PART VI

INTERNET PROTOCOL:
CONNECTIONLESS DATAGRAM DELIVERY
Internet Protocol

• One of two major protocols in TCP/IP suite
• Major goals
 – Hide heterogeneity
 – Provide the illusion of a single large network
 – Virtualize access
The Concept

IP allows a user to think of an internet as a single virtual network that interconnects all hosts, and through which communication is possible; its underlying architecture is both hidden and irrelevant.
Internet Services And Architecture Of Protocol Software

- Design has proved especially robust
IP Characteristics

- Provides connectionless packet delivery service
- Defines three important items
 - Internet addressing scheme
 - Format of packets for the (virtual) Internet
 - Packet forwarding
Internet Packet

- Analogous to physical network packet
- Known as *IP datagram*
IP Datagram Layout

- Header contains
 - Source Internet address
 - Destination Internet address
 - Datagram type field
- Payload contains data being carried
Datagram Header Format

<table>
<thead>
<tr>
<th>Byte</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
</tr>
<tr>
<td>0</td>
<td>Version</td>
<td>Header Length</td>
<td>Type Of Service</td>
<td>Total Length</td>
</tr>
<tr>
<td>4</td>
<td>Identification</td>
<td>Flags</td>
<td>Fragment Offset</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TTL</td>
<td>Type</td>
<td>Header Checksum</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Source IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Destination IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional</td>
<td>IP Options (May Be Omitted)</td>
<td>Padding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>IP Payload Data</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Addresses In The Header

- SOURCE is the address of original source
- DESTINATION is the address of ultimate destination
IP Versions

- Version field in header defines version of datagram
- Internet currently uses version 4 of IP, IPv4
- Preceding figure is the IPv4 datagram format
- IPv6 discussed later in the course
Datagram Encapsulation

- Datagram *encapsulated* in network frame
- Network hardware treats datagram as data
- Frame type field identifies contents as datagram
 - Set by sending computer
 - Tested by receiving computer
Datagram Encapsulation For Ethernet

- Ethernet header contains Ethernet hardware addresses
- Ethernet type field set to 0x0800
Ethernet Frame Format

<table>
<thead>
<tr>
<th>Destination Hardware Address</th>
<th>Source Hardware Address</th>
<th>Frame Type</th>
<th>Frame Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Bytes</td>
<td>6 Bytes</td>
<td>2 Bytes</td>
<td>46 - 1500 Bytes</td>
</tr>
</tbody>
</table>

- Header format fixed (Destination, Source, Type fields)
- Frame data size can vary from packet to packet
 - Maximum 1500 octets
 - Minimum 46 octets
Datagram Encapsulated In Ethernet Frame

- 20-octet IP header follows Ethernet header
- IP source: 128.10.2.3 (800a0203)
- IP destination: 128.10.2.8 (800a0208)
- IP type: 01 (ICMP)
<table>
<thead>
<tr>
<th>Destination Hardware Address</th>
<th>Source Hardware Address</th>
<th>Frame Type</th>
<th>Frame Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Bytes</td>
<td>6 Bytes</td>
<td>2 Bytes</td>
<td>46 - 1500 Bytes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>Version</td>
<td>Header Length</td>
<td>Type Of Service</td>
<td>Total Length</td>
</tr>
<tr>
<td>4</td>
<td>Identification</td>
<td>Flags</td>
<td>Fragment Offset</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TTL</td>
<td>Type</td>
<td>Header Checksum</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Source IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Destination IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional</td>
<td>IP Options (May Be Omitted)</td>
<td>Padding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>IP Payload Data</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8B</th>
<th>BD</th>
<th>EB</th>
<th>D5</th>
<th>A3</th>
<th>00</th>
<th>9E</th>
<th>CF</th>
<th>04</th>
<th>7F</th>
<th>AC</th>
<th>2B</th>
<th>08</th>
<th>00</th>
<th>45</th>
<th>11</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>72</td>
<td>FC</td>
<td>53</td>
<td>14</td>
<td>8D</td>
<td>47</td>
<td>36</td>
<td>9A</td>
<td>84</td>
<td>D2</td>
<td>92</td>
<td>8E</td>
<td>39</td>
<td>49</td>
<td>16</td>
</tr>
<tr>
<td>75</td>
<td>02</td>
<td>D6</td>
<td>1B</td>
<td>BE</td>
<td>C8</td>
<td>33</td>
<td>02</td>
<td>C7</td>
<td>DF</td>
<td>1A</td>
<td>12</td>
<td>AF</td>
<td>D3</td>
<td>91</td>
<td>AF</td>
</tr>
<tr>
<td>BE</td>
<td>91</td>
<td>3D</td>
<td>25</td>
<td>0D</td>
<td>6E</td>
<td>4F</td>
<td>5E</td>
<td>61</td>
<td>0A</td>
<td>E5</td>
<td>42</td>
<td>F0</td>
<td>6C</td>
<td>B1</td>
<td>0E</td>
</tr>
<tr>
<td>4C</td>
<td>E7</td>
<td>57</td>
<td>89</td>
<td>4E</td>
<td>9D</td>
<td>C7</td>
<td>2D</td>
<td>7E</td>
<td>74</td>
<td>A8</td>
<td>AF</td>
<td>FE</td>
<td>7B</td>
<td>1A</td>
<td>FF</td>
</tr>
<tr>
<td>1E</td>
<td>1B</td>
<td>45</td>
<td>4A</td>
<td>3D</td>
<td>5B</td>
<td>5E</td>
<td>7A</td>
<td>95</td>
<td>8E</td>
<td>31</td>
<td>C4</td>
<td>83</td>
<td>3E</td>
<td>A8</td>
<td>47</td>
</tr>
<tr>
<td>E0</td>
<td>A1</td>
<td>95</td>
<td>35</td>
<td>99</td>
<td>33</td>
<td>07</td>
<td>2D</td>
<td>D6</td>
<td>7F</td>
<td>3F</td>
<td>E5</td>
<td>E8</td>
<td>5C</td>
<td>20</td>
<td>9D</td>
</tr>
<tr>
<td>80</td>
<td>25</td>
<td>CC</td>
<td>B1</td>
<td>EF</td>
<td>7F</td>
<td>69</td>
<td>44</td>
<td>B6</td>
<td>AC</td>
<td>A4</td>
<td>EE</td>
<td>03</td>
<td>88</td>
<td>5C</td>
<td>B0</td>
</tr>
<tr>
<td>Field</td>
<td>Value</td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Destination Hardware Address</td>
<td>8B BD EB D5 A3 00</td>
<td></td>
</tr>
<tr>
<td>Source Hardware Address</td>
<td>9E CF 04 7F AC 2B</td>
<td></td>
</tr>
<tr>
<td>Frame Type</td>
<td>08 00</td>
<td></td>
</tr>
<tr>
<td>Vers & Len</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td>Type Of Service</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Total Length</td>
<td>00 72</td>
<td></td>
</tr>
<tr>
<td>Idnt</td>
<td>FC 53</td>
<td></td>
</tr>
<tr>
<td>Flags & Fragment Offset</td>
<td>14 8D</td>
<td></td>
</tr>
<tr>
<td>Flags</td>
<td></td>
</tr>
<tr>
<td>Fragment Offset</td>
<td>14 8D</td>
<td></td>
</tr>
<tr>
<td>TTL</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>Header Checksum</td>
<td>9A 84</td>
<td></td>
</tr>
<tr>
<td>Source IP Address</td>
<td>D2 92 8E 39</td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>C</td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td>D2 92 8E 39</td>
<td></td>
</tr>
<tr>
<td>Host</td>
<td>39</td>
<td></td>
</tr>
<tr>
<td>Source IP Address (Decimal)</td>
<td>210 146 142 57</td>
<td></td>
</tr>
<tr>
<td>Destination IP Address</td>
<td>49 16 75 02</td>
<td></td>
</tr>
<tr>
<td>Class</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Host</td>
<td>16 75 02</td>
<td></td>
</tr>
<tr>
<td>Destination IP Address (Decimal)</td>
<td>73 22 117 2</td>
<td></td>
</tr>
<tr>
<td>Payload Data</td>
<td>D6 1B BE C8 33</td>
<td></td>
</tr>
</tbody>
</table>

Header Checksum:

- Source: 10001011 10111011 11101011 11010101 10100011 00000000
- Destination: 10111011 11001111 00000100 01111111 10101100 00101011

Fragment Offset:

- Source: 00010100 10001101
- Destination: 00010100 10001101

Source IP Address (Decimal):

- Source: 210 146 142 57
- Destination: 73 22 117 2

Payload Data:

- Source: 11010110 00011011 10111110 11001000 00110011
- Destination: 01001001 00010110 01110101 00000010
<table>
<thead>
<tr>
<th>Destination Hardware Address</th>
<th>Source Hardware Address</th>
<th>Frame Type</th>
<th>Frame Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Bytes</td>
<td>6 Bytes</td>
<td>2 Bytes</td>
<td>46 - 1500 Bytes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>Version</td>
<td>Header Length</td>
<td>Type Of Service</td>
<td>Total Length</td>
</tr>
<tr>
<td>4</td>
<td>Identification</td>
<td>Flags</td>
<td>Fragment Offset</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TTL</td>
<td>Type</td>
<td>Header Checksum</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Source IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Destination IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional</td>
<td>IP Options (May Be Omitted)</td>
<td>Padding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>IP Payload Data</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
| 4B | A8 | A0 | 4E | 76 | 1B | D1 | 1A | 9D | 41 | 79 | BD | 08 | 00 | 45 | 61 |
| 00 | 72 | CA | 0C | 33 | 6A | BC | EA | F7 | 21 | 21 | 09 | 7F | 7A | C1 | 2B |
| 02 | 5D | 7E | 7D | 37 | 33 | 97 | 91 | CA | 7A | 0C | 5A | AE | A0 | A7 | 8A |
| CF | 56 | 07 | DC | 79 | 35 | EA | BD | DE | 11 | 6E | 12 | 77 | 81 | D8 | 33 |
| 88 | 73 | 1E | 75 | 02 | 70 | 20 | 7B | 2C | 96 | 61 | DE | E2 | 27 | 75 | 29 |
| 19 | 52 | 9A | 87 | C4 | CA | 1A | 96 | 1C | 72 | 0C | BF | A8 | 2F | 84 | A3 |
| BF | C7 | CC | A4 | 6E | 37 | 99 | 13 | 44 | 48 | C5 | D8 | 39 | 22 | 94 | 72 |
| 95 | 13 | D5 | DD | 91 | F7 | A7 | EF | E0 | AB | 30 | 7F | 8E | 54 | 7B | B4 |
```
<table>
<thead>
<tr>
<th>Destination Hardware Address</th>
<th>4B A8 A0 4E 76 1B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Hardware Address</td>
<td>D1 1A 9D 41 79 BD</td>
</tr>
<tr>
<td>Frame Type</td>
<td>08 00</td>
</tr>
<tr>
<td>Vers & Len</td>
<td>45</td>
</tr>
<tr>
<td>Type Of Service</td>
<td>61</td>
</tr>
<tr>
<td>Total Length</td>
<td>00 72</td>
</tr>
<tr>
<td>Identi</td>
<td>CA 0C</td>
</tr>
<tr>
<td>Flags & Fragment Offset</td>
<td>33 6A</td>
</tr>
<tr>
<td>Flags</td>
<td>More Fragments</td>
</tr>
<tr>
<td>Fragment Offset</td>
<td>13 6A</td>
</tr>
<tr>
<td>TTL</td>
<td>BC</td>
</tr>
<tr>
<td>Type</td>
<td>EA</td>
</tr>
<tr>
<td>Header Checksum</td>
<td>F7 21</td>
</tr>
</tbody>
</table>

Source IP Address	21 09 7F 7A
Class	A
Network	21
Host	09 7F 7A
Source IP Address (Decimal)	33 9 127 122
Destination IP Address	C1 2B 02 5D
Class	C
Network	C1 2B 02
Host	5D

| Destination IP Address (Decimal) | 193 43 2 93 |

<table>
<thead>
<tr>
<th>Payload Data</th>
<th>7E 7D 37 33 97</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01111110 01111101 00110111 00110011 10010111</td>
</tr>
<tr>
<td>Destination Hardware Address</td>
<td>Source Hardware Address</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>6 Bytes</td>
<td>6 Bytes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Byte</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>0</td>
<td>Version</td>
<td>Header Length</td>
<td>Type Of Service</td>
<td>Total Length</td>
</tr>
<tr>
<td>4</td>
<td>Identification</td>
<td>Flags</td>
<td>Fragment Offset</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TTL</td>
<td>Type</td>
<td>Header Checksum</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Source IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Destination IP Address</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Optional</td>
<td>IP Options (May Be Omitted)</td>
<td>Padding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>IP Payload Data</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
87 36 8F 42 77 95 83 1A AB 39 16 D9 08 00 45 EE
00 72 B3 45 4A 9A E0 E0 BC 20 39 16 85 EA DE 78
12 02 B3 86 BE AA B7 06 0C 15 71 87 B1 85 28 59
F9 68 E9 13 C5 B7 76 2C A9 B4 C9 78 1C 42 39 AE
8C 54 EB E7 DA BB 05 CF F4 BA FD 5B 1C 42 4A 8D
61 FD 13 4F 2B 02 36 99 30 67 43 28 C1 98 C7 03
F1 80 ED 5F 1F 31 05 04 E6 41 70 E5 26 47 4A 19
A6 1C CD DA 14 5C CA AD D2 72 CB 71 42 93 08 01
```
<table>
<thead>
<tr>
<th>Destination Hardware Address</th>
<th>87 36 8F 42 77 95</th>
<th>10000111 00110110 10001111 01000010 01110111 10010101</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Hardware Address</td>
<td>83 1A AB 39 16 D9</td>
<td>10000011 00011010 10101011 00111001 00010110 11011001</td>
</tr>
<tr>
<td>Frame Type</td>
<td>08 00</td>
<td>00001000 00000000</td>
</tr>
<tr>
<td>Vers & Len</td>
<td>45</td>
<td>01000101</td>
</tr>
<tr>
<td>Type Of Service</td>
<td>EE</td>
<td>11101110</td>
</tr>
<tr>
<td>Total Length</td>
<td>00 72</td>
<td>00000000 01110010</td>
</tr>
<tr>
<td>Identi</td>
<td>B3 45</td>
<td>10110011 01000101</td>
</tr>
<tr>
<td>Flags & Fragment Offset</td>
<td>4A 9A</td>
<td>01001010 10011010</td>
</tr>
<tr>
<td>Flags</td>
<td></td>
<td>Don’t Fragment</td>
</tr>
<tr>
<td>Fragment Offset</td>
<td>0A 9A</td>
<td>00001010 10011010</td>
</tr>
<tr>
<td>TTL</td>
<td>E0</td>
<td>11100000</td>
</tr>
<tr>
<td>Type</td>
<td>E0</td>
<td>11100000</td>
</tr>
<tr>
<td>Header Checksum</td>
<td>BC 20</td>
<td>10111100 00100000</td>
</tr>
<tr>
<td>Source IP Address</td>
<td>39 16 85 EA</td>
<td>00111001 00010110 10000101 11101010</td>
</tr>
<tr>
<td>Class</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Network</td>
<td>39</td>
<td>00111001</td>
</tr>
<tr>
<td>Host</td>
<td>16 85 EA</td>
<td>00010110 10000101 11101010</td>
</tr>
<tr>
<td>Source IP Address (Decimal)</td>
<td>57 22 133 234</td>
<td></td>
</tr>
<tr>
<td>Destination IP Address</td>
<td>DE 78 12 02</td>
<td>11011110 01110000 00010010 00000010</td>
</tr>
<tr>
<td>Class</td>
<td>C</td>
<td>11011110 01110000 00010010</td>
</tr>
<tr>
<td>Network</td>
<td>DE 78 12</td>
<td></td>
</tr>
<tr>
<td>Host</td>
<td>02</td>
<td>00000001</td>
</tr>
<tr>
<td>Destination IP Address</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Decimal)</td>
<td>222 120 18 2</td>
<td></td>
</tr>
<tr>
<td>Payload Data</td>
<td>B3 86 BE AA B7</td>
<td>10110011 10000110 10111110 10101010 10110111</td>
</tr>
</tbody>
</table>
Standards For Encapsulation

- TCP/IP protocols define encapsulation for each possible type of network hardware
 - Ethernet
 - Frame Relay
 - Others
A Potential Problem

- A datagram can contain up to 65535 total octets (including header)
- Network hardware limits maximum size of frame (e.g., Ethernet limited to 1500 octets)
 - Known as the network *Maximum Transmission Unit (MTU)*
- Question: how is encapsulation handled if datagram exceeds network MTU?
Possible Ways To Accommodate Networks With Differing MTUs

- Force datagram to be less than smallest possible MTU
 - Inefficient
 - Cannot know minimum MTU
- Hide the network MTU and accommodate arbitrary datagram size
Accommodating Large Datagrams

• Cannot send large datagram in single frame
• Solution
 – Divide datagram into pieces
 – Send each piece in a frame
 – Called *datagram fragmentation*
Illustration Of When Fragmentation Needed

- Hosts A and B send datagrams of up to 1500 octets
- Router R_1 fragments large datagrams from Host A before sending over Net 2
- Router R_2 fragments large datagrams from Host B before sending over Net 2
Datagram Fragmentation

- Performed by routers
- Divides datagram into several, smaller datagrams called fragments
- Fragment uses same header format as datagram
- Each fragment forwarded independently
Illustration Of Fragmentation

<table>
<thead>
<tr>
<th>Header</th>
<th>data₁</th>
<th>data₂</th>
<th>data₃</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600 bytes</td>
<td>600 bytes</td>
<td>200 bytes</td>
</tr>
</tbody>
</table>

fragment #1 (offset of 0)
fragment #2 (offset of 600)
fragment #3 (offset of 1200)

- Offset specifies where data belongs in original datagram
- Offset actually stored as multiples of 8 octets
- MORE FRAGMENTS bit turned off in header of fragment #3
Fragmenting A Fragment

• Fragment can be further fragmented

• Occurs when fragment reaches an even-smaller MTU

• Discussion: which fields of the datagram header are used, and what is the algorithm?
Reassembly

- Ultimate destination puts fragments back together
 - Key concept!
 - Needed in a connectionless Internet
- Known as reassembly
- No need to reassemble subfragments first
- Timer used to ensure all fragments arrive
 - Timer started when first fragment arrives
 - If timer expires, entire datagram discarded
Time To Live

- TTL field of datagram header decremented at each hop (i.e., each router)
- If TTL reaches zero, datagram discarded
- Prevents datagrams from looping indefinitely (in case forwarding error introduces loop)
- IETF recommends initial value of 255 (max)
Checksum Field In Datagram Header

- 16-bit 1’s complement checksum
- Over IP header only!
- Recomputed at each hop
IP Options

- Seldom used
- Primarily for debugging
- Only *some* options copied into fragments
- Are variable length
- Note: padding needed because header length measured in 32-bit multiples
- Option starts with option code octet
IP Semantics

- IP uses best-effort delivery
 - Makes an attempt to deliver
 - Does not guarantee delivery
- In the Internet, routers become overrun or change routes, meaning that:
 - Datagrams can be lost
 - Datagrams can be duplicated
 - Datagrams can arrive out of order or scrambled
- Motivation: allow IP to operate over the widest possible variety of physical networks
Summary

- Internet Protocol provides basic connectionless delivery service for the Internet
- IP defines *IP datagram* to be the format of packets on the Internet
- Datagram header
 - Has fixed fields
 - Specifies source, destination, and type
 - Allows options
- Datagram encapsulated in network frame for transmission
Summary
(continued)

- Fragmentation
 - Needed when datagram larger than MTU
 - Usually performed by routers
 - Divides datagram into fragments

- Reassembly
 - Performed by ultimate destination
 - If some fragment(s) do not arrive, datagram discarded

- To accommodate all possible network hardware, IP does not require reliability (best-effort semantics)