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SOLVING A POLYNOMIAL EQUATION: SOME HISTORY
AND RECENT PROGRESS*

VICTOR Y. PAN'

Abstract. The classical problem of solving an nth degree polynomial equation has substantially
influenced the development of mathematics throughout the centuries and still has several important
applications to the theory and practice of present-day computing. We briefly recall the history of the
algorithmic approach to this problem and then review some successful solution algorithms. We end
by outlining some algorithms of 1995 that solve this problem at a surprisingly low computational
cost.
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1. Introduction. The problem of solving a polynomial equation
(1.1) p(z) =po + P12 + paz® + -+ + Paz™ =0

was known to the Sumerians (third millennium B.C.) and has deeply influenced the
development of mathematics throughout the centuries (cf. [Be40], [Bo68], [Ne57],
[Ev83]).

In particular, the very ideas of abstract thinking and using mathematical no-
tation are largely due to the study of this problem. Furthermore, this study has
historically motivated the introduction of some fundamental concepts of mathematics
(such as irrational and complex numbers, algebraic groups, fields, and ideals) and has
substantially influenced the earlier development of numerical computing.

Presently, the study of equation (1.1) does not play such a central role in mathe-
matics and computational mathematics. In particular, many computational problems
arising in the sciences, engineering, business management, and statistics have been
linearized and then solved by using tools from linear algebra, linear programming,
and fast Fourier transform (FFT). Such tools may involve the solution of (1.1) but
usually for smaller n, where the available subroutines are sufficiently effective in most
cases. In fact, as n grows beyond 10 or 20, the present-day practical needs for solving
equation (1.1) become more and more sparse, with one major exception: equation
(1.1) retains its major role (both as a research problem and a part of practical com-
putational tasks) in the highly important area of computing called computer algebra,
which is widely applied to algebraic optimization and algebraic geometry computa-
tions. In computer algebra applications, one usually needs to solve (1.1) for larger n
(typically well above 100 and sometimes of order of several thousands). Furthermore,
high (multiple) precision of hundreds (or even thousands) of bits is frequently required
for the representation of the coefficients pg,pi,...,pn and/or the solution values z.
In these cases, the solution of (1.1) causes problems for the available software, and
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this motivates further research on the design of effective algorithms for solving (1.1).
Such a task and its technical ties with various areas of mathematics keep attracting
the substantial effort and interest of researchers so that several new algorithms for
solving (1.1) continue to appear every year [MN93]. We will next review the history
of the subject (starting with older times and ending with recent important progress)
and some samples of further extensions. We had to be selective in these vast subject
areas; we have chosen to focus on some recent promising approaches and leave some
pointers to the abundant bibliography. The reader may find further material on the
latter approaches in [BP,a] and more pointers to the bibliography in [MN93].

2. Some earlier history of solving a polynomial equation. A major step
in the history of studying polynomial equations was apparently in stating the problem
in the general abstract form (1.1). This step took a millennia of effort and led to the
introduction of the modern mathematical formalism. Meanwhile, starting with the
Sumerian and Babylonian times, the study focused on smaller degree equations for
specific coefficients. The solution of specific quadratic equations by the Babylonians
(about 2000 B.C.) and the Egyptians (found in the Rhind or Ahmes papyrus of the
second millennium B.C.) corresponds to the use of our high school formula

(2.1) T12 = (—=p1 £ 1/PT — 4pop2)/(2p2).

A full understanding of this solution formula, however, required the introduction
of negative, irrational, and complex numbers, and the progress of mankind in this
direction is a separate interesting subject, closely related indeed to the history of
solving polynomial equations of small degrees [Be40], [Bo68], [Ev83]. An important
achievement in this area was the formal rigorous proof by the Pythagoreans (about
500 B.C. in ancient Greece) that the equation 2 = 2 has no rational solution, that
is, that its solution must use a radical and not only arithmetic operations.

The attempts to find solution formulae which, like (2.1), would involve only arith-
metic operations and radicals, succeeded in the 16th century for polynomials of degrees
3 and 4 (Scipione del Ferro, Nicolo Tartaglia, Ludovico Ferrari, Geronimo Cardano),
but a very profound influence on mathematics was made by the failure of all attempts
to find such formulae for any polynomial of a degree greater than 4. More precisely,
such attempts resulted in a theorem, obtained by Ruffini in 1813 and Abel in 1827,
on the nonexistence of such a formula for the class of polynomials of degree n for any
n > 4 and with the Galois fundamental theory of 1832. (In fact, Omar Khayyam,
who died in 1122 a famous poet and the leading mathematician of his time, and
later Leonardo of Pisa (now more commonly known as Fibonacci), who died in 1250,
wrongly conjectured the nonexistence of such solution formulae for n = 3.) The Ga-
lois theory was motivated by the same problem of solving equation (1.1) and included
the proof of the nonexistence of the solution in the form of formulae with radicals,
already for simple specific polynomial equations with integer coefficients, such as
z® — 4z — 2 = 0, but this theory also gave a world of major ideas and techniques (to
some extent motivated by the preceding works, particularly by Lagrange and Abel)
for the development of modern algebra (see [Be40] and [Bo68| for further historical
background).

In spite of the absence of solution formulae in radicals, the fundamental theorem
of algebra states that equation (1.1) always has a complex solution for any input poly-
nomial p(z) of any positive degree n. In clearer and clearer form, this theorem was
successively stated by Roth (1608), Girard (1629), and Descartes (1637) and then
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repeated by Rahn (1659), Newton (1685), and Maclaurin. Its proof, however, had
to wait until the 19th century. Several early proofs, in particular, by D’Alembert,
Euler, Lagrange, and Gauss (in his doctoral dissertation defended in 1799) had flaws,
although these proofs and even flaws have motivated further important studies. In
particular, in the Gauss dissertation of 1799 it was assumed as an obvious fact that
every algebraic curve entering a closed complex domain must leave this domain. Prov-
ing this assumption actually involves the nontrivial study of complex algebraic curves
(which is a subject having substantial impact on pure and applied mathematics). As
one of the results of this study in the 19th and 20th centuries, Ostrowski fixed the
flaw in the Gauss proof in 1920 (see [GaT73]).

It is easy to extend the fundamental theorem of algebra to prove the existence of
the factorization

p@) =pn [[(z - %)
j=1

for any polynomial p(z), where p, # 0, so that 21, 22, ..., 2, are the n zeros of p(zx)
(not necessarily all distinct) and are the only solutions to (1.1).

The subject of computing or approximating these zeros has been called algorithmic
aspects of the fundamental theorem of algebra [DH69], [Sm81], [Scho82].

With no hope left for the exact solution formulae, the motivation came for de-
signing iterative algorithms for the approximate solution and, consequently, for in-
troducing several major techniques, in particular, for the study of meromorphic func-
tions, symmetric functions, Padé tables, continued fractions, and structured matrices
[Ho70]. Actually, the list of iterative algorithms proposed for approximating the so-
lution 21, 22, . .., 2n, of (1.1) includes hundreds (if not thousands) of items and encom-
passes about four millennia. In particular, the regula falsi (or false position) algorithm
appeared in the cited Rhind (or Ahmes) papyrus as a means of solving (1.1) for n = 2.
(The name regula falsi was given to this algorithm in medieval Europe, where it was
brought by Arab mathematicians. After its long trip in space and time, this algo-
rithm has safely landed in the modern undergraduate texts on numerical analysis
and, together with its modification called the secant method, is extensively used in
computational practice.)

In fact, it is not important whether a computer solution has been obtained via
formulae or not because, generally, the solution is irrational and cannot be computed
exactly anyway. What matters is how to obtain a solution with a high accuracy at a
lower computational cost by using less computer time and memory. From this point
of view, the first two algorithms with guaranteed convergence to all the n zeros of
p(z) (for any input polynomial p(z) of a degree n), due to Brouwer [BdL24] and Weyl
[We24] and both published in 1924, were not fully satisfactory because they were
presented without estimating the amount of computational resources, in particular,
the computational time required for their performance.

In the next two sections, we will describe how to fill this void of Weyl’s algorithm
and its modifications. Then we will recall some other successful algorithms which have
evolved since 1924. Then again we will restrict our exposition mostly to the subject
of computing or approximating all the solutions to equation (1.1), although in many
cases one seeks only some partial information about such solutions. For instance, one
may try to obtain one of the solutions, all the real solutions, or all the solutions lying
in a fixed disc or square on the complex plane. In some cases, one may need to know
only if there exists any real solution or any solution in a fixed disc or square on the
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FiG. 1. Weyl’s algorithm partitions each suspect square into four congruent subsquares. The
five zeros of p(z) are marked by asterisks.

"complex plane or one may just need to count the number of such solutions. We refer
the reader to [BP,a] on the latter subjects.

3. Weyl’s geometric construction. The subject of computational complexity
had not arisen yet in 1924, but, in fact, Weyl’s algorithm can be implemented to
perform it at a rather low computational cost; moreover, its subsequent modifications
in [HG69], [R87], and [P87] at the time of their appearance implied new record upper
bounds on the computational complexity of solving the polynomial equation (1.1) (cf.
other effective modifications in [Wi78], [P94], and [P96a]).

Furthermore, Weyl’s construction (under the name quadiree construction) has
been successfully applied to a wide range of other important computational problems
in such areas as image processing, n-body particle simulation, template matching,
and the unsymmetric eigenvalue problem [Sa84], [Se94], [Gre88], [P95b].

Let us briefly outline this effective construction, which performs search and ex-
clusion on the complex plane and can also be viewed as a two-dimensional version of
the bisection of a line interval (see Figures 1 and 2). On the complex plane, the search
starts with an instial suspect square S containing all the zeros of p(z). As soon as we
have a suspect square, we partition it into four congruent subsquares. At the center
of each of them, we perform a proximity test; that is, we estimate the distance to the
closest zero of p(z). (The estimates within, say, the relative error of 40% will suffice
in the context of this algorithm.) If the test guarantees that this distance exceeds
half of the length of the diagonal of the square then the square cannot contain any
zero of p(z) and is discarded. The remaining squares are called suspect; each of them
undergoes the same recursive process of partitioning into four congruent subsquares
and of application of proximity tests at their centers. The zeros of p(z) lying in each
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FIG. 2. Suspect squares computed by Weyl’s (quadtree) algorithm. Their centers (marked by
dots) approzimate the five zeros of p(x) marked by asterisks.

suspect square are approximated by its center with errors bounded by the half-length
of its diagonal. Each iteration step decreases the length and the half-length of the di-
agonals of suspect squares by 50%. Therefore, in h iteration steps, the approximation
errors cannot exceed 0.5 diag(S)/2", where diag(S) denotes the length of the diagonal
of the initial suspect square S.

The entire algorithm is essentially reduced to defining an initial suspect square
S and performing proximity tests. Furthermore, we need to apply proximity tests
only at the origin since we may shift the center C of a suspect square into the origin
by substituting the new variable y = = — C for the original variable z. Then p(z) is
replaced by the polynomial "' ; ¢;y* = q(y) = p(y+C), whose coefficients ¢; are easily
computed by using from about 9nlog,n to about 18nlog, n arithmetic operations
[BP94]. Moreover, we may apply a proximity test to the reverse polynomial

y"q(1/y) = gn + -1y + - + qoy",

whose zeros are the reciprocals of the zeros of ¢(y). Such an application will give us
an upper bound M on the absolute values of all the zeros of ¢(y) and thus will define
an initial suspect square centered at the origin having four vertices defined by the
expressions

(1 +V=1)M/V2.

Also vice versa, the reciprocal of an upper bound on the absolute values of the zeros
of the reverse polynomial y"g(1/y) is exactly what we seek in any proximity test
for q(y). Before we approximate the value M, we may try to decrease it by setting
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q(y) = p(y + C) for C, the center of gravity of the n zeros of p(z), that is, for
1 n
C= _pn—l/(npn) = E Zl Zj,
i=

(3'1) p(z) = Z Pil”i = Dn (.’E - zj), Pn # 0.
i=0 j=1
In this case, g,—1 = 0, and from Theorem 5.4 of [VdS70] we have

T+/2/n <max |z —C| < (1+V5)T/2 <1627, T =max |gni/qnl""
J 12

if C is the center of gravity [VdS70]. In the general case, for any C, we have

T/n <max |z; —C| < 2T
J

(compare [He74, pp. 451, 452, 457]). The application of the above bounds to the
reverse polynomial y"g(1/y) defines two proximity tests with output errors bounded
by factors 1.62 /n/2 (if ¢g,—1 = 0) and 2n, respectively. In Appendix C, we recall
Turan’s proximity test, which approximates the minimum and maximum distances
from any complex C to the zeros of p(z) within the error factor 5 at the cost of
performing order of n log n arithmetic operations. The error factors of the above tests
can be decreased to (1.62 \/n/2)Y/ X, (2n)/K and 5K respectively, if the tests are
applied to the polynomial that we denote tx(y) whose zeros are the Kth powers of
- the zeros of g(y) for K = 2¥. The transition to such a polynomial is performed by
means of k steps of the so-called Graeffe iteration of the form

to(y) = y"a(1/v)/q0,
(3.2) tiv1(y) = (=D"t:(VY) ti(—vY), i=1,...,k,

where, with no loss of generality, we assume that go # 0, so that the polynomial
to(y) is monic. (Iteration (3.2) was discovered by Dandelin, soon thereafter was
rediscovered by Lobachevsky, and, later on, by Graeffe; compare [040], [Ho70].) It
is easily observed that, for every i, ith iteration step (3.2) squares the zeros of t;(y)
at the cost of performing a polynomial multiplication. To multiply two polynomials
fast, we first evaluate these two polynomials at the Nth roots of 1 for a sufficiently
large natural N, multiply the N computed values, and, finally, interpolate by applying
FFT for the evaluation and interpolation. If n + 1 = 2" for an integer h, we may
choose N = 2"*! and perform this computation by using at most 9nlog,n + 4n
arithmetic operations [BP94]. (The latter cost bound can be further decreased to
at most 4.5nlog, n + 2n based on the representation of ¢;(,/y) and t;(—,/y) in the
form t;0(2%) + 2t;,1(2%), where t;0(22?) and 2t;1(22%) are the sums of the even and
the odd powers of 2 in the expansion in z of the polynomial ¢;(z) for z = ,/y and
z = —,/y, respectively.) Such cost bounds for iteration (3.2) mean that the order of
knlogn arithmetic operations suffice for the desired transition to ¢t(y) = tx(y). For
our purpose of performing a proximity test with a relative error of at most 40% or
even at most 10%, it suffices to choose k of order of loglogn if we apply the above
test based on computing 7 or to choose k = 2 or k = 5 if we apply Turan’s test.
To simplify the formulae, we will ignore the relatively small factors loglogn in our
subsequent estimates, even where we apply the test based on computing 7. (Note
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that log, logon < 5 for n = 10%, which is a much greater value of n than one would
encounter in present-day applications of (1.1).)

To complete estimating the arithmetic complexity of performing Weyl’s algorithm,
we should only estimate how many proximity tests are required or, equivalently, how
many suspect squares are processed in h iteration steps of Weyl’s algorithm. A simple
observation shows that this is at most 4nh since every zero of p(z) makes at most four
squares suspect in each recursive step of Weyl’s algorithm, provided that the proximity
tests output the distances to the closest zeros of p(z) within at most 40% error (or
even within any relative error less than /2 — 1 = 0.41...). The latter bounds on the
numbers of suspect squares grow only from 4 to 5, relative to each zero of p(z), and
from 4nh to 5nh, relative to h steps of Weyl’s construction, if we lift the upper bound
on the relative errors of the proximity tests from 40% to 50% (or even to any value
less than 5'/4 —1). (In fact, even fewer than 4nh or 5nh suspect squares are involved
for larger n since we process at most 4¢ or 5° suspect squares at the ith iteration,
respectively, and since 4° < n for i < 0.5log,n, whereas 5° < n for i < logs n.)
Therefore, order of n?hlogn arithmetic operations suffice for approximating all the n
zeros of p(z) within diam/2", where diam denotes the diameter of the set of all the
zeros of p(z).

In a practical implementation of Weyl’s algorithm, the proximity tests should
be modified substantially to take into account numerical problems of controlling.the
impact of roundoff errors (in the case of implementation in floating-point arithmetic
with a fixed finite precision) and controlling the precision growth (in the case of
implementation in rational arithmetic with no roundoff errors). We refer the readers
to the end of Appendix C and to [BP,a] and [BP96] for some recent works on this
subject, which still requires the resolution of many open problems.

To give an example of a specific practical modification, we observe that in Weyl’s
algorithm one does not have to compute the value 7, but it suffices to compare
the ratio |gn—;/qn| with the length of the half-diagonals of the tested square for all
¢ > 1, which means a slightly simpler computation. As another possible practi-
cal simplification, one may start with the simpler (one-sided) proximity test that
just computes the value r = n |p(C)/p/(C)|. Then it is known [He74] that the disc
D(C,r) = (z : |x — C| < r) contains the zero of p(z). Therefore, a candidate square
having its center in C and its side length less than 2r can be immediately identified as
a suspect square without shifting the origin into the point C' and applying the other
cited (two-sided) proximity tests. We will need to shift to the latter (more involved)
tests only if the value 2r exceeds the length of the sides of the candidate square. In
fact, a variety of alternative proximity tests is available in [He74], and from this vari-
ety one may choose a simplified test that works for some considerable class of inputs
and/or a more involved test that works for all inputs.

Remark 3.1. The reader may be interested in examining a modification of Weyl’s
construction, where squares are replaced by hexagons and where at most 3n hexagons
can be suspect in each recursive step.

4. Acceleration of Weyl’s algorithm. Like bisection, Weyl’s algorithm con-
verges right from the start with the linear convergence rate and allows its convergence
acceleration by means of some analytic techniques. Moreover, since we solve an equa-
tion f(x) = 0 of a very special form, f(z) being a polynomial, one may define explicit
conditions that guarantee quadratic convergence right from a starting point zo to a
zero of f(z) = p(x). A nontrivial and very general sufficient condition of this kind
for Newton’s iteration (starting with zo) ;41 = z; — f(z;)/f (z;), 1 =0,1,..., was
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given by Smale in [Sm86] (also compare [Kim88]):

*) 1/(k—1)
f (zo <

)
k! f' (o)

£ (z0) _

1
ko1 8| f(o)

k>1

This result holds for any analytic function (or map) f(z) defined in a Banach space
and has some multidimensional applications [RS92], [SS93], [SS93a], [SS93b], [SS93c],
[SS93d].

In the context of Weyl’s construction for solving equation (1.1), it is convenient
to use assumptions of a more geometric nature stated in terms of an isolation ratio
[P87] which quantitatively measures the isolation of the zeros of p(z) or their clusters
from each other. Namely, for a pair of concentric discs or squares on the complex
plane, both containing exactly the same set of zeros of p(z), let p > 1 denote the
ratio of their diameters. Then we say that the internal disc or square is p-isolated or,
equivalently, has an isolation ratio of at least p.

Now suppose that a fixed disc or square contains only a single zero z of p(z) or
a cluster Z of zeros having a small diameter and that this disc or square is p-isolated
for p = co + ¢1/n® > 1 and some nonnegative constants co, ¢, and d. Then we may
apply some analytic techniques of Newton’s iteration [R87], [P94], [P96a] or numerical
integration [P87], in both cases with guaranteed quadratic convergence (right from
any starting point that lies in the given disc or square) to these zero z or cluster Z
of the zeros. The choice of cg, c1, and d varies in [R87], [P87], [P94], and [P96a]; so
far the mildest restriction on p sufficient to ensure the quadratic convergence right
from the start, that is, p = 2 v/2 + /(12 + €)n for any positive €, has been achieved
in [P94] and [P96a].

Relatively straightforward modifications of Weyl’s geometric process of search
and exclusion, toward achieving isolation rather than approximation of the zeros of
p(x), have been proposed in the four papers [R87], [P87], [P94], and [P96a]. All these
modifications rely on the following simple observations. Each iteration step of Weyl’s
process of search and exclusion defines a set of suspect squares whose edge length
is by 50% smaller than it was at the previous step. Therefore, each iteration step
either generates many more suspect squares than the previous iteration step does
and/or partitions the union of the new suspect squares into more components than
the previous iteration step does or, otherwise, substantially increases the isolation
ratios of the minimal squares superscribing the components. New components appear
at most n — 1 times since the total number of components cannot exceed the number
n of the zeros of p(x), and each iteration step generates not more than 4n suspect
squares, even assuming a proximity test with output errors of 40%, as we have already
pointed out. It follows that in a few (actually in at most order of logn) recursive steps
of Weyl’s process the zeros of p(z) are included into two or several squares on the
complex plane that are strongly isolated from each other. At this point, the recursive
partition of suspect squares is replaced by a faster analytic iterative process. The
latter process stops either where the zeros of p(x) are approximated within a required
error tolerance or where a set Z of the zeros, having a diameter A, is approximated
closely enough, so that it is covered by a square having a diameter comparable with
A. In the latter case, Weyl’s search and exclusion process, starting with such a square
as its initial suspect square, rapidly separates and isolates some zeros or their clusters
in Z from each other, and then the analytic iterative process is applied again. To
ensure that a combination of geometric and analytic techniques gives us a desired
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modification of Weyl’s construction, we need to decrease the error bound of 40% in
the proximity tests; it can be shown that the decrease to 10% will suffice in the cited
modifications.

In [P87], [P94], and [P96a] the entire computation was arranged so that only
order of nlog(hn) suspect squares had to be treated. This enables us to approximate
all the n zeros of p(x) within diam/2" by involving only order of (n?logn) log(hn)
arithmetic operations, versus order of n?hlogn arithmetic operations needed in the
previous section. Such an improvement is quite substantial in the most important
case, where the zeros are sought with a high precision. (A similar result can be
obtained after some refinement of the algorithm of [R87].)

As a by-product of achieving the isolation of the zeros or their clusters, the algo-
rithms of [R87], [P87], [P94], and [P96a] also output the number of the zeros of p(z)
approximated within diam/ 2" by each output approximation point. When the zeros
of p(z) or their clusters are sufficiently well isolated from each other, such a number
can be easily computed by using a winding number algorithm [R87], [He74]. Alterna-
tively, one may apply the following fact (see [040], [VdS70], [He74, pp. 458-462], and
[Sch682] and also compare [P87], [P94], and [P96a]).

FACT 4.1. For any fized pair of constants c and d, the absolute values of all the
n zeros of a polynomial p(z) of degree n can be approximated within relative errors of
at most ¢/n® by using order of (logn)>n arithmetic operations.

The algorithm supporting Fact 4.1 can be viewed as a generalized prozimity test
since it simultaneously approximates the absolute values of all zeros of p(z), which
gives us n narrow annuli containing the n zeros of p(x).

Besides the above application, this algorithm is substantially used in the divide-
and-conquer approach to approximating polynomial zeros (see section 9) and in a
recent effective modification of Aberth’s method (see [Bi,a], [BP,a]). (The origin of
Aberth’s method can actually be traced back to [BS63], cf. also [E67].)

5. Comparison of some effective approaches. We have focused on Weyl’s
approach as a good example for demonstrating some important developments in the
field of solving polynomial equation (1.1) and showing some fundamental techniques.
Numerous other algorithms have been developed for the same problem since 1924
(see [MN93] and the Guide on Available Mathematical Software, GAMS, accessible
via anonymous FTP at http://gams.nist.gov). Most of these algorithms are effective
for the “average” polynomial of a small or moderate degree but are heuristic in a
global sense; that is, they do not generally converge to the zeros of p(z) unless some
convenient initial approximations are available, and no general recipes are provided
for finding such approximations for an arbitrary input polynomial p(z). Some of these
algorithms have good records of practical performance as subroutines for numerical
floating-point computation (with single precision) of the zeros of polynomials of small
and moderately large degrees. At least three such approaches should be cited here:
Jenkins and Traub’s recursive algorithm, based on shifts of the variable and rever-
sions of the polynomial [JT70], [JT72], IMSL87]; some variations of Newton’s itera-
tion [M73], [MR75]; and Laguerre’s method [HPR77], [F81], and [NAG88] (rootfinder
CO2AGF), all of which first approximate a single zero z of the input polynomial p(z),
shift to the next input polynomial p(z)/(z — z), and then recursively repeat these
steps to approximate all other zeros of p(z). For most of the input polynomials p(z)
of small and moderately large degrees, these algorithms converge in practice to the
n zeros of p(x), and their local convergence (near the zeros) is very fast. This does
not rule out the possibility of further improvement of these algorithms and the design
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of better ones for moderate degrees n. In particular, as a rule, the cited algorithms
work much less effectively for polynomials p(z) having multiple zeros and/or clusters
of zeros.

Here is the account by Goedecker from [GO94, p. 1062] on the comparative nu-
merical tests of Jenkins and Traub’s algorithm, Laguerre’s modified algorithm, and
the companion (Frobenius) matrix methods (on which we will comment later in this
section): “None of the methods gives acceptable results for polynomials of degrees
higher than 50.” And on p. 1063 Goedecker adds, “If roots of high multiplicity exist,
any. ..method has to be used with caution.” The latter conclusion does not actually
apply to Weyl’s approach and the divide-and-conquer algorithms, which we will de-
scribe later. We wish, however, to illustrate Goedecker’s observation by the following
simple example.

Ezample 5.1. Compare the multiple zero z = 10/11 of the polynomial p(z) =
(z—10/11)" with the n zeros z; = (10/11)+2 " exp((27rv/=1)j/n),5 =0,1,...,n—1,
of the perturbed polynomial p*(x) = (z —10/11)® —2~%". The perturbation by 2=h"
causes a jump of the zero of p(z) = (z—10/11)" at a distance as large as 27". Similar
jumps (by 27*) of the multiple zero of the same polynomial p(z) = (z — 10/11)" can
be observed if we perturb its coefficient p,_; by 27 for i = 0,1,...,n— 1. Therefore,
to be able to approximate (within 27") even a single zero of p(z), we need (in the
worst case) to deal with at least hi bits in the representation of the coefficient p,_;
of p(z) = (z — 10/11)" for i = 0,1, ..., n, that is, with a total of at least (n + 1)nh/2
bits. It follows that the approximation (within the error bound 27*) of even a single
zero of a worst-case input polynomial p(z) of degree n, satisfying (3.1), requires the
processing of at least (n+1)nh/2 bits and, therefore, the use of at least (n+1)nh/4 bit
operations (also called Boolean operations), since each such operation handles at most
two bits. Note that this lower bound holds even under the additional normalization
assumption that |z;| <1, j=1,...,n.

Example 5.1 shows that the jump by factor of order n of the bit precision of
computing is a more or less inevitable evil in the general-purpose subroutines for
polynomial zeros, provided that such subroutines are required to treat polynomials
with multiple zeros and/or clusters of zeros. It would not be appropriate to ignore
such polynomials since they frequently appear in the practice of scientific computing.
(Note that numerical truncation of the coefficients turns multiple zeros into clusters
of zeros.) Furthermore, ill-conditioned dependence of the zeros on the coefficients
also occurs for many polynomials having no multiple or clustered zeros (compare the
well-known example of the polynomials H;L=1(z — j), for large n, whose zeros jump
dramatically in the result of smaller perturbation of the coefficients).

Poor convergence and the unreliability of the output of the otherwise successful
algorithms in the case of ill-conditioned polynomial zeros motivate greater attention
to the theoretical study of the problem. Example 5.1 also shows that computa-
tions require a higher precision to approximate the ill-conditioned zeros, but, on the
other hand, they can be performed with a lower precision to approximate the well-
conditioned zeros. This suggests that the precision of computing and the algorithms
should vary depending on the condition of the zeros. Unlike many known algorithms,
Weyl’s construction and Bini’s recent modification of Aberth’s method [Bi,a] (which
we have already cited and will also cite later) enable one to achieve such a variation,
thus simplifying substantially the computation of the well-conditioned zeros of p(z).

Weyl’s approach is perfectly reliable in its global convergence property, whereas
establishing (or disproving) global convergence of the other cited algorithms, except
for the divide-and-conquer algorithms (for any input polynomial and with no spe-
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cial information about good initial approximations to its zeros), is still an open issue
(compare some partial progress regarding the study of the convergence of Newton’s
method and its modifications reported in [Sm81] and [Sm85]). Theoretical ground is
more solid for the companion (Frobenius) matrix approach to approximating polyno-
mial zeros (compare the earlier works [Ku69] and [P87a] and the recent ones [Go94]
and [TT94]). In particular, by normalizing p(z) to make it monic, with p,, = 1, and
by applying the QR algorithm to the associated companion (Frobenius) matrix

0 O po

IR y41
.0

O 1 DPn—1

one may approximate its eigenvalues, which are the zeros of p(z). The recent exper-
iments reported in [Go94] and [TT94] suggest that this approach may successfully
compete with modified Laguerre’s and Newton’s, as well as with Jenkins—Traub’s,
methods for single precision numerical approximation of the zeros of polynomials of
degrees n < 50 having no multiple or clustered zeros. The memory space requirement
is a major limitation of this method, however. Indeed, the QR algorithm involves
about 1.5n? entries of the auxiliary matrices Q and R, which is usually prohibitive or,
at least, highly undesirable for the computer algebra applications, where n is large and
the output zeros and, consequently, the 1.5n2 entries of Q and R are required to be
processed with a high (multiple) precision. Some modifications of this approach (for
- instance, modifications based on using the shifted power method or a modification
of the LR algorithm due to [Gem,a], instead of the QR algorithm) should not lead
to the latter problem, and also the cited algorithm of Jenkins and Traub, as well as
Newton’s and Laguerre’s modified algorithms, do not have this problem, but they still
do not suffice for the computer algebra applications, where n is large, high precision
output is required, and clusters of the zeros is a typical phenomenon.

Quite effective and increasingly popular in this application area are the Durand-
Kerner-type algorithms, which simultaneously approximate all the zeros of the input
polynomial [Ma54], [D60], [Ke66], [A73], [FL77], [AS82], [Wer82], [PT85], [PeS87],
[Bi,a]. Each of these algorithms represents an analytic iterative process defined by a
certain recursive formula which is not related to the disposition of the zeros of p(x)
on the complex plane. In particular, Durand-Kerner’s algorithm of [D60] and [Ke66]
(also justly called the Weierstrass algorithm, cf. [W903], and sometimes Dochev’s
algorithm [DB64], [AS82]) amounts to a simplification of Newton’s iteration for the
Viéte system of n equations in 2y, ..., 2,, denoting the n zeros of p(z) = ]_[;;l(x —2j)
(compare (3.1) for p, = 1). Letting z;(l) denote the approximation to the zero z;
computed in ! Durand—Kerner iteration steps, we arrive at the following recurrence
formula (defining Durand—Kerner’s iteration):

(51  z+1) =20 -pEHO) ] @O -20), i=1,...,n

i#]

It is customary to choose n equally spaced points on a sufficiently large circle as the
initial approximations z;(0),j = 1,...,n, by setting, say,

2;(0) = 3t*exp(2m jv/—1/n), j=1,...,n,
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where t* > max; |z;|; for instance, we may always write t* = 2max;<n |p; /pn|M/ (=0
(compare similar bounds in section 3).
Hereafter, we will assume that the variable z has been shifted and scaled so that

(5.2) max |z;] <1,
J

and then we may set t* = 1.

Numerous experiments have shown the rapid convergence of Durand-Kerner’s
algorithm and its several extensions and variations under such a choice of initial
approximations, although the theory still gives no adequate explanation of such won-
derful behavior. Even more effective behavior has been shown in the experiments for
the modification of [A73] proposed in [Bi,a] (cf. also [BP,a]), where initial approxima-
tions are chosen on several concentric circles, defined based on Fact 4.1, but again, no
theoretical global convergence proof confirms these experimental results. (Some the-
oretical insight into such behavior can perhaps be drawn from the study of the path
lifting method of [Sm85], developed in [RS92] for the linear programming problem,
in [SS93], [SS93a], [SS93b], [SS93c], and [SS93d] for solving a system of polynomial
equations, and in [KS94] for the univariate polynomial equation (1.1).)

It is fair to say that Weyl’s accelerated algorithms of section 4 are potentially
competitive with the Durand—Kerner-type approach. Weyl’s algorithm itself (due
to the factor h in its time estimate) is out of play in computer algebra applications
where h is large, whereas the more recent accelerated versions (involving both analytic
and complex geometry techniques) have not been implemented yet. The comparison,
therefore, can be only preliminary and theoretical. A clear advantage of Weyl’s (ac-
celerated) approach is its robustness: it works well for any input polynomial p(z)
and does not lead to any numerical stability problems, unless such problems are cre-
ated by incorporating a poor proximity test. Furthermore, even assuming very fast
convergence of the Durand—Kerner-type algorithms, we cannot conclude that they
are substantially superior to Weyl’s accelerated algorithms in terms of the numbers
of arithmetic operations involved. Indeed, the former algorithms use order of n?
arithmetic operations in each iteration step (compare the recurrence formula (5.1)
for Durand-Kerner’s iteration), which is roughly the level of the proven worst-case
upper bounds on the arithmetic cost of the latter algorithms. Unlike Durand-Kerner-
type algorithms, Weyl’s construction enables us to decrease the computational cost by
roughly factor n/k in the cases where one seeks only the k zeros of p(z) lying in a
fixed isolated square, rather than all the n zeros of p(z). Some further simplification
is possible in the important case where only the real zeros of p(z) are sought (cf.
[PKSHZ96]). \

The cited attractive features of Weyl’s accelerated algorithms are shared by the
algorithm based on the distinct divide-and-conquer techniques, recently proposed
in [NR94] and then improved in [P95] and [P96]. Furthermore, the algorithms of
[P95] and [P96] enable us to reach the record arithmetic cost bound of order of
(logn)?nlog(hn) for approximating all the n zeros of p(z) within the absolute er-
ror bound 2~" (under the normalization assumption (5.2)).

To realize that this upper bound is quite low, recall that n arithmetic operations
are already necessary to output the n zeros of p(z). Furthermore, since every arith-
metic operation has two operands, we need at least (n + 1)/2 arithmetic operations
to process n+ 1 input coefficients of p(z), and this is already required to approximate
a single zero of p(zx). Thus, the algorithms of [P95] and [P96] are optimal (up to a
polylogarithmic factor) in terms of the number of arithmetic operations they involve.
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Since the latter algorithms have not been implemented yet, their evaluation is only
theoretical and preliminary, but it does suggest their promise from a numerical point
of view also. In particular, the analysis shows no excessive increase of the precision
of the computation in these algorithms. To make this more precise, recall Example
5.1, which shows that order of hn? bit operations must be used by any algorithm for
approximating (within 2~") even a single zero of an arbitrary polynomial p(z) of (1.1)
under (5.2). If such an algorithm uses n arithmetic operations, then these operations
must be performed with the precision of at least order of nh bits.

One of the most attractive features of the algorithms of [P95] and [P96] is that
they indeed use optimal orders of n?h bit operations and mh bit precision of the
computations (up to polylog factors). Let us give more comments on this and the
correlation among the bit cost, arithmetic cost, and the precision of computing.

Since bit operation cost estimates (also called Boolean cost estimates) cover both
arithmetic cost and computational precision estimates, we will focus our analysis on
the Boolean complexity of these algorithms.

If we approximate the polynomial zeros by using (on average) p(d) bit operations
per an arithmetic operation performed with a pair of d bit numbers, then we need at
least nu(hn) bit operations even to approximate a single zero of p(x) within 2~" (for
the worst-case input polynomial p(z) satisfying (3.1) and (5.2)). More formally, we
shall let p(d) denote the number of bit operations required to perform an arithmetic
operation with two integers modulo 2¢ + 1. Then an upper bound on u(d) of order d?
is supported by the straightforward algorithms for performing arithmetic operations.
Based on faster algorithms for performing the latter operations (see [KO63], [To63],
[SchoSt71], [AHUT74], [Kn81], and [BP94]), one may decrease the bound on u(d) to
reach the orders d'°®23 log,3 = 1.5849..., or even O((dlogd)loglogd). We will
state our Boolean complexity estimates based on the latter (record) upper bound
O((dlog d) loglog d), but they can be easily restated based on any other upper bound
on p(d) supported by the known algorithms.

Now we may specify that the lower bound (n+1)nh/4 on the overall bit operation
(Boolean) complexity of approximation of polynomial zeros has been met by the upper
bounds supported by the algorithms of [P95] and [P96]. (Here and hereafter, we
assume the output precision of order of n bits or higher, which is required in various
computer algebra applications, for instance, to solve polynomial systems of equations,
and we simplify the bit operation (Boolean) complexity estimates by stating them up
to polylogarithmic factors; more precise estimates can be found in [P95] and [P96].)
In other words, the algorithms of [P95] and [P96] are optimal (up to polylog factors)
under both Boolean and arithmetic models of computing.

An additional advantage of the algorithms of [P95] and [P96] (versus, for instance,
Weyl’s algorithm and its modifications or versus the algorithm of [NR94]) is the pos-
sibility of their fully efficient parallelization. Formally, the algorithms allow their
implementation in polylog parallel time by using n arithmetic processors or (n + h)n?
Boolean (bit) processors under the PRAM customary model of parallel computing
(even assuming its least powerful version of EREW PRAM) [KR90], [Q94]. Further-
more, the effective parallelization of these algorithms is model independent since they
are reduced essentially to performing a polylogarithmic number of basic operations,
the hardest of which is FFT at n or order of n points, to be performed with the
precision of order of (n + h)n bits.

It seems appropriate to point out some obvious limitations of the algorithms of
[P95] and [P96]. The algorithms involve some recursive geometric construction on
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the complex plane (for the search of a basic annulus for splitting a polynomial into
two factors), which does not seem to be easy to code. The promise of the substantial
advantages of these algorithms for computer algebra computations should probably
motivate sufficient efforts to overcome such a difficulty, but this problem also presents
a challenge to simplify the geometric construction of the algorithms. Due to the cited
complication, the algorithms in their present state do not seem to be very promising
in the cases of a smaller degree input and a low precision output, although some
of the techniques used can be relevant as auxiliary tools in these cases also (see, in
particular, our remark at the very end of section 11).

In the next sections, we will review the divide-and-conquer approach to approxi-
mating polynomial zeros and, particularly, its specific recent versions in [NR94], [P95],
and [P96]. The omitted details can be found in the bibliography and, in particular,
in [P95], [P96], and [BP,a]. [BP,a] also includes some details on several alternative
approaches.

6. The divide-and-conquer approach to approximating polynomial ze-
ros. Divide-and-conquer algorithms for approximating the zeros of a polynomial p(x)
proceed by splitting p(z) into the product of two nonconstant factors and then, recur-
sively, by splitting each nonlinear factor into the product of two nonconstant factors.
Finally, all the zeros of p(x) are recovered from its linear factors. Of course, splitting
should be done numerically, with control of the approximation errors.

Some auxiliary results (compare [Scho82]) facilitate such a control. In stating
them, and throughout this paper, we will use the norm || >, u;z*|| = ¥, |us|.

LEMMA 6.1. Let

Ip(2) = f1(=) ... fu (@)|| < vellp(z)]/n,

[ f1(z) — f(2)g9(@)|| < el fr ()]
for some polynomials f1(z),..., fu(z), f(z) and g(z), and for

€1 < €l|p(z)|l/ (nH ||fi(w)||) -
Then
Ip(z) — f(2)9(2) fo(2) - - - fu(@)[| < (v + D)ellp(z)||/n-

To control the errors of the recursive splitting process, we apply Lemma 6.1
recursively; in each recursive step, we at first write f1(z) = f(z), fu+1(z) = g(x)
and then replace v by v + 1. To fulfill the assumptions of Lemma 6.1 in all recursive
splitting steps it suffices to choose €; < €¢/(n2™) in all steps due to the following simple
but useful estimate.

LEMMA 6.2 (compare [Sché82, section 4]). Ifn > 0, p(z) = [I,_, fi(z) is a
polynomial of degree n, and all f;(z) are polynomials, then

Ip(2)]l < H Ifi(@)l < 2" ip(@)ll.

We stop our recursive process when we approximate p(z) by a product of linear
factors, p,, [}, (2—2}). Then, by virtue of Lemma 6.1, the error norm of approximat-
ing p(z) by this product is bounded by €||p(z)||. By applying Ostrowski’s well-known
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perturbation theorem [040], [Ho70] or its extension given in [Sch682], we find that
the output approximations of all the zeros of p(z) by the values 2 are within the
absolute error bound 27V if log(1/€) = O(vn).

The attempts at developing the divide-and-conquer approach to approximate
polynomial zeros can be traced back a few decades [SeS41], [Schr57], [DL67], [DH69],
[Grau71], [Ho70], [Ho71]. Several effective splitting techniques were summarized and
further advanced in [Sch682], which is a comprehensive and quite extensive work on
splitting a polynomial over a fixed (sufficiently wide and zero-free) annulus A (com-
pare Appendices A and B of [P95a] and [Ki94]). In this case, one of the computed
factors of p(z), to be denoted F(z), has all its zeros lying inside the internal disc D;y,
of the annulus A, whereas the other factor, to be denoted G(z), has no zeros in the
disc D;,, and, by assumption, no zeros of p(z) (and, therefore, of its factors) lie in A.
According to the definition of section 4, the disc D;,, is p-isolated for p = R/r > 1,
where R and r denote the two radii of the two boundary circles of the annulus A.

We will seek splitting factors numerically. Under the normalization assumption
(5.2) for the polynomial p(z) of (3.1), we seek approximations F*(z) and G*(z) to
the factors F(z) and G(z) of p(x) satisfying the bound

(6.1) Ip(z) — F*(2)G*(2)|| < 27*|p(@)|;

h has the order nh. In light of Example 5.1, such a choice of his necessary to ensure
approximation of the zeros of p(x) within 27"; on the other hand, such a choice of
h is sufficient due to the cited perturbation theorem of Ostrowski or its extension in
[Scho82].

In our divide-and-conquer construction, we will rely on the following basic result.

PROPOSITION 6.3. Let a polynomial p(x) of degree n satisfy relations (3.1) and
(5.2). Let a sufficiently wide and zero-free annulus A be bounded by two circles of
radit R and r such that

(6.2) p—1=(R—r)/r>¢/n?

for some fizxed constants € > 0 and d > 0. Then, for the given annulus A, a splitting
of p(z) over A into two factors F*(z) and G*(z) satisfying (6.1) can be computed at
the cost of performing

(a) order of n arithmetic operations or

(b) if d < 1, order of (h + n)n? Boolean operations (in both cases, up to some

polylogarithmic factors).

The algorithms supporting the latter proposition are the older part of the entire
construction. This part has been extensively studied and successfully tested. We will
recall some details of these algorithms in sections 11 and 12.

Now, with the results of Proposition 6.3 in mind, we will turn to estimating
the entire cost of approximating the n zeros of p(z) based on the divide-and-conquer
approach. Let Az(n), Ag(n), and A4(n) denote the arithmetic cost of approximating
the zeros of a polynomial p(z) of degree n, of splitting it over a fixed and sufficiently
wide zero-free annulus, and of computing such an annulus, respectively. Then we have

Az(n) < Az(degF(z)) + Az(degG(z)) + As(n) + Aa(n).

The recursive extension of this inequality to Az (deg F(z)) and Az(degG(z)) im-
mediately yields an upper bound on the arithmetic complexity of application of a
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divide-and-conquer algorithm to approximating the n zeros of p(z). (A similar re-
currence relation enables us to bound the Boolean (bit operation) complexity of the
same computational problem.)

Proposition 6.3 gives us a linear in n (up to a polylogarithmic factor) upper bound
on Ag(n). Due to the above recurrence relation, we may extend this bound and arrive
at a similar bound on Az(n) as soon as we ensure that the degrees of the polynomials
F(z) and G(z) are balanced with respect to a fixed constant a,0 < a < 1/2 (we will
say a-balanced), that is, if we ensure that

(6.3) a < degF(z)/n <1—a,degG(z) =n — degF(z).

7. The problem of balancing the degrees. When we compute a basic annu-
lus for splitting p(z), we will additionally require that the splitting over this annulus
be a-balanced (according to relation (6.3)). (Without balancing, up ton—1 splittings
could be required, which would imply the extra factor n in the estimates for Az(n);
consider, for instance, the case where one of the two factors in each splitting is linear.)
On the other hand, the task of devising a balanced splitting is not straightforward
since we require balancing for any disposition of the zeros of a polynomial p(z) on
the complex plane. In particular, we cannot ignore the cases of various clusters of the
zeros, which typically arise in the numerical treatment of polynomials with multiple
zeros. For demonstration, we recall (from [Sch682]) the example of polynomials such
as p(z) = [, (z — 5/7 — 4=%), for a large n, whose balanced splitting is hard to
compute. Indeed, for this and similar polynomials balancing can be achieved only by
means of computing very high precision approximations to a large fraction of all the
~ zeros of p(z) clustered about the point 5/7. Note that shifting the origin to the point
5/7 still would not help us solve the balancing problem in this case. (Because of such
difficulties, the otherwise advanced work of [Sch682] gave no solution to the balancing
problem and, exactly for this reason, ended with an algorithm for approximating the
n zeros of p(x) that required the extra factor n in its operation count.)

Various nontrivial techniques for balanced splitting were proposed in [BFKT89),
(P89], [BT90], [BP91], [N94], [P94a], and [P95a], but none of them worked sufficiently
well in the general case. Specifically, the algorithms of [P94a] and [P95a] exploited
the correlation of the balancing problem to some properties of the discriminant of
p(z) and achieved effective balancing, but only at the first recursive splitting steps,
where higher-degree polynomials had to be split into factors. The algorithms of
[BFKT89], [P89], [BT90], and [N94] exploited the properties of Sturm sequences and
pseudoremainder sequences to achieve balancing and yielded fast parallel algorithms
(running in polylogarithmic time), but in the cases of [BFKT89], [P89], and [N94]
at the expense of using very many processors and substantially increasing the overall
number of arithmetic operations involved, and in the cases of [BFKT89], [P89], and
[BT90] at the expense of limiting the solution to a rather special case of polynomial
p(x) having only real zeros. The divide-and-conquer algorithm of [BP91] and [BP,b]
achieved a balanced splitting of matrix eigenvalues to obtain a fully parallelizable
solution of the tridiagonal symmetric eigenvalue problem; the algorithm only required
order n (up to a polylogarithmic factor) arithmetic operations (which improved, by
roughly the factor n, the previous record estimates for the arithmetic computational
complexity of this problem; compare [BP92]). Moreover, this result had an immediate
extension to approximating the zeros of a polynomial p(z) but, again, only under
the same restrictive assumption that all the zeros are real. The first major advance
toward achieving balancing (at a lower computational cost), in the case of any general



SOLVING A POLYNOMIAL EQUATION 203

polynomial p(z), was due to [NR94] and was based, in particular, on using Fact 4.1,
some geometric constructions on the complex plane, and an extension of Rolle’s well-
known theorem to the complex case obtained in [CN94] (see the next section). In the
next sections, we will describe the approach of [NR94| and its further improvements
due to [P95] and [P96].

8. An auxiliary result based on an extension of Rolle’s theorem. Here-
after, D(X,r) will denote the disc on the complex plane having a center C and a
radius 7,

(8.1) DX,r)y={z:|z - X|<r}.

In this section, we will recall an auxiliary result (see Corollary 8.1) based on the
following extension of Rolle’s well-known theorem to the complex case (this extension
can also be viewed as an extension of the fact that a zero of multiplicity [ for a function
is also a zero of its (I — 1)st order derivative).

FACT 8.1 (see [CN94]). Let I < n be a positive integer, let ¢ be a fized constant
satisfying 0 < ¢ < l/n < 1, and let a disc D(X,r) contain at least | zeros of p(x)
(counting them with their multiplicities). Then the concentric disc D(X, sr) (obtained
by means of dilation of D(X,r)) contains a zero of pt~1)(z), the (I — 1)st derivative
of p(x), provided that s satisfies either of the following two bounds:

(a) s>1/sin(r/(n—14+1))=0() forl<n-1,s=1 forl=n,

(b) s > cmax{(n — 1+ 1)/2/1¥/4 (n — 1 +1)/1*/3} for some fized constant c and

I#2.

Remark 8.1. Instead of Fact 8.1, one could have used a distinct extension of
Rolle’s theorem to the complex case due to Gel’fond [Ge58] (also cf. [Go94]). The
resulting algorithms would support the same asymptotic computational cost estimates
but with slightly larger overhead constants.

Part (b) of Fact 8.1 enables us to choose s of order n'/3; its proof in [CN94] relies
on some nontrivial properties of symmetric polynomials. The proof of part (a) is
relatively simple (see Appendix A), and using part (a) is sufficient for the design and
analysis of the (nearly optimal) algorithms of [P95] and [P96]. It is an open problem
whether Fact 8.1 can be extended to allow s to be a fixed constant.

Now let D(X,r) be a disc of (8.1) that contains at least [ zeros of p(z) and has the
minimum radius and let s satisfy the assumptions of parts (a) and/or (b) of Fact 8.1.
Then, by virtue of Fact 8.1, p~1)(z) has a zero z in the disc D(X, sr). Furthermore,
let I > n/2. Then any disc D(Y,R) containing at least | zeros of p(z) intersects
D(X,r) and has a radius of at least r. Therefore, the disc D(Y, (s+2)R) contains the
disc D(X, sr) and, consequently, contains z. We have arrived at the following result.

COROLLARY 8.1 (see [NR94|). If, under the assumptions of Fact 8.1, we have
I > n/2, then there exists a zero z of p*~1)(z) that lies in the dilation D(Y, (s + 2)R)
of any disc D(Y, R) containing at least | zeros of p(x).

Hereafter, such a zero z of p(!~1) () will be called critical for p(z) and 1.

9. Reduction to approximating the zeros of a higher-order derivative
and of two factors of a given polynomial. In this section, we will review the
powerful balancing techniques and some complexity results of [NR94]. Our next goal
is the computation of a basic annulus A for an a-balanced splitting of p(z), whose
two boundary circles have radii R and r such that R/r = p > 1 for some fixed a and
p (compare (6.2) and (6.3)). In such a case, the internal disc D;, of the annulus A is
p-isolated, and we will say that the annulus A has a relative width of at least p and
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.

FI1G. 3. The twelve zeros of p(z) are marked by asterisks. The annulus Ae is wide enough to
support a-balanced splitting for any positive a < 1/2.

supports p-isolation (of its internal disc). At first, we will seek such an annulus by
using only Fact 4.1. Set

(9.1) B=Tlan], y=n-40.

Apply the algorithm supporting Fact 4.1 and let 7, and r;" denote the computed
lower and upper bounds on the magnitude of the ith absolutely smallest zero of p(z),
where

(9.2) 1<rf/r; <14+cn® fori=1,...,n and some fixed constants c and d.
Consider the open annuli
Ai={z:rf <l|z| <ri,}, i=8,8+1,...,7,

which are empty where ri+ > 1,4, and which, by their definition, are always free of

the zeros of p(z). Clearly, the annulus A; supports (r;, ,/r;")-isolation of its internal

disc and, therefore, can serve as a desired basic annulus for splitting if r;l/r;r > p.

(Property (6.3) of a-balancing will hold due to (9.1).) This solves the balancing

problem in the case where at least one of the annuli A; is wide enough (see Figure 3).
It remains to examine the “all narrow annuli” case, where

(9-3) ral/ri <p i=6,8+1,...,7.

By combining bounds (9.2) and (9.3) and taking into account that v — 8 = n — 23
(see (9.1)), we find that

(9.4) rha/ry < (L+c/nd)r=28+2,m-28,

Thus, Fact 4.1 is already powerful enough to confine our splitting problem to the case
where (9.4) holds. Now consider the annulus

(9.5) Ap 1 ={z:rg <la| <7}



SOLVING A POLYNOMIAL EQUATION 205

7
SO

F1G. 4. The zeros of p(z) are marked by asterisks.

containing at least v — 3+ 1 = n - 28+ 1 = n — 2[an] + 1 zeros of p(x). Due
to (9.4), we can make this annulus quite narrow by choosing p,c, and d such that
1/c and d are sufficiently large and p is close to 1. Furthermore, we twice apply
the same construction for the origin shifted into the points 2r,; and 2r¥,, V-1,
respectively, and again, we only need to consider the case where these applications
define no basic annulus for a-balanced splitting. In this case, we have three narrow
annuli, each containing at least n — 3+ 1 = n — 2[an] + 1 zeros of p(z) (see Figure
4). The intersection I of these three annuli can be covered by a readily available disc
D(X,r) = {z : |x— X| < r}, whose relative radius 7/|X| can be made small since the
three annuli can be made narrow. That is, we will ensure that

(9.6) (s+2)r <|X]

or, equivalently, that the disc D(X, (s + 2)r) does not contain the origin. (Here and
hereafter we assume that s satisfies assumptions (a) and/or (b) of Fact 8.1.)

We will seek a contradiction of the latter property of the disc D(X, (s + 2)r) to
the assumption that each of the three annuli contains at least n — 2[an] + 1 zeros of
p(x). The contradiction will imply that the described approach is bound to output
a desired basic annulus for an a-balanced splitting of p(z). As the first step toward
obtaining the contradiction, we will impose the requirement that a < 1/12, so that
t=(y—pB+1)/n>5/6,3t —2 > 1/2, and then, rather easily, we will deduce that
the intersection I of the three annuli and, therefore, also the disc D(X,r), contains
more than n/2 zeros of p(z) (see Appendix B). Then Corollary 8.1 will imply that
the disc D(X, (s + 2)r) must contain a critical zero z of p~1)(z) for p(z) and any
I > n/2. Now, we recall that the disc D(X, (s + 2)r) does not contain the origin, and
we may enforce the desired contradiction by applying the above construction for the
origin shifted into z. This gives us a simple algorithm for computing a desired disc
for splitting p(z) provided that we know z.
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Under the milder assumption that we know all the n — [ + 1 zeros of p(*~1)(z) but
do not know which of them is (or are) critical for p(z) and !, we may still compute the
desired basic annulus if we apply the described algorithm n — [+ 1 times for the origin
shifted into each of these n—I+1 zeros. In fact, [log,(n—I+1)] such applications suffice
since we may implicitly perform the binary search of a critical zero z. (At least one-
half of the candidates for a critical zero can be discarded if the described algorithm is
performed for the origin shifted into the quasi median p of the set of the candidates,
where pu = po + u1v/—1 for po and p; being the medians of the two sets of the
real parts and the imaginary parts of all the candidate points, respectively, [NR94].)
These observations enable us to reduce the original problem of approximating the
zeros of p(x) to three similar problems, where the input polynomials replacing p(z)
are p(~Y(z), F(z), and G(z), respectively (the latter two polynomials denoting the
two computed factors of p(x)).

The computational cost of this reduction is dominated by the cost of splitting
p(z) into two factors. The resulting recurrence relation for the arithmetic computa-
tional cost of approximating polynomial zeros, together with Proposition 6.3, leads,
after some work, to an upper bound O((log h)n'*¢) (for any fixed positive €) on the
arithmetic cost of approximating the n zeros of p(z) within 2~" (compare [NR94]).
This does not give us a desired linear (up to a polylog factor) estimate yet because
of the extraneous factor n¢. The factor is also disturbing because the overhead con-
stant factor hidden in the estimate O((log h)n'*¢) grows to oo as € — 0. Besides, the
possibility of parallel acceleration of the resulting algorithm is limited since the algo-
rithm requires the approximation of the zeros of the higher-order derivative pt—1 (z)
before obtaining the first splitting of p(z). Next, we will remove these deficiencies by
avoiding the approximation of the zeros of p('=1)(z).

Remark 9.1. The paper [NR94] contains some interesting new techniques but un-
fortunately also claims much stronger estimates than its algorithms support. More-
over, the algorithm of [NR94] fails or performs very poorly for some input polynomials,
in particular, for ones having large clusters of zeros (compare our specific comments
in [P95] and [P96]).

10. Avoiding approximation of the zeros of a higher-order derivative.
The algorithm of the previous section involves the approximation of all the zeros of
p=1(z), a higher-order derivative of p(z). This costly step was our means but not,
however, our final objective. In this section, we will avoid such a step by replacing
it by another means, which we call recursive screening of the zeros of a higher-order
derivative. Suppose that we have a basic annulus A(l) for splitting a higher-order
derivative p~1)(z) into the product of two factors f;(z) and g;(z). Let w denote the
absolute width of the annulus A(l), that is, the difference between the radii of the
two circles bounding A(l). Let D(X,r) denote the disc computed by the algorithm of
the previous section, so that its dilation D(X, (s 4 2)r) contains a zero z of p{~1(z),
which is critical for p(z) and I. We recall that we may bound from above the values r
and, consequently, (s+2)r, and we will use this power to ensure that (s+2)r < w. Due
to the latter bound, the disc D(X, (s + 2)r) cannot simultaneously intersect both the
internal disc of the annulus A(l) and the exterior of A(l) (see Figure 5). This enables
us to determine whether the point z lies in the internal disc or in the exterior of A(l),
that is, whether f;(z) = 0 or g;(z) = 0. Then, in our search for z, we need to work
with only one of the two factors of p¢~1)(z), and we discard the other factor. Since
we also enforce a-balancing of the splitting of p~1)(z), the degree of the remaining
factor is substantially lower than the degree of p(l_l)(x), and we need at most order
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FIG. 5. Five possible positions of the disc D(X, (s + 2)r) relative to the annulus A(l).

of log,(n — 1+ 1) recursive repetitions of this process before arriving at a desired basic
annulus A for an a-balanced splitting of p(z). This is a substantial advantage over
the approach of [NR94] described in the previous section. Indeed, the latter approach
required the performance of at first n — I splittings of the polynomial p(*~1)(z) and its
factors into smaller degree factors to approximate all the n — [ + 1 zeros of p(l_l)(x),
and only then activated the binary search for z.

The analysis of the computational cost of the improved algorithm gives us the de-
sired arithmetic complexity estimates of order n (up to polylog factors); furthermore,
the algorithm runs in polylogarithmic parallel time by using n arithmetic processors,
as we claimed earlier.

There are, however, some delicate points that require further elaboration. One
point is that we must specify the splitting that supports Proposition 6.3. We will do
this in the next section, which will bring us to some additional study of the relative
widths of the computed basic annuli for splitting. Another (related) point is that the
three annuli defined in the construction of the previous section must be made narrow
to ensure bounds (9.6), and this implies that generally we arrive at the problem of
splitting p(z) over a narrow annulus A. Moreover, the recursive application of the
same construction to splitting p(l_l)(z) requires obtaining more and more narrow
annuli in each recursive step. At some stage of the recursive process, this restriction
does not allow us to meet the required bound (6.2) of Proposition 6.3 on the isolation
ratio p of the internal disc D;, of the annulus A (that is, to meet the requirement
that p > 1+ &/n? for two fixed constants ¢ and d). In fact, generally we need to deal
with narrow annuli for which d — oo as n — oo, whereas, on the other hand, we
recall that we must have d < 1 if we wish to apply Proposition 6.3 to also bound the
precision of computing and the Boolean complexity of the splitting.

Fortunately, there is a way to salvage the algorithm, which we call recursive
contraction of the area for splitting annuli. The idea is to proceed recursively to
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decrease the diameter of the small disc D(X,r) covering the intersection of the three
narrow annuli. Indeed, we may apply the same construction for the origin shifted into
the center X of the latter disc and recursively repeat this process until we compute
either a desired basic annulus for splitting p(z) or a small disc covering more than
n/2 zeros of p(x) having diameter less than the width w of the annulus A(l). We
may ensure the decrease of the diameter of the small discs by at least a fixed constant
factor exceeding 1 in each recursive step, even when we apply the construction of the
previous section for p of the order 1+ ¢/n and for a certain fixed positive constant ¢
(for instance, one may choose ¢ = 0.01, p = 1+ 1/(100n); see [P95] and [P96]). Then
in at most order logn such recursive steps we will achieve our goal of computing either
a desired basic annulus for splitting p(z) or a sufficiently small disc containing more
than n/2 zeros of p(z), which will enable us to discard one of the factors of p(!~1)(z).
Because of the choice of p of the order 1 + ¢/n, we will satisfy the requirement of
Proposition 6.3 to the relative width of the computed annulus A for splitting, and
then we will deduce the claimed upper estimates for both arithmetic and Boolean
complexity of approximating polynomial zeros.

Yet another delicate point is that the zeros of p(x) (and, similarly, the zeros of
p~1)(z) and/or other polynomials involved) may form a massive cluster, including,
say, n — [logyn| zeros. Then for the computation of a balanced splitting it would
be required to separate some zeros of the cluster from its other zeros; if the cluster
has a very small diameter, this problem cannot be solved within the required bounds
on the overall computational complexity. To avoid solving such a difficult problem,
we simply compute a single point of the approximation to all the zeros of a cluster
without obtaining a balanced splitting of p(z). (For instance, for the polynomial
[T-,(z—5/7—47%) and h of order n we shall choose Y = 5/7 as such an approxima-
tion point.) To recognize the existence of massive clusters of the zeros and to handle
their case we must modify the presented algorithm, however. We refer the reader to
[P95] and [P96] on this and other omitted details and to the next sections on the
algorithms that support Proposition 6.3 for splitting a polynomial over an annulus.

11. Splitting a polynomial over a fixed annulus. There are a few algo-
rithms that support part (a) of Proposition 6.3, which states the upper estimate n
(up to a polylog factor) for the arithmetic complexity of splitting a polynomial over a
fixed annulus; in particular, this part of Proposition 6.3 is supported by the modern
modification [BG92] of the old algorithm [SeS41], [Ho71] or, alternatively, by any of
the three algorithms of [Bi89], [P96¢|, and Appendix C of [P96]. The listed algorithms
exploit various nontrivial techniques involving computations with structured matrices,
but all of these algorithms have a major deficiency: they assume no reasonable control
over the precision of computing. Actually, the precision is prone to blowing up since
these algorithms recursively apply polynomial division or similar operations, which
substantially magnify the input errors in each recursive step. Therefore, to prove part
(b) of Proposition 6.3 (on the Boolean (bit operation) complexity of splitting) and to
produce an effective realistic algorithm for splitting, one must change or modify these
approaches. Next, we will briefly sketch a distinct approach, presented in [Sch682],
[P95a), and [Ki94] and earlier developed in [Grau71], [DH69], [DL67], and [Schr57].
(We have already cited the latter bibliography.) Presently, this is the most successful
approach to splitting a polynomial over a fixed annulus in terms of the worst-case bit
complexity estimates.

We will list only its main stages and describe a recent improvement of one of them,
referring the reader for further details to the cited papers. Our omissions include
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several technicalities and the somewhat tedious treatment of many numerical aspects
of (balanced) splittings. Furthermore, as indicated at the end of the previous section,
in the case of a massive cluster of the zeros we even need to abandon the requirement
of balancing the degrees. In this section, we will avoid the case of massive cluster; we
will assume that we are given a basic annulus A, over which the splitting of p(z) is
a-balanced, and that we must approximate this splitting.

At first, an initial approximation F*(z) to the factor F(z) of p(z) (having all its k
zeros in D;,,) is computed, so that the coefficients of the polynomial F*(z)— F(zx) have
absolute values less than 27" for a fixed constant ¢. Then an approximation G*(z)
to the other factor G(z) is obtained by the high precision numerical division of p(z)
by F*(x), so that all the coefficients of the polynomial A(z) = F*(z)G*(z) — p(z)
have sufficiently small absolute values (compare (6.1)). A sophisticated and even
tedious but computationally simple and effective Newton-type iterative process has
been developed, which, under the latter assumption on the coefficients of A(z), rapidly
refines desired approximations F*(z) to F'(z) and G*(z) to G(z) (compare [Sch582],
[Ki94], or Appendices A and B of [P95a]).

The entire algorithm (including both the computation of a relatively rough initial
approximation and its subsequent rapid refinement) is performed at a sufficiently low
computational cost within the arithmetic and Boolean complexity bounds n and (n +
h)n?, respectively (in both cases up to polylog factors), except that some additional
care is required at the first stage of computing the coefficients of the polynomial
F*(x). That is, F*(x) is recovered from the approximations s}, to the power sums
8m = Sm,k Of the k zeros of p(z) lying in the disc D;,,

k
Sm= 2" i=1,...,2k— 1L
=1

(We assume that the zeros z1,..., z, of p(z) have been enumerated so that z; lies in
Dy, if and only if i < k, provided that we count y times every zero of a multiplicity
, and we abuse the notation slightly when we write s,,, rather than s, , assuming
that k is fixed.) In principle, a desired approximation F*(z) to the factor F(z) can
be recovered from si,...,s; by using Newton’s identities at the cost of performing
order of (logk)?k arithmetic operations [BP94], but we achieve much better error
control and a lower cost of order of klogk arithmetic operations for k < n by using
a special algebraic version of Newton’s iteration; see [Sch682], [BP94, pp. 34-35],
or [P,a]. (This algorithm involves si,...,s},, where 2k > M = 29 > k.) Due to
the efficacy of this algorithm, some additional care is required only at the stage of
computing the approximations s}, to the power sums s,,. This is done based on the
known equations [He74]

1 /
= g [ @ @)/p(a) do

where I' denotes any circle lying strictly inside the annulus A and concentric with
it. The approximations s}, to s, for m = 1,...,2k — 1 are computed by means of
numerical integration with @ nodes of integration equally spaced on I". Due to this
choice of the nodes, the integration is reduced to performing three FFTs on a set of
Q points. (Due to the application of FFT, this means about 4.5 Qlog Q arithmetic
operations if @ is a power of 2.) Estimates presented in [Sch682], [PD93], [P90], and
[P95a, Appendix A] show that to achieve the desired accuracy of the splitting one
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should choose @ of order nr/(R — ). This analysis suggests that ensuring the bound
(R—r)/r > 6, for a positive constant 6, is needed to split p(x) over A at the arithmetic
cost bounded at the level (log hn)(log n)n (provided that we apply the latter approach
to splitting).

The algorithm of section 9 (even after its amelioration in section 10 by means of
recursive contraction of the search area for splitting annuli) computes a basic annulus
A for splitting that may be too narrow to satisfy such a lower bound on (R —7)/r.
Indeed, according to the construction of section 9, we try to find a basic annulus for
splitting p(r) among the vy — 8+ 1 =n — 2[an] + 1 annuli

(11.1) Ai={z: rf <|z|<ri,}, i=6,8+1...,7

(compare (9.1)-(9.5)), and if, say, the ratios p; = r;;,/r{ are invariant in ¢, then
r;ﬂ/r; = (n —2[an] + 1)p;. In this case, even if the annulus Ag 41 of (9.5) has
relative width 4 or 10, say, then all the annuli A; still have relative widths of at
most 1+ ¢/n for a constant ¢, and this only supports an isolation ratio of at most
1+ ¢/n for their internal discs. To approximate (by means of numerical integration)
the power sums s, of the zeros of p(z) lying in such an internal disc, we need order
of n? nodes of integration and, consequently, order of n?logn arithmetic operations
if we wish to ensure the desired bound on the output errors. (Moreover, the isolation
ratios of the internal discs would have decreased to 1 + ¢/(ns) for s of Fact 8.1, that
is, for s of order n'/3, if (as, for example, in the case of the algorithm of [NR94]) one
proceeded without using the techniques of section 10 for recursive contraction of the
search area for the splitting annuli. With such smaller isolation ratios, the desired
approximation of the power sums s,, would have required order of n2s nodes, more
" than n?s arithmetic operations, and more than (h + n)n?s Boolean operations.) On
the other hand, at the stage of approximating the power sums s,, we need to satisfy
only a relatively rough bound on the output errors to approximate the coefficients
of F(z) within 27°*, as required. Consequently, a precision of computing may stay
at a relatively low level of order of n bits, versus order of hn bits, required at some
other stages of the computation of a splitting of p(z). Therefore, at this stage, order of
n? log n arithmetic operations can be performed by using (n+h)n? Boolean operations
(up to a polylog factor), as desired.

In the next section, we will modify the computation to reach this Boolean com-
plexity bound by using a total of n arithmetic operations (up to a polylog factor).

The improvement of only the arithmetic cost bound, not followed by any improve-
ment of the Boolean cost bound (which generally is a more realistic bound and in our
case is already nearly optimal), is not practically important. However, obtaining
an algorithm that simultaneously supports both Boolean and arithmetic complexity
bounds at nearly optimal levels is a theoretically important task. Besides, we obtain
such an algorithm by means of some techniques that enable us to yield a dramatic
increase of the relative width of a basic annulus for splitting (say, from 1 + ¢/n to
4). Such an increase may turn out to be useful in combination with other algorithms
(such as the one that supports Fact 4.1) that may generally compute a rather narrow
basic annulus for splitting a polynomial, but very frequently the application of the
latter techniques turns it into a sufficiently wide annulus. Moreover, some techniques
to be used in the analysis of this approach (in particular, in the study of the numerical
condition properties of Padé approximation) may be of independent interest.

12. Enforcing a stronger isolation of a basic annulus for splitting. Sup-
pose that we have a basic annulus A for splitting p(z) and that such an annulus has
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a relative width 1 4 ¢/n, that is, supports (1 + ¢/n)-isolation of its internal disc for
a fixed positive constant ¢, and suppose that we wish to strengthen this isolation by
raising its ratio to the level 4, say. Since we may shift and scale the variable z, we
may assume, with no loss of generality, that the annulus A is bounded by the two
circles {z : |z| = 1} and {z : |z| = 1 + ¢/n}, and we will assume also that

n

k
p(z) = pn F(z) G(z), F(z) = H(z—zj)’ Gz)= [] (@-=2),

j=k+1

|zj| <1lforj=1,...,k |25| >1+c¢/nforj=k+1,...,n.
Now we write y = z, to(y) = p(y)/pn to arrive at a monic polynomial to(y) and
apply Graeffe’s iteration (3.2); that is, we write

ti+1(y) = (_1)nti(\/g)ti(_\/§)v 1=0,1,....

For every i, the ith step of this iteration squares the zeros of ¢;(y), so that
n N
t:(y) = H(y—zf ), i=0,1,....
=1

It immediately follows that the unit disc D(0,1) = {y : |y| < 1} is ps-isolated (for
pi = (14 ¢/n)?) with respect to t;(y),i = 0,1,2,.... In particular, assuming that
u > 1+ logy(n/c), so that (1 + c/n)?" > 4, we obtain that the disc D(0,1) is 4-
isolated with respect to t,(y). Therefore, the algorithm of the previous section enables
us to split t,(y) over the annulus A(u) bounded by the circles {y : [y| = 1} and
{y: |yl = (1 + ¢/n)*"}; moreover, since (1 + ¢/n)?" > 4, we obtain this splitting at a
low arithmetic and Boolean computational cost. It remains to descend from spitting
tu(y) over the annulus A(u) (into two factors F,(y) and G.(y)) to splitting to(y) over
the annulus A = A(0) = {y : 1 < |y| < 1+ ¢/n}. We will proceed recursively in
u steps of descending. The ith descending step will output two factors F,_;(y) and
Gu—i(y) of tu—i(y), 1 =1,2,...,u, provided that the polynomials tu—i(y), Fu—it+1(y),
and G _;+1(y) are given as the input of this step and

k
t(y) = F,(y) Gu(v), Foy)=[[w-2¥), Gw= [[ w-2)

j=1 j=k+1

forv=0,1,...,u.
In addition to these equations, in particular, to the equation ¢, (y) = Fy,(y) G+(v),
we recall that

Fon1(v?) = (-1)* Fu(y)Fu(-y),
Gv+1(y2) (_1)k Gv(y)Gv(_y)ﬁ

and for every v the two polynomials F,(y) and G,(—y) have no common zeros and,
therefore, have only constant common divisors. It follows that

__tly) _ FQ)
MW =G ~ G

is a meromorphic function whose Padé approximation table has its (k,n — k)-entry
filled with the pair of polynomials F;(y) and G;(—y). (The (k,n—k)-entry of the Padé
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approximation table for a meromorphic function M (y) is defined as the pair of polyno-
mials F(y) and G(y) satisfying the relations F(y)M (y) = G(y) mod y™*!,degF(y) <
k,degG(y) < mn — k. For fixed M(y),n and k, this pair defines a unique ratio-
nal function F(y)/G(y) according to the Frobenius theorem (see [Gra72, Theorem
3.1]). Gragg’s paper [Gra72] contains ample material on Padé approximation; see
also [BP94] on some related algorithms.) Therefore, the desired transition from the
polynomials #;(y) and Gi11(y?) to the polynomials F;(y) and G;(—y) (and therefore,
also to G;(y)) can be achieved simply by computing the (k,n — k)-entry of the Padé
approximation table for the meromorphic function

M;(y) = ti(y)/Git1(¥?).

This computation can be reduced to solving a Toeplitz linear system of n— k equations
(compare, for instance, equations (2.5.5) and (2.5.6) of [BP94]). In our case, the
system is nonsingular because the absence of common nonconstant divisors of F;(x)
and G;(—y) excludes the degeneration of the Padé approximation. Moreover, it was
proven in [P96] that the perturbation of M;(y) by a polynomial m;(y) implies the
perturbation of F;(y) and G;(—y) by polynomials f;(y) and g;(y) satisfying the bound

(12.1) 1@+ Mg @) < llma()ll (2 + 1/(ps — 1))

for some fixed constant C, where p; is the isolation ratio associated with F;(y) and
Gi(y), pi = (1 +¢/n)?, i < u in our case.

The known algorithms support the solution of a nonsingular Toeplitz linear system
of n — k equations by using order of (log(n — k))%(n — k) < (logn)2n arithmetic
operations (compare [BP94] for these fast solution algorithms for a Toeplitz system
and their efficient parallel counterparts). We increase the latter bound to the order
(log n)®n when we solve u = O(logn) such systems in the process of descending from
splitting ¢, (y) to splitting ¢o(y).

To control the Boolean computational cost of the described descending process,
we compute the splitting of ¢;(x), for each ¢, in two stages. At first, relatively rough
initial approximations to the two factors of ¢;(z) are computed (compare (12.1)). Then
these approximations are rapidly refined (at a low computational cost) by the available
techniques of Newton’s iteration (we already cited these techniques while describing
the splitting process for p(x)). To keep the Boolean complexity lower at the first
stage, we perform the computation at this stage with a lower precision. Bound (12.1)
enables us to control the approximation and rounding errors in this process. The
resulting Boolean computational cost is shown to be sufficiently small [P96], [BP,a],
and we arrive at the desired algorithm that supports the desired optimal (up to
polylogarithmic factors) upper bounds on the sequential and parallel computational
cost of approximating polynomial zeros simultaneously under both arithmetic and
Boolean models of computing.

13. Polynomial zeros and matrix eigenvalues. In addition to the compan-
ion matrix approach discussed in section 5, let us consider approximating the zeros
of p(x) as the eigenvalues of an associated tridiagonal matrix 7. If all the (coeffi-
cients and) zeros of p(z) are real, then such a tridiagonal matrix T is immediately
computed via an application of the extended Euclidean algorithm to p(z) and p'(z)
(see [BP94, Chapter 2, section 3; Chapter 4, section 5] or [BP,b]). Furthermore, the
matrix T is real and symmetric in this case, and its eigenvalues can be effectively
approximated by the known methods (bisection, divide-and-conquer, or QR). In par-
ticular, [BP91] and [BP,b] show how this can be done in linear arithmetic time (up
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to a polylog factor) based on the divide-and-conquer approach (see [BNS78], [C81],
and [DS87] on some preceding works), and [BP92] shows a practical modification of
the algorithm of [BP91]. Would a similar approach work for an arbitrary polynomial
p(x) or at least for a large class of polynomials p(x) with complex zeros? The idea
is to start by computing a complex tridiagonal or just companion matrix A that has
characteristic polynomial p(z) (and is in Hessenberg form) and then to approximate
the eigenvalues of A by using a divide-and-conquer algorithm. (In the experiments
reported in [DSi93], such a heuristic divide-and-conquer algorithm worked well for
quite a large class of unsymmetric matrices.) One may also try to reverse the di-
rection to approximate the eigenvalues of an unsymmetric matrix as the zeros of its
characteristic polynomial ca(z). In practice, computing the coefficients of c4(z) is
avoided since this generally blows up the precision of computing, thus creating nu-
merical stability problems. Such an observation rules out the numerical computation
of the eigenvalues by any method for polynomial zeros that involves these coefficients.
The techniques of such methods, however, can be potentially useful for the eigen-
value approximation. In particular, one may try to extend Weyl’s algorithm in this
direction. The initial square, containing all the eigenvalues, can be easily obtained by
applying Gershgorin’s theorem, and it remains to find a recipe for proximity tests not
using the coefficients of the characteristic polynomial. This seems to be an interest-
ing challenge. A heuristic recipe, based on the results of Eckart—Young [EY39] and
Gastinel [Ka66] regarding the distance to the nearest singular matrix, was proposed
in [P95b).

14. Some further applications. We have already mentioned the important
impact of the study of the solution of a polynomial equation on pure and compu-
tational mathematics. The list of examples of such an impact can be continued
extensively, but we prefer to conclude by recalling just three major extensions of the
problem of solving a polynomial equation to computing

(a) a solution or an approximate solution of a system of complex polynomial

equations,

(b) a factorization of a polynomial over the field of rational numbers, and

(c) the greatest common divisor (gcd) of two univariate polynomials u(z) and

v(z).
All of these subjects (particularly the first one, which also has a further important
variation in which one must solve a real system of polynomial equations and inequal-
ities; compare [R92]) are highly important for both mathematics and the theory and
practice of computing. All three subjects have been intensively investigated by re-
searchers for many years. We will now cite some known techniques for the effective
reduction of the first two of these computational problems to solving a polynomial
equation. The elimination theory [VAW53], [R89], [CKL89] reduces a polynomial sys-
tem to a single equation (1.1). Both diophantine approximation [Sch684] and algebraic
relation finding [Mi92] reduce factorization over the rationals to the approximation
of polynomial zeros. The cited reductions, presented in [R89], [CKL89], and [Mi92],
lead to the current record computational complexity estimates for the worst-case so-
lution of these two major computational problems. Two other major approaches to
solving a system of polynomial equations support inferior asymptotic estimates for
the computational complexity of the solution in the worst case (of a dense input), but
are preferred by the users for practical implementation. These two approaches rely
on computing Groebner bases [KL92] and Newton’s polytops (for sparse polynomial
systems) [E96], respectively. Then again, in both cases the solution reduces to solv-
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ing some polynomial equations in a single variable. Furthermore, the major stage of
bounding the step size in the recent successful path-following algorithms of [SS93],
[SS93a], [SS93b], and [SS93d] (proposed for solving a polynomial system of equations
and based on multidimensional Newton’s iteration) is also reduced to solving a sin-
gle univariate polynomial equation. Solving a polynomial system of equations with
several variables is usually much harder than solving the single polynomial equation
(1.1), in particular, because the total number of solutions to the system is gener-
ally very large (exponential in the number of variables). Thus, one frequently seeks
only partial information about the solutions to the system, such as computing or just
counting only the real solutions or the solutions in a fixed domain. Toward this goal,
some techniques known for approximating the zeros of a univariate polynomial (such
as ones for the proximity test) can be effectively extended to the multivariate case
[DY92].

The third problem, of computing the ged of u(z) and v(z), immediately reduces
to computing the zeros of u(z) and v(z). We recently proposed using this reduction
for the numerical approximation of the gcd [P96b]. This was partly motivated by
the recent progress in approximating polynomial zeros and partly by the very poor
numerical behavior of the available algorithms for polynomial gcds. The numerical
reduction of the gcd to the zeros involves some bipartite graph algorithms (matching,
connected components) and has further correlations to the computation of numerical
ranks of Toeplitz matrices [P96b]. The latter problem is of practical importance
because of its application to sparse multivariate polynomial interpolation and Padé
approximation.

Appendix A. Extension of Rolle’s theorem to the complex case. We will
follow the technique of [CN94] to prove part (a) of Fact 8.1. We will start by recalling
a little known but simple lemma.

LEMMA A.1 (see [CN94]). Let v1,...,v; denote the vertices of a simplex o in the
(I — 1)-dimensional real space R\=1. Let c1,...,¢; be l complez points in C and let
a: R~ — C be the real affine map taking v; to c;. Let f be an analytic function
on the image of .. Let [c1,c¢o,...,c1] f denote the divided difference operator applied
to f and let v(t) be the standard volume form on R'~1. Then

(A1) 1,00, sl f = / £ (B dv ().

Proof of part (a) of Fact 8.1. Apply Lemma A.1, where f(z) = p(z) and c1,...,¢
are the zeros of p(z). Then the left-hand side of (A.1) vanishes. Therefore, so does the
right-hand side. This means that its integrand varies by at least 7, and this implies
the condition on the zeros of p‘~1)(z) of part (a) of Fact 8.1. O

Appendix B. Correlation between the cardinalities of intersection and
union.

PROPOSITION B.1. Let S1,9,,...,Sr denote R finite sets, let U denote their
union, and let I denote their intersection. Let |S| denote the cardinality of a set S.
Then

h
111> > 1S = (A= D)[U].
i=1

Proof. We only need this result for h = 3 and will prove it for this h by following
the technique of [NR94]. Let s; and s;; denote the set cardinalities s; = |S;—(S; U Sk)|
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and s;; = |(S;(S;) — I|, where ¢, j, and k are distinct integers chosen from among 1,
2, and 3 (in any order). Then clearly

|S1| = s1 + s12 + s13 + |1,
|Sz| = 82 + 812 + S23 + |I|,
|S3| = s3 + s13 + s23 + |1|,

31+82+83+812+813+323+|I|=|U|-

By twice subtracting the last equation from the sum of the preceding three equa-
tions, we find that

3
1| —s1—s2—s3 = _|Si| —2|U],

=1

which implies Proposition B.1 in the case where h = 3. 0
We used Proposition B.1 in section 9 in the case where S;, S,, and S3 denoted
the three sets of the zeros of p(z) lying in three fixed annuli.

Appendix C. Turan’s proximity test. Turan (in [Tu68] and [Tu75]) proposed
a nontrivial proximity test for polynomial zeros using O(nlogn) arithmetic operations
to ensure an error bound of at most 10%, 40%, or 50%, say. This test relies on
the following result, which he obtained by using some advanced number-theoretic
techniques:

1 <max |z]/py <5V
J

Here N is a positive integer, 21,..., 2z, are the zeros of p(z),
SgN 1/(gN)
PN = max | —— ,
g=1,...,n n

and s; =30, 2%, i=1,2,....

Since 51/32 < 1.052, 5'/3 < 1.4, and 5!/ < 1.5, it is sufficient to set N = 32, N >
3, or N = 2, respectively, for the purpose of having the relative output error within
10%, 40%, or 50%, respectively. By applying h steps of Graeffe’s iteration (3.2), we
make a transition from p(z) = p. [T;_; (z — 2;) to p*(z) = pn H;.l:l (z — zJN) =
Yo pizt, for N = 2", so that we may choose h = 5, h = 2, or h = 1 in the cases
listed above. Then we obtain the power sums sgy for g = 1,...,n and N = 2" by
solving the well-known system of Newton’s identities (see, e.g., [Ho70] or [BP94])

p;kzsN +p;—1 = 0,
DPpS2N + Pp_1SN + 2D} _5 =0,

DnS3N + Dy_1S2N + Dy_oSN + 3p}_5 =0,

This is a nonsingular triangular Toeplitz linear system of n equations in sy,
82N, 83N, - - -, SnN, Whose solution can be reduced to polynomial division [BP94] and
performed (together with all other stages of computing the desired value py) by using
an order of nlogn arithmetic operations. The overall number of arithmetic operations
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involved in Turan’s test (for h =5, h =2, or h = 1) is still of order nlogn, which is
smaller by factor loglogn than in the proximity test of section 3.

Let us briefly comment on the numerical behavior of Turan’s test. It is not efficient
to perform this test by using rational arithmetic with no errors because the number
of digits that must be carried out grows too rapidly during this computation. Indeed,
performing the stage of solving a system of Newton’s identities at the arithmetic
cost of order nlogn by means of polynomial division algorithms generally requires
one to increase roughly by factor n the number of digits in the process of rational
computation. Another increase by factor n is due to computing sgn for g of order n.
The overall growth of the precision is by a factor of order n?, whereas at most factor
n can be due to the ill conditioning of polynomial zeros. The latter considerations
suggest that Turan’s test should perform poorly when applied in rational arithmetic,
and this has indeed been confirmed by numerical experiments. On the other hand,
numerical experiments of Turan’s test performed by using finite precision floating-
point arithmetic have showed much better numerical behavior. In fact, Turan’s test
works better numerically when the distances from some zeros of the polynomial p(z)
to the origin are small, relative to the maximum magnitude of the coefficients of the
polynomial, whereas the tests of section 3 work better in the opposite case, where all
the zeros have larger magnitudes.

As we have already mentioned, there still remain many open problems on the
numerical implementation of Weyl’s algorithm and its modifications. (The reader is
referred to [BP96] and [BP,a] on some recent work on this subject and to [Tu84] on
many important applications of the techniques of [Tu68] and [Tu75| to various areas
of mathematics.)
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