Solving Polynomials with Computers

Speedy computer algorithms offer new answers to a mathematical problem
as ancient as Babylon: finding the zeros, or roots, of high-degree polynomials

Victor Y. Pan

hen we think of a robot, many of

us comjure up a science-fiction
image of a two-legged, two-armed ma-
chine with lightbulbs for eyes, vaguely
resembling a human bem;, In science
fiction, robots are super-competent at
mechanical tasks but unable to master
the more difficult problems people
have o deal with—good versus evil,
honesty versus deception, the nature of
seélf-awareness, For the time being,
howoever, the reality of robots is quite
different, because our first assumption
is a fallacy: Robots are not super-com-
petent mechanically. In fact, it is outra-
geously difficult to make a robot that
can perform some of the simplest mo-
Hons that we kake for granted.

For an example, draw a square on
vour back halfway between your
shoulders. Even though you cannot see
your hand, you instinchively sense
where 1t 15 going, Mot so a robot, 1t can
sense only the angles formed by its
joints; if it needs to know where its
hand is, it has b0 figure it out mathe-
maticallv. It can solve the “forward
kinematic problem”—if | make an an-
gle &) with my shoulder and an angle
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&, with my elbow, where is my
hand?—reasonably easily, with a littdle
bit of trigonometry. But the more im-
portant Droerse kinematic problem—if |
want bo put my hand in this spot, what
angles should [ make with r'n}' shoul-
der and elbow?—tarns out to be a ot
maore difficult. The robot's brain (or
computer chip) has to solve a system of
four equations in four variables (the
cosines and sines of & and 8, respec-
tively). These equations can usually be
reduced algebraically to a single equa-
tion with one unknown. Suppose, for
example, that the robot arm has two
one-meter segments. 1f a controller di-
rects it to move its hand to a spot @ me-
ters above and b meters to the right of
its shoulder, the computer will have Lo
solve the following equation:

Ha? & B2 = Ha2h + iy
L2 L 22 _An2 =0

I this exquation, which we could call the
“shoulder-angle equation,” the un-
known variable x is the sine of the angle
formed by the shoulder (8). After find-
ing the appropriate value for x, the mobot
can use similar tormulas to solve for the
other variables and deduce the appro-
priate angle for its shoulder and olbow,
The complicated expression at the be-
ginning of the shoulder-angle equation
can be broken down into simple opera-
tions. A single unknown (x} is raised to
various powers: x2, x! (or x) and 2 (or 1),
These powers are multiplied by various
knivwn constants, such as Mg + B2, H-
nally the resulting products are added
together. Any such combination is called
a ;xJ.I‘um}mmJ' o solve the inverse Kine-
matic problem, the computer must find a
zere, oF ook, of the polynomial—that is, a
value of x that makes the polynomial
equal to zero. (For example, the number
1 is a zero of the polynomial 822 - 8z, be-
cause (1% - 8(1) = 0, But 2 is not a zero,

because 8(22) - 8(2) = 0.) The problem of
finding zeros of a polynomial vastly pre-
dates robots: Although there are no
records of robols in ancient Sumey and
Habylon, the Sumerians did know of
problems of this sort, and the Babyloni-
ans knew how to solve specific instances,

Cnet may say that a major goal of
mathematics i to search for a few keys
that can open numerous locks. 1f so,
then the ability to solve polynomial
equations s such a key, Mot only can
polyvnomial equations guide a robol’s
hand to the proper location, but such
equations also turn up in a host of oth-
er technological applications: computer
vision, modeling, graphics and the
analysis of specch, o name four. More-
over, polynomials have always been a
key Lo the development of mathemat-
ics itself. Owver a period of more than
two millennia, most of the significant
extensions of our understanding of
numbers and algebra have been pro-
voked by questions about the roots of
polynomials. The problem of linding
exact solutions to polynomials was de-
finitively—if negatively—resolved in
the 19th century: There can be no ung-
versal polynomial-solving formula in
terms of the standard algebraic opera-
tions (addition, subtraction, multiplica-
tion, division and radicals). With the
advent of computers, 20th-century
mathematicians faced a whole new
challenge: how to find an approxinmlie
root of a polynomial in the most effi-
cient way. I'his problem calls tor just as
much ingenuity as the old problem of
finding exact roots, and mathemati-
clans are just starting to get to the bot-
tom of it.

From Real to Imaginary

In both the ancient and modern ap-
proaches to solving polynomials, the cro-
cial factor contrelling the difficulty of the



!:igun' 1I.For a robot arm such as this one ['.hrin:._l‘ drv@h:lu-d at MASAS Johnson F'f"”-" Center ‘Ii"-!': the proper set of “elbow” .mp.lr-w. For
reaching a given spot is nol a trivial computational challenge. This “inverse kinematic problem” involves a system of equations in which one
musk find the reots, or zeros, of several palynomials. Finding the zeros of polynomials is an ancient problem in mathematics that now is of
great practical importance. The author and other mathematicians have developed efficient computer algorithms that rapidly approximate
these solutions, In this photograph a prototype Extravehicular Activity Helper/Retriever on board a MASA reduced-gravity aircralt demon-

strates how a viston-equipped robotic arm can manipulate and grasp moving ebjects in microgravity, (Photograph courtesy of NASAL)

problem is the highest power of the vari-
able v that appears in the equation. This
number is called the degree of the polyno-
mial. The ancient Egypans, Babylonians
and Greeks were all able to solve linea
{or degree-one) L'c;unl:n ms, suchas 3y -6
= 1. In essence, any culture that knew
how to divide could solve this equation,
because the single solubon ¥ = 2 is ob
tained by dividing one of the known co
efficients (B by the other (3)

lo solve .'IJ.irni!I'.":-'I'n:u, [or Li{'qr{'{' W)
equations, ax= + by + ¢ = (), however, re-
L'|1':'Il'l.‘1.1 tremendons efforts of many Ih,'l =
ple over thousands of years—culminat-
ing in a formula that has been drilled
into generations of high-school students:

) 20

Tor develop this quadeatic forsda, math-
ematicians had to develop a higher

level of abstract thinking, manifested
tirst of all by the use of abstract sym-
bols such as a, b and ¢ Lo represent the
coefficients of the equation. A more
specific, but related, difficulty was the
necessity of coming o grips with the
concypts of negative, irrational and
imaginary numbers, all of which were
quite odd to the ancient and even me
digval ways of thinking,

By 2000 p.c., the Babvlonians had
come close to recognizing both irra
tiomal and negative numbers, but in
solving an equation such as ¥ -y -2 =10
they would ac knowledge only the solu
tion x = 2, ignoring the solution x = -1.
The Pythagoreans, around 30 B.C., were
the first bo discover that the solution of
the equation 12 - 2 = O {which we would
write today as +2) could not be expressed
as a rabio of whole numbers. The term ir-

rational rurder that we stll use for such
numbers is a relic of the intellectual crisis
this event set off. The Pythagoreans had
believed that “[whole] numbers rule the
universe,” but now it seemed they did
not even rule all of mathematics, Al-
thonagh they were the first to encounter
the concept of irrational numbers, the
Careeks shill could not handle negative
numbers, In this respect, the Chinese
(3rd—1st century B}, Indians (7th=fth
century ALl and Arabs (circa 850 an.)
were more advanced. Furopean mathe
maticians, however, became comfortable
with negative numbers by 1545, when
Italian mathematician Girolamo (o
Jercame) Cardan manipulated them cor-
rectly tosolve cubic equations, although
he still called them “mmer ficti ™

Cardan also noticed that the qua-
dratic formula could give rise to suane
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Figure 2. Babylonian mathematicians were able to find some af the roots of poelynomials
using tools that included reduction, substitution and arithmetic. In the first problem (ol
described on the cuneiform tablet known as BA 13901, the scribe has found, by factoring, one
solution for an equation that in modern notation would be written 2% ¢ x = 34 = 0. In the
lower section he has solved an equation that we would write 52 = v = 570 = 0, determining that
ane value for x is the square root of $70-1/4, or 29172, plus 1'Z; that is, 30, Except for the use of
sexagesimal notation and the fact that only the positive solution is found, the scribe uses the
same operations modern mathematicians would in computing v with the quadratic formula.
The recognition of irrational numbers (by the Pythagoreans), negative numbers (by Chinese,
Indian and Arab mathematicians} and finally complexs number: lin the 18th contury) wore
developments that eventually led to the theoretical understanding that polynomials have
roots (or zerosh. But the power of 20th-century mathematics and modern computing was necid-
ed to develop efficient algonthms for finding polynomial zeros.

rogts of negative numbers, a possibility
he discounted: “So prog

metic subtlety the end of which, o is
said, 15 a3 refined as it is useless. Buatin
Hme, T8th-century mathematicians in-
cluding Roger Cotes, Abraham de
Moivre and Leonhard Euler began to ne-
alize that numbers of the form a + =1
(known today as complex smbers) were
not only useful but for many problems
the most natural number system. Final-
Ly, Caspar Wessel (17971 and Carl Friod-
rich Gauss (1832), by following John
Wallis (1673), pointed out that a complex
number i + B=T could be thought of as
an ordered pair of numbers (o, fl—in
other wonds, as the coordinates of a point
in the Euclidean plane. Monaover, every
algebraic operation that could be done
to complex: numbers—addition, mulbi-
plication, even radicals—had a simple
geometric  interpretation. The  re-
spectability of plane geometry, as ven-
erable as any branch of mathematics,
rubbed off on the complex numbers, Al-
though a number such as 2 is still called
“real” and a number such as 271 is still
called “imaginary,” since Gauss's time
mathematicians have considered both
of them to be equally legitimate mathe-
matical concepts. {In fact, any real mom-
ber is also a complex number; for exam-
phe, 2 can be written as 2 + 01,0

5 Ameriean Scientish, Vishome Ba

Simplicity Throuveh Comnlexity

WAoo A
Lo Pawlciph wrote (fanuary- February
1495) that complex numbers “are hard-
er to visualize than real ones, but most
mathematics is actually much casier
when one works with comiplex num-
bers.” Behind this hidden power of
complex numbers lies the fuadamental
thevreni of algelra, the subject of Gauss's
doctoral dissertation in 1799 as well as
the work of many other famous mathe-
maticians of the 17th through 20th cen-
turies. This remarkable theorem stabes
that every polynomial, no matter how
high its degree, and no matter whether
its coefficients are real or complex num-
bers, has a zeroe in the complex plane. In
fact, Gauss did even better than that:
He showed that the number of complex
zeros is always identical to the degree
of the polynomial. (There is one im-
portant caveat: Some zeros may need
to be counted more than once, For the
polynomial 32 - 2y +1, which can be
factored as (x — 1)2, the zero x =1 is
said to occur with muthiplicity 2, as the
factor (x — 1) occurs twice.) This uni-
formity of behavior—the fact that the
number of zeros depends on the de-
gree, and nothing else—contrasts with
the unpredictability of the same prob-
lem if only real zeros are allowed,

Bade e, wadliim

For example, a quadratic polynomial
la polynomial of degree two) may nol
have any real zeros, (8 may have one,
or it may have two. The inconsistency
can be illustrabed vividly by the shoul-
der-angle equation, which is quadratic.
Unless vou have arthritis, there are
some spots on yvour back that vou can
touch in two different ways: with the
elbow up, or with the elbow down, For
such positions, the shoulder-angle
equation has two solutions. Bul there
are some spots you cannot touch at all
in a normal standing position; for ex-
ample, vour ankle or a high ceiling
These are cases where the shoulder-an-
gle equation has no real-number solu-
tions, It seems incredible that rotating
your shoulder and elbow through an
imagimiry or complex angle, if such a
thing were possible, would enable vou
to touch your ankle. Yet that is exactly
what the fundamental theorem of alge-
bra assures us!

Gauss's proat of the fundamental
theorem of algebra illustrates the pow-
er and pattalls of the geometrc view of
complex numbers. A complex-valued
polynomial has both a real part and an
imaginary part (just as a complex
number, a + k-1, has a real part, 4, and
an imaginary part, bv=1). To find a zero
of a palynomial, we need to find a
point ¥ + V=1 in the complex plane
where both the real and imaginary parts
of the polvnomial become zero. Lauss
asserted that the points in the plane that
make the real-part zero form a curve,
and those that make the imaginary-part
zero also form a curve, Moreover, he
proved that the ends of these two curves
are equally spaced, like the hour marks
on the face of a walch, and thev alter-
nate (real-imaginary-real-imaginary.
Then he assumed it was obvious that the
curves had o cross over each other in
order to get from one “hour mark” o
another. At any such crossroads, botl
the real and il'.l'l.i‘1Hi]lill"..' parts ol the puh'-
noamial would equal zero, as desired.

Later mathematicians did not consid-
er the existence of the crossings to be so
obvious; the first complete proot of the
theorem is dated to the 19h century.
Actually, even when Gauss revised his
proof 50 vears later, he was unable o
justify this step convincingly. In fact it
was not unkil 1920, over a century atter
Cuss wrote his thesis, that the Russian
mathematician Alexandre M. Ostrowski
Cwha spent much of his life in Switzer-
land) was able to fill in the gap, using
the madern theory of algebraic curves.,



Mote that Gauss's proof does not al-
I v to “write down™ a solution (o a
|'l.:-|_'.||l. annial, in Lhwe sanwe Wily Ural the
l.llI.IIII'.'IIiI. formula does. It merely as-
serts that the solution exists, on the
piouikds sl o voad [oem point A e
puint B mwst cross a road from point €
tor point (B 3'::\' Causs's Hme, mathemab-
cians had made some progress on find-
il'l:,': l."*.'_.'ul'.l. 1t sOiutions OfF & |II._'|I1-.'-I'|-C ot :1l."
gree higher than two, In 15345 Cardan,
1.||'~1111I|.~ lis reluctance o allow \.'1'I'|':'||:lil"'\.
numbers, published a formula for find-
ing the zeros of cubics (degree-3 poly-
pnialsp

a bariwjue concoction, in
volving square roots inside cube roots,
that is still known as Carda
e i Candan himself acknowl-

LA ey
5 ora

edzed oblaining the main idea of the
formula from a rival, Nicolo Tartaglia.

In the same paper, Cardan presented

the work of s student Ludovico Fer-
rarl, who achieved a similar result for
(uartics (degree-four polynomialsy, At-
temnpts to find similar formulas for larg-
ET -.:||',_'|1'-='l."-\. continued until the ltalian
mathematician Faolo Ruffind, in 1813,
and the Norwegian mathematician
Miels Henrik Abel, in 1
quintic (degree-five) polynomials cannot

524, proved that

be solved by any expression involving
only arithmetic operations and radicals
By 1832, the French matl
Evariste Calois developed a celebrabed
theory of equations (stll called G
tieoryl, which produces simple specific

wmatician

I

equations that cannot be solved by radi-

Figure 3. Most people can touch certain spots on their back in two different ways. A mathemati-

cian would say that the angle between the shoulder and the tomso 1% governed by a quadratic
{degree-twol equation wilth two feasible solutions, But the fundamental theorem of algebra
offers additional ways to solve polynomial equations by searching for zeros, or roots, osutside
the realm of real numbers, Such a solution can only be imagined in the world of reality: In this

case it would invalve rodating your shoulder and elbow through an fmaginary or o

cals—for example, the quintic equation
=4y — 2 = [ Galois theory broughit an
elegant close to an old problem, but it
also opened up new areas of mathemat-
cepts of fields, groups and
jds he introduced have mo-
rowes discoveries in abstract
algebra, up to the present day, and have
had a major impact on the applied sub-
ject of computer alzebra

ics: The conce

extenson
tivated nun

nprley angle.

Changing the Paradigm

For a modern-day engineer, trying to
program a robot arm to move wher
he wants it bo, the upshot of this beau-
tiful mathematical theory, constructed
over 4000 vears, must be rather disap-
pointing. True, the motion of a simple
arm with only two joints can be solved
exactly. But the degree of the polyno-
mials goes up exponentially with the

Figure 4. Carl Friedrich Gauss’s proof that all polvoommials have zeros in the plane of complexs numbers was revolutionary, if flawed, in its
use of geometry to do algebra, In this illustration curves in red pass through all ks w here the imagina ry part of the polymomial is zero;
curves i blue show where the real part s zeero, Feros of the pnll.'nmn'r.ﬂ are found where the curves cross. Ouiside a very largge cirele, the red

and blue curves are spaced evenly, like the hour marks an a wakch, with alternating colors (lefth, Gauss argued that joining the ends i
forces red and blue curves to cross Gmididl). But he failed to rule out the possibility shown at right: The curves could spir

around withoul

escaping Bhe large circle, and thus aveid each other. Later mathematicians rescued his proof by showing that curves defined by poalynomial
equations must have both ends outside the circle.



number of joints involved. Thanks to
Gauss, the engineer knows that the
polvnomials
though they may not all be physically
|‘|1|.~111|]|‘|1_,le]] But the results of Ruffini,
Abel and Calois mean that, bar ring
greal gn-ud fortune, the engineer has no
hope of finding an exact zero of the
high-degree polynomials. What an en-
ginger needs, though, is not an cvact so-
lutiom, but a quick and dependable ap-
provinnafe solution,

Contemporary research efforts have
tocused on devising fferatioe algeritioms
to solve polynomial equations—umeth
ods that zero n on the zeros to any de-
sired degree of precision, The frst itera-
tive algorithm for approximating the
zero of a polynomial can be lraced all
the way back to ancient Egypt. This al
gorithm was brought by Arab mathe-
maticians to medieval Fur e, under
the name of the reguls falsi or
sitiom™
fications, the bisection and secant meth-
ods, it remains a major tool for solving
L'\.il.ll'll.i\.l]'l."! On ComprLlers.

T demonstrate a major idea behind
these methods, imagine that a river S
arates two villages. Mo matter which
way vou use to go from one village to
the other, you must cross the river, be-
cause vour path is a continuous curve
on the ground. Analogously, any poly-

I"I{‘\i. i.'.ll.'ll"ll.""il EA A S g ] (ﬂ]'

“false po-
method. iLIHL'lIEL'L wilh ils o -

Figure 5, Algorithms for finding roots of
polynomials rely on the idea that polynomial
functions are unbroken curves that cross the
veaais; wach reol lies at the peint alung the
graph of the function where y = 0, and for
this reason it is called the zero of the polyno-
mial. Far instanca, in a graph of a function
where y o= pix), if y is (even barely) negative
when ¥ = ), and positive when x = 1, then
there muwst be a number between 0 and 1
where the curve crosses the y-axis. In the
realm of real numbers, a quartic polynomial
such as the one above may have as many as
FrIIJT TN,
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normial poean be viewed as a continuons
function, whose graph is an unbroken
curve ina I."']l.ﬂ'll." with coordinates v amd
1. You may think of this curve as vour
path between the villages. "'1'1!]1}104;_‘ the
river runs along the line of points wilh
y-coordinate equal to (L IF the village at x
= (115 south of the river (that is, its -co-
ordinate is negativel but the village at »
= 1 is north Ul'thi. river {its y-coordinate
is positivel, then there must be some
number x between 0 and 1 where vour
path (with y equal to the value of pat x,
or ¥ = pfak and the river (with ¥ = )
cross, Al Lhis } wainil, plat= O—that i, 1 i
a zero of the polynomial fsee Fioie 51

With these observations in mind, per-
haps the simplest version, the bisection
method, i5 nothing more than a mathe-
matical version of the children’s game of
“Twenty Cuestions.” Suppose vou want
to find a zero of a polynomial, and you
knowe that the value of the pn]_l. nommial
al v =10 is negative but the value at v =1
is positive. Then at some number 2 be-
tween O and 1, the value of the polvno-
trtial anust egual O, I Twenty {,-?LI:.“41.TI11\H.
you would start out by asking, “Ts = big-
erer than 1/27 But in the bisection
method you have to be a litte cleverer,
since vour “opponent,” the polynomial,
will not give vou that information direct
ly. Instead you mk Ts the v ﬂzul. ni the
F'\n]'. romial at v = 1,2 negative? * 1f s,
then there mast h;' A 7ero lu\lxu-{n 1 /2
and 1 isince the P 1]:. ncial ¢ h‘“"!—-'-" sien
over that interval), If not, there must be a
zero between 0 and 172, Either wav, vou
gt the information you want '

Suppose vou find out that z is be-
bween (hand 172, Then your next ques-
tion would be, “Is the value of the poly-
nomial at x = 1/4 negative?”—aor, in
translation, “ls = L"1~'L,|.-r than 1/4* Con-
timuing in this fashion, you would nar-
row dovn the interval 2 lies in by a factor
of 2 at every step. You might never find
the exact value of z, but after 20 quis-
tions vou would be within 1,/2% of it—
or, to put it anather wWay, you would
know = o about six decimal places, For a
robot, this mj;i:;ht well be dose enough
(O course, vou could ask more or fewer
questons, depending on which mattered
IO, ACoUracy or speed. )

The strengths of the bisecion method
are its absolute stmprlicity and reliability
But it canmot be used to find complex ze-
ros, because the notion of bebweenness
is not well-defined in a plane. A some-
what similar method, the qreedfeee method,
was devised by the German mathemati-
ctan Hermann Wey] in 1924 to overcome

s hmitation. But this mwthod, like bi-
saction isell and its other variabions, ze-
s i o the solutions fmirly slowly

A much more J'<1pir.|, bt hinig k'., tixch-
L 15 known as Newofou's mebod, even
Lhough it originated millennia before
Mewton and first appeared inits present
Form ina 1690 work by Joseph Raphson
Tov use this method, vou start out with a
single indtial estimate, v, vsually chosen
ter be fairly close to the unknown zero, =
You find the corresponding pﬁint om Ehe
graph of the polynomial and draw a tan-
gent line to the graph at that point. The
spot where the angent line intersects the
X=axis is your new approximation to z,
which you can call vy, Generally it will be
il ]““TtkT-."]"]""'""'\l"'l-"-.“ll.""l'l o = than x;, was,
because the graph of the polvnomial (s
curvel will not deviate very far from the
tangent line over a short distance. But if
£y 15 not a good enough approximation
to z, the |."t‘l.=-c't11l.ln' can b r-;']_m-n[-.u.l by
produce an even better approximation,
Xy, aned 50 0n.

In Newton's method, each iteration
roughly doubles the number of correct
decimals. Thus, starting with an est-
mate that is accurate to one decimal
]1|.1L'1‘_. in three steps a computer pro-
grrammed with Mewlon's method could
estimate z to eight decimal places,
whereas a computer programmed with
the bisection method would still be just
beginning its game of Twenty Ques-
tioms. Moreowver, althowgh this is ot ob-
viows, Mewton's method can be used to
findd complex zeros as well as real zeros,
Bt there is a catch; MNewton's method
has been proven to exhibit this fast rate
of convergence only if the initial ap-
proximation 1, is close to z, and 1'-.1 i
then only if there are no other zeros
nearby. It ms 1y work sloswly or fail com-
plete Iy if several zeros of the polvnon-
al form a cluster, This case is not rare in
practice, because practical applications
frequently deal with polyvnonmals with
multiple zeros whose coefficients are ac-
tually represented numerically, with
small round-off errors. If the original
F"Ll|f~'|1.n|‘|‘.h‘:| has a single wero with mul-
tipli-.'il}' 10, the rounded-off version typ-
wally has I very closely spaced zetos
with mtllllplln.lh . o

By now, hundreds of serative .uun-
rithims are avatlable tor .1::-}'!]1\\]m,=m|‘|_~_h
polvnomial 2eros, and most of them are
quibe effective on average-case, smaller-
degres polynomials, although they usu-
ally run into problems in treating poly-
nomials with clustered zeros. Several of
these ﬂ||~_‘_-'.lrit|'|l‘|'|r~ are usedd s u'ah:’ul]}'



in commercially available software.
However, a 19 ihlfw'ﬂ]mr [1I||'|'lLT'ik'._i”:q.-'
tested the three most popular algo-
rithms concluded, “None of the meth-
ods gives ac vp1.|h|1* results for E1|1]_1'11|.1-
mials of degree higher than 30, and, “If
roots of high multiplicity exist, any .

miethod has Bo be used wath caution.”

Keeping Score

I'he bisection and Newton's methods
locabe just one zero of a polynomial at a
time. Recent algorithms have a maore
ambitious goal: to compute all n zeros
of a complex polynomial of degnee i1 at
once. Surprisingly, by one theoretically
||'|'|'|."['!'f'|.n'll"l|. IMEASUTE, & l.'l.!'lf'l‘ll"-‘l.lti'l' can do
this in little more me than it takes to
write them down.

Among computer scientists, the cus-
lomary measure for the time-complex-
ity of an algorithm is the number of f
operations involved, Numbers are
stored i a computer as a string ot 1s
and (s; each time two of these are com-
bined by addition or multiplication,
one i operabionn takes place, A comput-
er, just like a person, may take longer
ter add twor 10-digit numbers than two
one=digit numbers, although the fime
may be measured in billionths of a sec-
ond rather than in seconds. Howewver,
for simplicity we will ignore this dif-
ference and describe the complexity in
terms of arithmetic operations, or “ops.”
Une op is simply a sum or product of
two numbers. (Applied mathemati-
cians frequently say “flop,” referring to
an op performed by using floating-
point computer arithmetic.)

How many ops does it take to find
the n roots of a degree-n polynomial?
As previously nobed, there are bwo con-
trolling factors. Most important is » it-
selt, the degree of the polynomial,
which is also a rough measure of the
amount of input data (a polynomial of
degree n usually has about n coeffi-
cientz), Second 1s the desired accuracy
of the estimate, which can be measured
by the number of correct binary digits
in the answer, i, As either 1 or i get
larger, the number of ops will increase,
and the computer executing the algo
rithm will slow down.

Since each arithmetic operation has
bwo operands and one output, it will
take at least n operations simply to
write down foutput} all of the n zeros
of the polynomial. This can be laken as
a benchmark for rapidity, the fastest
run time that any algorithm could pos-
H'.]"-_'. .Il.|'|i|,"'l.'|' “lp1|'--"-.'|'-'-.'1,'|' even Lo oul-

i

Figure 6. Newton's method is named after Isaac Newlon, although its origin can be traced to
Babwylonian times and it was finalized by Joseph Raphson in 16%0. The method zeroes in on a
solution to a polynomial faster than the bisection method but only if a good enough initial
guess, ¥, is made. Subsequent approximations v,, v, are obtained by approximating the graph
of the polynomial by a line and calculating where this tangent intersects the horizontal axis,
Typically, the number of commect digits is proportional wo the square of the number of steps

put oiie of the zeros must take at least
n/2 operations: Since each zero de-
pends on all the input data, any algo-
rithm that '.'L'II'!'l:‘.‘I.'.lL"."" a FZOT IMust S0
how take into account each of the
coefficients. Even if all it does is add
the first two, then add the next two,
then add the next two, and so forth,
that 15 already n/ 2 additions

The way -.'.nr1:]111h'|' scientists “keep
score” of the speed of algorithms might
seem strange at first. To begin with, they
generally ignore constant factors. Thus
they would say that both of the hvpo-
thetical algorithms mentioned in the last
paragraph use “order v ops. Similarly, if
ong algorithm used o ops and another
algorithm used a million times 12 ops,
both would be considered “order-n2" and
might even be called “equally fast.” One
reason for this callous indifference to-
ward constants is that over the long haul,
as n gets extremely large, any order-ir al-
gorithm will {ltilf'ﬁ\:']'hlr[]'l any order-n? al-
eorithr. All that counts is the exponent
oL When it comes doswn to wrting the
code for an algorithm, a computer scien-
Hst wonld certainly start b worry about
comstants, but untl then thiey are an un-
necessary encumbrance, 1t is hoped that
that in Pr.h'l'in- ther comstants would not
b ko largze to oubweigh the factor n even
tor moderately lanze .

Computer scientists do keep track of
ome other kind of factor: the loganthm
(usuially to the base 20 of i The unchion
loir m does increase as 1 increases, and
so, unlike a constant, it cannot be ig-

nored, But los i increases very slowly
more slowly than n mised to any power
Hence, computer scientists are willing
to accept any number of log 1's to get
rid of a single i, as long as 1 is large
For example, an algorithm that muns in
“order ntlog ¥ ops is superior, for
large enough values of i, to an algo-
rithm thal muns in
the other hand, "order nllos 0¥ is worse
than “order n,” but not .I":'.'.1'.-Illl h.
Weyl's quadiree method, the first al-
gorithmic method for solving prlynaomi-
als, takes on the order of 03 Lo v steps
to find all i1 2eres to an accuracy of I bi-
nary digits. | have modified his method
to replace & by log It + log

“order 127 ops. On

1 substan-

£

=]

0

number of operstions

a 2 a &
amount of input data

Figure 7. Functions encountered in -.11r|||.~u|ing
complexity estimates increase as the amount
of input data inl increases, An algorithm that
requires ' steps is ullimately much less effi-
cient than an algorithm that requires » sleps,
which in burn 1s less efficient than an .1||;._-;'|-
rithm that requires (log., nlsteps.
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| (X-2)(-22) (x-25) (x-2)

[ (x2,)(x-22)(x Z2)

-

(x-Z,)(x-22)

[\

H(x-2))] |(xZ2)

Figure & Using factoring, an unbalanced fan-out algorithm offers an

AP PrOaC h to hr||.|||||r7 all the zerms I'_I_, Ly

polynomial. For a polynomial of degree n, the algorithm requires
order-n steps, peeling off ane zero at cach step.

tial improvement with respect to the ac-
CLIrACY constramnt /1, Bul no IMProven went
at all with respect to the important con-
straint i Because of the factor of 12, even
the modified "-"\'k"j-."| method s very much
wiorse than the optimal “order-n” bench
marks. But in 1995 and 1996, | published
the first polynomial-solving algorithms
that truly ap) PI‘(HL'I il 1 opt imal mun tme
They take on the order of nllog n)t +
Mlog irElog i) ops. These algorithms,
“halanced fan-
are ot only the best to date but, if
o 1gnores the -Inud?‘lth:rng tactors, the
The supenor complexity
goes to infinity do not

based on an idea called

oat,”

best possible

estimates as n

Figure 10, Balanced

x-23)

;I i]'l H1i'\ |.'1.|rr|p|t'l I.lr. El

\

(¥-z

all the roots,

guarantee practical SUperiority over
Weyl's modibied algorithm for more
modest values of 1. But neither do they
rule it out; For a polynomial of degree
100G, tor instance, Wevl's order #?(log 0
ops become approsimately 100 million,
versus 10 milliom for the balanced fan
out approach,

The “balanced fan-out™ ap-
proach can best be understood |'-_1.' a pic-
ture. Suppose the polynomial flx) has de-
gree four, and hence four complex rools,
2y throwgh =, Then, up to a constant fac-
tor, 10 can be factored as follows

TeTIm

Hyl=(y—c v —z-Hx - -_.I.lr'r—'_ 1]

splitting of a polynomial can be accomplished by algorithms of Armold

Schimhage, Jean-Faul Cardinal, and Dario Bini and the author, provided that the zeros of the
two factors of balanced degrees are separated by a wide enough “moat” (efi), 1 no moat wide
enough exists, than the oppaosite occurs Muost of the zeros are concentrated into narrow rings.

Intersecting three of these rings gives a zerv-rich region (roght, bn

w). This It"l’.‘,je:lrl_. OF [l

derived from if, can be used as the center of a moat suitable for the balanced-splitting algorithm
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Figure 9. Balanced fan-out algorithm factors a polvnomial into two
pieces of moughly the same degree. For a polynomial of degree u, the
balanced algorithm requires only order of {log nb steps bo determine

Perhaps the most obwviows way o find all
four zeros 1s to first find 2, and then di-
vide the pobynomial f{x) by (x ) The
result will be a new polynomial of de-
gree three, with enly three zeros: the
same zeros as fvl, excepl forz,. This P
cedure can be repeated until all the
rooks are found. Schematically, the al

gorithm proceeds as shown in Figure 8.
It takes three steps to find all the roots:
if we had started with a poelynomial of
degree u, it would take (1 - 1) steps. But
remember that each alvp—[:n;iiu?_-' a
zeri—itself takes at least order of i1 ops,
as we saw before, Thus any program
that uses this “unbalanced fan-out”
process o find all the zeros must re-

1), ops.

By contrast, the approach illustrated
in Figure 9 separates the polvnomial at
each step mnto two factors of I'tn:m;.:hl_\'l
the same degree. Factoring the degroe-
eight polynomial takes only three
steps, and, in general,
gree-n polynomial takes log i steps
Because each step itself requires 1 ops,
1 “balanced fan-out” process could, in
principle, run in arder of o log 0 ops—
a vast improvement over 1< Instead of
whittling away at the problem,
would -.ll.ni' it up with a few swift
strokes.,

Such a dicing tool was found in 1982
by Arnold Schinhage, then at the Uni-
versity of Tubingen and now at the Uni-
versity of Bonn in Germany, in a culmi-
nation of the efforts and technigques of
several other people. Schimhage's algo-

quire order of 42, or s

factoring a de-



rithm cleaves an arbitrary polynomial
into bwo factors of roughly equal de-
gree, as long as there 1s a large enough
zero-free moat (o7, ko use the technical
term, “annulus in the complex plane™)
separatig the zeros of the two factors.
(The problem can also be solved effec-
tively by more recent algorithms pro-
posed {in 1996) by Jean-Paul Cardinal
of the University of Paul Sabatier in
Towlouse, France, and by Dario Bini of
Miza, Italy, and myself.)

There is only one problem with this
rosy scenario. Until recently, no one
knew an efficient way o tind such a
moat. All proposed balancing algo-
rithms have failed in some way: They
required too many arithmetic opera-
tions or worked only when all the ze-
ros were real.

A major step toward balancing was
the theorem proved in 1994 by Don
Coopersmith and C. Andrew Neff at
the [BM T. J. Watson Research Center in
Mew York, that any massive cluster of
zeros of a polynomial flx) must lie close
to a zero of a much smaller-degree
polynomial gix), derived in a known
way from f(x) (and called a higher-or-
der derivative of flx)l Later T learned
that the same help could have come
from an eatlier theorem proved in 1952
by the late Russian mathematician
Alexandre O Gelfond of Moscow Uni-
versity. The theorem implies that a suf-
ficiently wide zcro-free moat can al-
wavs be found somewhere in the
complex p|:-'||'u.'. ngﬂ' 10 showwes the ba-
sic idea. 1f no moat exists, then the op-
posite behavior must occur: Around
every point there must be a ring that
contains a fairly high percentage of the
#eros. Three such rings are shown in
the illustration. The intersection of
these three rings is a small region with
a large collection of zeros. By adjusting
the size of the rings, one can get half of
the zeros of flx) to lie inside the inter-
section. This is a concentrated enough
cluster for Gel fond’s and Coppersmith
and Neff's results to take effect. Then,
roughly speaking, a sufficiently wide
zero-free moat can be found around the
cluster—its precise location depending
on the location of the zeros of the de-
rived polynomial gixl—and the cited
algorithms can be used Lo obtain a bal-
anced splitting of flx).

The resulting recursive algorithm for
approximation of the zeros of f{x) still
falls short of the optimal order-in (up to
logarithmic factors) complexity bound-
ary, because the associated Fan-out

process was ternary rather than binary:
It entailed the extra work of finding a
Zero of the dernved polynomial. How-
ever, | have developed additional geo-
metric and algebraic techniques to re-
move this extraneous term. Another
practical limitation of the algorithm
has not been overcome vet: The geo-
metric constructions involved in the
search for a zero-free moat do not seem
to be easy to code. Owing to this com-
plication, the balanced fan-out algo-
rithm in iks present state does not seem
to be very promising in the case of a
low-degree input {(losw 110 and a low-
Fln?r.‘i.qinn oikpLe {low ). But the sub-
stantial advantages the method promis-
es for more taxing problems should
motivate further efforts to overcome
this difficulty—both on the computer
end, by improving the code, and on the
mathematical end, by simplifying the
geometric algorithms.

Meanwhile, the practical problem of
improving the existing software for
zero-finding remains quite urgent. A
European project originally called posso
{for Polvnomial System Solving) and
now continued as FriscO (Framework
for Integrated Symbuolic,/ Numeric Com-
putation} is re-examining, updating and
coding the best available algorithms. In
addition to the modified Wevl construc-
tom, FRISCOY uses known extensions of
Mewton's iteration, which apprm-cinmﬂ*
all i zeres of a polynomial simultane-
ously. These methods are simple to m-
plement and use on the onder of 12 ops
per iteration, Usually they converge
very rapidly to approximate all the ze-
ros in a few iterations, vielding a solu-
tiom im the order of #* log ops, This isa
bit faster than the modified Weyl algo-
rithm, (#? log wilog h + log n) ops, al-
though their fast convergence is a
heurnshic conclusion from many ex]:ren-
ments performed for a large class of in-
put polynomials. Unlike Weyl's modi-
fied algorithm and fan-out algorithms,
they have not been proved to converge
this rapidly for all input polynomials,
and in some instances they are known
to fail. It is unclear yet how frequently
such instances occur in prackce,

The gap in speed between the fastest
known practical algorithms and the
emerging fan-out algorithms, along,
with the uncertainty over the theoreti-
cal limitations of the former, indicate
that further progress is likely in mathe-
maticians’ 4,000-year quest for the best
way to solve polynomials. The robots
of the future are waiting,

Acknowledgment

Tt auther thamks Dana Mackeazie for s

skillful assistance with e preparation of

this article.

Biblingraphy

Adkinson, K. 1978, trodicBon fo Numericoanl
Anafisis. Mow York: Wiley.

Bell, E T 1940 e Dvoolopminert of Miaticmatics,
M York: MaoGrase-Hill

Bing, D, and V¥ Pan 14 Polipamid ard A
Frix Comrgridhations, o1 Feoadanmoral Alsoritins,
Boston: Birkhinser

Bini, 1, and V. Y. Pam, 1998, Fidisoomia] ammd M
frix Comgpuatitioers, 0.2 Sebechod Tigaues, Boston:
Birkhawser

Bani, 0, and WY Pam, 190, Grosefle's, Cheby-
shev-like and Cardinal’s provesses lor splil-
ting a polviomaal inte Ectors, fonosd of Come-
plexmty 12:492-511.

Bower, C. A, 1968, A Hisfory of Matfambics, Now
York: Wilew, .

Cardinal, [-1 14950, O beeos dkerative methods for
approcimating the roots of a polynonial. In
Procecdinngs of o Werrkshope Mafhemalics of M-
aerieal Avsalysis: Real Nuoer Algaeithens, od, |
Renegar, M. Shub and 5 Smale. Lectures in
Appﬂi.u.i Mathematies 32165188, Prsadence
Amencan Mathematical Society.

Caon, [, Little, |, and OrShes, Do 199, bivals, Y-
wivties i Algoriiimes (2nd odition). Mew Yoark.
Springer

Gauss, G F 1973 Wirke
Geonze (lms Vierlag,

Himrici, P2 1974, Appadied vl Commmefationa) Com-
plex Analipsi=, 1. Mew York: Wiley:

McMames, | M. 1993 A biblicaraphy on rools ol
polvnomials. foumal of Compardutiooal el Ap-
e Miebleomatios 4713130971354,

Madsen, K. 1973, A root-finding algorithm based
o Mewelon's method, Bir 1071-F5

Meugebauer, O, 1957, The Exncd Sclewce in Antig
ity (2md edition). Providence, KL Briavn
University Pross.

The MNumerical Algorithms 4 R IEel. |4,
FRISCO—A Fravmwgork B hitegrated Synbolic!
S Conmpuetialione. bt/ estvcbonag, ook S
projects/ FRESCO html. Main NACG site:
http: /S wwrwnag ook

1fan, VO T9E7. Sequesstial and paralkel comples-
o aprprosimate evaluation of polynomial
weros. Corrders wmd Selatlicnnerios (it Apygdi-
vatiomis) 148591 <h22

[Fan, %Y 1994, Moevy bochngues for approsinat-
mg complex pabymomial zeros. Procosdings of
e 36 Al ACM-SEAM Symoposinm e (s
crefe Algorithms. Mew York: ACM Pross;
["halatetphia; SLAM Publications, pp. 260270,

Pam, VY. 19495, Oiptimal fup o polvlos factors)
sexjuential and paralled algonthms for appros-
imating comphe podymimial seros, Procovd-
drvgs o fwe 270 Asneiel ACM Sygposisenn ou
Hmrlr|r .--_f{_|;|,|r,ujn|.afr|,u,| e York: ACM Pross
PP FI1-750

Pam, V. Y. T, Optimal and nearly opdinsal algor
nthms for approsamating polvmomial senos,
Comaputers and Matfonaties oo Apdivations)
V47-130.

Fan, W0, 10T Selving, o palymermmil axquats:
Some history and mecent progness. SLAM B
et T2 THT -2

Smale, 5 1981 The fundamental thevrem ol al-
aebra and complexity thoory, Bolichr of the
Annerivan Mallvweefion! Sowiety $11-36.

Mewe York: Band X,

| ey Jamuary—Fobragrs,: &8



