PART VI

INTERNET PROTOCOL:
CONNECTIONLESS DATAGRAM DELIVERY
Internet Protocol

- One of two major protocols in TCP/IP suite
- Major goals
 - Hide heterogeneity
 - Provide the illusion of a single large network
 - Virtualize access
IP allows a user to think of an internet as a single virtual network that interconnects all hosts, and through which communication is possible; its underlying architecture is both hidden and irrelevant.
Internet Services
And Architecture
Of Protocol Software

- Design has proved especially robust
IP Characteristics

- Provides connectionless packet delivery service
- Defines three important items
 - Internet addressing scheme
 - Format of packets for the (virtual) Internet
 - Packet forwarding
Internet Packet

- Analogous to physical network packet
- Known as *IP datagram*
IP Datagram Layout

<table>
<thead>
<tr>
<th>DATAGRAM HEADER</th>
<th>DATAGRAM DATA AREA</th>
</tr>
</thead>
</table>

- Header contains
 - Source Internet address
 - Destination Internet address
 - Datagram type field
- Payload contains data being carried
Datagram Header Format

Field	Octet 0	Octet 1	Octet 2	Octet 3	Octet 4	Octet 5	Octet 6	Octet 7	Octet 8	Octet 9	Octet 10	Octet 11	Octet 12	Octet 13	Octet 14	Octet 15	Octet 16	Octet 17	Octet 18	Octet 19	Octet 20	Octet 21	Octet 22	Octet 23	Octet 24	Octet 25	Octet 26	Octet 27	Octet 28	Octet 29	Octet 30	Octet 31										
Version (VERS)																																										
Header Length (HLEN)																																										
Type of Service (TYPE OF SERVICE)																																										
Total Length (TOTAL LENGTH)																																										
Identification (IDENT)																																										
Flags and Fragment Offset (FLAGS	FRAGMENT OFFSET)																																									
Time to Live (TTL)																																										
Protocol (TYPE)																																										
Header Checksum (HEADER CHECKSUM)																																										
Source IP Address																																										
Destination IP Address																																										
IP Options (MAY BE OMITTED)																																										
Padding																																										
Beginning of Payload (DATA)																																										

The Datagram Header Format is used as the protocol-level header for the Internet Protocol (IP) version 4 (IPv4). It contains information about the IP address, protocol type, header length, and options among other things.
Addresses In The Header

- SOURCE is the address of original source
- DESTINATION is the address of ultimate destination
IP Versions

- Version field in header defines version of datagram
- Internet currently uses version 4 of IP, IPv4
- Preceding figure is the IPv4 datagram format
- IPv6 discussed later in the course
Datagram Encapsulation

- Datagram *encapsulated* in network frame
- Network hardware treats datagram as data
- Frame type field identifies contents as datagram
 - Set by sending computer
 - Tested by receiving computer
 Datagram Encapsulation For Ethernet

- Ethernet header contains Ethernet hardware addresses
- Ethernet type field set to 0x0800
Ethernet Frame Format

<table>
<thead>
<tr>
<th>Preamble</th>
<th>Destination Address</th>
<th>Source Address</th>
<th>Frame Type</th>
<th>Frame Data</th>
<th>CRC</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 octets</td>
<td>6 octets</td>
<td>6 octets</td>
<td>2 octets</td>
<td>46–1500 octets</td>
<td>4 octets</td>
</tr>
</tbody>
</table>

- Header format fixed (Destination, Source, Type fields)
- Frame data size can vary from packet to packet
 - Maximum 1500 octets
 - Minimum 46 octets
- Preamble and CRC removed by framer hardware before frame stored in computer’s memory
Datagram Encapsulated In Ethernet Frame

- 20-octet IP header follows Ethernet header
- IP source: 128.10.2.3 (800a0203)
- IP destination: 128.10.2.8 (800a0208)
- IP type: 01 (ICMP)
Standards For Encapsulation

- TCP/IP protocols define encapsulation for each possible type of network hardware
 - Ethernet
 - Frame Relay
 - Others
Encapsulation Over Serial Networks

- Serial hardware transfers stream of octets
 - Leased serial data line
 - Dialup telephone connection
- Encapsulation of IP on serial network
 - Implemented by software
 - Both ends must agree
- Most common standards: Point to Point Protocol (PPP)
Encapsulation For Avian Carriers (RFC 1149)

- Characteristics of avian carrier
 - Low throughput
 - High delay
 - Low altitude
 - Point-to-point communication
 - Intrinsic collision avoidance

- Encapsulation
 - Write in hexadecimal on scroll of paper
 - Attach to bird’s leg with duct tape

- For an implementation see

 http://www.blug.linux.no/rfc1149
A Potential Problem

- A datagram can contain up to 65535 total octets (including header)

- Network hardware limits maximum size of frame (e.g., Ethernet limited to 1500 octets)
 - Known as the network Maximum Transmission Unit (MTU)

- Question: how is encapsulation handled if datagram exceeds network MTU?
Possible Ways To Accommodate Networks With Differing MTUs

- Force datagram to be less than smallest possible MTU
 - Inefficient
 - Cannot know minimum MTU
- Hide the network MTU and accommodate arbitrary datagram size
Accommodating Large Datagrams

- Cannot send large datagram in single frame
- Solution
 - Divide datagram into pieces
 - Send each piece in a frame
 - Called *datagram fragmentation*
Illustration Of When Fragmentation Needed

- Hosts A and B send datagrams of up to 1500 octets
- Router R_1 fragments large datagrams from Host A before sending over Net 2
- Router R_2 fragments large datagrams from Host B before sending over Net 2
Datagram Fragmentation

- Performed by routers
- Divides datagram into several, smaller datagrams called fragments
- Fragment uses same header format as datagram
- Each fragment forwarded independently
Illustration Of Fragmentation

Original datagram

<table>
<thead>
<tr>
<th>Header</th>
<th>data_1</th>
<th>data_2</th>
<th>data_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>600 bytes</td>
<td>600 bytes</td>
<td>200 bytes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Header_1</th>
<th>data_1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fragment #1 (offset of 0)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Header_2</th>
<th>data_2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fragment #2 (offset of 600)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Header_3</th>
<th>data_3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>fragment #3 (offset of 1200)</td>
</tr>
</tbody>
</table>

- Offset specifies where data belongs in original datagram
- Offset actually stored as multiples of 8 octets
- MORE FRAGMENTS bit turned off in header of fragment #3
Fragmenting A Fragment

- Fragment can be further fragmented
- Occurs when fragment reaches an even-smaller MTU
- Discussion: which fields of the datagram header are used, and what is the algorithm?
Reassembly

- Ultimate destination puts fragments back together
 - Key concept!
 - Needed in a connectionless Internet
- Known as reassembly
- No need to reassemble subfragments first
- Timer used to ensure all fragments arrive
 - Timer started when first fragment arrives
 - If timer expires, entire datagram discarded
Time To Live

- TTL field of datagram header decremented at each hop (i.e., each router)
- If TTL reaches zero, datagram discarded
- Prevents datagrams from looping indefinitely (in case forwarding error introduces loop)
- IETF recommends initial value of 255 (max)
Checksum Field In Datagram Header

- 16-bit 1’s complement checksum
- Over IP header only!
- Recomputed at each hop
IP Options

- Seldom used
- Primarily for debugging
- Only *some* options copied into fragments
- Are variable length
- Note: padding needed because header length measured in 32-bit multiples
- Option starts with option code octet
Option Code Octet

<table>
<thead>
<tr>
<th>Option Class</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Datagram or network control</td>
</tr>
<tr>
<td>1</td>
<td>Reserved for future use</td>
</tr>
<tr>
<td>2</td>
<td>Debugging and measurement</td>
</tr>
<tr>
<td>3</td>
<td>Reserved for future use</td>
</tr>
</tbody>
</table>
IP Semantics

- IP uses best-effort delivery
 - Makes an attempt to deliver
 - Does not guarantee delivery

- In the Internet, routers become overrun or change routes, meaning that:
 - Datagrams can be lost
 - Datagrams can be duplicated
 - Datagrams can arrive out of order or scrambled

- Motivation: allow IP to operate over the widest possible variety of physical networks
Output From PING Program

PING venera.isi.edu (128.9.0.32): 64 data bytes at 1.0000 second intervals

72 bytes from 128.9.0.32: icmp_seq=0. time=170. ms
72 bytes from 128.9.0.32: icmp_seq=1. time=150. ms
72 bytes from 128.9.0.32: icmp_seq=1. time=160. ms
72 bytes from 128.9.0.32: icmp_seq=2. time=160. ms
72 bytes from 128.9.0.32: icmp_seq=3. time=160. ms

--- venera.isi.edu PING Statistics ---
4 packets transmitted, 5 packets received,
 25% packet loss
round-trip (ms) min/avg/max = 150/160/170

• Shows actual case of duplication
Summary

- Internet Protocol provides basic connectionless delivery service for the Internet
- IP defines *IP datagram* to be the format of packets on the Internet
- Datagram header
 - Has fixed fields
 - Specifies source, destination, and type
 - Allows options
- Datagram encapsulated in network frame for transmission
Summary
(continued)

- Fragmentation
 - Needed when datagram larger than MTU
 - Usually performed by routers
 - Divides datagram into fragments
- Reassembly
 - Performed by ultimate destination
 - If some fragment(s) do not arrive, datagram discarded
- To accommodate all possible network hardware, IP does not require reliability (best-effort semantics)