
Comp. & .14aths. with Appls. Vol. 12A. No. 12. pp. 1217-1227. 1986 0886-955386 $3.00+0.00
Printed in Great Britain. All rights reserved Copyright ~ 1986 Pergamon Journals Ltd

FAST A N D E F F I C I E N T L I N E A R P R O G R A M M I N G
A N D L I N E A R L E A S T - S Q U A R E S C O M P U T A T I O N S t

V. PAN

Computer Science Department, State University of New York at Albany, Albany,
NY 12222, U.S.A.

J. REIF
Aiken Computation Laboratory, Division of Applied Sciences, Harvard University, Cambridge,

MA02138, U.S.A.

(Received April 1986)

Communicated by E. Y. Rodin

Abstract--We present a new parallel algorithm for computing a least-squares solution to a sparse
overdetermined system of linear equations Ax = b such that the m x n matrix A is sparse and the
graph, G = (V, E), of the matrix

has an s(m +n)-separa tor family, i.e. either IV[< n o for a fixed constant n 0 or, by deleting a
separator subset S of vertices of size <~s(m +n), G can be partitioned into two disconnected
subgraphs having vertex sets V~, V, of size ~< 2,3 (m + n), and each of the two resulting subgraphs
induced by the vertex sets S U I1",, i = 1, 2, can be recursively s (J S U V,I)-separated in a similar way.
Our algorithm uses O (log (m + n) 1o~ s (m + n)) steps and ~< s 3(m + n) processors; it relies on our
recent parallel algorithm for solving sparse linear systems and has several immediate applications
of interest, in particular to mathematical programming, to sparse nonsymmetric systems of linear
equations and to the path algebra computations. We most closely examine the impact on the linear
programming problem (LPP) which requires maximizing cry subject to ~ ry ~< b, y/> 0, where ~ is
an m × n matrix. Hereafter it is assumed that m/> n. The recent algorithm by Karmarkar gives
the best-known upper estimate [O (m35L) arithmetic operations, where L is the input size] for the
cost of the solution of this problem in the worst case. We prove an asymptotic improvement of
that result in the case where the graph of the associated matrix H has an s (m + n)-separator family;
then our algorithm can be implemented using O (mL log m log'- s (m + n)) parallel arithmetic steps,
s3 (m + n) processors and a total of O (mLs 3 (m + n) log m log 2 s (m + n)) arithmetic operations. In
many cases of practical importance this is a considerable improvement on the known estimates:
for example, s(m + n) = ~ + ~ if G is planar [as occurs in many operations research
applications: for instance, in the problem of computing the maximum multicommodity flow with
a bounded number of commodities in a network having an s (m + n)-separator family], so that the
processor bound is only 8 x/8 (m + n) I-5 and the total number of arithmetic steps is O (m2"SL).
Similarly, Karmakar 's algorithm and the known algorithms for the solution of overdetermined
linear systems are accelerated in the case of dense input matrices via our recent parallel algorithms
for the inversion of dense k × k matrices using O (log-' k) steps and k ~ processors. Combined with
a modification of Karmarkar 's algorithm, this implies solution of the LPP using O (Lm log 2 m)
steps and m 2-~ processors. The stated results promise some important practical applications.
Theoretically, the above processor bounds can be reduced for dense matrix inversion to o (k 2.s) and
for the LPP to o (m 2"E65) in the dense case and to o (s"S(m + n)) in the sparse case (preserving the
same number of parallel steps); this also decreases the known sequential time bound for the LPP
by a factor of m °33s, i.e. to O(Lm3t65).

1. I N T R O D U C T I O N

Numerous practical computations require finding a least-squares solution to an over-

de te rmined system o f linear equations , A x = b, i.e. finding a vector x o f d imens ion n that
min imizes II A x - b [I given an m × n matrix A and a vector b o f d imens ion m where m / > n.
(Here and hereafter we apply the Euclidean vector norm and the associated 2-norm o f
matrices [I].) Such a problem is called the linear least-squares problem (LLSP). In

tTheresul ts of th is paper were presented at the 12thlnt. Symp. on Mathematical Programmmg, Boston, Mass.,
5-9 Aug. 1985.

1217

1218 v. PA.~ and J. RXXF

particular, solving a linear system ~,x = b in the usual sense is a simplification of the LLSP
where the output is either the answer that

m i n l l & x - b l i > 0
x

or, otherwise, a vector x* such that

&x* - b = 0.

The first objective of this paper is to reexamine the time complexity of the LLSP and
to indicate the possibility of speeding up its solution using the parallel algorithms of Ref.
[2] combined with the techniques of blow-up transformations and variable diagonals and
with the Sherman-Morr ison-Woodbury formula. As a major consequence [which may
become decisive in determining the best algorithm for the linear programming problem
(LPP), at least over some important classes of instances of that problem], we will
substantially speed up Karmarkar 's algorithm [3] for the LPP, because solving the LLSP
constitutes the most costly part of every iteration of that algorithm. Furthermore, we will
modify Karmarkar 's algorithm and solve an LPP with a dense m × n input matrix using
O(Lm logZm) parallel arithmetic steps and m -'~ processors, where the parameter L
(defined in Ref. [3]) represents the input size of the problem. Applying fast matrix
multiplication algorithms we may decrease the above processor bound in the dense case,
as well as the asymptotic sequential time bound of Ref. [3], by a factor o fm °335 (preserving
the best asymptotic parallel time). In fact, improving or even combining the known fast
matrix multiplication methods, see Refs [4-6] may lead to a further minor decrease in the
processor bounds, but the latter decrease, as well as the above improvements of a factor
of m °'335, would hardly have any practical value due to the huge overhead of the
asymptotically fast matrix multiplication methods and their inability to preserve sparsity.
Our acceleration of Karmarkar 's algorithm, however, is practical and most significant in
the important case (arising, for instance, in the optimization of an economy consisting of
several branches weakly connected to each other and in the multicommodity flow problem
in a planar network for a fixed number of commodities, see Refs [7] or [8, p. 391]), where
the input matrix of the LPP is large and sparse and is associated with graphs having a
family of small separators (see the formal definitions below, in Section 3).

Our work has several further impacts. Similarly to the case of Karmarkar 's algorithm
[3], we may immediately improve the performance of several known algorithms, in
particular of algorithms for systems of linear inequalities [9], for mathematical pro-
gramming [10] and for sparse nonsymmetric systems of linear equations, because (as we
indicated above) solving a system of linear equations constitutes a particular case of the
LLSP where

min [I ~ x - b '~[= 0.
X

The latter observation leads to a very wide range of applications of our results, including
in particular the acceleration of the simplex algorithms for a sparse LPP [cf. 1 I, 12]. Further
applications may include several combinatorial computations. This is demonstrated in Ref.
[13], where, relying on the latter improvement of the algorithms for sparse nonsymmetric
systems of linear equations, we extend the parallel nested dissection algorithm of Ref. [2]
to the path algebra computations.

We organize the paper as follows. In Section 2 we recall two known representations of
the LLSP, using normal equations and their blow-up transformations. In Section 3 we
reexamine the computational cost of sequential algorithms for the LLSP, in particular, we
recall the sequential nested dissection algorithm of Ref. [14] and adjust it to the case of
the LLSP. We also describe the variable-diagonal techniques for stabilization in solving
the LLSP. In Section 4 we estimate the cost of performing our parallel algorithm for the
same problem. In Section 5 we consider one of the major applications of our results, i.e.
the acceleration of Karmarkar 's [3] algorithm. In the Appendix we will briefly comment
on the current estimates for the computational cost of solving the LPP.

Linear programming and least-squares computations 1219

2. THE L I N E A R L E A S T - S Q U A R E S P R O B L E M (LLSP)

We will use the known fact (see Ref. [l]) that the LLSP can be reduced to computing
the solution x of the system of normal linear equations

&T&x = &rb, (I)

which can be reduced to the following system of linear equations in s and y:

D~DTs + Dl&]30y = Dlb

and

or equivalently

where

D~&TDTs= 0,

V]v = d, (2)

H = DoTATD T , v = , d = , x = D 0 y , D=Z) ,DT;

Do is an n x n matrix, D~ is an m x m matrix and D O , D~ are nonsingular. Here and
hereafter 4, ~&/r, V T, O and 0 denote the identity matrix, the transposes of a matrix W and
of a vector v, the null matrix and the null vector of appropriate sizes, respectively.
Hereafter ~ / - r will denote the inverse of M/T.

I f we need to solve the linear system Ax = b in the usual sense, then that system can
be equivalently rewritten as GAx = Gb for any nonsingular matrix G. The latter system
is equivalent to system (2), where, in this case, D can be any m x m matrix, not necessarily
DIDT.

Remark 1

Even though the systems (1) and (2) are equivalent to each other, it is more convenient
to apply some algorithms to system (2) than to system (1), particularly where ~ is more
sparse and/or better structured than &T&. [We will call the transition from system (I) to
system (2) and similar transformations blow-up transformations of linear systems.] The
simplest and the most customary choice for Do and D~ in system (2) is the identity matrices
D; however, choosing appropriate diagonal matrices for D 0 and D~ we may scale the rows
and columns of the three blocks of H in order to stabilize some special algorithms for
sparse linear systems (2), such as the nested dissection algorithm, see below. This
stabilization can be combined with the customary techniques of threshold pivoting, used
in sparse matrix computat ions at the stage of determining the elimination ordering [15]
(see also Remark 3).

Remark 2

In some cases further equivalent transformations of systems (1) and (2) are effective. In
particular the m x n matrix &T of system (1) may take the form &T = [[BTcT], where the
block [B r is a readily invertibte n × n matrix and the block C r is an n × (m - n) matrix.
Then

~_~T,~ = BT(~ .+ STE)B, E = C~ ~l,

so solving system (1) can be reduced to computing the vector x = ~-~u, where u satisfies
the system

(0 + ETE)u = g, g = ~-T&Tb.

Solving the latter system can be reduced to computing the vectors u and r such that

r = Eu, u = - FFTr + g .

1220 V. PA.~ and J. RIEIF

This is a linear system in r and u, which can be equivalently rewritten in the following four
ways, including two blow-up transformations:

u = (~ + ~ E T ~) - I g , r = ~:u;

r=(]+Y-Y-T)-lFg, u = - -ETr+g:

I ;ur] I 0] ' G V-(I/))~ 7]) . ~ 0 i s a s c a l a r ;
G =)'g = L ET).I ' (3)

and

[-, Cl[r]_- [° 1 ,cT [BTB [B- {tl ~Tg

Thus the solution can be reduced to linear systems with coefficient matrices of sizes n x n
or (m - n) x (m - n) or m x m [note that m - n can be much smaller than n, also note
the sparsity of the m x m matrices of systems (3) and (4), provided that E and/or C are
sparse]. Scaling can be also extended to all four of the above systems [we explicitly showed
only scaling by 2 in system (3)].

3. S E Q U E N T I A L C O M P U T A T I O N A L C O M P L E X I T Y OF THE LLSP

For an LLSP with a dense matrix ~, its solution can be obtained from system (1) using
0 (m/n)M(n) arithmetic operations where M(n) is the cost o fn x n matrix multiplication,
M (n) ~< 2n 3 - n 3. Theoretically M" (n) is at least as small as o (n-"~96), but this bound is not
practical due to the huge overhead constants hidden in the "o" , [6].

If the matrix A is sparse, the solution can be accelerated using some special methods,
see Ref. [16]. In particular, applying the conjugate gradient method or the Lanczos method
[16,1] we may reduce the cost of solving both system (I) and (consequently) an LLSP to
0 (mN(~)) arithmetic operations where N(A) is the number of nonzero entries of ~,
provided that the multiplication by 0 and the addition of 0 are cost-free operations.

We will single out a more specific case encountered in many practical instances of the
LLSP, i.e. in the instances where the matrix A is sparse and where, furthermore, the
graph G = (V,E) associated with the matrix H has an s(m + n)-separator family with
s (m + n) = o (m + n). (Hereafter we will assume that s (k) I> x/-k.) Here and hereafter we
apply the following definitions, which we reproduce from Section 1.2 of Ref. [2] (cf. also
Ref. [14]).

Definition I
Let ff be a class of undirected graphs closed under the subgraph relation, i.e. if G s g'

and G' is a subgraph of G, then G ' s ft. The class ff is said to have a dense family of
s (n)-separators or, simply, an s (n)-separator family if there exist constants no > 0 and
z, 0 < x < 1, such that for each graph G ~ c¢ with n t> no vertices there is a partition Vl, V,, S
of the vertex set of G such that] VIi ~< :m, I V,[~ :~n, IS[<-N s(n) and G has no edge from
a vertex of V~ to V_, [then S is said to be an s (n)-separator of G]. An undirected graph
is said to have an s (n)-separator family if the class of all its subgraphs has an s (n)-separator
family.

Binary trees obviously have a 1-separator family. A d-dimensional grid (of uniform
size in each dimension) has an n ~-(~ ~-separator. Lipton and Tarjan [17] show that the
planar graphs have a x/8n-separator family and that every n-vertex finite-element graph
with ~<k boundary vertices in every element has a 4[k..2] ~- ,~/n-separator.

Definition 2
Given a k x k symmetric matrix W = [wij], we define G(W) = (V,E) to be the undirected

graph with vertex set V = (1 k} and edge set E = {{id}lw,j:~0}.

Linear programming and least-squares computations 1221

The very large linear systems &x = b that arise in practice often have graphs G(&) with
small separators. Important examples of such systems can be found in circuit analysis (e.g.
in the analysis of the electrical properties of a VLSI circuit), in structural mechanics (e.g.
in the stress analysis of large structures) and in fluid mechanics (e.g. in the design of
airplane wings and in weather prediction).

When the associated graph G of the matrix H of system (2) has an s (m + n)-separator
family, the application of the techniques of nested dissection [16, p. 182; 18, 14] decreases
the cost of the solution of system (2), and consequently of the original LLSP, to
O (I E I + M (s (m + n))) arithmetic operations where]El is the cardinality of the edge set
of G [14]. This is the cost of computing the {I_D Lr-factorization of H; this cost is much lower
than M(m +n), the cost in the case of dense P] [I]. The subsequent evaluation of the
vectors r,x satisfying system (2) costs O (]EI + [s (m + n)] a) arithmetic operations [14], so
the approach is particularly effective for solving several systems (1) with fixed ~ and
variable b. To see the potential advantage of using the nested dissection algorithm, assume
that m = O(n) and that the associated graph G of [H is planar. Then G has
O (x/~)-separators [17] and]El = O (n), so computing the]_DLV-factorization of H costs
O (n ~5) arithmetic operations, and the subsequent solution of system (1) costs only O (n)
for every fixed vector b, compared with the O (n3) arithmetic operations required for the
solution if the sparsity is not exploited and with the O (n 2) arithmetic operations required
by the conjugate gradient and Lanczos methods [1, 16].

Remark 3

Systems (2) and (3) are not positive definite, so the nested dissection algorithm, if applied
to such systems, may involve destabilizing elimination steps, characterized by the small
magnitudes of pivot elements. Scaling and threshold pivoting (see Remark 1) can be partial
remedies. We also suggest the following combination of the modified method of variable
diagonals [19] (see also the end of Section 4 below) with blow-up transformations and the
Morrison-Sherman-Woodbury formula, see equation (5) below. Namely, whenever a
pivot entry of small magnitude appears during the elimination process, we increase the
respective diagonal entry (i,i) of the matrix H of system (2) [similarly for the matrices of
systems (3) and (4)] by adding a large value k:(i); we then continue the computation.
Finally, we compute the L~3U-factorization of the matrix ~ = H + ~2. Here the matrix
[~ is filled with zeros, except for the j diagonal entries corresponding to the changes in the
diagonal pivot entries of H. In these places E is filled with the values k (i). We will consider
the case where j, the total number of corrections to the pivot entries of H, is relatively
small. Then the system (2) can be effectively solved using the computed LDII V-factorization
of $ = H + ~2 and the Sherman-Morrison-Woodbury formula [1, p. 3]:

(S - UV) -~ = ~- t + g-~U(0 - V ~ - ' U) - ~ V ~ -~, (5)

which holds for arbitrary matrices ~, U and V of appropriate size such that] - V~-~U
is a nonsingular matrix. In our case UV is the diagonal matrix ~-'; this enables us to
simplify the computations. We have ~ = H + ~-' and H = ~ - ~-'. Let U = V = ~, so
H = ~ - UV, and therefore [see equations (2) and (5)]

v = H-re = (~ - UV)- 'e = ~ - t c + ~-~V(~ - V g - ' V) - W g - ~ c .

Let us examine the evaluation of v, assuming for simplicity that all the nonzero entries
of ~ lie in the firstj rows. Since the LDLr-factors of S have been computed, solving linear
systems with the matrix ~ is simple. Computing the j x j upper-left submatrix T = V~-~V
of ~- t is reduced to computing the first j rows of V~_ -r and to computing the product
(VL-V)D-z(a_-~V). When j is not large, this computation is simple, as well as the
subsequent solution of a linear system with the matrix I - T. The computation does not
require storage of the matrix VL -r. To confine the pivot corrections to the left-upper block
of 0q (this should simplify computing V0_-r), we may scale systems (2)-(4) [say by choosing
a small positive ,;. in system (3)].

C ~* M w -~ 12A 1 2 - E

1222 V. PAN and J. R~[F

4. P A R A L L E L A L G O R I T H M S FOR LLSP

For large input matrices &, the sequential algorithms for the LLSP can be prohibitively
slow. Their dramatic acceleration that preserves their efficiency can be obtained using the
recent parallel algorithms of Ref. [2], where in each step every processor may perform one
arithmetic operation. Specifically, before Ref. [2] appeared, the best algorithms for solving
a linear system with an n x n dense matrix N either (i) were unstable and required
O(log 'n) parallel steps and >~,,/-£M(n) processors or (ii) involved >~n steps and n-"
processors. (Here and hereafter the numbers of processors are defined within constant
factors for we may save processors using more steps. Practically this means that the user,
having, say, k times less processors than in our subsequent estimates, may still use our
algorithms; the parallel time, even increased by a factor of k, may still be attractively small
for that user.) The stable iterative algorithm of Ref. [2], based on Newton's iteration for
the matrix equation i - N& = 0, requires only O (log z n) steps and M(n)/log n processors
to compute the solution of such a dense system (with the relative error norm bounded,
say by 1/2"'®), provided that the system has a welt-conditioned or strongly diagonally
dominant matrix. (In fact the algorithm even inverts the matrix of the given system for
the above parallel cost.) The algorithm successively computes t = IIAt,/AII~,
I130 = (l / t)N r, Bk~_l = 213~ -- B ~ E k , k = 0, 1 q. lBq is shown to be a very high precision
approximation to 13 -~ if q = O (log n) and if cond(&) is bounded by a polynomial in n
(similarly, if I13 is strongly diagonally dominant. The desired estimates for the parallel
complexity of solving dense linear systems immediately follow. Applying the cited
algorithm to system (I), we solve the original LLSP using O (log m + log: n) steps and
[M(n)/logn][1 + m/(n logn)] processors. These are the bounds in the case where ~ is a
general (dense) matrix. Another parallel algorithm of Ref. [2] is applied in cases of practical
interest, where N is sparse and the graph G = (V , E) of 114 has an s(m +n)-separa tor
family, see Definitions 1 and 2. In this case the parallel nested dissection algorithm of Ref.
[2] computes a special recursive s (m + n)-factorization of the matrix H of systems (2) and
(3) using O (l o g m l o g Z s (m + n)) parallel steps and IE l+M(s (m+n)) / logs (m+n)
processors, the observations of Remarks 1 and 3 are still applied. Following Definition
4.1 of Ref. [2], we define such a recursive s(m + n)-factorization of 14 as a sequence of
matrices ~o, H~ 0q a such that ~o = p ~ p r , p is an (m + n) x (m + n) permutation
matrix,

Ix, v,x;-'v; ~= = Y= z r j and 7/g = Hr+t + (6)

for g = 0, 1 d - 1, and ~ is a block diagonal matrix consisting of square blocks of
size s (:d-g(m + n)) x s (:~d-e(m + n)) at most, where :d(m + n) ,N< no for constants no and

of Definition 1. The latter inequality implies that the factorization (6) has length
d = O (log m), so the computation of factorization (6) is reduced to O (log m) parallel steps
of matrix multiplication and inversion vs m + n such steps in the sequential nested
dissection algorithms, required to compute the I IDlkr-factorization. The dense blocks of
~r [of size s(~a-~n x ~d-=n)] are inverted by the cited parallel algorithm of Ref. [2] for
matrix inversion. This enables us to keep the total cost of computing the recursive
factorization (6) as low as stated.

Observe that the definition of a recursive s(n)-factorization implies the following
identities for g = 0 d - 1:

I ']~=IV~]Z? . , .

and, hence

t jLO Ikl=_ ~ I

I

Linear programming and least-squares computations 1223

This reduces solving linear systems with matrix H~ to solving linear systems with matrices
Xg and b]g._~ and finally implies that, although the recursive factorization (6) is distinct
from the more customary [l_~J-factorization used in the sequential algorithms, both have
similar power, i.e. when the recursive factorization (6) is available, O ((log m)[log s (m +
n)]) parallel steps and [El + [s (m + n)]-' processors suffice in order to solve system (2) and
consequently the original LLSP. In Ref. [2], the partition of [H~ in factorization (6) for
g -- 0, 1 d - 1 is defined by appropriate enumeration of the vertices of the graph G.
The enumeration, the study of the block diagonal structure of the matrices Xg and the
complexity estimates rely on extensive exploitation of the properties of the graph G stated
in Definitions I and 2.

Comparing the cost bounds of Refs [14] and [2], we can see that the parallelization is
efficient, i.e. the production of the two upper bounds on the numbers of steps and
processors of Ref. [2] is equal (within a polylogarithmic factor) to the bound on the number
of arithmetic operations in the current best sequential algorithm of Ref. [14] for the same
problem. The same efficiency criterion is satisfied in the algorithms of Ref. [2] inverting
an n x n dense matrix in O(log-'n) parallel steps using M(n)/logn processors. Con-
sequently, all our parallel algorithms for an LLSP are also efficient.

The complexity estimates of Ref. [2] have been established in the case of well-conditioned
input matrices; the algorithms of Ref. [2] output the approximate solutions with a
sufficiently high precision. On the other hand, all the estimates have been extended to the
case of an arbitrary integer input matrix & in Refs [19, 20] by using some different
techniques, in particular, using variable diagonals. In this case the solutions are computed
exactly, although that computation generally involves larger numbers, such as the
determinant of the input matrix, det ~. This algorithm exactly computes, first det & and
adj ~ and then ~ - ~ = adj A/det ~ and A-~b = (adj A) b/det A. If only a system Ax = b
with an n x n integer matrix ~ need be solved, only (adj N) b (rather than adj A) need
be computed. The evaluation ofde t A in Refs [19, 20] is reduced to computing the Krylov
matrix, ~ = [v, A v , . . . , A"-~v], the vector A"v, v = [1,0 0] v, and the exact solution of
the linear system, IKy = A"v. The solution vector y = lye] is the coefficient vector of the
characteristic polynomial of A, det p,~.Q - A I, so Y0 = det A and all the entries of y are
integers. At these stages, O (log: n) parallel steps and M (n) processors suffice, provided that

is strongly diagonally dominant, because we may use the algorithm of Ref. [2] in order
to compute the integer solution vector y with the absolute error norm bound, say 1/3; then
we may obtain y exactly by rounding-off. To make the matrix E strongly diagonally
dominant, first we replace A, say by A + p0 or, more generally, by a matrix W such that
W = A mod p, so det W = det A rood p is computed. Then using Newton-Hensel 's lifting,
we compute det W = det A mod p~, where 21det A [< p', s = 2 h, h = O (log n), so we may
recover det A. Similarly, we compute adj A or (adj A)b. In the worst case this construction
requires choosingp as large as n". However, with probability 1 - E (n), E (n) ~ 0 as n ---, oc,
it suffices to choose p to be a prime of an order of O([n 1[~ ![]3.~) and to define both the
Krylov matrix and the vector W"v rood pS. Another approach leads to slightly inferior
(with the time bound increased by a factor of log n) but deterministic estimates. It relies
on computing the If_U-factors of A, see Ref. [20].

5. K A R M A R K A R ' S A L G O R I T H M . P A R A L L E L I Z A T I O N .
A P P L I C A T I O N TO SPARSE LP

In this section we will examine the cost of Karmarkar 's linear programming algorithm
[3] and of its modifications that use blow-up transformations, nested dissection and
parallelization. First we will reproduce the algorithm, which solves the problem of the
minimization of the linear function cry subject to the constraints

&Ty=O, ~ y j = l , y>~O, (7)
]

1224 V. PAN and J. R.EZF

where y = Lvj,j = 0, I m - 1] and e are m-dimensional vectors, &r is an n × m matrix,
m/> n, y is unknown. This version is equivalent to the canonical LPP of the minimization
of cry subject to &ry ~< b, y/> 0, see Ref. [3] and cf. Refs [11, 12]. We will designate

e = [1 , 1 1] T,

y (i) = [Y0 (i), Yl (i) y,,_, (i)]r,

D(O) = ~, D(i)=diagO'o(i), y~(i) y,~_~(i)),

and

B r = ~ r (i) = E A T ~ (i)] eT , i = 0, 1 (8)

(All the diagonal matrices ~3(i) encountered in the algorithm of Ref. [3] are positive
definite.) The algorithm proceeds as follows.

Initialize. Choose E > 0 (prescribe tolerance) and a parameter 13 (in particular,
13 can be set equal to 1/4). Let y (0) = (1/n)e, i = 0.
Reeursive step. While nonoptimal y (i) (c ry(i)> c) and while the infeasibility
tests fail do

Compute the vector y(i + I) = ? (y(i)), increment i.
Given vector y(i), the vector y(i + 1) is computed as follows:

1. Compute the matrix]3 = Q3(i), compare (8), i.e. compute the matrix ~r~3 (i)
and augment it by appending the row e r.

2. Compute the vector % = [Q - B(BT~3)-~BT]~3(i)c.
3. Compute the vector z (i) = y (i) - 13rc~/I] cp II, where r = l/,v/m (m - 1).
4. Compute the vector y(i + 1) = ~3(i)z(i)/[erD(i)z(i)].

The algorithm includes checks for infeasibility and optimality [3], but it is easy to verify
that their computational cost, as well as the computational cost of reducing the problem
from the canonical form to that of equations (7), is dominated by the cost of computing
the vector 7 (Y(i)) at the recursive steps which is, in turn, dominated by the cost of
computing (BrB) -~ given ~3T= ~3r(i) for all i. Reference [3] shows that ~3r~3 can be
represented as follows:

o]
Br~ = L 0T rn '

SO the inversion of Q3r~3 is reduced to the inversion of ~r~3-'(i)~ which, in turn, is reduced
to the inversion of the matrix H of system (2) where ~ is replaced by 13 (i)~. Furthermore,
we can see that it suffices to compute the product (~3T~)-q3D(i)c, and this amounts to
matrix x vector multiplications and to solving a blown-up linear system of form (2) with
the matrix

= L • (9)

This algorithm of Ref. [3] requires O (Lm) recursive steps in the worst case, so the total
computational cost is O (Lm C), where L is the input size of the problem and C is the cost
of computing 7 (Y) given y. The algorithm for the incremental computation of the inverse
of BTB of Section 6 of Ref. [3] implies that C = O (m :5) for the dense matrix ~. It is rather
straightforward to perform these O(m "-5) arithmetic operations in parallel using
O (, v ~ log m) steps and m-'/log m processors (and using O (m) steps and m 2 processors
for the initial inversion of ~v~) . Applying the matrix inversion algorithms of Ref. [2], we
may perform every evaluation of ? (y) using O (log m + log z n) parallel arithmetic steps and
[M(n)/logn][l + m/(n log n)] processors, so we arrive at the following trade-off for the
estimated total arithmetic cost of Karmarkar 's algorithm: O(m~SL) steps and re'-
processors, i.e. O (m35L) arithmetic operations (via the straightforward parallelization); or

Linear programming and least-squares computations 1225

0 (mL (log m + log-" n)) steps and [M (n)/log n][1 + m/(n log n)] processors, i.e. O (m-
LM(n)(log m + log-' n)[l + m/(n log n)]/log n) arithmetic operations (via the parallel ma-
trix inversion a~gorithms of Ref. [2]).

In both cases the sparsity of ~ is not exploited. In particular, the algorithm for the
incremental computation of the inverse suggested in Section 6 of Ref. [3] does not preserve
the sparsity of the original input matrix. This causes some problems in practical
computations, because the storage space increases substantially. Thus, the special methods
of solving sparse LLSPs, such as the conjugate gradient [16], the Lanczos [1] and the nested
dissection methods (this paper), become competitive with (if not superior to) the latter
algorithm of Section 6 of Ref. [3]. If the matrix ~ is such that the graph G = (V,E) of
the matrices 0-1 of equation (9) has an s(m +n)-separator family and s(m + n) =
o (m + n), then the nested dissection method can be strongly recommended. Specifically,
in this case we arrive at the estimates of O (Lm [] E t + M (s (m + n))]) arithmetic operations
for solving the LPP by combining Refs [3] and [14], see Section 3, and of O (Lm log m log-" s
(m + n)) parallel arithmetic steps and O ([EI + M (s (m + n))/log s (m + n)) processors, by
combining Ref. [3] and the parallel algorithm of this paper. The reader could better
appreciate this improvement, due to the application of nested dissection, if we recall that
s (m + n) = X/~--+ n), where the graph G is planar [as occurs in many operations research
applications, for instance, in the problem of computing the maximum flow in a network
having an s(m +n)-separator family]. Then the processor bound for computing the
recursive factorization (6) is less than 2s3(m + n) = 8 x/8(m + n) L5 and the total number
of arithmetic operations is O (mL (m + n)~5). The premultiplications of ~ by the non-
singular matrix D (i) do not change the separator sets for the graph G, so these sets are
precomputed once and for all, which is an additional advantage of using nested dissection
in this case.

Finally, we apply fast matrix multiplication algorithms in order to decrease the known
theoretical upper bounds on the complexity of solving LPPs with a dense input matrix
from the O (m35L) arithmetic operations of Ref. [3] to O (m:L), where/3 < 3.165. Recall
that iteration i of Ref. [3] can be reduced to inverting the matrix ~](i) of equation (.9);
furthermore, the diagonal matrix A(i)= O-- ' (i) - -O-- ' (i - -1) has at most j = O (x / m)
nonzero entries for each i, i = 1, 2 Let us apply formula (5) in order to compute
H -~ (i) given H -t (i - 1). Similarly to the stabilization process of Remark 3, let U = V be
a diagonal matrix with, at most, j nonzero entries, such that

The computation is reduced to the inversion of a j x j submatrix of 0 - VH-~(i - I)V
and to two rectangular matrix multiplications, of size m x j by j x j and m x j by j x m,
see formula (5). Thus the entire arithmetic cost of one iteration of Ref. [3] is dominated
by the arithmetic cost, M(m;j, m), of the m x j by j x m matrix multiplication. Re-
spectively, the cost of solving the LPP is O(LmM(m,j,m)) arithmetic operations of
O(Lm log-'m) parallel steps and M(m,j ,m) processors, where j = O(,,//-m),
M(m,j,m) = O(m~). Surely /3 ~< 2.25, for M(m,j ,m) = M(j)(m/j): = O(m"25), i f j = O
(x/m), but in fact/3 is upper bounded by 2.165 [4, p. 108; cf. 5]. This implies the sequential
time bound O(Lm 3~65) and (see Appendix A of Ref. [2]) the processor bound
M(m,j, m) = O (m -'~65) [with the parallel time O(Lm log:m)] on the complexity of the
LPP. As we have mentioned, large overhead makes fast matrix multiplication algorithms
nonpractical. Note, however, that even with straightforward matrix multiplication
M (m, j, m) = m'-(2j - 1), which implies decreasing the parallel cost of one iteration of Ref.
[3] to O (log-" m) parallel steps and m -'5 processors (using as many iterations as in Ref. [3].
i.e. O (Lm)).

Remark 4

The latter asymptotic complexity estimates (but with double overhead) could be deduced
relying on the inversion of .&vt)(i)&.

1226 V. Pax and J. R~IF

Acknowledgements--V. Pan gratefully acknowledges the support given by NSF Grants MCS 8203232 and DCR
8507573. J. Reif was supported by the Office of Naval Research, Contract No. N00014-80-C-0647.

REFERENCES

1. G. H. Golub and C. F. van Loan, Matrix Computations. Johns Hopkins Univ. Press, Baltimore, Md (i983).
2. V. Pan and J. Reif, Fast and efficient parallel solution of linear systems. Technical Report TR-02-85, Center

for Research in Computer Technology, Aiken Computation Lab., Harvard Univ., Cambridge, Mass. (1985).
(Short version in Proc. 17th A. ACM STOC, Providence, R.I., pp. 143-152.)

3. N. K. Karmarkar, A new polynomial time algorithm for linear programming. Combinatorica 4, 373-395
(1984).

4. P. A. Gartenberg, Fast rectangular matrix multiplication. Ph.D. Thesis, Dept. of Mathematics, Univ. of
California, Los Angeles, Calif. (1985).

5. G. Lotti and F. Romani, On the asymptotic complexity of rectangular matrix multiplication. Theor. Comput.
Sci. 23, 171-185 (1983).

6. V. Pan, How to multiply matrices faster. Lecture Notes in Computer Science, Vol. 179. Springer, Berlin (1984).
7. M. Gondran and M. Minoux, Graphs and Algorithms. Wiley-Interscience, New York (1984).
8. K. G. Murty, Linear and Combinatorial Programming. Wiley, New York (1976).
9. V. Pan, Fast finite methods for a system of linear inequalities. Comput. Math. Applic. 11, 355-394 (1985).

I0. N. Z. Shot, New development trend in nondifferentiable optimization. Cybernetics 13, 881-886 (1977).
11. V. Chvatal, Linear Programming. Freeman, San Francisco, Calif. (1983).
12. K. G. Murty, Linear Programming. Wiley, New York (1983).
13. V. Pan and J. Reif, Extension of the parallel nested dissection algorithm to the path algebra problems.

Technical Report 85-9, Computer Science Dept, SUNY, Albany, N.Y. (June 1985).
14. R. Lipton, D. Rose and R. E. Tarjan, Generalized nested dissection. SIAM Jl numer. Analysis 16, 346-358

(1979).
15. S. Pissanetsky, Sparse Matrix Technology. Academic Press, New York (1984).
16. ~ Bjrrck, Methods for sparse linear least squares problems. In Sparse Matrix Computations (Edited by J.

R. Bunch and D. J. Rose), pp. 177-200. Academic Press, New York (1976).
17. R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs. SlAM Jl appl. Math. 36, 177-189

(1979).
18. J. A. George, Nested dissection of a regular finite element Mesh. SIAM Jl numer. Analysis 10, 345-367 (1973).
19. V. Pan, Fast and efficient algorithms for the exact inversion of integer matrices. In Proc. 5th Conf. on

Foundations of Software Engineering and Theoretical Computer Science, Indian Institute of Technology.'Tata
Institute of Fundamental Research, New Delhi, pp. 504-521 (Dec. 1985).

20. V. Pan, Parallel complexity of polylogarithmic time matrix computations. Technical Report 86-14, Computer
Science Dept, SUNY, Albany, N.Y. (April 1986).

21. V. Pan, On the complexity of a pivot step of the revised simplex algorithm. Comput. Math. Applic. I1,
1127-1140 (1985).

22. J. Renegar, A polynomial-time algorithm, based on Newton's method, for linear programming. Technical
Report 07118-86, MSRI, Berkeley, Calif. (1986).

A P P E N D I X

Current Computational Cost of Solving the LPP
In Table AI below we display the estimates for the computational cost of one iteration of the simplex and

Karmarkar's algorithms for the LPP having a dense m × n input matrix & [cf. 21]. We will restrict our analysis
to the cases where n ~< m = O (n). As in Ref. [21], we will not use the possible accelerations based on fast matrix
multiplication, instead we will apply the results of Refs [19, 2] and the improvement of Karmarkar's algorithm
from the end of Section 5.

There is a certain amount of controversy about the current upper estimates for the number of iterations in
the two cited algorithms. The worst-case upper bounds, O (Lm) for Ref. [3] and 2" for the simplex algorithms,
greatly exceed the number of iterations required when the same algorithms run in practice or use random input
instances. This uncertainty complicates the theoretical comparison of the effectiveness of the two algorithms.
However, a preliminary comparison can be based on the partial information already available. In particular, let
us assume the empirical upper bound O (n log m) on the number of iterations (pivot steps) of the simplex
algorithms, cited by some authors who refer to decades of practical computation [11, pp. 45-46: 12, p. 434]. The
bound implies that a total of O (m 3 log m) arithmetic operations suffice in the simplex algorithm vs the O (m ~)
already used in the first iteration of Ref. [3]. Moreover, there are special methods that efficiently update the
triangular factorization of the basis matrices used in the simplex algorithms, which further simplifies each
iteration of the simplex algorithms in the case of sparse input matrices [l t, Chaps 7, 24; 12, Chap. 7]. On the

Table A I

Arithmetic Parallel
operations s t eps Processors

First iteration of Ref. [3] O(m ~) O(IogZm) m3log rn
Average o'ver rt

iterations of Ref. [3] O(m 2~) O(IogZm) m :~
Any iteration of revised

simplex algorithms 0 (rn'-) 0 (m) m

Linear programming and least-squares computat ions 1227

other hand, if appropriate modifications of Karmarkar 's original algorithm indeed run in a sublinear number of
iterations [as he reported on at the TIMS/ORSA Mtg, Boston, Mass. (May 1985) and at the 12th Int. Syrup.
on Mathematical Programming, Boston, Mass. (Aug. 1985)], this would immediately imply a substantial
acceleration of the simplex algorithms at least in the case of (i) parallel computat ion and dense input matrices
(see Table AI) and (ii) both parallel and sequential computations where the graph associated with the matrix
b] of system (2) has an s(m ,- n)-separator family with s(m +n)= O((m +n)~), q < 1 (see the estimates of
Section 5).

Concluding remark

In June 1986, J. Renegar showed that O(x/~mm + n L) iterations (each reduced to solving a LLSP) suffice for
solving LPP, see Ref. [22].

