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Abstrac t - -We apply a new parametrized version of Newton's iteration in order to compute (over 
any field F of constants) the solution, or a least-squares solution, to a linear system Bx -- v with 
an n × n Toeplitz or Toeplitz-]ike matrix B, as well as the determinant of B and the coefficients 
of its characteristic polynomial, det(~l - B), dran~tically improving the processor efficiency of the 
known fast parallel algorithms. Our algorithms, together with some previously known and some 
recent results of [1-5], as well as with our new techniques for computing polynomial gcd's and lcm's, 
imply respective improvement of the known estimates for parallel arithmetic complexity of several 
fundamental computations with polynomials, and with both structured and general matrices. 

1. I N T R O D U C T I O N  

Toeplitz matrices are defined as matrices with entries invariant in their shifts in the diagonal direc- 
tion, and the more general class of Toeplitz-like matrices (including the products  and the inverses 
of  Toeplitz matrices,  as well as the resultant and subresultant matrices for a pair of  polynomials) 
is defined by using some natural  extension of this property,  in terms of their displacement ranks 
(see Definition 3.1 below). 

Toeplitz and Toeplitz-like matrices are ubiquitous in signal processing and in scientific and 
engineering comput ing (see a vast bibliography in [6-11]), and have close correlation to many  
fundamental  computat ions  with polynomials, rational functions and power series (such as com- 
put ing polynomial  gcd, Pad~ approximation and extended Euclidean scheme for two polynomials),  
as well as with the resultant and subresultant  matrices, which are Toeplitz-like matrices (see, for 
instance, [12-15]). Furthermore,  computat ions with structured matrices of  several other highly 
impor tan t  classes (such as Hankel, Vandermonde, generalized Hilbert matrices and alike) can be 
immediate ly  reduced to computat ions with Toeplitz-like matrices [3] 

Now we come to the main point: computat ions with Toeplitz and Toeplitz-like matrices (and 
consequently numerous related computations) have low complexity. In particular,  a nonsingular 
linear sys tem with an n x n Toeplitz or Toeplitz-like coefficient mat r ix  can be solved very fast, in 
O(n log ~ n) ari thmetic operations [13,16,17], ra ther  than in M(n)  -- O(n~), required for a general 
nonsingular linear system of n equations, provided that  M(n)  = O(n ~) ari thmetic operations 
suffice for an n x n matr ix  multiplication. In theory, 2 < w < 2.376 [18], but in the algorithms 
applied in practice, w is at best about  2.8 so far (see [19-21]). 
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Our main result is a dramatic improvement of the known parallel algorithms for Toeplitz 
and Toeplitz-like computations, immediately translated into similar improvements of compu- 
tations with other structured matrices, polynomials, power series and, perhaps somewhat sur- 
prisingly, even general matrices. This progress is mainly due to our novel technique, which we 
call parametrization of Neugon's algorithm for matrix inversion (Algorithm 2.1), but some other 
techniques, and the ideas that we used, may be of independent interest too. For instance, our re- 
ductions of computing the gcd and lcm of two polynomials to simple computations with Toeplitz 
matrices, the reduction to a Smith-like normal form of X-matrices (matrix polynomials), which 
we apply in order to decrease the length of their displacement generators (in the proof of the 
Proposition A.6) and the use (in the Appendix A) of displacement operators ~b + and ~b- (instead 
of the customary ¢+ and ¢_) in order to work out our approach over finite fields. The entire 
Appendix A may be of interest as a concise survey of the main properties of such displacement 
operators of related matrix computations. 

Let us next specify our results and compare them with the known results, assuming the cus- 
tomary PRAM arithmetic model of parallel computing [22,23], where every processor performs 
at most one arithmetic operation in every step. We will invoke Brent's scheduling principle [23] 
that allows us to save processors by slowing down the computations, so that OA(t,p) will denote 
the simultaneous upper bounds O(ts) on the paraUel arithmetic time, and rp/s] on the num- 
ber of processors involved, where any s _> 1 can be assumed. Our complexity estimates can be 
equivalently restated under the arithmetic circuit model (compare [24]). 

The best known parallel algorithms for nonsingular Toeplitz linear systems over any field F 
of constants support the parallel complexity bounds, either OA(n, log2n) [16,17], where the time 
complexity bound n is too high, or OA(log2n, n~+l), with w defined above [25,26], where the 
processor bound is too high. The latter bounds can be improved to OA(log2n, nW+°'5-6), for a 
positive 6 = 6(w), w + 0.5 -- 6 < 2.851, if F allows division by n! [27,28], and to OA(log2n, n2), 
if the input Toeplitz matrix is filled with integers or rationals [29-31]. The algorithms of the 
latter papers support the sequential complexity bound OA(n21og2n, 1), which is already close 
to the computational cost O(n ~) of Durbin-Levinson's algorithm, widely used in practice for 
solving nonsingular Toeplitz systems; moreover, the algorithm of [31] also computes, for the cost 
OA(log~n, n2), the least squares solution to a singular and even to a rank deficient Toeplitz linear 
system, and for this problem, the algorithm supports the record sequential time bound. 

Substantial weakness of these algorithms of [29-31], however, is due to the involvement of 
the auxiliary numerical approximations, which excludes any chance for applying the modular 
reduction techniques, accompanied with p-adic lifting and/or Chinese remainder computations, 
a customary means of bounding the precision of algebraic computations, so that the latter algo- 
rithms are prone to the numerical stability problems, known to be severe [6] for the Toeplitz and 
related computations, such as, say, the evaluation of the polynomial greatest common divisors 
(gcd's). As usual, the numerical stability problems severely inhibit practical application of the 
algorithms and imply their high Boolean cost, which motivates a further work on devising algo- 
rithms with a similarly low parallel cost, but with no numerical approximation stage, so that they 
can be applied over any field of constants. To be fair, when applied to well-conditioned Toeplitz or 
Toeplitz-like matrices, the approach of [29-31] does not lead to any numerical stability problems 
and can be implemented in polylogarithmic time using n processors (see also [32]). 

Since the complexity of Toeplitz-like computations has been long and intensively studied and 
has well-known applications to some fundamental computations with polynomials and general 
matrices [1,5,14] (both areas enjoying great attention of the researchers), our new progress, re- 
ported below, should seem surprising. 

Indeed, our completely algebraic approach works over any field of constants and improves all 
the previous parallel complexity bounds, even ones of [31] over integer matrices, to the bounds 
OA(log2n, npF(n)qF(n)/log n), over any field F, where 

pF(n) = n if F supports FFT at 2 h > n points, 

= n log (log n) otherwise, 

(I .i) 
(1.2) 
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pF(n) = 1, if F allows division by n! (1.3) 

= n, otherwise. (1.4) 

Note that F allows division by n!, if and only if it has characteristic 0 or greater than n. These 
bounds support the evaluation of the determinant and the characteristic polynomial of a Toeplitz 
or Toeplitz-like matrix and the solution, or a least-squares solution, to a Toeplitz or Toeplitz-like 
linear system; they can be extended to computations with dense structured matrices of other 
classes (see above or [3]) and can be applied to various further computational areas. 

In particular, combining our results with the recent results of [15,33] or, alternatively, with 
our simple, but novel application of Pad4 approximations to computing the ged's and lcm's 
of two polynomials, (Section 5 below) dramatically improves the previous record estimate of 
Oa(log2n, n "+1) [1], for computing (over any field of constants F) the ged of two polynomials 
of degrees at most n, to the bounds Oa(log~n, npF(n)/log n), over the fields F of complex, real, 
rational numbers, or more generally, over any field that has characteristic 0 or greater than n, 
and Oa(log2n, n2pF(n)/log n), over any field F. It also leads to a similar dramatic improvement 
of the known parallel complexity bounds for other fundamental algebraic computations, such as 
computing all the entries of the extended Euclidean scheme for two polynomials, Pad~ approx- 
imation and the Berlekamp-Massey minimum span of a linear recurrence. Finally, combining 
our results with the reductions due to [1,2,5] implies new record estimates for the probabilistie 
parallel complexity of computing the solution x = A - i v  to a linear system, with an n x n gen- 
eral coefficient matrix A, as well as computing detA and A -1. That is, for these computations, 
we prove the estimates Oa(log2n, n~), if F is a field of characteristic 0 or greater than n or 
OA(log~n, nS/log n) otherwise. Note that the former bound is within the polylogarithmie factor 
from the optimum bounds on the parallel complexity of this problem. To be fair, the previous 
record bounds Oa(log ~ n, n °~+1) of [25,26] over any field, and OA(log~n, n °~+°'5-6) of [28] over 
the fields allowing divisions by n!, were deterministic. 

We will organize our presentation as follows: In Sections 2 and 3, we will present our algorithms 
for computations with Toeplitz and Toeplitz-like matrices, respectively, over the fields allowing 
division by n!. In Section 4, we will show an extension to any field. In Section 5, we will 
comment on some further applications to computations with polynomials and general matrices. 
In Appendix A, we will review the relevant (old and new) techniques and results for computations 
with Toeplitz-like matrices. In Appendix B, we will recall an expression for a least-squares 
solution to a linear system. 

We refer to [12] for many details and further results. 

2. T O E P L I T Z  MATRIX COMPUTATIONS 

Let us first consider computations over a field F of constants that allows division by 2, 3 , . . . ,  n, 
that is, by (n!), and let us compute (over F) the characteristic polynomial, the inverse B -x 
and, if F has characteristic 0, also the Moore-Penrose generali~.ed inverse B + of a given n x n 
matrix B, by using Csanky's algorithm [34] and its extension to computing B + (see [31] or 
Appendix B below). The computation is reduced to computing the coefficients e 0 , . . . , e , - I  of 
the characteristic polynomial of A, e(A) = de t (A / -  B) = An" x""-I  Tz.~i=0 ei Ai, e0 = ( -1 )"  de tB,  and 
this may in turn be reduced [35], (see also [31, Appendix A]), for the cost OA(log 2 n, pl~(n)/logn), 
to computing the traces of the matrix powers B, B2,. . . ,  B n-1. 

We now propose a novelty, that is, we will compute the powers of B by means of Newton's 
algorithm for inverting the auxiliary matrix A = I -  AB, for the auxiliary scalar parameter A. 

Algorithm 2.1. Parametrization of Newton's Iteration 

Inpu t :  natural n and k and an n x n matrix B. 
O u t p u t :  powers I, B, B=, . . . ,  B ~ of B, given by the k + 1 eoe~eients of the matrix 

polynomial Xa mod A k+l, defined below. 
Initialize: X0 := I, A := I - ;~B, d := ~log2(k + 1)]. 
S tage  i, i=0, 1, . . . .  d -  1 : 

:=  x ,  (2x - AS,). (2 .1)  
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To prove the correctness of this simple algorithm over any ring of constants, recall the rrmtrix 
equations, I - A X o  = AB, I - A X i  = ( I  - A X i _ I )  2 = ( I  - AXo)  2' = (AB) 2' , for all i, so that  

Xi  = A -1 modA 2', for all i. (2.2) 

2i--1 
(In fact, (2.1) implies that  the degree of X i  in A is at most 2 i - 1, so that  Xi - ~ (AB)/.) Now, 

oo j=0 
since A - t  = (I  - AB) - t  = ~ (AB) j ,  it follows that  

j=o 
2i--1 

x i  = ( B)J rood for an C (2.3) 
j=0 

For a general input matrix B, Algorithm 2.1 is less effective than the algorithm of [36, p. 128], 
for the same problem, but we will next show how dramatically this comparison is reversed if B 
is a Toeplitz matrix. 

We will rely on the following well-known result: 

FACT 2.1. An n x n Toeplitz matrix T = [tlj] [whose entries tij = t i_j  are/nvariant in their 
shift (displacement) in the down-right (diagonal) direction] has, at most, 2 n -  1 distinct entries 
and can be multiplied by a vector over a field F,  for the cost OA(lOgn, pF(n))  [see (1.1)-(1.2)1 
of  multiplication over F o f  two polynomials of degrees, at most, 2n - 2 and n - 1. 

The inverse T-1 of an n × n nonsingular Toeplitz matrix may have the order of n ~ distinct 
entries, but  it usually suffices to compute and to store, at most, 2n - 1 of them, that  form two 
columns of T -1, the first, x, and the last, y (see Proposition 2.1 below). 

DEFINITION 2 . 1 .  J = [69,n_a], Z = [~i+1,1] are the n x n matrices of  reversion and lower shift, 
respectively, 6u,w is the Kr6necker's symbol, 6u,u = 1, 6u,w = 0 i f  u ~ w, so that 

J v  - "  [ v n ,  . . . , V l ]  T ,  Z v  = [0,Vl, . . . ,Vn-1] T ,  

for a vector v = [vt, • • . ,  vn] T. L(v) is the lower triangular Toeplitz matrix  with the first colunm v.  

PROPOSITION 2.1. (See [37-40] for proofs and extensions.) Let X = T -1 be the/nverse of a 
Toeplitz matrix, x be the first column and y be the last column of  X ,  and xo ~ 0 be the first 
component ofx .  Then, over any field of  constants, 

Z = 1 (L(x) L T ( j y )  -- L(Zy)  L T ( z  Jx)) .  (2.4) 
X0 

Now, let us revisit Algorithm 2.1 where B and, consequently, A - I - A B  are Toeplitz matrices, 
and therefore, due to (2.2), so are X/'1 modA 2~, i = 0, 1 , . . . .  Due to Proposition 2.1, it suffices 
to compute two columns of Xi (the first, xi, and the last, yi),  for each i, so that  the right side 
of (2.4), with x = xi and y = yi ,  will equal Xi  modA ~.  (Since Xi = ImodA,  the northwestern 
entry, (1,1), of Xi  equals l modA, and thus has a reciprocal, so that  Proposition 2.1 can be 
applied to X = Xi ,  for all i.) We shall bound the degrees of all the polynomials in A involved in 
the evaluation of Xi+t according to (2.1) (and therefore, shall bound the complexity of operating 
with such polynomials), by reducing them modulo A ~, s = 2 i+1 . 

We may apply (2.4) to X = Xi  mod A 2~ , but generally not to X = Xi  mod A 2~+~ , whose inverse 
may not be a Toeplitz matrix, but already (2.4), for X -- Xi mod A 2~ , suffices for our purpose, 
because we only need to use Xi  mod A 2~ in order to arrive at Xi+l mod A 2~+1, by means of (2.1) 
(since I - AXi+I  = ( I  - AXi)2) ,  and thus we will always replace Xi  in (2.1) by the right side 
expression of its representations according to (2.4) (for X = Xi) .  

Dealing with Toeplitz matrix polynomials modulo A a (that is, with Toeplitz matrices filled with 
polynomials modulo Aa), we shall change the cost bounds of Fact 2.1 into the bounds of [41], 

CA(F) = OA(log n, spF(n)),  (2.5) 
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on the cost of multiphcation of two bivariate polynomials of degrees, at most, 2s and 2n in their 
two variables, respectively. 

Due to Proposition 2.1, each step (2.1) essentially reduces to 2 multiplications of each of 
the matrices A and Xi by vectors, that is, to 10 multiplications of n x n Toeplitz matrices by 
vectors, whose entries are polynomials modulo A s, s = 2 i+1, and therefore, each step (2.1) has 
the complexity bounds OA(log n, spF(n)). 

We slow down the computation to save processors and arrive at the estimates OA ((log s n)(s /n) ,  
n p F ( n ) / l o g n ) ,  for s > n / logn ,  then sum the time bounds over all i , i  = 1 , . . . , d , d  = 
[log2(n + 1)], and thus, estimate the overall cost of Algorithm 2.1 (with k = n) as OA(log 2 n, 
n pF(n) / log  n) provided that the output is represented by two columns (the first and the last) of 
Xd mod A n+ 1 

n We then need to compute the trace of A -1 mod A n+l = Xd rood A n+l = ~"~i=0 (AB) i" Applying 
Proposition 2.1, we reduce this problem essentially to two stages, each consisting in computing n 
inner products, of the k th row of a (lower triangular) Toeplitz matrix polynomial modulo A n+l by 
the k th column of an (upper triangle) Toeplitz matrix polynomial modulo A n+I, for k = 1 , . . . ,  n. 
Due to the Toeplitz structure of the input matrices, each of these two stages is reduced to n 
concurrent polynomial multiplications modulo A n+a and to computing the sum and the n - 1 
partial sums of the resulting polynomials. 

The complexity of these computations is surely within the bounds OA(log 2 n, n pF(n) / log  n) 
on the overall complexity (we use the parallel prefix computation algorithm for the summation, 
see [22,23]), as also is the complexity of the already cited transition from trace (A - I  mod A n+I) 
(which gives us the traces of B, B 2 , . . . ,  B n) to the coefficients of c(A) = det(AI - A), as well as 
the cost of computing x = B - i v  and/or x = B+v, given such coefficients, a vector v and the 
two columns, (the first and the last) of A -1 mod A n+l. [Indeed, we have already commented on 
the transition from the traces to the coefficients; for computing B - i v  or B+v, we first apply 
Proposition 2.1 to compute A- iv ,  which gives us the vectors Bkv, for k = 1, . . .  ,n, and then 
recover B+v as their linear combination Y~k gk Bkv ,  with the scalars gk defined by c(A) (compare 
Appendix B below). For a nonsingular matrix B, we obtain B - i v  = B+v.] 

We thus arrive at the following result: 

PROPOSITION 2.2. Given a positive integer n, a fidd F allowing division by n!, an n x n 
Toeplitz matrix B and a n-dimensional vector v,  it is possible to compute over F, for the cost 
OA(lOg 2 n, n pF(n) / log  n): 

(a) the coefficients co , . . . ,  c,_1 of the characteristic polynomial orB, Y~=0 ci A i = det( A1 -  B), 
which also gives us detB = (-1)"  co; i f F  has characteristic O, then 

rank B = n - min(i : ci # 0) = trace (B+B); 

(b) the solution x = B - i v  to the linear system B x  = v i f  B is nonsingular; 
(c) the least-squares solution x = B+v to B x  = v i f  F has characteristic O. 

REMARK 2.1. Due to Proposition 2.1 and Fact 2.1, we may extend the estimates of Proposi- 
tion 2.2 to computing the inverse B -1 of any n x n nonsingular Toeplitz matrix B, provided 
that the (1,1) entry of B -1 has a reciprocal. The latter assumption about the reciprocal can be 
removed by using Proposition A.7 below, instead of Proposition 2.1 above. 

3. EXTENSION TO OTHER CLASSES OF DENSE STRUCTURED MATRICES 

Let us extend the estimates of Proposition 2.2 to the important case where B is a dense and 
structured, but non Toeplitz matrix: the study of this case can be found in [3,12,42,43]. 

DEFINITION 3.1 [42,43]. A pair of  n x r matrices G and II  is a generator of length r for an n x r 
matrix A = GH T. The rank of A equals the minimum length of generators for A. For a linear 
operator ¢, defined on the space of n x n matrices, a generator and the rank of  ~b(A) are called 
an C-generator and the C-rank of A. 
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Following and extending [42,43], we will first define four 
associated with Toeplitz matrices: 

~+ (A) = A - Z A Z T, 

¢_(A) = A - ZT AZ, 

++(A) = A Z - Z A ,  

$ - ( A )  = A Z  T - ZTA,  

displacement operators, naturally 

(3.1) 
(3.2) 
(3.3) 
(3.4) 

and then we will define the displacement ranks and displacement generators of matrices as their 
~b-ranks and ~-generators, for ~b = ~b+, ~b = ~_, ~b = ~b + and ~b = ~b- or, equivalently, as the ranks 
and the generators of ~b+(A), ~_(A), ~+(A) and ~b-(A). 

The displacement ranks are, at most, 2 for all the Toeplltz matrices and for their inverses (if 
there exist the inverses), at most, rn + n for all the m x n block matrices with Toeplitz blocks, 
(in particular, they are, at most, m + n = 3 for the resultant and subresultant matrices), and, 
at most, 4 for the product of two Toepfitz matrices (see Appendix A below, [10-12,42,43] on 
some basic properties and applications of the displacement ranks and generators). The matrices 
having smaller displacement ranks, bounded by a fixed constant, are sometimes called Toeplitz- 
like matrices. 

Hereafter, we will use the displacement ranks and generators for n × n matrices and matrix 
polynomials in A modulo M, over a field F, for s < 2". We will next prove the following extension 
of Proposition 2.2. 

PROPOSITION 3.1. Given an n x n matrix B with its displacement generator &length r, over a 
t~eld of constants F allowing division by n[, the complexity estimates of Proposition 2.2 can be 
extended to npF(n)  

CA=OA r l °g2n ' r  logn ) '  

[compare (1.1) -( 1.4)1. 

The basis for the latter extensions, as well as for many other effective algorithms for com- 
putations with various classes of dense structured matrices, is their representation by means of 
their ~-generators of smaller length, for an associated operator ~, so that all the operations with 
matrices are replaced by the operations with their ~b-generators. 

In Appendix A, we will list and prove some results for such computations (see Propositions A.I- 
A.7 and compare Remark 3.4 below). 

Now, let us apply these results instead of Proposition 2.1, and otherwise let us follow the line 
of the proof of Proposition 2.2, in order to prove Proposition 3.1. To be certain, let us be given 
a matrix B with its ~b+-generator of length r, 1 _< r (similarly, for ~b+,~-or ~_-generators), and 
let us apply Algorithm 2.1, for k = n. Then, we deduce from (2.1)-(2.3) and Proposition A.4 
below, that rank ~b-(Xi rood A 2~) _< r. We surely have an ~b_-generator of length 1 for X0 = I; we 
will apply induction on i, assuming for each i _> 0 that we are given an ~b_-generator of length, at 
most, r, for Xi modulo A 2' , and will compute, for the cost OA(rlog n, r spy(z ) ) ,  an ~b_-generator 
of length, at most, r, for Xi+l modulo A 2~+1 . 

Specifically, we first apply Proposition A.5, for s = 2 i+1 , and compute an ~b-generator of length, 
at most, R = 3r + c(~b.) = 3r + 2, for Xi+l rood A'. The cost of this stage is OA(log n, r2s pF(n)), 
or after a slowdown, Oa(rlogn,  rspi~(n)). Then, for the cost satisfying the same bounds, we 
compute an ~b_-generator of length r, for Xi+l rood A 2~+1 , by using Proposition A.6. Thus, the cost 
of the transition from Xi rood A 2~ to X~+I rood A v+a (where the matrices are represented by their 
@_-generators of length r), is OA(rlog n, rspF(n)) ,  so that the overall cost (for all i) is bounded 
by OA(rlog 2 n, rn p~.(n)/log n), as we need. (Here again, we use an appropriate slowdown, to 
save processors.) The transition to computing the coefficients of c(A) = det(AI - B) and the 
vector B+v  is now performed as in the proof of Proposition 2.2, but with using Proposition A.1 
instead of Proposition 2.1. II 

REMARK 3.1. Proposition 2.2 is a special case of Proposition 3.1, where r _< 2. Our algorithm 
supporting Proposition 2.2, however, is a little simpler (by a constant factor decrease of the cost 
bounds) than our algorithm supporting Proposition 3.1. 
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REMARK 3.2. Based on Propositions A.1 and A.2 below, the complexity bounds of Proposi- 
tion 3.1 can be extended to the evaluation of an ¢+-generator of length r, for the inverse of a 
nonsingular n x n matrix B given with its ~b+-generator G,H of length r. Indeed, ~b+(B -1) = 
- B - I ¢ + ( B ) B  -1 [see(3.1)], and therefore, ¢+(B -1) = ~ T ,  ~ = _B-1G, f i t  = HTB-1. Thus, 
the evaluation of G, ~T  is reduced to solving 2r linear systems with the matrix B. Due to Propo- 
sition A.2, this result is immediately extended to the cases where other displacement operators 
¢ - ,  ¢+ or ¢_ are used instead of ¢+. 

REMARK 3.3. The results for computing the determinant and the inverse of Toeplitz-like matri- 
ces, and for solving linear systems defined by such matrices, can be extended to the case of all 
Vandermonde-like, Hankel-like, and Hilbert-like matrices by means of the techniques of [3]. 

REMARK 3.4. More recently, Dario Bini found a dramatic simplification of our proof of Propo- 
sition 3.1, relying on the simple, but powerful observation that, for Xi of (2.2), we have: 

¢+(Xi) = - X i  ¢+(A) Xi mod ,~,+1. 

The latter equation enables us to reduce each Newton's iteration step (2.1) to 2 r+ l  multiplications 
of matrix polynomials available with their ¢+-generators of length, at most, r, by vectors, and 
this almost immediately leads us to Proposition 3.1 (see the details in [12]). 

4. EXTENSION TO ANY FIELD OF CONSTANTS 

In this section, we will combine our algorithms of the previous sections with the algorithm 
of [26], in order to extend our results to computations over any field, where the division by n! is 
not generally allowed. Similar extension can be based on the algorithm of [25], rather than [26], 
and in both cases, the extension requires use of n times more processors to support the same time 
bound O(log 2 n), but as a by-product, the coefficients of the characteristic polynomials ok(A) ofaU 
the kxk  leading principal submatrices Bk of B are also computed (for the same cost), k = 1 , . . . ,  n. 
We will also, alternatively, compute all these coefficients for the cost OA(r log a n, rnpF(n)/logn). 
The coefficients of ck (A) give us det Bk, and also enable us to compute (least-squares) solutions 
to linear systems Bkx = vk, for any input vectors vk, for all k, k = 1 , . . . ,  n, remaining within 
the same cost bounds. 

The algorithm of [26] relies on the following equations for the reverse characteristic polynomials 
of Bk: 

k 

yk(A) -- de t (h  - A B k )  -- E c,,k Ak-i _ 
k 

FI ( ( t j  - 
j = l  

m o d ~ k + l , k = l , . . . , n .  (4.1) 

Here and hereafter, Ij denotes the j × j identity matrix, and Wi~ denotes the entry (i, j )  of a 
matrix W. 

Our extension of Algorithm 2.1 to the case of any field F follows. 

Algorithm 4.1 

Inpu t :  
O u t p u t :  

an n × n matrix B. 
the coefficients c~,k, i = 0, 1 , . . . ,  k -  1, of the characteristic polynomials ch(,~) of Bk, 
the k x k leading principal submatriees of B, for k = 1, 2 . . . .  , n, 

c~()Q--det()~Ik--Bk)-'~'~ci,kA i, ek,k--1, co,k--(--1)kdetBk. (4.2) 
i--O 
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Computations: 

(1) call Algorithm 2.1 n times, for B = Bj, to compute the polynomials 

b i()t ) "--" ( ( I j  - -  ) tBj)- l ) jd  rood An+l, for j = 1 ,2 , . . . , n ;  

(2) apply the parallel prefix algorithm [22,23] to compute, modulo A k+l , the products 

k 

p,(A) = I-I bJ (A)m°dAk+1' 
j=1 

k = 1 , . . . , n ;  

(3) 

each of the ~log 2 n] steps of this algorithm amounts to [lo-~ff2-] polynomial multiplications 
modulo ~',  for s <_ n + 1; 
for every k, k = 1 , . . . ,  n, apply g(k) = ~log~(k + 1)] steps of Newton's iteration for the 
equation ~ - Pk(A) = 0: 

yo,k(,x) = 1, 
~/i+1,k(a) = yi,~(A)(2 - pt~(A) yi,k(a)) rood A 2'+* , i =  0 , . . .  ,g(k) - 1, (4.3) 

in order to compute and output the coefficients of the reverse characteristic polynomial 
Yg(t),k(A) = (1/pk(A))mod A k+l = det(I~ - ~ Bk), which are equal to the desired coeffi- 
cients of ek(~) taken in the reverse order. 

The correctness of Algorithm 2.2 immediately follows from the Equations (4.1), with the ob- 
servation that 

p,~(~) = lmodA, for all k, (4.4) 

and from the Equations (4.3), which imply that 

1 - yi,k+a(A) p,.(A) -- (1 -- yi,k(A)pk(A)) 2, 

and therefore, due to (4.4), that 

1-yi ,k(A)pk(A)=Omod)~ 2', i = 0 , 1 ,  . . . .  | 

Algorithm 4.1 enables us to extend our results of Sections 2 and 3 to computations over any 
field of constants, but the overall complexity bounds increase to OA(rlog2n, rn2p~,(n)/ logn) 
(for any n x n input matrix B given with its displacement generator of length r), since we need 
to involve the submatrices Bk, for k = 1,2, . . .  ,n. 

5. SOME F U R T H E R  EXTENSIONS 

Let us extend our previous comments on further applications of our results (see the Introduc- 
tion and also [12]). The techniques of [15] reduce the evaluation of the polynomial gcd for two 
polynomials of degrees, at most, n, over any field F,  to some computations with Toeplitz and/or 
Hankel matrices, in particular, to their inversion, and the evaluation of their rxnkR and/or de- 
terminants. By using our algorithm at the latter stages, we arrive at the new record complexity 
estimates of the Introduction, for computing the ged. 

These bounds, with n replaced by rn + n, can be extended to computing the (m, n) Pads 
approximation of any analytic function; this computation can alternatively be reduced to solving 
a consistent Toeplitz system Bx = v of n linear equations with n unknowns, and to multiplying 
an m x n Toeplitz matrix by a vector [13]. Moreover, due to parts (d) and (e) of Theorem 2 
of [13] (reproduced in [13] from [8]), even if this system is singular, we may compute the rank 
r of its n x n coefficient matrix B, and then conclude that the r x r northwestern (that is, 
leading principal) submatrix of B is nonsingular. Thus, the overall complexity of computing the 
(re, n) Pad~ approximation is bounded by O~t(log2 n + logm,p~,(rn)+ npF(n) / logn) ,  over any 
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field F of characteristic 0. Over any field, we apply Christov's algorithm and obtain r = max{k : 
det Bk = 0}, so the overall cost of the solution is Oa(log ~ n + log m, pF(m) + n 2 pF(n)]  log n). 

Let us next show an application of our algorithms for Toeplitz computations, to computing 
re(z) = lcm (p(z), q(z)), the least common multiple (lcm) of two polynomials p(z) and q(z). This 
also gives us d(z) = gcd (p(z), q(z)), the greatest common divisor (gcd) of these polynomials, 
s ince = p ( , )  Conversely.  = 

Computing re(z), we assume (with no loss of generality) that p(0) = q(0) = 1. Let m = 
deg (p(z) q(z)), n = deg(p(z) + q(z)), N = m + n + 1, and apply the following algorithm: 

Algorithm 5.1. Computing Polynomial lcm's 

(1) Compute the first N Taylor's coefficients of the analytic function a(z) = (p--~ + _~.~)-1 _- 

~'~+_~ ajrJ , that is, compute the coefficients of the polynomial (1]p(z) + 1/q(x)) -1 

modx N = Y']~jN__ol ajzJ. 
(2) Compute the rank r of an n x n Toeplitz matrix with the first row [am, am+x,..., am+n-i] 

and with the first column [am, am-l , . . .  ,am-n+1] T. (For such a matrix, its r x r leading 
principal submatrix is nonsingular.) 

(3) Compute the (m - r, n - r) Pad6 approximation [u(~), v(z)] to the function a(z), and 
output u(~c) = lcm (p(x), q(z)). 

The correctness of this algorithm immediately follows from the parts (d) and (e) of Theorem 2 
of [13] (reproduced from [8]). 

The complexity of this algorithm is bounded above by the complexity of computing the rank 
and the (m - r, n - r) Pad6 approximation. Thus, we arrive at an alternate derivation of the 
results of [15] for computing the gcd and the lcm of two polynomials. 

Algorithm 5.1 can be modified in order to output u(z) = gcd (p(z), q(z)), if we set m = 
degp(z), n = degq(x), a(z) = p(z)/q(z), and can be extended to a randomized evaluation of 
the lcm of several polynomials pl(z), .. • ,pk(z), k > 2, if we set a(z) = ~-~i=Ik (bi/pi(z))_l for 
random scalars h i , . . . ,  bk. 

In another application, we arrive at the complexity estimates Oa(logan, n pF(n)qF(n)/log 2 n) 
over any field F,  for computing the polynomial remainder sequence for two polynomials of degrees, 
at most, n, provided that we know the degrees of all the remainders in the sequence. This 
sequence can be computed, either by reducing the problem first to the solution of the resultant 
linear system, and O(n) subresultant linear systems, all having the matrices of displacement rank, 
at most, 3 (see [44]), and then to applying our results of Section 4 of [4], or in the approach of 
[15], to using the reduction of the problem to the Choleski factorization of a Hankel matrix. The 
factorization is computed recursively (compare [33,45]) by using our results for the inversion of 
Hankel matrices and computing their ranks. 

Computing the minimum span for a (2n)-term linear recurrence sequence can be reduced to 
computing the ( n -  1, n) [or, alternatively, the (n,n)] Pad6 approximation, whose complexity 
estimates are thus extended to computing the minimum span. As this was earlier observed in [1], 
based on [5], such estimates were the only remaining stage for proving the record complexity 
bounds Oa(log 2 n, nW), w < 2.376, for randomized parallel computations with general n x n ma- 
trices over the fields of characteristic 0 or greater than n, (that is, for computing the determinant 
of a matrix and solving a linear system of equations). Specifically, the two latter problems are 
first reduced, in [5], to computing the minimum polynomial of B (or of RBS, for random matrices 
R and S of appropriate sizes), and then to two stages [repeated O(1) times]: 

(a) compute the Krylov sequence of vectors wi = Biv [or(RBffr ) iv] ,  and then the 
(2n)-term sequence of scalars u T B i v [or uT(R B ST) i v], i = 1, . . . ,  2n-- 1, for two random 
vectors u and v [an algorithm of [46] (compare [36, p. 128]) performs this stage for the 
cost Oa(log2n, n~)]; 

(b) find the minimum span of the latter sequence of scalars (and here we show the desired 
improvement). 

The inversion of a matrix can be reduced to computing its determinant, for the same parallel 
cost, within a constant factor (see [2]), under the arithmetic circuit model of parallel computing. 
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Over any field F, the same algorithms for general matrices have the cost bounds OA(log2n, 
n 2 p F ( n ) / l o g  n), dominated by the cost bounds for computing Pad~ approximations. 

Finally, over any field, we may compute rank A for an n × n matrix A in logn steps of a binary 
search, each step reduced to testing if det(A + C) = 0, where C = G H  T for two random n × k 
matrices G and H, and for an appropriate h, since the probability that det(A + C) ~ 0 is 1 if 
h 4- rankA >_ n, whereas det(A + C) = 0 if k + rankA < n. 
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A P P E N D I X  A 

Some Prope~ies of Displacement Generators 

All the results of this appendix hold over =my field of constants, and the input matrices and vectors have entries 
being polynomials in A modulo ~ ' ,  s = 2 ~ for i of (2.1)-(2.3). The reader may compare our expmition with 
previous ones, such as [42,43,47,48]. The first proposition and corollary immediately follow fre=n Definitimx 3.1. 

PROPOSITION A.I [42,43]. A pair (G,H) ofn  X r matrices G -- [gl,g2 . . . . .  gr] and H -~ [hi, h2 . . . . .  hr] is a 
generator of  length r for an n x n matrix B - Z B Z T if, and only if, 

B -- ~ L(g,) LT(h,), 
i ff i l  

and for the matr/x B - Z T  B Z if, and only if, 

t~ 

B -- E L T ( J g , ) L ( J h , ) .  
i f f i !  

C A ~ t ~ F  
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COROLLARY A.1. (See [16, Lemma 5.]) For any pa/r of vectors g and h of the same dlmemslon, 

L(g) LT(h) -- L(a) + LT(b) - L T ( z  Jg )  L ( Z  dh),  

LT(K) L(h) = L T (c) + L(d) - L ( Z  Jg )  L T (Z J h )  

where J and Z are the matrices of Defudtion 2.1, a T J is the last row, and J b  is the last column Of L(g) LT  (h), 
c T is the first row, and d is the first column of LT(K)L(h) .  

Due to Corollary A.1, we may immediately define a @+ (respectively, a @_)-generator of length r + 2 for a 
matrix, given its @_ (respectively, its @+ )-generator of length r. Let us next show some simple correlatio*m among 
the representations (3.1)-(3.4). 

PROPOSITION A.2. Let il = [1,0 . . . . .  0] T, i ,  = [0 . . . . .  0,1] T. Then 

@+ (A) Z T = @+(A) - A i l  i T , 

Z T @+ (A) = i .  i T A - @_(A), 

¢+(A) Z = ¢+(A) + Z A i .  i T, 

Z T @+(A) = in ITnAZ T - t - ( A ) ,  

@-(A) Z = ¢-(A) - A t .  i T, 

Z@-(A)  = il iT, A - @+(A), 

@-(A)Z T = 4,-(A) + Z T A i l i  T, 

Z @-(A) = i, iT AZ - @+(A) 

PROOF. Observe that 
zTz = I -- i. i T, ZZ T = I - i, iT, (A.1) 

pre- and postmultiply each of the matrix Equations (3.3) by Z T, (3.4) by Z, substitute (3.1), (3.2) and (A.1), and 
arrive at the first four equations of Proposition A.2. Then postmultiply (3.1) by Z, (3.2) by Z T, prmmultiply (3.1) 
by Z T, (3.2) by Z, substitute (3.3), (3.4) and (A.1), and deduce the last four equations of Proposition A.2. JJ 

The eight equations of Proposition A.2 enable us to compute the @+- and @.-generators of length, at most, 
r + 1, for the matrix A, given its @+- or its @--generator of length r, and to compute the @+- and @--g~,erators 
of length, at most, r + 1, for A given its @+- or its @_-generator of length r. 

We will modify the original proofs of the two following results, so as to deduce them over any field of constants. 

PROPOSITION A.3. Given a displacement operator @ and a pair of @-generators of |engths a and b, for a pair of 
n X n matr/ces A and B,  we may immediately obtain a @-generator of|ength, at most, a + b, for A + c~B (for any 
fixed sca/ar c~); furthermore, we may also compute [over a t~e|d F,  for the cost of O A (lOg n, ab P F (n) )] @-generators 
of  lengths, at most, a q- b + 1, for A B  (see [3,43 D. The ]atter length bound decreases by 1, to a + b, if@ = @+ or 
¢ = ¢ - .  

PROOF. We only need to prove the part about computing A B ,  and we will only comddmr the cases @ ffi @+ And 
@ = ¢+, since the cases ¢ = @- and ¢ = ¢_ are treated similarly. 

First, let @ = ¢+ and observe that 

@+(AB) = A B Z  - Z A B  = A ( B Z -  Z B )  + ( A Z -  Z A ) B  

=A@+(B) . I .¢+(A)B=AG+B(H+B)T  ÷G+A(H+A)TB= GAB(HAB)+ + T, 

provided that @+(O) = G+Ir'I+) for C = A and for C m B, G+AB = [AG+B, GA], + HAB+ = [H+B, BTH+A]. To 
compute A G+B and BTH+ A remahfing within the required complexity bounds, we just rely on the represeatation 
of the matrices A and B, according to Propositon A.1. This way we settle the case where 4, = @+. 

Next, let @ = ¢+, recall (A.1), denote u = Z A i n ,  v T = iT, B Z T ,  and deduce that 

@+ (AB)  = A B  - Z A  I B Z  T = A B  - ( Z A Z T ) ( z B z  T) -[- Z A  in i T B Z  T 

= (A - Z A Z T ) B  -}- Z A Z T ( B  - Z B Z  T) + u v  T 

-~ @4. (A)  B "J" Z A Z  d" b.J. ( B )  "Jr u v T ,  

and this settles the case of @ -- @+. 

PROPOSITION A.4 [42]. IrA is a nonsingtdar ma[rix, then 

rank @+(A - I )  = rank @+(A), rank @-(A - I )  = rank @-(A), rank @+(A - I )  = rank @.(A). 

| 

PROOF. The first two equations are immediately obtained from the Equations (3.3) and (3.4), respectively, by 
pre- and postmultiplylng both (3.3) and (3.4) by A -I. 

To arrive at the last equation of Proposition A.4, deduce that rank ~..(A) = rank(A - Z T A Z )  = 
(premultiply bls/--I) r&Ilk (~" -- A - 1 Z T A Z ) .  
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At this point, observe that rank ( 1 -  B Z )  = rank (1 - Z B )  = 1+ rank (ln-1 - Bn,1), for any n x n matrix B,  
and its ( n  - 1) x (n - 1) submatrix B , , I  obtained by deleting the last row and the first col . . . .  of B.  [Here, 1,,-1 
denotes the (n - 1) x (n - 1) identity matrix.] In particular, for B = A - I Z T A ,  we obtain that  

rank @_(A) = rank ( 1 -  A - 1 Z T  A Z )  = rank (1 - Z A - I Z T A )  

--'~(po, tmultiply by A - l )  raxtk (A -1 - Z A - 1 Z  T) = rank @+(A-l) .  II 

Note that  Proposition A.4 expresses through each other the displacement r~nlm, but  not  the displacement 
generators, of A and A - 1 .  

PROPOSITION A.5. For the cost O A (log n , r2 8 p F (n ) ), a @-generator o[ leng~h, at most, 3r+c(@), [or Xi+ l mod A j,  
s = 2 ~+1 , can be computed over any field F,  given a ~>-generator of  length r, for X i  modA ~* , and a @*-generator 
of length, at most, r, for A,  provided that (2.1) holds and that one of the four cases takes place: 

(a) @=@*=@+, c(@)=o, 
(b) @=@*=@-,  c(@)=0, 
(c) @=@+, @*=@~ ~(@)=2, 
(d) @=@., @*=@+, c(@)=2. 

PROOF. Proposition A.5, with c(@) increased to 1 in the cases (a) and (b), and to 5 in the cases (c) and (d), can 
be immediately deduced by combining Propositions A.1-A.3, Corollary A.1 and Fact 2.1. (This would still suffice 
for the proof of all our main results of this paper.) We will, however, also give a direct proof for the smaller c(@) 
in the cases (a) and (c) [the cases (b) and (d) can be treated similarly]. 

Case (a). Observe that 

@+ (Xi+,)  = @(Xi (2I - AXe))  = X~ (21 - A X i ) Z  - ZX~ (21 - A X i )  

= 2 (Xi Z - ZX~) - (X~A Xi Z - ZX~AX~) 

= 2 (X~ Z - ZXi) - Xi A (Xi Z - ZX~) - (X~AZ - ZXiA) Xi (A.2) 

= 2@+(x~) - X~A@+(X~) - X~(AZ - ZA) X~ - (X~Z - ZX~)AX~ 

= U - X~A)@+ (X~) + @+ (X~)U - AXe) - X~ @+ (A)X~. 

Since we are given @+-generators of lengths, at most, r, for Xi and A, that is 

@+ (Xi) = G + (i) (H + (i))T, (A.3) 

@+ (A) = G + (H +)T, (A.4) 

it  r e w ~ - -  to substitute (A.3) and (A.4) into (A.2) to deduce that 

@+ (Xi+1) = (I-- XiA) G + (i) (H + (i)) T + G + (i) (H + (i))T (I -- AXi) + XiG + (H +)T Xi = G + (i + I) (H + (i + I)) T, 

and to evaluate modulo A '+1 the n x (3r) matrices, 

G+ (i + 1) = [ ( I -  X i A )  G+ (i), G+ (i),XiG+], 

H + (i + I) = [H + (i), (I - AXl) T H + (i), X T Hi+]. 

To perform the lat ter  step within the cost bound OA (log , ,  r~s PF (n)), it suffices to decompose A and X~, accord|-~ 
to Proposition A.I. ,  and to reduce each multiplication modulo A ~+1 of A, A T , X I  or X/T by an n × r matrix to 
O(r ~) multiplications, each of an n x n Toeplitz matrix by a vector, for the cost bounded by (2.5). This settles 
the cue (a). 

Case (c). O~erve that 

@+ (x~+~) = @+(x~ (21 - AXe)) = Xi(21 - AXi) - ZXi (21 - AXi) Z z 

2 (X~ - ZXiZ T) - (X~AX~ - ZXi AXiZ T) 

2@+ (X~) - (X~ - ZX~Z z) AX~ - ZXdZ z AX~ - .4X~Z z) 
@+(Xi)(2I -- A X i )  - Z X i [ Z T  A - A Z  T) X i  "t" A ( z T x i  -- XiZZ)]  

@+ (x~)(21 - AXe) + ZX~(@-(A)X~ + A @-(X~)) 
= @+(x~) (2x - AXe) + ZXd@4A) zTx~ 

-- Z* A i, iT X - AZ* @+ (X~) + A i. iT. X~Z T) 

(compa~ Proposition A.I) and arrive at the desired generator for @+(X,+I) by representing the matrices A 
X i  according to Proposition A.1, by using ge0aerators of lengths, at most, r, for the matrices @_(A) and @+ (Xi),  
and by boundlng, by means of (2.5), the cost of multiplication modulo A" of the matrices A and Xi ,  by the vectors 
and by the n X r matrices. This settles the case (c). II 
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The following result is needed in Section 3. 

PROPOSITION A.6.  Given a displacement operator ~b, four inteb, ers n, a, r and R, such that I < r < R < •, m )_ 1, 
an n Z n matrix polynomial W = W(A)  modA j having ~-rank r over a field F ,  and a palr  of  R × n matrices 
GR and HR,  forming an ¢/~-generator of length R,  for W mod A',  so that /~(W) = G R H ~  mod A',  it is possible 
to compute, for the cost OA(Rlogs  , nRPF(S))  , a q~-Kenerator Gr, Hr, of length r,  for W modA J, such that 
G,H r = W rood M. 

PROOF. First apply the Gauss e]im~ation process with pivoting, in order to factorize GRmodA'. In each ,llml. 
nation stage k, k = 1, .... R, check if all the entries of column k vanish, and if so, remove this colunm and append 
the m111 col-ran vector at the last, n-th position in the matrix. Otherwise, among all the ~ and s u b d i ~  
entries of the col-ran k, choose one, (i, k), having a nonzero term of the lowest degree, and move this entry to the 

pivot position (k, k), by intereh~nglng rows / and ]¢. Let G (k) = [g(k) (A)] d,mote the matrix polynomial entering 
1,3 

the k th elimination stage after such a row interchange. Le t  us denote 

s - - I  

a(~ )(A) ~ _(k) .(k) ~0,  u(i,j,k) > o, s,3 ~- Y i , j , u  ~t~ ~ i j , u ( i j , k )  

u=u( i,j,k ) 

so that  u ( k , k , k )  = ~ uO, h,k) .  
h<_~<_. 

Now, to perform the k th e|[mln~tion stage, ~L~st compute, for the cost OA(lOg s, s loglo K a), over the fields F that  

support F F T ,  and OA(log s, s2 Ioglogs),  over other fie/ds, the polynomial h(k, ) (A) = (Au(]¢, k, ~)/g(k, ) A))modA' ,  

which is the reciprocal modulo A s of the polynomial 9(khk ) (A)/A "(k,kJ'). [This polynomial has the A-free term 
a(k) k,k,.(k,k,k) # O.] 

To support (and actually, to improve) the cost hound OA(log a ,s loglogs) ,  provided that the field F supports 
discrete Fourier transform at O(a) points for the cost OA(Iog 8, a), we just apply the alsorlthm- of [49,50]. 

Over any F ,  we may perform D F T  at k = 0(8) points for the cost bounded by 0 A (log s, a) in an extelmic~ ~ of 
F ,  such that  every operation in F,  involved in D F T ,  is reduced either to additlon/subtractlon of two polynomials 
in z modulo a polynomial of degree ]¢ = O(a), or to their multiplication by some power z i , i  < ~ [both operatccs 
have cost OA(1, s)], thus, implying the overall cost hound OA(logs,s21oglogs) (see [41]). (This bound can be 
further improved, but here it suffices for us as it is.) Then compute, for the cost OA(Ioga, npF(s) ) ,  the ~ - /~ 
polynomials h~, ~) (A) -- -i,~ "(~) (A) h (k)k,k (A) modA' ,  for all i from k + 1 to n. Then, for all i > k, multiply modulo A' 

the k th row of G(k) by h~, ~) (A), and subtract the resulting row from the i-th row of G(~). By recursively applying 
this process, for/~ = 1, . . .  ,R, for the overall cost O A ( R l o g s , n R p F ( S ) ) ,  we factorize the matrix polynomial OR 
as follows: 

GR = P*L*U* modA ~, 

where U* is an R x R upper triangular matrix polynomial, P* is an ~ x n permutation matrix, and L* is an. x R 
unit lower triangular matrix po].vnomial, that is, all its diagonal entries equal to I and all its superdiagonal emtrias 
vanish. 

We now, similarly, represent HR as HR = }5 LUmodA ~, so that 

~(W)  = GR H T m o d  A" = P* L* U* 0 r ~ r  /5T modA' ,  (A.5) 

where L is an n x R unit lower tris~gular matrix polynomial, U is an R × n upper triangular matrix polynomial, 
and /5  is an n x n permutation matrix. 

We next compute the R × R matrix polynamlal U* ~ r ,  and reduce it to Smith's nmmml form, U* 0 T = 
tb]QIDMTP T, where ~r  and M r are unit triangular matrix polynomials, /5 and P are p ~ . m t a t i o a  m a ~ c e s ,  
and D is a diagonal matrix polynomial. Due to the uniqueness property of Smith's normal forum of U* ~7 r and 
of ~b(W), we have that  rank D = rank (U* ~ 'TmodA ' )  = rank (~b(W)modA') = r, and since D is a dis4~n~ 
matr ix polynomial, it ought to have exactly r nonzero entries. Deleting the zero rows and columns of D, together 
with the corresponding columns of the matrix polynomials P'L*~5 A~/and (MTpTLT/ST) T, we turn these matrix 
polynomials, as well as D, into the matrix polynomials G and/~r, of size n × r, and /~  of size r x r, respectively, 
so that  

~(W) = G D H  ~ modA °, 

which defines the desired ~-~enemtor G , H  = / ~ / ~  of length r, for W m o d A ' .  It _rem~-a to observe that  the cost 
of the computation of G and H is dominated by the cost of computing the factorlzation (A.5). 

Finally, we will recall the following extension of Proposition 2.1, due to [51] (see also [39,40]) and which we 
cited in Remark 2.1. 

PROPOSITION A.7, Let A = [alj] be an n x ~ nondnsular  Toep/Jtz matrix, "ij = a i - j , i , j  = 0 . . . .  ,~ - 1; 
a = [ b , a ~ - . , a 2 _ .  . . . . .  s _ l ] r ,  for a fixed scalar b ;y  = [y0 . . . . .  y . -1 ]  T = A - Z a ;  x = A-111,0 . . . . .  0Jr;  
u = [ -1 ,1 / . -~  . . . .  , ~ ] T ;  v = Z J x .  Then 

A - I  = L(y)  L r ( v )  - L(x) Lr (u ) .  



Newton's iteration 75 

A P P E N D I X  B 

Let us extmad the well-known expression B - I  = - ~'~=1 ( cl/c°)Bi-1, e. = 1, for the inveme of  a non* 

singular matrix, to the case of the Moore-Penscee generalized inverse B+.  It sufllccs to conalder the symmetric 
(or Hea'mitian) case since B + = (BTB)+B + and  

(o , , )+  ( o , ,)  
0 = (Br) + 0 " 

PROPOSlTON B.I ([31]). Let c()t) = det()~/-  B) = ci,~', c . - r  ~ O, for an n x n Hermi t l aa  m a t r i x  B .  T h e n  
i f n - - r  

c . - r  B + B = - ~_~ ci B i - " + r ,  

i=n--r-P1 

n--1 

Cn--r B+ = --Cn_r.I. 1 B "l" B -- E e i + l  B i-n'l 'r  

i f f i n - r + l  
n - I  

= ~ (Cn-r+l c i - -c i+ l )  Bi-n+r + Cn--r+l Br" 
\ Cn--r Cn--r 

i=n--rJrl 

M u l t i p l y i n g  the  Equa t ions  (B.1) and (B.2) by a vector v ,  we arrive at sim//ar express ions  for  B+v.  

(Ba) 

(B.2) 


