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Abstract. Stable polynomial evaluation and interpolation at n Chebyshev or adjusted (ex- 
panded) Chebyshev points is performed using O(nlog’ n) arithmetic operations, to be com- 
pared with customary algorithms either using on the order of n* operations or being unstable. 
We also evaluate a polynomial of degree d at the sets of n Chebyshev or adjusted (expanded) 
Chebyshev points using O(dlog d log n) if n 5 d or O((d log d + n) log d) arithmetic operations 
ifn>d. 

1. INTR~OUCTI~N 

Consider the set of Fourier points on the unit circle in the complex plane, 

{W 
2a+1 , k=O,l,..., n-l}, (I) 

w = exp 
( > 

e being a primitive (4n)-th root of 1, and also the Chebyshev set of the real 

coordinates of these points, 

{Xk =,,,(yT), k=O,l,... ,n--1) 

([41, I519 [71). Fast F ourier transform (FFT) is a very effective means of interpolation to a 
function at the Fourier set (1) by a polynomial and of the evaluation of a polynomial at such 
a set of points. We will present fast stable algorithms for the evaluation and interpolation at 
the Chebyshev set (2), which are almost as efficient as fast Fourier transform (FFT) at the set 
(1), provided that n + 1 = 2h is an integer power of 2; those computations at the Chebyshev 
set (2) are highly important for the approximation to functions by polynomials and for stable 
polynomial evaluation (see Section 4 for our comments on the computational cost and for 
a discussion). The results apply also to the sets of adjusted (expanded) Chebyshev points 

{Yk = (‘xk + b, k=O,l,... ,n- 1) for two real constants a and b. 
Hereafter all logarithms are to the base 2. 

2. EVALUATION 

Next we will extend the known scheme for FFT to polynomial evaluation at the set (2). 

Given a polynomial P(x) = Cid,c Pixi, we write P(x) = Pc(x2) + xPr(x2), Pc(x*) = 

Cj P2j X2j , pI(X2>= Cj pZj+lX 2j, Qh(y) = Ph (9) for j ranging from 0 to [$I, 

h=O,l, y= 1 - 2x2, so that 

P(x) = Qdy) + TQI(Y), Qh(y) = h(z2), Y = 1 - 2x2, h = O,l. (3) 

Those equations reduce the evaluation of P(x) at the n point x set (2) to the evaluation 
of two smaller degree (at most half-degree) polynomials Qc(y), Qi(y) at the Chebyshev 4 
points y-set 

This research has been supported by NSF Grant CCR-8805782 

Typeset by A,&-T# 

255 



256 V. PAN 

Yk 

for 1 - 2 cos2 o = cos(2cy). 
Let E(d, n) denote the cost of evaluation 

the above reduction shows that 

for k = 0, 1,. . . 
n- 2 

1-y 
2 (4) 

of P(z) at the set (2), for even d and n. Then 

5 
> 

+ Overhead(d, n) 

where Overhead(d, n) denotes the overall cost a) of computing the coefficients of the poly- 
nomials Qh(y), given the coefficients of Ph(z) for h = 0, 1, and b) of computing P(z), given 

P,J(z~) and PI(z2) f or t ranging over the set (2). Stage a) can be reduced to polynomial 

multiplication ([2]), and thus to three FFTs at < d + 1 points, that is, to O(dlogd) arith- 

metic operations; the cost of Stage b) is 2n + 2 arithmetic operations. Let n be an integer 

power of 2. We will apply such reduction recursively, until the degree of polynomials or the 
cardinality of the Chebyshev set decrease to 1, whichever comes first, and finally compute 
P(z) at the set (2) using O((dlogd+ n)logd) (if d 5 n) or O(dlogdlogn) (if n 5 d) 
arithmetic operations. If n = O(d), the overall asymptotic cost is dominated by the cost of 
the shifts of the variable by 1 (Stage a)); thus the computation will be faster where such 

shifts can be performed faster. 

3. INTERPOLATION 

The known fast O(nlog’ n) time algorithm for interpolation ([1],[3]) is not stable only 
at the auxilliary stage of computing the derivative L’(ti) for i = 0, 1, . . . , n - 1 where 

L(z) = n,(z - zi). If, however, to,. . . , x~- 1 are Chebyshev’s points and n is a power of 

2, that stage can be made both stable and fast (see the previous section). Alternatively, we 
may directly apply the converse version of the evaluation algorithm of the previous section. 
Indeed, the substitution y = 1 - 2x2 transforms two distinct points ti and xj of the set (2) 
into each point yk of the set (4); then (3) implies that P(xh) = QO(yk) + XhQl(yk) for h = i 
and h = j. This reduces the interpolation problem of finding a polynomial P(x) of degree 

d given its values at the set (2) to finding two polynomials Qc(y) and Qr(y) of degree 2 $, 
given their values at the half-size set (4). Applying that reduction recursively yields the cost 
bound O(n log2 n) for interpolation provided that n is an integer power of 2. 

Next, we will relax the latter assumption and will present an alternative algorithm, also 

fast and stable, that uses O(nlogn) operations (for any integer n) in order to recover a 
distinct representation (see (6) below) of the polynomial P(x) from its values at the set (2). 

We will use the functions 

22 + 1 

x=22’ 
s=xf&G 

which map the sets (1) and (2) into each other. Substitute (5) and rewrite the polynomial 

P(x) = ci”=, PjZ’ as follows: 

P(x) = p(z) = P(i) = y, 

P(z) = &pizi, 
i=o 

pd = $9 
d 

r(t) = zd Cp;(zi + t-i), 
i=o 

(6) 

Let us assume that d = n - 1. Due to the equation (6), 2n multiplications suffice in order 

to compute r(z) and r(k) at the Fourier set (1) given the values of P(x) at the Chebyshev 
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set (2). This gives the values of the polynomial S(Z) = r(wz) for z ranging over the set 

exp(+), j = O,l, . . . ,2n - 1. Then we may apply FFT at 2n points and compute 

the coefficients of the polynomial s(z) = T(CJT). After that we may immediately recover the 

coefficients pi of r(t) and of p(t). If we only know that d < n, we may apply the above 
algorithm to both P(z) and P(z) + I”. In some cases the representation by ~0,. . ,pd 
may replace the coefficient-wise representation of the polynomial P(z). In particular, if 

we want to compute P(z) at a point z not lying in the set (2), we may compute z = 

Z+J=, ‘=t - dm, and then P(z) = p(z) +p(L). For a point z this will cost 
about 4d arithmetic operations, excluding the cost of the evaluation of the coefficients pi of 
r(z). Note that the coefficients pi are real if all the Pi are real and that z is real if z >_ 1. 

4. DISCUSSION AND OPEN PROBLEMS 

Interpolation at the Chebyshev sets of points, as well as at the Chebyshev adjusted sets, 
is a well-known means of approximation (see [4],[5],[7]). Th e evaluation of a function at the 

Chebyshev sets can be replaced by the evaluation of a high degree approximating polynomial 
at that set, which then can be replaced by the lower degree interpolation polynomial. The 
evaluation of a polynomial at the Chebyshev points can be used in order to represent that 

polynomial in Chebyshev’s basis, which then can be used for the stable evaluation of that 
polynomial ([6], p. 249). 

The customary methods for the interpolation at Chebyshev points do not exploit their 
specifics and require on the order of d2 arithmetic operations (see [4],[9]). Thus our improve- 
ment to 0(dlog2 d) is substantial. There are general interpolation algorithms also running in 

O(d log2 d) time ([1],[3]), but they recursively use polynomial division, which creates stabilit? 
problems. This is not the case with our algorithms for we use FFT rather than polynomial 
divisions. The same conclusions apply to our evaluation methods. The recent ingenious 

algorithm of [S] may compete with ours but only for very rough approximate evaluation of 

polynomials, for the time cost of Rokhlin’s algorithm is on the order of d log( 4) + n log3 (:) 
where E is the output error bound (and that algorithm does not apply to Interpolation). 
Now, we state our final question: besides the sets (l), (2) and similar ones, what are other 
interesting real and complex sets where polynomial interpolation and evaluation are partic- 
ularly simple? A natural approach is to start with the sets that can be easily transformed 
into the sets (1) and/or (2). Another possibility is to extend the idea used in Sections 2 and 
3 to the evaluation ind interpolation at the sets whose cardinality is recursively decreased 
by 50% via the substitution of the variable of the form y = a + bx2 for two constants Q and 
b. The sets (1) and (2) satisfy that property. 
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