \(10//3 = 3\) since 3 gozinta (goes into) 10 3 times (with a remainder of 1)
- \(10\%3 = 1\) is the remainder of the integer division of 10 by 3.
- \(a = (a/b)(b) + (a\%b)\)
Using the Math Library

- Besides (+, -, *, /, //, **, %, abs), we have lots of other math functions available in a math library.

- A library is a module with some useful definitions/functions.
Using the Math Library

Let’s write a program to compute the roots of a quadratic equation!

\[x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \]

The only part of this we don’t know how to do is find a square root… but it’s in the math library!
Using the Math Library

- To use a library, we need to make sure this line is in our program:

  ```python
  import math
  ```

- Importing a library makes whatever functions are defined within it available to the program.
Using the Math Library

- To access the sqrt library routine, we need to access it as `math.sqrt(x)`.
- Using this dot notation tells Python to use the sqrt function found in the math library module.
- To calculate the root, you can do `discRoot = math.sqrt(b*b - 4*a*c)`
quadratic.py
A program that computes the real roots of a quadratic equation.
Illustrates use of the math library.
Note: This program crashes if the equation has no real roots.

import math # Makes the math library available.

def main():
 print("This program finds the real solutions to a quadratic")
 print()

 a, b, c = eval(input("Please enter the coefficients (a, b, c): "))

 discRoot = math.sqrt(b * b - 4 * a * c)
 root1 = (-b + discRoot) / (2 * a)
 root2 = (-b - discRoot) / (2 * a)

 print()
 print("The solutions are:", root1, root2)

main()
Using the Math Library

This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 3, 4, -1

The solutions are: 0.215250437022 -1.54858377035

What do you suppose this means?

This program finds the real solutions to a quadratic

Please enter the coefficients (a, b, c): 1, 2, 3

Traceback (most recent call last):
 File "<pyshell#26>", line 1, in -toplevel-
 main()
 File "C:\Documents and Settings\Terry\My Documents\Teaching\W04\CS 120\Textbook\code\chapter3\quadratic.py", line 14, in main
 discRoot = math.sqrt(b * b - 4 * a * c)
ValueError: math domain error
>>>
Math Library

- If $a = 1$, $b = 2$, $c = 3$, then we are trying to take the square root of a negative number!

- Using the `sqrt` function is more efficient than using `**`. How could you use `**` to calculate a square root?
Accumulating Results: Factorial

- Say you are waiting in a line with five other people. How many ways are there to arrange the six people?
- 720 -- 720 is the factorial of 6 (abbreviated 6!)
- Factorial is defined as:
 \[n! = n(n-1)(n-2)\ldots(1) \]
- So, 6! = 6*5*4*3*2*1 = 720
Accumulating Results: Factorial

- How we could we write a program to do this?
- Input number to take factorial of, n
- Compute factorial of n, fact
- Output fact
Accumulating Results: Factorial

- How did we calculate 6!?
 - 6*5 = 30
 - Take that 30, and 30 * 4 = 120
 - Take that 120, and 120 * 3 = 360
 - Take that 360, and 360 * 2 = 720
 - Take that 720, and 720 * 1 = 720
Accumulating Results: Factorial

- What’s really going on?
- We’re doing repeated multiplications, and we’re keeping track of the running product.
- This algorithm is known as an *accumulator*, because we’re building up or *accumulating* the answer in a variable, known as the *accumulator variable*.
Accumulating Results: Factorial

- The general form of an accumulator algorithm looks like this:
 - Initialize the accumulator variable
 - Loop until final result is reached
 - Update the value of accumulator variable
Accumulating Results: Factorial

- It looks like we’ll need a loop!

```python
fact = 1
for factor in [6, 5, 4, 3, 2, 1]:
    fact = fact * factor
```

- Let’s trace through it to verify that this works!
Accumulating Results: Factorial

Why did we need to initialize fact to 1? There are a couple reasons...

- Each time through the loop, the previous value of fact is used to calculate the next value of fact. By doing the initialization, you know fact will have a value the first time through.
- If you use fact without assigning it a value, what does Python do?
Accumulating Results: Factorial

- Since multiplication is associative and commutative, we can rewrite our program as:

  ```python
  fact = 1
  for factor in [2, 3, 4, 5, 6]:
    fact = fact * factor
  
  Great! But what if we want to find the factorial of some other number??
  ```
Accumulating Results: Factorial

- What does `range(n)` return? 0, 1, 2, 3, …, n-1
- `range` has another optional parameter! `range(start, n)` returns start, start + 1, …, n-1
- But wait! There’s more! `range(start, n, step)` returns start, start+step, …, n-1
- `list(<sequence>)` to make a list
Accumulating Results: Factorial

- Let’s try some examples!

```python
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list(range(5,10))
[5, 6, 7, 8, 9]

>>> list(range(5,10,2))
[5, 7, 9]
```
Accumulating Results: Factorial

Using this souped-up `range` statement, we can do the range for our loop a couple different ways.

- We can count up from 2 to n:
  ```python
rangle(2, n+1)
  ```
 (Why did we have to use n+1?)
- We can count down from n to 2:
  ```python
rangle(n, 1, -1)
  ```
Accumulating Results: Factorial

Our completed factorial program:

```python
# factorial.py
# Program to compute the factorial of a number
# Illustrates for loop with an accumulator

def main():
    n = eval(input("Please enter a whole number: "))
    fact = 1
    for factor in range(n,1,-1):
        fact = fact * factor
    print("The factorial of", n, "is", fact)

main()
```

The Limits of Int

- What is 100!?

```python
>>> main()
Please enter a whole number: 100
The factorial of 100 is
9332621544394415268169923885626670049071596826438162
1468592963895217599993229915608941463976156518286253
6979208272223758251185210916864000000000000000000000000
00

- Wow! That’s a pretty big number!
The Limits of Int

- Newer versions of Python can handle it, but...

```python
>>> import fact
>>> fact.main()
Please enter a whole number: 13
13
12
11
10
9
8
7
6
5
4
Traceback (innermost last):
 File "<pyshell#1>", line 1, in ?
 fact.main()
 File "C:\PROGRA~1\PYTHON~1.2\fact.py", line 5, in main
 fact=fact*factor
OverflowError: integer multiplication
```
The Limits of Int

- What’s going on?
  - While there are an infinite number of integers, there is a finite range of ints that can be represented.
  - This range depends on the number of *bits* a particular CPU uses to represent an integer value. Typical PCs use 32 bits.
The Limits of Int

- Typical PCs use 32 bits
- That means there are $2^{32}$ possible values, centered at 0.
- This range then is $-2^{31}$ to $2^{31}-1$. We need to subtract one from the top end to account for 0.
- But our 100! is much larger than this. How does it work?
Handling Large Numbers

- Does switching to *float* data types get us around the limitations of *ints*?
- If we initialize the accumulator to 1.0, we get

  ```
 >>> main()
 Please enter a whole number: 15
 The factorial of 15 is 1.307674368e+012
  ```

- We no longer get an exact answer!
Handling Large Numbers: Long Int

- Very large and very small numbers are expressed in *scientific* or *exponential notation*.

- $1.307674368e+012$ means $1.307674368 \times 10^{12}$

- Here the decimal needs to be moved right 12 decimal places to get the original number, but there are only 9 digits, so 3 digits of precision have been lost.
Handling Large Numbers

- Floats are approximations
- Floats allow us to represent a larger range of values, but with lower precision.
- Python has a solution, expanding ints!
- Python Ints are not a fixed size and expand to handle whatever value it holds.
Handling Large Numbers

- Newer versions of Python automatically convert your ints to expanded form when they grow so large as to overflow.
- We get indefinitely large values (e.g. 100!) at the cost of speed and memory
Type Conversions

- We know that combining an int with an int produces an int, and combining a float with a float produces a float.

- What happens when you mix an int and float in an expression?
  \[ x = 5.0 + 2 \]

- What do you think should happen?
Type Conversions

- For Python to evaluate this expression, it must either convert 5.0 to 5 and do an integer addition, or convert 2 to 2.0 and do a floating point addition.
- Converting a float to an int will lose information
- Ints can be converted to floats by adding “.0”
Type Conversion

- In *mixed-typed expressions* Python will convert ints to floats.
- Sometimes we want to control the type conversion. This is called *explicit typing*.
Type Conversions

```python
>>> float(22//5)
4.0
>>> int(4.5)
4
>>> int(3.9)
3
>>> round(3.9)
4
>>> round(3)
3
```