PART V

MAPPING INTERNET ADDRESSES TO PHYSICAL ADDRESSES (ARP)
Motivation

- Must use hardware (physical) addresses to communicate over network
- Applications only use Internet addresses
1. Broadcast on network:

I AM IPA | HWA

Listening for HW @ of IPA

2. All ignore except 13:

Unicast:

I AM IPA | HWA

Sending to IPA | HWA

ARP REQ

ARP REPLY
Example

- Computers A and B on same network
- Application on A generates packet for application on B
- Protocol software on A must use B’s hardware address when sending a packet
Consequence

- Protocol software needs a mechanism that maps an IP address to equivalent hardware address
- Known as *address resolution* problem
Address Resolution

- Performed at each step along path through Internet
- Two basic algorithms
 - Direct mapping
 - Dynamic binding
- Choice depends on type of hardware
Direct Mapping

- Easy to understand
- Efficient
- Only works when hardware address is small
- Technique: assign computer an IP address that encodes the hardware address
Example Of Direct Mapping

- Hardware: proNet ring network
- Hardware address: 8 bits
- Assume IP address 192.5.48.0 (24-bit prefix)
- Assign computer with hardware address \(K \) an IP address 192.5.48.\(K \)
- Resolving an IP address means extracting the hardware address from low-order 8 bits
Example Of Direct Mapping

- Hardware: proNet ring network
- Hardware address: 8 bits
- Assume IP address 192.5.48.0 (24-bit prefix)
- Assign computer with hardware address K an IP address $192.5.48.K$
- Resolving an IP address means extracting the hardware address from low-order 8 bits
Dynamic Binding

- Needed when hardware addresses are large (e.g., Ethernet)
- Allows computer A to find computer B’s hardware address
 - A starts with B’s IP address
 - A knows B is on the local network
- Technique: broadcast query and obtain response
- Note: dynamic binding only used across one network at a time
Internet Address Resolution Protocol (ARP)

- Standard for dynamic address resolution in the Internet
- Requires hardware broadcast
- Intended for LAN
- Important idea: ARP only used to map addresses within a single physical network, never across multiple networks
ARP

- Machine A broadcasts ARP request with B’s IP address
- All machines on local net receive broadcast
- Machine B replies with its physical address
- Machine A adds B’s address information to its table
- Machine A delivers packet directly to B
Illustration Of ARP Request And Reply Messages

A broadcasts request for B (across local net only)

B replies to request
ARP Packet Format When Used With Ethernet

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ethernet Address Type</td>
<td>(1)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>IP Address Type</td>
<td>(0600)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Eth Addr Len</td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>IP Addr Len</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>SENDER'S ETH ADDR</td>
<td>(first 4 octets)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SENDER'S ETH ADDR (last 2 octets)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SENDER'S IP ADDR (last 2 octets)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TARGET'S ETH ADDR (last 4 octets)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TARGET'S IP ADDR (all 4 octets)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
- ARP: Address Resolution Protocol
- The diagram shows the layout of the ARP packet fields including Ethernet address type, IP address type, and various address lengths for sender and target.
ARP Packet Format When Used With Ethernet

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ETHERNET ADDRESS</td>
<td>Source MAC Address</td>
</tr>
<tr>
<td>TYPE (1)</td>
<td>Destination MAC Address</td>
</tr>
<tr>
<td>ETH ADDR LEN</td>
<td>Length of Ethernet Address (4 octets)</td>
</tr>
<tr>
<td>IP ADDR LEN</td>
<td>Length of IP Address (4 octets)</td>
</tr>
<tr>
<td>IP ADDR TYPE (0800)</td>
<td>ARP Request</td>
</tr>
<tr>
<td>IP ADDR LEN</td>
<td>Length of IP Address (4 octets)</td>
</tr>
<tr>
<td>IP ADDR TYPE (0800)</td>
<td>ARP Reply</td>
</tr>
<tr>
<td>IP ADDR LEN</td>
<td>Length of IP Address (4 octets)</td>
</tr>
<tr>
<td>TARGET ETH ADDR (first 4 octets)</td>
<td>Destination MAC Address</td>
</tr>
<tr>
<td>SOURCE ETH ADDR (last 2 octets)</td>
<td>Source MAC Address</td>
</tr>
<tr>
<td>SOURCE IP ADDR (last 2 octets)</td>
<td>Source IP Address</td>
</tr>
<tr>
<td>TARGET IP ADDR (first 2 octets)</td>
<td>Destination IP Address</td>
</tr>
<tr>
<td>TARGET ETH ADDR (last 4 octets)</td>
<td>Destination MAC Address</td>
</tr>
<tr>
<td>TARGET IP ADDR (all 4 octets)</td>
<td>Destination IP Address</td>
</tr>
</tbody>
</table>
Observations About Packet Format

• General: can be used with
 – Arbitrary hardware address
 – Arbitrary protocol address (not just IP)

• Variable length fields (depends on type of addresses)

• Length fields allow parsing of packet by computer that does not understand the two address types
Retention Of Bindings

- Cannot afford to send ARP request for each packet
- Solution
 - Maintain a table of bindings
- Effect
 - Use ARP one time, place results in table, and then send many packets
ARP Caching

- ARP table is a cache
- Entries time out and are removed
- Avoids stale bindings
- Typical timeout: 20 minutes
Algorithm For Processing
ARP Requests

- Extract sender’s pair, \((IA, EA)\) and update local ARP table if it exists
- If this is a request and the target is ‘‘me’’
 - Add sender’s pair to ARP table if not present
 - Fill in target hardware address
 - Exchange sender and target entries
 - Set operation to \(reply\)
 - Send reply back to requester
Algorithm Features

- If A ARPs B, B keeps A’s information
 - B will probably send a packet to A soon
- If A ARPs B, other machines do not keep A’s information
 - Avoids clogging ARP caches needlessly
Conceptual Purpose Of ARP

- Isolates hardware address at low level
- Allows application programs to use IP addresses
ARP Encapsulation

- ARP message travels in data portion of network frame
- We say ARP message is *encapsulated*
Illustration Of ARP Encapsulation

- ARP Message
- Frame Header
- Frame Data Area
Ethernet Encapsulation

- ARP message placed in frame data area
- Data area padded with zeroes if ARP message is shorter than minimum Ethernet frame
- Ethernet type 0x0806 used for ARP
Reverse Address Resolution Protocol

- Maps Ethernet address to IP address
- Same packet format as ARP
- Intended for bootstrap
 - Computer sends its Ethernet address
 - RARP server responds by sending computer’s IP address
- Seldom used (replaced by DHCP)
Summary

- Computer’s IP address independent of computer’s hardware address
- Applications use IP addresses
- Hardware only understands hardware addresses
- Must map from IP address to hardware address for transmission
- Two types
 - Direct mapping
 - Dynamic mapping
Summary
(continued)

- Address Resolution Protocol (ARP) used for dynamic address mapping
- Important for Ethernet
- Sender broadcasts ARP request, and target sends ARP reply
- ARP bindings are cached
- Reverse ARP was originally used for bootstrap