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Abstract--We present a new parallel algorithm for computing a least-squares solution to a sparse 
overdetermined system of  linear equations Ax = b such that the m x n matrix A is sparse and the 
graph, G = (V, E), of  the matrix 

has an s(m +n)-separa tor  family, i.e. either IV[ < n  o for a fixed constant n 0 or, by deleting a 
separator subset S of  vertices of  size <~s(m +n), G can be partitioned into two disconnected 
subgraphs having vertex sets V~, V, of  size ~< 2,3 (m + n), and each of  the two resulting subgraphs 
induced by the vertex sets S U I1",, i = 1, 2, can be recursively s (J S U V,I )-separated in a similar way. 
Our algorithm uses O (log (m + n) 1o~ s (m + n)) steps and ~< s 3(m + n) processors; it relies on our 
recent parallel algorithm for solving sparse linear systems and has several immediate applications 
of  interest, in particular to mathematical programming, to sparse nonsymmetric systems of  linear 
equations and to the path algebra computations. We most closely examine the impact on the linear 
programming problem (LPP) which requires maximizing cry subject to ~ ry  ~< b, y/> 0, where ~ is 
an m × n matrix. Hereafter it is assumed that m/> n. The recent algorithm by Karmarkar gives 
the best-known upper estimate [O (m35L) arithmetic operations, where L is the input size] for the 
cost of  the solution of  this problem in the worst case. We prove an asymptotic improvement of 
that result in the case where the graph of  the associated matrix H has an s (m + n)-separator family; 
then our algorithm can be implemented using O (mL log m log'- s (m + n)) parallel arithmetic steps, 
s3 (m + n) processors and a total of O (mLs 3 (m + n) log m log 2 s (m + n )) arithmetic operations. In 
many cases of  practical importance this is a considerable improvement on the known estimates: 
for example, s(m + n ) =  ~ + ~  if G is planar [as occurs in many operations research 
applications: for instance, in the problem of  computing the maximum multicommodity flow with 
a bounded number of  commodities in a network having an s (m + n)-separator family], so that the 
processor bound is only 8 x/8 (m + n) I-5 and the total number of  arithmetic steps is O (m2"SL). 
Similarly, Karmakar 's algorithm and the known algorithms for the solution of  overdetermined 
linear systems are accelerated in the case of  dense input matrices via our recent parallel algorithms 
for the inversion of dense k × k matrices using O (log-' k) steps and k ~ processors. Combined with 
a modification of Karmarkar 's  algorithm, this implies solution of  the LPP using O (Lm log 2 m) 
steps and m 2-~ processors. The stated results promise some important practical applications. 
Theoretically, the above processor bounds can be reduced for dense matrix inversion to o (k 2.s) and 
for the LPP to o (m 2"E65) in the dense case and to o (s"S(m + n)) in the sparse case (preserving the 
same number of  parallel steps); this also decreases the known sequential time bound for the LPP 
by a factor of  m °33s, i.e. to O(Lm3t65). 

1. I N T R O D U C T I O N  

Numerous practical computations require finding a least-squares solution to an over-  

de te rmined  system o f  linear equations ,  A x  = b, i.e. finding a vector  x o f  d imens ion  n that 
min imizes  II A x  - b [I given an m × n matrix A and a vector b o f  d imens ion  m where m / >  n. 
(Here and hereafter we apply the Euclidean vector norm and the associated 2-norm o f  
matrices [I].) Such a problem is called the linear least-squares problem (LLSP).  In 

tTheresul ts  of th is  paper were presented at the 12thlnt. Symp. on Mathematical Programmmg, Boston, Mass., 
5-9 Aug. 1985. 
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particular, solving a linear system ~,x = b in the usual sense is a simplification of the LLSP 
where the output is either the answer that 

m i n l l & x - b l i > 0  
x 

or, otherwise, a vector x* such that 

&x* - b = 0. 

The first objective of this paper is to reexamine the time complexity of the LLSP and 
to indicate the possibility of speeding up its solution using the parallel algorithms of Ref. 
[2] combined with the techniques of blow-up transformations and variable diagonals and 
with the Sherman-Morr ison-Woodbury formula. As a major consequence [which may 
become decisive in determining the best algorithm for the linear programming problem 
(LPP), at least over some important classes of  instances of that problem], we will 
substantially speed up Karmarkar 's  algorithm [3] for the LPP, because solving the LLSP 
constitutes the most costly part of every iteration of that algorithm. Furthermore, we will 
modify Karmarkar 's  algorithm and solve an LPP with a dense m × n input matrix using 
O(Lm logZm) parallel arithmetic steps and m -'~ processors, where the parameter L 
(defined in Ref. [3]) represents the input size of  the problem. Applying fast matrix 
multiplication algorithms we may decrease the above processor bound in the dense case, 
as well as the asymptotic sequential time bound of Ref. [3], by a factor o fm °335 (preserving 
the best asymptotic parallel time). In fact, improving or even combining the known fast 
matrix multiplication methods, see Refs [4-6] may lead to a further minor decrease in the 
processor bounds, but the latter decrease, as well as the above improvements of a factor 
of m °'335, would hardly have any practical value due to the huge overhead of  the 
asymptotically fast matrix multiplication methods and their inability to preserve sparsity. 
Our acceleration of Karmarkar 's  algorithm, however, is practical and most significant in 
the important case (arising, for instance, in the optimization of an economy consisting of 
several branches weakly connected to each other and in the multicommodity flow problem 
in a planar network for a fixed number of commodities, see Refs [7] or [8, p. 391]), where 
the input matrix of the LPP is large and sparse and is associated with graphs having a 
family of small separators (see the formal definitions below, in Section 3). 

Our work has several further impacts. Similarly to the case of  Karmarkar 's  algorithm 
[3], we may immediately improve the performance of several known algorithms, in 
particular of algorithms for systems of linear inequalities [9], for mathematical pro- 
gramming [10] and for sparse nonsymmetric systems of linear equations, because (as we 
indicated above) solving a system of linear equations constitutes a particular case of the 
LLSP where 

min [I ~ x  - b '~[ = 0. 
X 

The latter observation leads to a very wide range of applications of  our results, including 
in particular the acceleration of the simplex algorithms for a sparse LPP [cf. 1 I, 12]. Further 
applications may include several combinatorial computations. This is demonstrated in Ref. 
[13], where, relying on the latter improvement of the algorithms for sparse nonsymmetric 
systems of linear equations, we extend the parallel nested dissection algorithm of Ref. [2] 
to the path algebra computations. 

We organize the paper as follows. In Section 2 we recall two known representations of  
the LLSP, using normal equations and their blow-up transformations. In Section 3 we 
reexamine the computational cost of  sequential algorithms for the LLSP, in particular, we 
recall the sequential nested dissection algorithm of Ref. [14] and adjust it to the case of 
the LLSP. We also describe the variable-diagonal techniques for stabilization in solving 
the LLSP. In Section 4 we estimate the cost of performing our parallel algorithm for the 
same problem. In Section 5 we consider one of the major applications of  our results, i.e. 
the acceleration of Karmarkar 's  [3] algorithm. In the Appendix we will briefly comment 
on the current estimates for the computational cost of solving the LPP. 
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2. THE L I N E A R  L E A S T - S Q U A R E S  P R O B L E M  (LLSP) 

We will use the known fact (see Ref. [l]) that the LLSP can be reduced to computing 
the solution x of the system of  normal linear equations 

&T&x = &rb, (I) 

which can be reduced to the following system of linear equations in s and y: 

D~DTs + Dl&]30y = Dlb 

and 

or equivalently 

where 

D~&TDTs= 0, 

V]v = d, (2) 

H =  DoTATD T , v =  , d =  , x = D 0 y ,  D=Z) ,DT;  

Do is an n x n matrix, D~ is an m x m matrix and D O , D~ are nonsingular. Here and 
hereafter 4, ~&/r, V T, O and 0 denote the identity matrix, the transposes of  a matrix W and 
of a vector v, the null matrix and the null vector of  appropriate  sizes, respectively. 
Hereafter ~ / - r  will denote the inverse of M/T. 

I f  we need to solve the linear system Ax = b in the usual sense, then that system can 
be equivalently rewritten as GAx  = Gb for any nonsingular matrix G. The latter system 
is equivalent to system (2), where, in this case, D can be any m x m matrix, not necessarily 
DIDT. 

Remark 1 

Even though the systems (1) and (2) are equivalent to each other, it is more convenient 
to apply some algorithms to system (2) than to system (1), particularly where ~ is more 
sparse and/or  better structured than &T&. [We will call the transition from system (I) to 
system (2) and similar transformations blow-up transformations of linear systems.] The 
simplest and the most customary choice for Do and D~ in system (2) is the identity matrices 
D; however, choosing appropriate  diagonal matrices for D 0 and D~ we may scale the rows 
and columns of the three blocks of  H in order to stabilize some special algorithms for 
sparse linear systems (2), such as the nested dissection algorithm, see below. This 
stabilization can be combined with the customary techniques of  threshold pivoting, used 
in sparse matrix computat ions at the stage of determining the elimination ordering [15] 
(see also Remark 3). 

Remark 2 

In some cases further equivalent transformations of  systems (1) and (2) are effective. In 
particular the m x n matrix &T of system (1) may take the form &T = [[BTcT], where the 
block [B r is a readily invertibte n × n matrix and the block C r is an n × (m - n) matrix. 
Then 

~_~T,~ = BT(~ .+ STE)B, E = C~ ~l, 

so solving system (1) can be reduced to computing the vector x = ~-~u, where u satisfies 
the system 

(0 + ETE)u = g, g = ~-T&Tb. 

Solving the latter system can be reduced to computing the vectors u and r such that 

r = Eu,  u = - FFTr + g .  
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This is a linear system in r and u, which can be equivalently rewritten in the following four 
ways, including two blow-up transformations: 

u = (~ + ~ E T ~ ) - I g ,  r = ~:u; 

r=(]+Y-Y-T)-lFg, u =  - -ETr+g:  

I ;ur] I 0 ]  ' G V-(I/))~ 7]  ) . ~ 0 i s a s c a l a r ;  
G = )'g = L  ET ).I ' (3) 

and 

[-, Cl[r ]_- [° 1 ,cT [BTB [B- {tl ~Tg 

Thus the solution can be reduced to linear systems with coefficient matrices of sizes n x n 
or (m - n) x (m - n) or m x m [note that m - n can be much smaller than n, also note 
the sparsity of the m x m matrices of systems (3) and (4), provided that E and/or C are 
sparse]. Scaling can be also extended to all four of the above systems [we explicitly showed 
only scaling by 2 in system (3)]. 

3. S E Q U E N T I A L  C O M P U T A T I O N A L  C O M P L E X I T Y  OF THE LLSP 

For an LLSP with a dense matrix ~,  its solution can be obtained from system (1) using 
0 (m/n)M(n) arithmetic operations where M(n) is the cost o fn  x n matrix multiplication, 
M (n) ~< 2n 3 -  n 3. Theoretically M" (n) is at least as small as o (n-"~96), but this bound is not 
practical due to the huge overhead constants hidden in the "o" ,  [6]. 

If the matrix A is sparse, the solution can be accelerated using some special methods, 
see Ref. [16]. In particular, applying the conjugate gradient method or the Lanczos method 
[16,1] we may reduce the cost of solving both system (I) and (consequently) an LLSP to 
0 (mN(~)) arithmetic operations where N(A) is the number of nonzero entries of ~,  
provided that the multiplication by 0 and the addition of 0 are cost-free operations. 

We will single out a more specific case encountered in many practical instances of the 
LLSP, i.e. in the instances where the matrix A is sparse and where, furthermore, the 
graph G = (V,E) associated with the matrix H has an s(m + n)-separator family with 
s (m + n) = o (m + n). (Hereafter we will assume that s (k) I> x/-k.) Here and hereafter we 
apply the following definitions, which we reproduce from Section 1.2 of Ref. [2] (cf. also 
Ref. [14]). 

Definition I 
Let ff be a class of undirected graphs closed under the subgraph relation, i.e. if G s g' 

and G' is a subgraph of G, then G ' s  ft. The class ff is said to have a dense family of 
s (n )-separators or, simply, an s (n )-separator family if there exist constants no > 0 and 
z, 0 < x < 1, such that for each graph G ~ c¢ with n t> no vertices there is a partition Vl, V,, S 
of the vertex set of G such that ] VIi ~< :m, I V,[ ~ :~n, IS[ <-N s(n) and G has no edge from 
a vertex of V~ to V_, [then S is said to be an s (n )-separator of G]. An undirected graph 
is said to have an s (n )-separator family if the class of all its subgraphs has an s (n )-separator 
family. 

Binary trees obviously have a 1-separator family. A d-dimensional grid (of uniform 
size in each dimension) has an n ~-(~ ~-separator. Lipton and Tarjan [17] show that the 
planar graphs have a x/8n-separator family and that every n-vertex finite-element graph 
with ~<k boundary vertices in every element has a 4[k..2] ~- ,~/n-separator. 

Definition 2 
Given a k x k symmetric matrix W = [wij], we define G(W) = (V,E) to be the undirected 

graph with vertex set V = (1 . . . . .  k} and edge set E = {{id}lw,j:~0}. 
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The very large linear systems &x = b that arise in practice often have graphs G(&) with 
small separators. Important examples of such systems can be found in circuit analysis (e.g. 
in the analysis of the electrical properties of a VLSI circuit), in structural mechanics (e.g. 
in the stress analysis of large structures) and in fluid mechanics (e.g. in the design of 
airplane wings and in weather prediction). 

When the associated graph G of the matrix H of system (2) has an s (m + n)-separator 
family, the application of the techniques of nested dissection [16, p. 182; 18, 14] decreases 
the cost of the solution of system (2), and consequently of the original LLSP, to 
O ( I E I +  M (s (m + n))) arithmetic operations where ]El is the cardinality of the edge set 
of G [14]. This is the cost of computing the {I_D Lr-factorization of H; this cost is much lower 
than M(m +n), the cost in the case of dense P] [I]. The subsequent evaluation of the 
vectors r,x satisfying system (2) costs O (]EI + [s (m + n)] a) arithmetic operations [14], so 
the approach is particularly effective for solving several systems (1) with fixed ~ and 
variable b. To see the potential advantage of using the nested dissection algorithm, assume 
that m = O(n) and that the associated graph G of [H is planar. Then G has 
O (x/~)-separators [17] and ]El = O (n), so computing the ]_DLV-factorization of H costs 
O (n ~5) arithmetic operations, and the subsequent solution of system (1) costs only O (n) 
for every fixed vector b, compared with the O (n3) arithmetic operations required for the 
solution if the sparsity is not exploited and with the O (n 2) arithmetic operations required 
by the conjugate gradient and Lanczos methods [1, 16]. 

Remark 3 

Systems (2) and (3) are not positive definite, so the nested dissection algorithm, if applied 
to such systems, may involve destabilizing elimination steps, characterized by the small 
magnitudes of pivot elements. Scaling and threshold pivoting (see Remark 1) can be partial 
remedies. We also suggest the following combination of the modified method of variable 
diagonals [19] (see also the end of Section 4 below) with blow-up transformations and the 
Morrison-Sherman-Woodbury formula, see equation (5) below. Namely, whenever a 
pivot entry of small magnitude appears during the elimination process, we increase the 
respective diagonal entry (i,i) of the matrix H of system (2) [similarly for the matrices of 
systems (3) and (4)] by adding a large value k:(i); we then continue the computation. 
Finally, we compute the L~3U-factorization of the matrix ~ = H + ~2. Here the matrix 
[~ is filled with zeros, except for the j  diagonal entries corresponding to the changes in the 
diagonal pivot entries of H. In these places E is filled with the values k (i). We will consider 
the case where j, the total number of corrections to the pivot entries of H, is relatively 
small. Then the system (2) can be effectively solved using the computed LDII V-factorization 
of $ = H + ~2 and the Sherman-Morrison-Woodbury formula [1, p. 3]: 

( S -  UV) -~ = ~- t  + g-~U(0 - V ~ - ' U ) - ~ V ~  -~, (5) 

which holds for arbitrary matrices ~, U and V of appropriate size such that ] - V~-~U 
is a nonsingular matrix. In our case UV is the diagonal matrix ~-'; this enables us to 
simplify the computations. We have ~ = H + ~-' and H = ~ - ~-'. Let U = V = ~, so 
H = ~ - UV, and therefore [see equations (2) and (5)] 

v = H-re = ( ~ -  UV)- 'e  = ~ - t c +  ~-~V(~ - V g - ' V ) - W g - ~ c .  

Let us examine the evaluation of v, assuming for simplicity that all the nonzero entries 
of ~ lie in the firstj rows. Since the LDLr-factors of S have been computed, solving linear 
systems with the matrix ~ is simple. Computing the j  x j upper-left submatrix T = V~-~V 
of ~- t  is reduced to computing the first j rows of V~_ -r and to computing the product 
(VL-V)D-z(a_-~V). When j is not large, this computation is simple, as well as the 
subsequent solution of a linear system with the matrix I - T. The computation does not 
require storage of the matrix VL -r. To confine the pivot corrections to the left-upper block 
of 0q (this should simplify computing V0_-r), we may scale systems (2)-(4) [say by choosing 
a small positive ,;. in system (3)]. 

C ~* M w -~ 12A 1 2 - E  
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4. P A R A L L E L  A L G O R I T H M S  FOR LLSP 

For large input matrices &, the sequential algorithms for the LLSP can be prohibitively 
slow. Their dramatic acceleration that preserves their efficiency can be obtained using the 
recent parallel algorithms of  Ref. [2], where in each step every processor may perform one 
arithmetic operation. Specifically, before Ref. [2] appeared, the best algorithms for solving 
a linear system with an n x n dense matrix N either (i) were unstable and required 
O( log 'n )  parallel steps and >~,,/-£M(n) processors or (ii) involved >~n steps and n-" 
processors. (Here and hereafter the numbers of processors are defined within constant 
factors for we may save processors using more steps. Practically this means that the user, 
having, say, k times less processors than in our subsequent estimates, may still use our 
algorithms; the parallel time, even increased by a factor of k, may still be attractively small 
for that user.) The stable iterative algorithm of  Ref. [2], based on Newton's iteration for 
the matrix equation i - N& = 0, requires only O (log z n) steps and M(n)/log n processors 
to compute the solution of  such a dense system (with the relative error norm bounded, 
say by 1/2"'®), provided that the system has a welt-conditioned or strongly diagonally 
dominant matrix. (In fact the algorithm even inverts the matrix of the given system for 
the above parallel cost.) The algorithm successively computes t =  IIAt,/AII~, 
I130 = ( l / t )N r, Bk~_l = 213~ -- B ~ E k ,  k = 0, 1 . . . . .  q. lBq is shown to be a very high precision 
approximation to 13 -~ if q = O (log n) and if cond(&) is bounded by a polynomial in n 
(similarly, if I13 is strongly diagonally dominant. The desired estimates for the parallel 
complexity of solving dense linear systems immediately follow. Applying the cited 
algorithm to system (I), we solve the original LLSP using O (log m + log: n) steps and 
[M(n)/logn][1 + m/(n logn)] processors. These are the bounds in the case where ~ is a 
general (dense) matrix. Another parallel algorithm of Ref. [2] is applied in cases of practical 
interest, where N is sparse and the graph G = ( V , E )  of 114 has an s(m +n)-separa tor  
family, see Definitions 1 and 2. In this case the parallel nested dissection algorithm of Ref. 
[2] computes a special recursive s (m + n)-factorization of  the matrix H of systems (2) and 
(3) using O ( l o g m l o g Z s ( m + n ) )  parallel steps and IE l+M(s (m+n) ) / logs (m+n)  
processors, the observations of Remarks 1 and 3 are still applied. Following Definition 
4.1 of Ref. [2], we define such a recursive s(m + n)-factorization of 14 as a sequence of 
matrices ~o, H~ . . . . .  0q a such that ~o = p ~ p r ,  p is an (m + n) x (m + n) permutation 
matrix, 

Ix, v,x;-'v; ~= = Y= z r j  and 7/g = Hr+t + (6) 

for g = 0, 1 . . . . .  d - 1, and ~ is a block diagonal matrix consisting of square blocks of  
size s (:d-g(m + n)) x s (:~d-e(m + n)) at most, where :d(m + n) ,N< no for constants no and 

of Definition 1. The latter inequality implies that the factorization (6) has length 
d = O (log m), so the computation of factorization (6) is reduced to O (log m) parallel steps 
of matrix multiplication and inversion vs m + n such steps in the sequential nested 
dissection algorithms, required to compute the I IDlkr-factorization. The dense blocks of  
~r  [of size s(~a-~n x ~d-=n)] are inverted by the cited parallel algorithm of Ref. [2] for 
matrix inversion. This enables us to keep the total cost of computing the recursive 
factorization (6) as low as stated. 

Observe that the definition of a recursive s(n)-factorization implies the following 
identities for g = 0 . . . . .  d - 1: 

I ']~=IV~]Z? . ,  . 

and, hence 

t jLO Ikl=_ ~ I 

I 
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This reduces solving linear systems with matrix H~ to solving linear systems with matrices 
Xg and b]g._~ and finally implies that, although the recursive factorization (6) is distinct 
from the more customary [l_~J-factorization used in the sequential algorithms, both have 
similar power, i.e. when the recursive factorization (6) is available, O ((log m)[log s (m + 
n)]) parallel steps and [El + [s (m + n)]-' processors suffice in order to solve system (2) and 
consequently the original LLSP. In Ref. [2], the partition of  [H~ in factorization (6) for 
g -- 0, 1 . . . . .  d - 1 is defined by appropriate enumeration of  the vertices of the graph G. 
The enumeration, the study of the block diagonal structure of the matrices Xg and the 
complexity estimates rely on extensive exploitation of  the properties of the graph G stated 
in Definitions I and 2. 

Comparing the cost bounds of Refs [14] and [2], we can see that the parallelization is 
efficient, i.e. the production of the two upper bounds on the numbers of steps and 
processors of Ref. [2] is equal (within a polylogarithmic factor) to the bound on the number 
of arithmetic operations in the current best sequential algorithm of Ref. [14] for the same 
problem. The same efficiency criterion is satisfied in the algorithms of Ref. [2] inverting 
an n x n dense matrix in O(log-'n) parallel steps using M(n)/logn processors. Con- 
sequently, all our parallel algorithms for an LLSP are also efficient. 

The complexity estimates of  Ref. [2] have been established in the case of well-conditioned 
input matrices; the algorithms of Ref. [2] output the approximate solutions with a 
sufficiently high precision. On the other hand, all the estimates have been extended to the 
case of an arbitrary integer input matrix & in Refs [19, 20] by using some different 
techniques, in particular, using variable diagonals. In this case the solutions are computed 
exactly, although that computation generally involves larger numbers, such as the 
determinant of the input matrix, det ~.  This algorithm exactly computes, first det & and 
adj ~ and then ~ - ~ =  adj A/det ~ and A-~b = (adj A) b/det A. If only a system Ax = b 
with an n x n integer matrix ~ need be solved, only (adj N) b (rather than adj A) need 
be computed. The evaluation ofde t  A in Refs [19, 20] is reduced to computing the Krylov 
matrix, ~ = [v, A v , . . . ,  A"-~v], the vector A"v, v = [1,0 . . . . .  0] v, and the exact solution of 
the linear system, IKy = A"v. The solution vector y = lye] is the coefficient vector of the 
characteristic polynomial of  A, det p,~.Q - A I, so Y0 = det A and all the entries of y are 
integers. At these stages, O (log: n ) parallel steps and M (n) processors suffice, provided that 

is strongly diagonally dominant, because we may use the algorithm of Ref. [2] in order 
to compute the integer solution vector y with the absolute error norm bound, say 1/3; then 
we may obtain y exactly by rounding-off. To make the matrix E strongly diagonally 
dominant, first we replace A, say by A + p0 or, more generally, by a matrix W such that 
W = A mod p, so det W = det A rood p is computed. Then using Newton-Hensel 's lifting, 
we compute det W = det A mod p~, where 21det A [ < p',  s = 2 h, h = O (log n), so we may 
recover det A. Similarly, we compute adj A or (adj A)b. In the worst case this construction 
requires choosingp as large as n". However, with probability 1 - E (n), E (n) ~ 0 as n ---, oc, 
it suffices to choose p to be a prime of  an order of O([n 1[ ~ ![]3.~) and to define both the 
Krylov matrix and the vector W"v rood pS. Another approach leads to slightly inferior 
(with the time bound increased by a factor of  log n) but deterministic estimates. It relies 
on computing the If_U-factors of A, see Ref. [20]. 

5. K A R M A R K A R ' S  A L G O R I T H M .  P A R A L L E L I Z A T I O N .  
A P P L I C A T I O N  TO SPARSE LP 

In this section we will examine the cost of Karmarkar 's  linear programming algorithm 
[3] and of its modifications that use blow-up transformations, nested dissection and 
parallelization. First we will reproduce the algorithm, which solves the problem of the 
minimization of  the linear function cry subject to the constraints 

&Ty=O, ~ y j = l ,  y>~O, (7) 
] 



1224 V. PAN and J. R.EZF 

where y = Lvj,j = 0, I . . . . .  m - 1] and e are m-dimensional vectors, &r is an n × m matrix, 
m/> n, y is unknown. This version is equivalent to the canonical LPP of the minimization 
of cry subject to &ry ~< b, y/> 0, see Ref. [3] and cf. Refs [11, 12]. We will designate 

e = [1 ,  1 . . . . .  1] T, 

y (i) = [Y0 (i), Yl (i) . . . . .  y,,_, (i)]r, 

D(O) = ~, D(i)=diagO'o(i), y~(i) . . . . .  y,~_~(i)), 

and 

B r = ~ r ( i ) = E  A T ~ ( i ) ]  eT , i = 0, 1 . . . . .  (8) 

(All the diagonal matrices ~3(i) encountered in the algorithm of Ref. [3] are positive 
definite.) The algorithm proceeds as follows. 

Initialize. Choose E > 0 (prescribe tolerance) and a parameter 13 (in particular, 
13 can be set equal to 1/4). Let y ( 0 ) =  (1/n)e, i = 0. 
Reeursive step. While nonoptimal y ( i ) (c ry( i )>  c) and while the infeasibility 
tests fail do 

Compute the vector y(i + I ) =  ? (y(i)), increment i. 
Given vector y(i), the vector y(i  + 1) is computed as follows: 

1. Compute the matrix ]3 = Q3(i), compare (8), i.e. compute the matrix ~r~3 (i) 
and augment it by appending the row e r. 

2. Compute the vector % = [Q - B(BT~3)-~BT]~3(i)c. 
3. Compute the vector z ( i ) =  y ( i ) -  13rc~/I] cp II, where r = l/,v/m (m - 1). 
4. Compute the vector y(i + 1) = ~3(i)z(i)/[erD(i)z(i)]. 

The algorithm includes checks for infeasibility and optimality [3], but it is easy to verify 
that their computational cost, as well as the computational cost of reducing the problem 
from the canonical form to that of equations (7), is dominated by the cost of computing 
the vector 7 (Y(i)) at the recursive steps which is, in turn, dominated by the cost of 
computing (BrB) -~ given ~3T= ~3r(i) for all i. Reference [3] shows that ~3r~3 can be 
represented as follows: 

o ] 
Br~ = L 0T rn ' 

SO the inversion of  Q3r~3 is reduced to the inversion of  ~r~3-'(i)~ which, in turn, is reduced 
to the inversion of the matrix H of  system (2) where ~ is replaced by 13 (i)~.  Furthermore, 
we can see that it suffices to compute the product (~3T~)-q3D(i)c, and this amounts to 
matrix x vector multiplications and to solving a blown-up linear system of form (2) with 
the matrix 

= L • ( 9 )  

This algorithm of Ref. [3] requires O (Lm) recursive steps in the worst case, so the total 
computational cost is O (Lm C), where L is the input size of  the problem and C is the cost 
of  computing 7 (Y) given y. The algorithm for the incremental computation of the inverse 
of  BTB of Section 6 of Ref. [3] implies that C = O (m :5) for the dense matrix ~.  It is rather 
straightforward to perform these O(m "-5) arithmetic operations in parallel using 
O ( , v ~  log m) steps and m-'/log m processors (and using O (m) steps and m 2 processors 
for the initial inversion of ~v~) .  Applying the matrix inversion algorithms of Ref. [2], we 
may perform every evaluation of ? (y) using O (log m + log z n) parallel arithmetic steps and 
[M(n)/logn][l + m/(n log n)] processors, so we arrive at the following trade-off for the 
estimated total arithmetic cost of Karmarkar 's  algorithm: O(m~SL) steps and re'- 
processors, i.e. O (m35L) arithmetic operations (via the straightforward parallelization); or 
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0 (mL (log m + log-" n)) steps and [M (n)/log n][1 + m/(n log n)] processors, i.e. O (m- 
LM(n)(log m + log-' n)[l + m/(n log n)]/log n) arithmetic operations (via the parallel ma- 
trix inversion a~gorithms of Ref. [2]). 

In both cases the sparsity of ~ is not exploited. In particular, the algorithm for the 
incremental computation of the inverse suggested in Section 6 of Ref. [3] does not preserve 
the sparsity of the original input matrix. This causes some problems in practical 
computations, because the storage space increases substantially. Thus, the special methods 
of solving sparse LLSPs, such as the conjugate gradient [16], the Lanczos [1] and the nested 
dissection methods (this paper), become competitive with (if not superior to) the latter 
algorithm of Section 6 of Ref. [3]. If the matrix ~ is such that the graph G = (V,E) of 
the matrices 0-1 of equation (9) has an s(m +n)-separator family and s(m + n ) =  
o (m + n), then the nested dissection method can be strongly recommended. Specifically, 
in this case we arrive at the estimates of O (Lm [] E t + M (s (m + n))]) arithmetic operations 
for solving the LPP by combining Refs [3] and [14], see Section 3, and of O (Lm log m log-" s 
(m + n)) parallel arithmetic steps and O ([ EI + M (s (m + n))/log s (m + n)) processors, by 
combining Ref. [3] and the parallel algorithm of this paper. The reader could better 
appreciate this improvement, due to the application of nested dissection, if we recall that 
s (m + n) = X/~--+ n), where the graph G is planar [as occurs in many operations research 
applications, for instance, in the problem of computing the maximum flow in a network 
having an s(m +n)-separator  family]. Then the processor bound for computing the 
recursive factorization (6) is less than 2s3(m + n ) =  8 x/8(m + n) L5 and the total number 
of arithmetic operations is O (mL (m + n)~5). The premultiplications of ~ by the non- 
singular matrix D (i) do not change the separator sets for the graph G, so these sets are 
precomputed once and for all, which is an additional advantage of using nested dissection 
in this case. 

Finally, we apply fast matrix multiplication algorithms in order to decrease the known 
theoretical upper bounds on the complexity of solving LPPs with a dense input matrix 
from the O (m35L) arithmetic operations of Ref. [3] to O (m:L), where/3 < 3.165. Recall 
that iteration i of Ref. [3] can be reduced to inverting the matrix ~](i) of equation (.9); 
furthermore, the diagonal matrix A( i )=  O-- ' ( i ) - -O-- ' ( i - -1)  has at most j = O ( x / m  ) 
nonzero entries for each i, i = 1, 2 . . . . .  Let us apply formula (5) in order to compute 
H -~ (i) given H -t (i - 1). Similarly to the stabilization process of Remark 3, let U = V be 
a diagonal matrix with, at most, j nonzero entries, such that 

The computation is reduced to the inversion of a j  x j  submatrix of 0 - VH-~(i - I)V 
and to two rectangular matrix multiplications, of size m x j by j x j and m x j by j x m, 
see formula (5). Thus the entire arithmetic cost of one iteration of Ref. [3] is dominated 
by the arithmetic cost, M(m;j, m), of the m x j  by j x m matrix multiplication. Re- 
spectively, the cost of solving the LPP is O(LmM(m,j,m)) arithmetic operations of 
O(Lm log-'m) parallel steps and M(m,j ,m) processors, where j = O(,,//-m), 
M(m,j,m) = O(m~). Surely /3 ~< 2.25, for M(m,j ,m) = M(j)(m/j): = O(m"25), i f j  = O 
(x/m), but in fact/3 is upper bounded by 2.165 [4, p. 108; cf. 5]. This implies the sequential 
time bound O(Lm 3~65) and (see Appendix A of Ref. [2]) the processor bound 
M(m,j, m ) =  O (m -'~65) [with the parallel time O(Lm log:m)] on the complexity of the 
LPP. As we have mentioned, large overhead makes fast matrix multiplication algorithms 
nonpractical. Note, however, that even with straightforward matrix multiplication 
M (m, j, m) = m'-(2j - 1), which implies decreasing the parallel cost of one iteration of Ref. 
[3] to O (log-" m) parallel steps and m -'5 processors (using as many iterations as in Ref. [3]. 
i.e. O (Lm)). 

Remark 4 

The latter asymptotic complexity estimates (but with double overhead) could be deduced 
relying on the inversion of .&vt)(i)&. 
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A P P E N D I X  

Current Computational Cost of Solving the LPP 
In Table AI below we display the estimates for the computational cost of one iteration of the simplex and 

Karmarkar's algorithms for the LPP having a dense m × n input matrix & [cf. 21]. We will restrict our analysis 
to the cases where n ~< m = O (n). As in Ref. [21], we will not use the possible accelerations based on fast matrix 
multiplication, instead we will apply the results of Refs [19, 2] and the improvement of Karmarkar's algorithm 
from the end of Section 5. 

There is a certain amount of controversy about the current upper estimates for the number of iterations in 
the two cited algorithms. The worst-case upper bounds, O (Lm) for Ref. [3] and 2" for the simplex algorithms, 
greatly exceed the number of iterations required when the same algorithms run in practice or use random input 
instances. This uncertainty complicates the theoretical comparison of the effectiveness of the two algorithms. 
However, a preliminary comparison can be based on the partial information already available. In particular, let 
us assume the empirical upper bound O (n log m) on the number of iterations (pivot steps) of the simplex 
algorithms, cited by some authors who refer to decades of practical computation [11, pp. 45-46: 12, p. 434]. The 
bound implies that a total of O (m 3 log m) arithmetic operations suffice in the simplex algorithm vs the O (m ~) 
already used in the first iteration of Ref. [3]. Moreover, there are special methods that efficiently update the 
triangular factorization of the basis matrices used in the simplex algorithms, which further simplifies each 
iteration of the simplex algorithms in the case of sparse input matrices [l t, Chaps 7, 24; 12, Chap. 7]. On the 

Table A I 

Arithmetic Parallel 
operations s t eps  Processors 

First iteration of Ref. [3] O(m ~) O(IogZm) m3log rn 
Average o'ver rt 

iterations of Ref. [3] O(m 2~) O(IogZm) m :~ 
Any iteration of revised 

simplex algorithms 0 (rn'-) 0 (m) m 
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other hand, if appropriate modifications of Karmarkar 's  original algorithm indeed run in a sublinear number of  
iterations [as he reported on at the TIMS/ORSA Mtg, Boston, Mass. (May 1985) and at the 12th Int. Syrup. 
on Mathematical Programming, Boston, Mass. (Aug. 1985)], this would immediately imply a substantial 
acceleration of the simplex algorithms at least in the case of (i) parallel computat ion and dense input matrices 
(see Table AI)  and (ii) both parallel and sequential computations where the graph associated with the matrix 
b] of system (2) has an s(m ,- n)-separator family with s(m +n)= O((m +n)~), q < 1 (see the estimates of 
Section 5). 

Concluding remark 

In June 1986, J. Renegar showed that O(x/~mm + n L) iterations (each reduced to solving a LLSP) suffice for 
solving LPP, see Ref. [22]. 


