1) (30 points) Write the output of each piece of code. If the code gives an error, write any output that would happen before the error, and then write “ERROR”.

<table>
<thead>
<tr>
<th>Code</th>
<th>Output</th>
</tr>
</thead>
</table>
| **a)** (5 points) | int a = 11;
int b = 2;
double c = 5;
System.out.println(
 ((double) a)/b);
System.out.println(c/b);
System.out.println(b/a);
System.out.println(a/b); |
| **b)** (5 points) | String k = "ketchup";
String m = "mustard";
System.out.println(
 k.substring(5) +
 m.substring(0,4) +
 k.charAt(3)); |
| **c)** (5 points) | for(int i = 3; i < 9; i++) {
 System.out.println(i%2);
} |
| **d)** (5 points) | String[] a = {"aardvark",
"ocelot", "capybara"};
System.out.println(a[2]);
String[] b = a;
System.out.println(b[2]);
b[2] = "echidna";
System.out.println(a[2]);
System.out.println(b[0]);
System.out.println(a[3]); |
1) (Continued)

<table>
<thead>
<tr>
<th></th>
<th>Code</th>
<th>Output</th>
</tr>
</thead>
</table>
| e) (5 points) | String w = "whit";
int k = 0;
int len = w.length();
boolean keepGoing = true;
while (keepGoing) {
 System.out.println(
 w.substring(k, len));
 k++;
 if (k == len) {
 keepGoing = false;
 }
} | |

| f) (5 points) | int sum = 0, j = 2;
while(sum < 60) {
 switch(j) {
 case 0:
 j = 2;
 sum -= 10;
 break;
 case 1:
 j = 0;
 sum += 10;
 case 2:
 j = 1;
 sum += 20;
 break;
 }
 System.out.println(sum);
} | |
2) (30 points) The Java class called CUNYCollege is started below. An object of class CUNYCollege represents one of the CUNY colleges. This class has four private instance variables:

- **name**, which is a *String* representing the name of the college.
- **numStudents**, which is an *int* representing the number of students at the college.
- **numStudentsCS**, which is an *int* representing the number of students at the college in the computer science program.
- **isSenior**, which is a *boolean* representing whether the CUNY college is a senior one (like Lehman) or not

```java
public class CUNYCollege {
    private String name;
    private int numStudents;
    private int numStudentsCS;
    private boolean isSenior;

    // your code will go here
}
```

a) (7 points) Write a constructor which takes in a name, number of students at the college, number of students in computer science, and boolean of whether the college is a senior college or not, and assigns those values to a CUNYCollege object.

b) (5 points) Use your constructor from part (a) to instantiate an object of class CUNYCollege with name “Lehman”, 10,326 students in the college, 150 students in computer science, and a senior college.
2) (continued)
c) (8 points) Write a non-static method `equals(CUNYCollege otherCollege)`, which compares two CUNYColleges and returns `true` if the number of computer science students and the type of college (senior or non-senior) are the same for both CUNYColleges, and `false` otherwise.

d) (10 points) Write a static method `listOfColleges`, which takes in an array of CUNYCollege objects, and returns a single String containing the names of the colleges in the array, separated by spaces. Assume that every element of the array contains a CUNYCollege instance.
3) (10 points) Write a static method called zeroOut that accepts two input parameters:
 - an int called num
 - an int array called array
This method should change all of the elements of array that are less than or equal to num to be 0. The method should not return anything.

For example, the array

```
4  -9  9  57  2
```

would become

```
0  0  9  57  0
```

when calling zeroOut with num = 4.
4) (20 points) The Java class Borough (code below) represents a borough.
 a) (6 points) Fill in the code below so that it has the following private attributes:
 ● the name of the borough (name)
 ● area of the borough in square miles (area)
 ● whether the borough is located on an island (isOnIsland)

public class Borough{
 //your code goes here

 public Borough(){
 name = "no name yet";
 area = 0.0;
 isOnIsland = true;
 }
}

 b) (4 points) Write the accessor (getter) method for the instance variable area.

 c) (5 points) Write the mutator (setter) method for the instance variable area.
 If the input argument is negative, do not change the variable’s value.
d) (5 points) Write a `toString` method for the class `Borough` that returns a `String` containing the name, the area, and the `isOnIsland` status of the `Borough` Object. Format the returned `String` as shown in the example below:

Name: The Boogie Down, Area: 57.43 sq. mi., not on an island
Name: Brooklyn, Area: 96.91 sq. mi., on an island
5) (10 points) Write a piece of code that repeatedly asks the user “Who’s there?”, and allows them to enter a word. The code should repeat this until the user enters the word “Orange”, in which case the code should print out “Orange you glad you didn’t say Banana!” and exit. If at any time the user enters the word “Banana”, then the code should print out “Banana Who?!”, before going back to asking the user “Who’s there?”