
PARALLEL COMPLEXITY OF COMPUTATIONS WITH
GENERAL AND TOEPLITZ-LIKE MATRICES
FILLED WITH INTEGERS AND EXTENSIONS∗

VICTOR Y. PAN†

SIAM J. COMPUT. c© 2000 Society for Industrial and Applied Mathematics
Vol. 30, No. 4, pp. 1080–1125

Abstract. Computations with Toeplitz and Toeplitz-like matrices are fundamental for many
areas of algebraic and numerical computing. The list of computational problems reducible to Toeplitz
and Toeplitz-like computations includes, in particular, the evaluation of the greatest common divisor
(gcd), the least common multiple (lcm), and the resultant of two polynomials, computing Padé
approximation and the Berlekamp–Massey recurrence coefficients, as well as numerous problems
reducible to these. Transition to Toeplitz and Toeplitz-like computations is currently the basis for
the design of the parallel randomized NC (RNC) algorithms for these computational problems.

Our main result is in constructing nearly optimal randomized parallel algorithms for Toeplitz
and Toeplitz-like computations and, consequently, for numerous related computational problems
(including the computational problems listed above), where all the input values are integers and all
the output values are computed exactly. This includes randomized parallel algorithms for computing
the rank, the determinant, and a basis for the null-space of an n×n Toeplitz or Toeplitz-like matrix
A filled with integers, as well as a solution x to a linear system Ax = f if the system is consistent.
Our algorithms use O((logn) log(n log ‖A‖)) parallel time and O(n logn) processors, each capable of
performing (in unit time) an arithmetic operation, a comparision, or a rounding of a rational number
to a closest integer. The cost bounds cover the cost of the verification of the correctness of the
output. The computations by these algorithms can be performed with the precision of O(n log ‖A‖)
bits, which matches the precision required in order to represent the output, except for the rank
computation, where the precision of the computation decreases. The algorithms involve either a
single random parameter or at most 2n− 1 parameters.

The cited processor bounds are less by roughly factor n than ones supported by the known
algorithms that run in polylogarithmic arithmetic time and do not use rounding to the closest
integers.

Technically, we first devise new algorithms supporting our old nearly optimal complexity esti-
mates for parallel computations with general matrices filled with integers. Then we decrease dramat-
ically, by roughly factor n1.376, the processor bounds required in these algorithms in the case where
the input matrix is Toeplitz-like. Our algorithms exploit and combine some new techniques (which
may be of independent interest, e.g., in the study of parallel and sequential computation of recursive
factorization of integer matrices) as well as our earlier techniques of variable diagonal (relating to
each other several known algebraic and numerical methods), stream contraction, and the truncation
of displacement generators in Toeplitz-like computations; our development and application of these
techniques may be of independent interest.

Key words. parallel algorithms, randomized algorithms, Toeplitz matrix computations, Toeplitz-
like matrices, polynomial gcd, displacement rank, computational complexity, block Gauss–Jordan
decomposition, p-adic lifting, Newton–Hensel’s lifting

AMS subject classifications. 68Q22, 68Q25, 68Q40, 65Y20, 47B35, 65F30

PII. S0097539797349959

1. Introduction.

1.1. Toeplitz and Toeplitz-like matrices and some applications. The fast
version of Euclidean algorithm [AHU74], [BGY80] computes the greatest common di-

∗Received by the editors January 18, 1999; accepted for publication (in revised form) March 20,
2000; published electronically August 29, 2000. The results of this paper have been presented at
the ACM–SIAM Workshop on Mathematics of Numerical Analysis: Real Numbers Algorithms, Park
City, Utah, 1995.

http://www.siam.org/journals/sicomp/30-4/34995.html
†Department of Mathematics and Computer Science, Lehman College, City University of New

York, Bronx, NY 10468 (vpan@alpha.lehman.cuny.edu). The work of this author was supported by
NSF grants CCR 9020690 and CCR 9625344 and PSC CUNY Award 666327.

1080

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1081

visor (gcd) of two polynomials of degrees at most n by using O(n(log n)2) arithmetic
or field operations (that is, additions, subtractions, multiplications, and divisions),
but to yield substantial parallel acceleration, one has to reduce the problem to the so-
lution of the associated (possibly singular) Toeplitz-like (resultant or subresultant) or
Toeplitz linear system of O(n) equations, Tx = f [BGH82], [G84], [BP94]. (The con-
cepts of Toeplitz and Toeplitz-like matrices are well known (see [KKM79], [CKL-A87],
[BP94], pp. 47–48, 138–141, 148–151), but for the reader’s convenience, we recall their
definitions below. (Also see Definitions 2.18 and 13.2 in sections 2 and 13.))

The gcd computation is only one (though celebrated) example of various major
problems of algebraic and numerical computing whose solution is reduced to solv-
ing Toeplitz or Toeplitz-like linear systems of equations. The list of such problems
includes the computation of the resultant, the Sturm and subresultant sequences,
and the least common multiple (lcm) for a pair of univariate polynomials ([BT71],
[BGY80], [BP94], sections 2.8–2.10), as well as the shift register synthesis and linear
recurrence computation [Be68], [Ma75], inverse scattering [BK87], adaptive filter-
ing [K74], [H91], modelling of stationary and nonstationary processes [KAGKA89],
[KVM78], [K87], [L-AK84], [L-AKC84], numerical computations for Markov chains
[Ste94], Padé approximation of an analytic function [BGY80], polynomial interpola-
tion and multipoint evaluation [PSLT93], [PZHY97], solution of partial differential
and integral equations [Bun85], [C47/48], [KLM78], [KVM78], parallel computations
with general matrices over an arbitrary field of constants [P91], [P92], [KP91], [KP92],
approximating polynomial zeros [P95], [P96a], [P97], and the solution of polynomial
systems of equations [EP97], [MP98], [BMP98].

Furthermore, the general reduction techniques of [P90] enable us to extend the
algorithms available for Toeplitz and Toeplitz-like computations to computations with
some other major classes of structured matrices, such as Cauchy-like and Vandermonde-
like matrices, also highly important in many areas of computing [PSLT93], [H95],
[GKO95], [PZHY97], [OP98], [OP99], [P00], [P00a].

The design of new effective algorithms for parallel solution of Toeplitz and Toeplitz-
like linear systems will be our major goal. For the reader’s convenience, we will next
briefly recall the definitions and some basic properties of Toeplitz and Toeplitz-like
matrices. (See section 13 and Definition 2.18 of section 2 for more details.)

T = (ti,j) is an n× n Toeplitz matrix if

ti,j = ti+1,j+1 for i, j = 0, 1, . . . , n− 2,(1.1)

that is, if the entries of T are invariant in their shifts into the diagonal direction.
Toeplitz matrices are easy to store, since such an n × n matrix is fully represented
by the 2n− 1 entries of its first column (or row, respectively) and its last column (or
row). Multiplication of an n× n Toeplitz matrix by a vector can be reduced to three
fast Fourier transforms (FFTs) (e.g., via its reduction to polynomial multiplication
modulo x2n−1 (see [BP94], p. 133)) and can be performed by using O(n log n) arith-
metic operations. Hereafter, arithmetic operations, as well as comparisons of pairs
of rational numbers and the rounding of a rational number to a closest integer, are
referred to as ops.

Due to the structural properties of Toeplitz matrices, one may solve a nonsingular
Toeplitz linear system of n equations by using O(n(log n)2) ops [BGY80], [Morf80],
[BA80], [Mu81], [dH87], [AGr88], [K95]. (Note that we would need storage space
n2 + n and 2n2 − n ops to multiply a general matrix by a vector and order of nd ops
with d > 2 to solve a general nonsingular linear system of n equations.)

1082 VICTOR Y. PAN

The above properties are extended to the class of n × n Toeplitz-like matrices,
that is, ones represented in the form

T =

�∑
i=1

LiUi,(1.2)

where Li and UTi are n×n lower triangular Toeplitz matrices, UTi is the transpose of
Ui, and � is bounded by a fixed constant, � = O(1). (Note that any n× n matrix can
be represented in the form (1.2) for � ≤ n.) It suffices to store the 2�n entries of the
first columns of Li and UTi for i = 1, . . . , � in order to represent T . These 2� columns
form a pair of n× � matrices called a displacement generator of T of length �.

Representation (1.2) for a Toeplitz-like matrix enables us to manipulate with O(n)
entries of its displacement generator (rather than with its n2 entries). Furthermore,
we may immediately multiply a matrix T of (1.2) by a vector by using O(�n log n) ops,
and also we may solve a linear system Tx = f in O(�2n(log n)2) ops if T is nonsingular
[Morf80], [BA80], [Mu81].

We have � ≤ 2 in (1.2) for Toeplitz matrices, their inverses, and resultant ma-
trices, and � ≤ g + h for g × h block matrices with Toeplitz blocks. Furthermore,
the transposition of a matrix leaves � invariant, whereas � may grow only slowly in
multiplication and addition/subtraction of pairs of matrices and stays unchanged or
grows only nominally in the inversion of a nonsingular matrix (see section 13).

1.2. NC and RNC solutions (some background). Due to their reduction
to Toeplitz/Toeplitz-like linear systems, several computational problems listed in the
previous section, including the gcd, lcm, and resultant computation and Padé ap-
proximation, can be solved by using O(n(log n)d1) ops, where n is the input size, and
d1 ≤ 3. (We may need to allow d1 = 3 in order to handle singular Toeplitz/Toeplitz-
like linear systems; we reduce their solution to computing the rank of the coefficient
matrix and to the subsequent solution of a nonsingular Toeplitz-like linear system.)
Like the Euclidean algorithm, however, such solution algorithms require an order of
n parallel steps.

The known alternative algorithms yield NC or randomized NC (RNC) solutions
of all the cited computational problems [BGH82], [G84], [BP94], that is, yield their
solution by using t(n) = O((log n)c) time and p(n) = O(nd) arithmetic processors, for
two fixed constants c and d, under the customary exclusive read exclusive write ran-
dom access machine (EREW PRAM) arithmetic model of parallel computing [KR90],
[J92]. (Alternatively, we may define the NC and RNC solutions as the families of
arithmetic, Boolean, or arithmetic-Boolean circuits for the above problems having
depths O((log n)c) and sizes O(nd) for two fixed constants c and d [G86].) Indeed,
the NC/RNC solution of a linear system of n equations can be computed over any field
of constants [Cs76], [Be84], [Ch85], [KP91], [KP92]. These algorithms, however, leave
open the important problem of processor efficiency of (R)NC Toeplitz and Toeplitz-
like computations, that is, of having the ratios p(n)/T+(n) or even p(n)/T−(n) at
the level O((log n)c1) for a constant c1, where T+(n) and T−(n) denote the record
upper and lower bounds on the sequential time of the solution, respectively. Indeed,
on the one hand, we have already cited the bound T+(n) = O(n(log n)3), and, clearly,
T−(n) ≥ n. On the other hand, p(n) has order nd for d > 3 in [Cs76], [Be84], [Ch85]
and for d > 2 in [KP91], [KP92], for solving general linear systems in NC/RNC,
whereas p(n) has order nd for d ≥ 2 for the known NC/RNC Toeplitz/Toeplitz-like
solvers over any field of constants [P92], [KP94], [P96], [P96b]. To yield NC/RNC

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1083

and processor efficiency, we must decrease d to the optimal level 1. An approach
toward this goal was outlined in [BP94, p. 357], incorporating various nontrivial tech-
niques developed earlier for computations with general and dense structured matrices
[Morf80], [BA80], [P85], [P87], [P92], [P92b], [P93], [P93a], and our objective in the
present paper is to show in detail how this can be done, under certain assumptions
on the model of computing.

1.3. The model of computing. Our main assumption is that the input con-
sists of integers (for the reduction from a real input, one may use binary or decimal
chopping followed by scaling) and that rounding a rational number to a closest inte-
ger, as well as an arithmetic operation or comparison of two rationals, are allowed as
unit cost operations. The bit-precision of these computations will be bounded at the
optimal level of the output precision, so that we achieve solution at a low Boolean
cost.

Stating our estimates for the computational cost, we will let OA(t, p) and OB(t, p)
denote the simultaneous bounds O(t) on the parallel time and O(p) on the number
of arithmetic or Boolean processors, respectively. We will routinely decrease the
processor bounds slightly, by exploiting the B-principle of parallel computing, which
is a variant of Brent’s principle and according to which O(s) time-steps of a single
arithmetic or Boolean processor may simulate a single time-step of s arithmetic or,
respectively, Boolean processors [KR90], [PP95]. According to the B-principle, the
bound OA(t, kp) implies the bound OA(tk, p), and similarly OB(t, kp) implies the
bound OB(tk, p) for a parameter k ≥ 1. (For p = 1, we arrive at sequential time
bounds OA(tk, 1) and OB(tk, 1).) By applying the well-known technique based on the
B-principle, one may slow down the computations at the stages requiring too many
processors. In many cases this increases the time bound only by a constant factor
but more substantially decreases the processor bound; a celebrated example is the
summation of n values, where application of the B-principle decreases the asymptotic
cost bound from OA(log n, n) to OA(log n, n/ log n) (cf. [Q94, pp. 44–46]; [BP94,
pp. 297–298]). (The converse trade-off of time and processor bounds is not generally
possible, but for almost all matrix computations that we consider and, more generally,
for any task of the evaluation of a set of multivariate polynomials, one may always
transform an NC/RNC algorithm into one using O(log2 n) time and O(nd) arithmetic
processors for some finite but generally quite large constant d [VSBR83], [MRK88].
We will not use the latter result as we are concerned about processor bounds.)

Remark 1.1. Our algorithms for Toeplitz/Toeplitz-like computations are es-
sentially reduced to computing the convolutions (which can be performed via FFT,
assuming that the 2hth roots of 1 are available) and the inner products of pairs of vec-
tors. These basic operations (for vectors of a dimension n) can be performed at the
cost OA(log n, n) and OA(log n, n/ log n), respectively, under both the EREW PRAM
model and more realistic models such as hypercube, butterfly and shuffle-exchange pro-
cessor arrays [Le92], [Q94]. Thus, it is possible to implement our algorithms efficiently
assuming the latter models.

1.4. Our main results. The algorithms of this paper extend our previous work
on parallel computations with general matrices [P85], [P87], [P93a], [BP94] (cf. also
[PR91], [P92a], [P93b], [PR93]) by means of incorporation of some techniques de-
veloped in [P90], [P92], [P92b], [P93], [P93a] for computations with Toeplitz and
Toeplitz-like matrices. As a result, we arrive at RNC algorithms for the most funda-
mental computations with the latter classes of matrices filled with integers (such as
the computation of their ranks, null-spaces and determinants and solving linear sys-

1084 VICTOR Y. PAN

tems of equations). These algorithms yield optimal (up to polylogarithmic factors)
time and processor bounds, which improves by factor n the processor bounds of the
known RNC algorithms. By using the known reduction to Toeplitz and Toeplitz-like
computations, we also extend our results to yield similar nearly optimal upper bounds
on the time and processor complexity (also achieving order of n improvement versus
the known RNC algorithms) for many other related computations (e.g., the compu-
tation of polynomial gcd and lcm and Padé approximation), where the input values
are integers.

We will emulate the historic line, by first treating the case of general matrices
and then improving the algorithms in the Toeplitz/Toeplitz-like case. We will start
with recalling the record parallel complexity bounds of [P85], [P87] for computations
with a general n × n input matrix; we will give their alternative derivation. Stating
these bounds in Theorem 1.1 below, we will use the value ω satisfying 2 ≤ ω < 2.376
and such that a pair of n × n matrices can be multiplied at the arithmetic cost
OA(log n, n

ω). We note that the magnitudes of det A and the integer entries of adj
A = A−1 det A can be as large as ||A||n or ||A||n−1, which means the output precision
of an order of n log ||A||. We ensure that the precision of the computations by our
algorithms does not exceed this level. Furthermore, we compute the rank of A by
using even a lower precision, which enables some decrease of the Boolean cost of the
computation of the rank.

Technically, we will largely follow the cited outline, given by us in [BP94, chapter
4], and combine a variety of the known techniques, in particular ones developed in
[P85], [P87], [P92b], [P93], [P93a], and some new ones (such as the combination of
primal and dual recursive decompositions of an integer matrix with the objective to
bound the magnitude of the intermediate and output values). The required combi-
nation of all these techniques is highly nontrivial and never was presented in either
complete or accessible form.

The main purpose of our paper is to give such a presentation or, formally speak-
ing, to give complete and accessible proofs of the two theorems below. The first of
them only handles the case of general integer input matrices (in this case our paral-
lel complexity results repeat ones of [P85], [P87], except for the presently improved
Boolean cost of the rank computation), but we use distinct alternative proof, which
should be technically interesting in its own right and is fully used in our subsequent
relatively simpler extension to the Toeplitz/Toeplitz-like case, handled by our second
theorem.

Theorem 1.1. Let A be a k × h matrix and let f be an h-dimensional vector,
both matrix and vector filled with integers that range from −2a to 2a for some a > 1.
Let k + h = O(n). Then, with an error probability of at most n−c for a fixed positive
constant c, one may compute r, the rank of A, at a randomized computational cost
bounded by OA((log n) log(n log a), n

ω) and by

OB((log n)(log(n log a))
2 log log(n log a), nω+1 log(na)).

Furthermore, one may compute the determinant of A and, if A is nonsingular, then
also the inverse of A and the solution to a linear system Ax = f , all of them at a
randomized computational cost bounded by OA((log n) log(na), n

ω) and by

OB((log n)(log(na))
2 log log(na), (log n)(a+ log n)nω+1/ log(na)).

If A is an n×n singular matrix, the latter bounds also apply to the computation of n−r
basis vectors of a null-space of A and a solution x to a linear system Ax = f provided

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1085

that this system is consistent. The same cost bounds apply to testing correctness
of the computed value of r=rank A as well as of all other output values. In these
computations, 2n− 1 random parameters are used for computing rank A, detA, and
the null-space of A, and a single random parameter is used for all other tasks including
the computation of |detA|. The above complexity estimates do not cover the cost of
generation of the random parameters.

In the case of a k × h Toeplitz or Toeplitz-like input matrix (defined in section
1.1 and also in sections 2 (Definition 2.18) and 13 (Definition 13.2)), an extension
of our approach yields much smaller (by factor nω−1/ log n) upper bounds on the
processor complexity of the same computations (with no increase of the asymptotic
time-bounds).

Theorem 1.2. Under the assumptions of Theorem 1.1, let the input matrix A be a
Toeplitz matrix or a Toeplitz-like matrix. Then all the processor complexity estimates
of Theorem 1.1 can be decreased by factor nω−1/ log n, preserving the time bounds,
to yield the randomized parallel complexity bounds OA((log n) log(n log a), n log n),
OB ((log n)(log(n log a))2 log log(n log a), (n2 log n) log(na)), and OA((log n) log(na),
n log n), OB((log n)(log(na))

2 log log(na), (a+ log n)(n log n)2/ log(na)), respectively.
Here, the inverse of A and the basis matrix for the null-space of A are assumed to be
output in the form of their displacement generators.

We refer the reader to Remark 12.2 on possible minor refinement of the estimates
of both theorems.

Due to substantial economization of computational resources in our algorithms for
Toeplitz/Toeplitz-like computations, they may become practically efficient provided
that they are supported by subroutines for multiprecision parallel computations with
integers and polynomials and by the development of the interface between algebraic
and numerical computing, both required in our algorithms. Such a development is
motivated by various potential benefits, our algorithms is but one of many examples.
The practical implementation of our algorithms for general n × n matrices faces a
harder problem of the storage of n2 long integers in the computer memory (versus
2n−1 in the Toeplitz case), and this task becomes practically infeasible at some point
as n increases.

Our algorithms do not improve the known sequential algorithms for Toeplitz and
Toeplitz-like computations [BGY80], [Morf80], [BA80], [Mu81], [dH87], which run in
nearly optimal arithmetic time of O(n log2 n), but some of our techniques may be
of practical and theoretical interest for sequential computations too. In particular,
our Toeplitz–Newton iteration techniques are effective for rapid practical improve-
ment of approximate solution of Toeplitz and Toeplitz-like linear systems of equa-
tions [PBRZ99], and our study of integral version of recursive decomposition as well
as our bounds on the growth of the auxiliary integers (particularly, of the auxiliary
determinants) is a natural but nontrivial extension of the Bareiss version of Gaus-
sian elimination (cf. [B68]). Even our simple idea of the precision decrease in the
randomized computation of the rank (by performing the computation modulo a fixed
prime) leads to a substantial decrease of the sequential Boolean time bounds (for
both general and Toeplitz/Toeplitz-like matrices). The latter trick also applies to the
closely related problem of the computation of the degree of the gcd and lcm of two
polynomials with integer coefficients.

1.5. Extensions. We already cited [BGY80], [G84], [P92], [P96b], and [BP94]
on the reduction of the computation of the gcd, the lcm, and the resultant of two poly-
nomials as well as Padé approximation of a formal power series or of a polynomial—to

1086 VICTOR Y. PAN

the computation of the rank of a Toeplitz/Toeplitz-like matrix and solving a nonsin-
gular Toeplitz/Toeplitz-like linear system of equations. The integrality of the input
can be preserved in this reduction, and the input size may grow by a factor of at most
2. Therefore, the computational complexity estimates of Theorem 1.2 are immediately
extended to the listed problems of the gcd, lcm, resultant and Padé computations (as-
suming the restrictions on the size and integrality of the input), as well as to various
computational problems reducible to the latter ones.

Furthermore, we refer the reader to [P90], on the general techniques that immedi-
ately enable extension of our results of Theorem 1.2 to computations with Cauchy-like
and Vandermonde-like input matrices, to [BP93], [BP94] on the extension to the case
of matrices represented as the sums of Hankel-like and Toeplitz-like matrices, and
to [BGY80], [BP94], [P96b], [PSLT93], [PZHY97], and other references cited in the
beginning of this paper on various applications of the computations with Toeplitz-like
and other structured matrices (see also Remark 14.1).

Among possible extensions of Theorem 1.1, consider the case where the inte-
ger matrix A is symmetric positive definite, sparse, and associated with an s(n)-
separatable graph given with its s(n)-separator family (cf. [LRT79], [P93b], [PR93]).
If such a matrix A is well conditioned (even if its entries are not integers but any real
numbers), then, at the arithmetic cost OA((log n)

3, (s(n))ω/ log n), the parallel algo-
rithm of [P93b], [PR93] numerically computes both recursive factorization of such a
matrix and its determinant, as well as a solution x = A−1f to a linear system Ax = f
(if detA �= 0). Numerical approximation is involved in this algorithm at the auxiliary
stages of matrix inversions, where a parallel algorithm of [PR89] is applied. If A is
filled with integers, then this stage can be performed exactly, by using the algorithms
of [P85], [P87]. Then, the exact recursive factorization of A, detA, and A−1f can
be computed at the arithmetic cost OA((log n)

3, (s(n))ω + n). By employing the al-
gorithm of this paper for recursive decomposition and inversion of a general integer
matrix, one may improve the latter bounds a little, to yield OA((log n)

2, (s(n))ω+n).

The results of Theorems 1.1 and 1.2 can be further extended to various other
matrix computations by using the known reduction techniques of [BP94], [P96],
[P96b]. For demonstration, consider the computation of the characteristic polynomial
cA(x) = det(xI−A) of the above sparse n×n matrix A. Such a polynomial has degree
n. We may first concurrently compute cA(x) at n + 1 distinct points x0, . . . , xn and
then obtain its coefficients by interpolation. If the chosen values of xi are larger than
n‖A‖, then the matrices xiI−A are positive definite, and we may compute cA(xi) for
i = 0, 1, . . . , n, at the overall computational cost OA((log n)

2, ((s(n))ω + n)n). These
bounds dominate the cost of the subsequent interpolation producing the polynomial
det(xI −A).

As another example, the algorithms of [BP94, p. 357], for Padé approximation
and polynomial gcd have been used in [P95] and [P96a] in order to obtain the record
parallel arithmetic complexity estimates for approximating polynomial zeros. Our
present improvement of these results of [BP94] in Theorem 1.2 immediatley implies
the respective minor improvement of the results of [P95] and [P96a].

Corollary 1.3. Given a positive b and the coefficients of an nth degree monic
polynomial with zeros z1, . . . , zn satisfying maxi|zi| ≤ 1, one may compute approxima-
tions z∗1 , . . . , z

∗
n to z1, . . . , zn satisfying |z∗i −zi| < 2−b, i = 1, . . . , n; the computation is

randomized; its arithmetic cost is bounded by OA((log n)
3((log n)2+log(b+2)), n

log n).

1.6. Outline of the method. A major ingredient of our approach is the vari-
able diagonal method of [P85], [P87], which combines several algebraic and numerical

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1087

techniques to yield effective parallel inversion of a matrix A filled with integers. The
method includes Newton’s iteration, which effectively solves the latter problem pro-
vided that a good initial approximation to A−1 is available. Such an approximation is
not available, however, for a general integer matrix A. The recipe of [P85], [P87] is to
invert at first the auxiliary matrix F = V −apI, where V = A mod p, I is the identity
matrix of an appropriate size, p is a prime, p ≥ n, and a is a sufficiently large integer.
(We follow this recipe and show that it suffices to choose a = 10pn2 in our case.)
Then the matrix −I/(ap) is a good initial approximation to F−1, which we rapidly
improve by Newton’s iteration, until F−1 is approximated closely enough. Since F is
an integer matrix, detF and the entries of adj F = (detF)F−1 are integers, which
can be recovered by rounding their approximations within absolute errors less than
1/2. This gives us (detA) mod p, (adj A) mod p, and A−1 mod p. Then the algebraic
technique of p-adic (Newton–Hensel’s) lifting is applied. In � steps, for a sufficiently
large �, the matrix A−1 mod p is lifted to A−1 mod pL, L = 2l. Then the lifting of
A−1 mod p is extended to lifting similarly (det A) mod p and (adj A) mod p. Finally,
det A and adj A are easily recovered from (detA) mod pL and (adj A) mod pL.

The remaining ingredient is the approximation of detF . In [P85], [P87], this is
achieved as a by-product of solving the more general task of computing det(xI − F),
the characteristic polynomial of F . In the present paper, we employ a more routine
approach, based on the computation of recursive (block) decomposition (RD) of F
(cf. [St69], [Morf74], [Morf80], [BA80], [P87]) or, equivalently, on the computation
of nested Schur’s complements, also called Gauss transforms (cf. [C74], [F64]). A
single recursive step of this approach is the decomposition of the input matrix (rep-
resented as a 2× 2 block matrix) into the product of a block diagonal matrix and two
block triangular matrices (see (2.3)). Such a decomposition can be obtained by block
Gauss–Jordan elimination and can be reduced to a few matrix multiplications (their
parallel implementation is simple) and inversions (they are made simple by Newton’s
iteration, since good initial approximations are given by matrices −I/(ap)). As in
[P85], [P87], random choice of a large prime p in a fixed large interval enables us to
avoid degeneration and singularities (with a high probability).

An important point, as in [P85], [P87], is that in spite of computing all the
matrix inverses approximately, we finally recover them exactly (as well as all the
other matrices involved in the RDs) by exploiting the representation of their entries
as the ratios of integers. To emplasize this point, we called the resulting RDs the
integral RDs (IRDs). The only remaining nontrivial problem in the computation of
the IRD of F and det F is to bound the magnitudes of the integers involved. In the
present paper, this problem is solved based on the computation of the dual RD, that is,
the RD of F−1. (The celebrated techniques of [B68] do not suffice, and their extension
to our case is nontrivial not just because we deal with recursive block decomposition,
rather than with the more customary Gaussian elimination, but also because we need
to control the magnitudes of the determinants of the matrices involved in the RD,
which is a much harder problem, and we use the dual RD in order to solve it.)

As soon as the IRDs of F and F−1 are available, we obtain the RDs modulo p
of A and A−1. Now, we apply the techniques of p-adic (Newton–Hensel’s) lifting not
only to A−1 mod p but to the entire RDs modulo p of A and A−1, in order to obtain
the RDs modulo pL of A and A−1 for L = 2l and a sufficiently large l. (detA) mod
pL is recovered from such an RD of A. As det A is an integer, we recover easily det
A and then the matrix adj A = A−1 detA, whose entries are integers.

This approach only gives us an alternative derivation of the estimates of [P85],

1088 VICTOR Y. PAN

[P87] for parallel complexity of some fundamental computations with general matri-
ces. The new algorithms, however (unlike ones of [P85], [P87]), have an advantage
of allowing their effective extension to Toeplitz/Toeplitz-like cases. Indeed, manip-
ulation with displacement generators, rather than with matrices themselves, enables
the decrease of the processor complexity of the RNC algorithms outlined above to the
optimal level linear in n.

The nontrivial problem in such a Toeplitz/Toeplitz-like extension is the control of
the length of the displacement generators in the process of Newton’s iteration. (Un-
controlled growth of the length would immediately imply the growth of the processor
bounds by factor nω−1/ log n for ω > 2.375.) We solve this problem by applying two
techniques of truncation of generators (TG), which we borrow from [P92] and [P92b],
[P93], [P93a], respectively.

The above outline was essentially given by us in [BP94, chapter 4]. Presently, we
also add the technique of stream contraction specified in section 10 (and, essentially,
being the pipelining of the two processes of RD and Newton’s iteration) borrowed from
[PR91]. Stream contraction enables additional acceleration of our algorithms by factor
log n. (Using the technique of stream contraction for the acceleration of Toeplitz-like
computations was also proposed in [R95], though the algorithms of [R95] did not give
any improvement of the processor bounds in the Toeplitz/Toeplitz-like case versus
the much larger bounds known in the case of general input matrices (see our Remarks
6.1, 11.1, and 14.2 and our similar comments in [P96b])).

1.7. Organization of the paper. The order of our presentation will slightly
differ from the one outlined above. After some preliminaries in section 2, we will
introduce the RD and extended RD (ERD) of a matrix in section 3. In section 4,
we define the IRD and show the transition from RD to IRD. We recall an algorithm
for approximate matrix inversion via Newton’s iteration in section 5 and apply it in
order to approximate the RD and the IRD of an integer matrix in section 6. We
estimate the errors and parallel complexity of these computations in sections 7–9. We
apply pipelining (stream contraction) to achieve acceleration by factor logn in section
10, extend the results of sections 6 and 10 to computing the ERD modulo a fixed
prime in section 11, and use p-adic lifting to recover (from the ERD) the inverse, the
determinant, the rank, and the null-space of an integer matrix (thus proving Theorem
1.1) in section 12. In section 13, we recall some known definitions and properties for
computations with Toeplitz and Toeplitz-like matrices. In section 14, we apply these
properties to improve the results of section 12 in the Toeplitz and Toeplitz-like cases
(thus proving Theorem 1.2). Section 15 is left for a brief discussion.

2. Some definitions and auxiliary results for matrix computations. We
will next recall some customary definitions and well-known basic properties of general
matrices.

Definition 2.1 (matrix notation). I and 0 denote the identity and null matrices,
of appropriate sizes. WT is the transpose of a matrix or vector W . diag (wi)

n−1
i=0 =

diag (w0, . . . , wn−1) is the diagonal matrix whose diagonal is filled with w0, . . . , wn−1;
D(W) = diag (W) = diag (wi,i)

n−1
i=0 for a matrix W = (wi,j). rank W is the rank of

W . det W is the determinant of a square matrix W . adj W is the adjoint (adjugate)
matrix of W , equal to W−1 det W for a nonsingular matrix W .

In our error analysis, we will use the customary vector and matrix norms [GL89/96].
Definition 2.2 (vector and matrix norms). ‖ v ‖=‖ v ‖1=

∑
i |vi|, ‖ v ‖2=

(
∑
i v

2
i)

1/2 for a real vector v = (vi). ‖ W ‖g= max‖v‖g=1 ‖ Wv ‖g, g = 1, 2;
‖ W ‖=‖ W ‖1 for a matrix W .

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1089

Proposition 2.3 (norm bounds). ‖ W ‖=‖ W ‖1= maxj
∑
i |wi,j | for a matrix

W = (wi,j). Furthermore, if W is a k × k matrix and V is its submatrix, then

||V ||g ≤ ||W ||g, g = 1, 2;

||W ||/k1/2 ≤ ||W ||2 ≤ ||W ||k1/2.

Proof. To prove the bound ||V ||g ≤ ||W ||g, note that ||Ww||g ≥ ||V v||g if v is
a subvector of w and if w has zero components corresponding to the columns of W
that are not in V . Other claimed relations can be found in [GL89/96].

We will also use the following known fact (cf. [GL89/96] or [BP94]).
Proposition 2.4 (bounds on the determinant and the entries of the adjoint

matrix). Let W be a k × k matrix. Then |det W | ≤ (‖ W ‖g)k, and furthermore,
|v| ≤ (‖ W ‖g)k−1 for every entry v of adj W , where g = 1, 2.

Definition 2.5 (column-diagonally dominant (c.-d.d.) matrices). d(W) =
‖ WD−1(W) − I ‖. A matrix W is column-diagonally dominant (hereafter, we will
use the abbreviation c.-d.d.) if d(W) < 1.

Definition 2.6 (leading principal submatrix (l.p.s.) and its Schur complement).
For a k× k matrix W , let W (q) denote its q× q northwestern or l.p.s., formed by the
intersection of the first q rows and the first q columns of W , q = 1, 2, . . . , k. If B is
a nonsingular l.p.s. of W and if

W =

(
B C
E G

)
,(2.1)

then the matrix

S = S(W,B) = G− EB−1C(2.2)

is called the Schur complement of B in W .
The Schur complement S of (2.2) can be obtained by Gaussian or block Gaussian

elimination applied to the matrix W , provided that the elimination process can be
carried out (cf. [GL89/96, P3.2.2, p. 103]). In particular, it is easily verified that
for k > q the Schur complement of B = W (q) in a k × k matrix W is the (k − q) ×
(k− q) matrix obtained from W in q steps of Gaussian elimination (without pivoting)
provided that these steps can be carried out (with no division by 0). The latter
assumption holds, in particular, if W is a c.-d.d. matrix.

By applying block Gauss–Jordan elimination to the 2 × 2 block matrix W of
(2.1), with a nonsingular block B, we obtain the following decomposition, which will
be fundamental for our study:

W =

(
I 0

EB−1 I

) (
B 0
0 S

) (
I B−1C
0 I

)
.(2.3)

If a matrix W is nonsingular, then (2.3) implies that the matrix S is also nonsin-
gular. By inverting the matrices on both sides of (2.3), we obtain that

W̃ = W−1 =

(
I −B−1C
0 I

) (
B−1 0
0 S−1

) (
I 0

−EB−1 I

)
.(2.4)

Equation (2.4) immediately implies the following proposition.
Proposition 2.7. Under (2.1)–(2.4), the matrix S−1 is the trailing principal

(that is, southeastern) submatrix of W̃ = W−1.

1090 VICTOR Y. PAN

Our algorithms will rely on the decompositions of (2.3), (2.4), recursively applied
to the matrices B,B−1, S, and S−1, which we will call RDs. The next definitions
and results will cover the nonsingularity properties required for the existence of such
recursive extension of (2.3), (2.4) and some other relevant properties of l.p.s.’s and
Schur complements (the s.p.d. matrices will be used only at the very end of section
12).

Definition 2.8 (strongly nonsingular matrices). A matrix W is strongly non-
singular if all its leading principal submatrices are nonsingular.

Definition 2.9 (symmetric positive definite (s.p.d.) matrices). A real matrix
M is s.p.d. if it can be represented as the product AAT for a nonsingular matrix A.

The next proposition (cf. [BP94, exercise 4c, p. 212]), extends strong nonsingu-
larity and the s.p.d. property to an l.p.s. and a Schur complement.

Proposition 2.10. If a matrix W of (2.1) is strongly nonsingular (respectively,
if W is s.p.d.), then so are its every l.p.s., including the matrix B of (2.1), and the
Schur complement S of B, defined by (2.2).

Corollary 2.11. Any s.p.d. matrix is strongly nonsingular.
By recursively applying block Gaussian elimination at first to the block matrix

W of (2.1) with B = W (r) and then to W (r), with the l.p. (that is, leading principal
or northwestern) block W (q), q < r, we obtain the following.

Proposition 2.12 (transitivity of Schur’s complementation). If r > q and if
W (r) and W (q) are nonsingular matrices, then S(W,W (q)) = S(S(W,W (r)),
S(W,W (r))(r−q)).

We also easily deduce the following.
Proposition 2.13 (transitivity of the c.-d.d. property). If d(W) < 1 for a

matrix W of (2.1), then B, S, and W are nonsingular matrices, d(B) ≤ d(W) < 1,
d(S) ≤ d(W) < 1, and (2.3)–(2.4) hold.

The following result, together with Propositions 2.4 and 2.12, will be basic for
our bounds on the values involved in recursive decompositions.

Proposition 2.14. Assuming (2.1)–(2.2), every entry of the matrix S det B is
a subdeterminant (that is, the determinant of a submatrix) of the matrix W .

Proof. Let B = W (q). Consider the l.p. (that is, northwestern) entry s0,0 of S.
By Proposition 2.12, it is the Schur complement of B in the submatrix W (q+1) of
W . By Proposition 2.7, s−1

0,0 = detB/detW (q+1). Therefore, s0,0 detB = detW (q+1),
which proves the proposition for s0,0. To extend this result to any entry si,j of S,
interchange the ith and 0th rows and the jth and 0th columns of S and the respective
pairs of rows and columns of W .

Clearly, the matrix adj B = B−1 det B is filled with integers ifW is. Proposition
2.14 (or, alternatively, (2.2)) implies the similar property of the matrix S det B. We
summarize these observations for future references.

Proposition 2.15 (integrality of adjoints and scaled Schur complements). If a
matrix W of (2.1) is filled with integers, then so are the matrices adj B = B−1det B
and S det B.

Recursive application of the next result enables us to recover detW from recursive
decomposition of W .

Proposition 2.16 (factorization of the determinants and submatrices implied
by matrix decomposition). Matrix equation (2.3) implies that det W = (det B) det
S and, furthermore, that

W (t) =

(
I 0

EB−1 I

)(t) (
B 0
0 S

)(t) (
I B−1C
0 I

)(t)

for t = 1, . . . , k ,

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1091

and det W (t) = (det B) det S(t−q) for t = q + 1, . . . , k, provided that W is a k × k
matrix.

In section 12, we will also use the following definitions and known results.
Definition 2.17 (the null-space of a matrix; cf. [GL89/96] or [BP94]). The

null-space N(A) of a matrix A is the linear space formed by all vectors x satisfying
the vector equation Ax = 0.

Fact 2.1. Two vector equations, Ax = f and Ay = f , together imply that
x − y ∈ N(A), or, equivalently, any solution x to a consistent linear system Ax = f
can be represented in the form x = x0 + z, where x0 is a fixed specific solution and
z ∈ N(A).

Toeplitz matrix computations will be studied in sections 13 and 14, but also the
proposition below involves Toeplitz matrices and is needed in section 12.

Definition 2.18 (Toeplitz matrices). T = (ti,j) is a k × k Toeplitz matrix if
ti+1,j+1 = ti,j for i, j = 0, 1, . . . , k − 2 (cf. (1.1)), that is, if the entries of T are
invariant in their shifts in the diagonal direction. (Such a matrix is defined by its
two columns (or rows)—the first one and the last one.) A square lower triangular
Toeplitz matrix is defined by its first column u and is denoted L(u). Z = Zk = (zi,j)
is a k × k lower triangular Toeplitz matrix with the first column (0, 1, 0, . . . , 0)T , so
that zi+1,i = 1 for i = 0, 1, . . . , k − 2, zi,j = 0 if i �= j + 1.

Proposition 2.19 ([KS91], (cf. [BP94, Lemmas 1.5.1 and 2.13.1])). Let S be
a fixed finite set of cardinality |S|. Let A, L, and U be n × n matrices, let rank
A = r, let L and UT be unit lower triangular Toeplitz matrices, each defined by the
n − 1 entries of its first columns. Let these entries be chosen from S at random,
independently of each other, under the uniform probability distribution on S. Then
the matrix (UAL)(r) is strongly nonsingular with a probability at least 1−(r+1)r/|S|.

3. RD and ERD of a c.-d.d. matrix. With minor deviation from the order
of our outine of section 1.6 but in accordance with section 1.7, we will next study the
RD, then, in section 4, the integral RD (IRD), and in section 5, matrix inversion.

Hereafter, for convenience, let log stand for log2, let n = 2h for an integer h =
log n, and let V be a fixed n× n c.-d.d. matrix.

We will define an RD of such a matrix W = V based on its representation in the
form (2.3) for q = n/2. We will first apply (2.3) to W = V and then, recursively, to
W = B and W = S, and so on, though in fact, we will mostly care about the diagonal
blocks V, V0 = B, V1 = S, and so on, which we will identify with the nodes of a
binary tree, T . Similarly, we define the dual RD of W̃ = W−1 based on the recursive
application of (2.4) to W̃ = B−1 and W̃ = S−1. (We will study such a dual RD in
section 11 and will use it in section 12.)

The node of T associated with a binary strings α of length |α| is a k × k matrix,
denoted by Vα, where k = n/2|α|. The root of the tree is the n × n matrix V = VΛ,
associated with the empty string Λ. For a string β of length less than h, we let β0
and β1 denote the two strings obtained by appending 0 and 1 to β, respectively.
(We use the two characters α and β to distinguish between the two classes of binary
strings—of length at most h and less than h, respectively.) We will assume that the
matrix equations (2.1)–(2.4) are satisfied for W = Vβ , B = Vβ0, S = Vβ1, and for any
binary string β of length |β| < h. The resulting RD of the matrix V continues up to
the level h, where it reaches its leaves-matrices Vα = (vα) of size 1× 1, where |α| = h,
and where vα denotes the single entry of Vα.

Proposition 3.1. All the nodes Vα of the tree T are c.-d.d. matrices; moreover,
d(Vα) ≤ d(V) < 1 for all binary strings α.

1092 VICTOR Y. PAN

Proof. Recall that V is a c.-d.d. matrix and recursively apply Proposition
2.13.

Let us formalize the computation of the RD of V by extending the notation
(2.1)–(2.2) to Vα. We will write

Vβ =

(
Bβ Cβ
Eβ Gβ

)
,(3.1)

Vβ0 = Bβ , Vβ1 = Sβ = Gβ − EβB
−1
β Cβ ,(3.2)

for all binary strings β of length less than h.
Then, computation of the RD of a c.-d.d. matrix V amounts to recursive compu-

tation of Vβ1 of (3.2) for all binary strings β of length increasing from 0 to h−1. As a
by-product, the computation produces the matrices V −1

β0 = B−1
β for all binary strings

β of length less than h. By appending these inverse matrices V −1
β0 to the nodes Vβ0

of the tree T (and, consequently, to the RD of V), we arrive at the ERD of V . The
set of the matrices V −1

β0 will be called the extending set of the RD of V .
The RD and the ERD of any matrix V can be defined as long as all the involved

nodes-matrices Vβ0 for all the binary strings β of length less than h are nonsingular.
Recursive application of Proposition 2.10 and Corollary 2.11 yields the following.

Proposition 3.2. There exists the RD and the ERD of any strongly nonsingular
(in particular, of any s.p.d.) matrix.

Remark 3.1. As soon as we have the RD of a c.-d.d. matrix V , we immediately
obtain the RD of V −1 based on recursive application of (2.4). Having such an RD
available, we may compute the solution x = V −1f of a linear system V x = f , at a
lower computational cost OA((log n)

2, n2/(log n)2).

4. IRD of a c.-d.d. matrix filled with integers. Suppose that the input
matrix V is filled with integers. Then, for all binary strings α, the matrices Vα are
filled with rationals, and there exist integer multipliersmα such thatmαVα are integer
matrices. We will next specify a particular choice of such integer multipliers mα.

We will use the notation W (q) of Definition 2.6 and the following definition.
Definition 4.1. (α)2 denotes the binary value represented by a binary string α

(of length at most h). α(q) denotes the binary string that represents a nonnegative
binary value q, so that (α(q))2 = q. H(α) denotes 2h−|α| = n/2|α|. Q(α) denotes
(α)2H(α).

By applying Proposition 2.12, we obtain the following.
Proposition 4.2. Let a binary string α end with bit 1 and have length at most

h. Then the matrix Vα is the Schur complement of V (Q(α)) in V (Q(α)+H(α)).
By combining this proposition with Proposition 2.14, we obtain the following.
Proposition 4.3. For any binary string α = β1γ of length at most h with γ

being a string of zeros, let

mα = det V (Q(β1)).(4.1)

Then the entries of the matrix Vαmα are the subdeterminants (that is, the determi-
nants of some submatrices) of the matrix V . In particular, if V is filled with integers,
then so are the matrices Vαmα for all α, |α| ≤ h.

Now we replace the matrix Vαγ by the pair of the scalar mα = mαγ and the
matrix mαVαγ , in the binary tree T , for every pair of binary strings α and γ such that

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1093

α ends with 1, |α|+ |γ| ≤ h, and γ consists only of zeros. This gives us the IRD of a
c.-d.d. integer matrix V . By definition, we will also include into the IRD of V the two
sets, {detV (k), k = 1, . . . , n} and {detVα, |α| ≤ h}, of the determinants associated to
the RD of V . Clearly, having the IRD of V available, we may immediately compute
the RD of V . Later in this section, we will specify a simple transition from the RD to
the IRD. In section 12, we will also compute a dual IRD by similarly extending the
dual RD.

By combining Propositions 2.4 and 4.3, we obtain that for all binary strings
α, |α| ≤ h, we have

|mα| ≤‖ V ‖n, ||mαVα|| ≤ n||V ||n.(4.2)

For a c.-d.d. integer matrix V given together with its RD, we will seek its IRD.
We recall that vα for |α| = h denotes the single entry of the 1×1 leaf-matrix Vα of the
tree T of the RD. Recursive application of Propositions 2.12 and 2.16 immediately
yields the two following results.

Proposition 4.4. For every binary string α of length at most h, we have

det Vα =
∏
β

vβ ,

where
∏
β denotes the product in all binary strings β of length h that have α as their

prefix; that is, the associated nodes Vβ are both leaves of the tree T and descendants
of the node Vα in the tree T.

Proposition 4.5. det V (q) =
∏

(α)2<q
vα, where

∏
(α)2<q

denotes the product

in all binary strings α of length h for which (α)2 < q.

By applying the well-known parallel prefix algorithm [EG88], [KR90], we deduce
the following result from Propositions 4.2–4.5 and 2.15.

Corollary 4.6. Given the RD of a c.-d.d. n× n matrix V filled with integers,
one may compute the IRD of V at the cost OA(log n, n/ log n).

Due to the latter result and to matrix equations (2.1)–(2.3), the computation of
the IRD of V can be reduced to a sequence of multiplications, inversions, and subtrac-
tions of integer matrices, and we obtain the following parallel arithmetic complexity
estimates:

tIRD(n) ≤ tI(n/2) + tIRD(n/2) + 2tM (n/2) + 1,(4.3)

pIRD(n) ≤ max{pI(n/2), 2pIRD(n/2), 2pM (n/2), n2},(4.4)

whereOA(tIRD(k), pIRD(k)), OA(tI(k), pI(k)), andOA(tM (k), pM (k)) denote the time
and processor bounds for the computation of the IRD, the inverse and the product of
k × k matrices, respectively, where

(OA(tM (k), pM (k)) = OA(log k, k
ω), 2 ≤ ω < 2.376(4.5)

[BP94], and where we also use the obvious complexity bounds OA(tS(k), pS(k)) =
OA(1, k

2) for the subtraction of k × k matrices.

As the computation of the IRD is our major goal, relations (4.3)–(4.5) motivate
the next subject of our study, that is, matrix inversion.

1094 VICTOR Y. PAN

5. Approximate matrix inversion via Newton’s iteration.

Algorithm 5.1. Newton’s iteration for approximate matrix inversion.
Input: a nonsingular k × k matrix B, two positive scalars b and c, b > c, and a

matrix X0 (a rough initial approximation to −B−1) such that

c = − log ‖ BX0 + I ‖ .(5.1)

Output: a matrix X such that

‖ BX − I ‖≤ 2−b(5.2)

and, consequently,

‖ X −B−1 ‖≤ 2−b ‖ B−1 ‖ .(5.3)

Computations:
1. Compute

g = �log(b/c)�.(5.4)

2. Recursively compute the matrices

Xi = Xi−1(2I +BXi−1) , i = 1, . . . , g.(5.5)

3. Output the matrix X = −Xg.
To prove correctness of Algorithm 5.1, deduce from (5.5) that

I +BXi = (I +BXi−1)
2 , i = 1, 2, . . . , g,

and, consequently,

I +BXi = (I +BX0)
2i

,

‖ I +BXi ‖≤‖ I +BX0 ‖2i

,(5.6)

for i = 1, 2, . . . , g. In particular, for i = g, we have

‖ I +BXg ‖≤‖ I +BX0 ‖2g

= 2−c2
g ≤ 2−b

due to (5.1) and (5.4). This gives us (5.2) and (5.3) for X = −Xg.
To estimate the overall computational cost of performing Algorithm 5.1, observe

that the ith step (5.5) amounts to two matrix multiplications and to adding, at the
cost OA(1, k), the matrix 2I to the matrix BXi−1. Summarizing, we obtain the
following result.

Proposition 5.1. For g of (5.4), g steps (5.5) of Newton’s iteration, performed
at the overall cost OA(gtM (k), pM (k)) = OA(g log k, k

ω) for ω of (4.5), 2 ≤ ω < 2.376,
suffice in order to compute a matrix X = −Xg satisfying (5.2) and (5.3).

Remark 5.1. Proposition 5.1 enables us to estimate the complexity of approxi-
mate matrix inversion in terms of a scalar b and a matrix X0. Their choice depends
on the input matrix B and is critical for estimating the approximation errors and the
number of iterations. We will elaborate this choice in the next sections. Here are some

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1095

preliminary comments on the choice of X0. If B is a c.-d.d. matrix so that d(B) < 1,
then (5.1) holds for X0 = −D−1(B) and c = − log d(B); that is, ||BX0 + I|| ≤ d(B).
This gives us a good policy for the choice of X0 and c over the class of c.-d.d. matrices
B. In this paper, however, we will only need to invert the c.-d.d. matrices B that
are close to the scaled identity matrices −mI for a fixed large integer m. The inverse
of such a matrix B is well approximated by the scaled identity matrices X0 = −I/m
satisfying

||BX0 + I|| < 1/(5n2), c > 2 log n.(5.7)

In fact our algorithms and complexity estimates will remain valid under some assump-
tions that are weaker than (5.7). Say, the bound

c = − log ||BX0 + I|| > θ > 0(5.8)

for a fixed constant θ would suffice. The choice of X0 = D−1(B) also satisfies the
error bound of (5.7), but X0 = −I/m is a Toeplitz matrix (see Definition 2.18), which
will be a crucially important advantage for the proof of Theorem 1.2 in sections 13
and 14.

6. Approximate RD of an integer matrix and its extension to the exact
evaluation of the IRD. Algorithm 5.1 is intended as matrix inversion block in the
algorithms of sections 3–4 for computing the ERD, IRD, and the associated determi-
nants of a c.-d.d. integer matrix V . Then, the matrices Vα and the values of det V (q)

and det Vα for all q and α are computed approximately, even where we still perform
all arithmetic operations over the rationals, with infinite precision and no errors. Our
next goal is to yield the exact IRD, assuming that we fixed a sufficiently large b and
defined X0 and c according to Remark 5.1.

Let us write Ṽα, d̃et V
(q), and d̃et Vα for the computed approximations to Vα,

det V (q), and det Vα, respectively. Then we extend the relations (3.1), (3.2), (5.1),
(5.4), and (5.5) by writing

Ṽβ =

(
B̃β C̃β
Ẽβ G̃β

)
,(6.1)

Ṽβ0 = B̃β , Ṽβ1 = G̃β − ẼβXβC̃β ,(6.2)

for all binary strings β of length less than h, where the policy of defining Xβ,0 (in
accordance with Remark 5.1) will be specified later on, and where

c(β) = − log ‖ B̃βXβ,0 + I ‖,(6.3)

g(β) = log(b/c(β)),(6.4)

Xβ,i = Xβ,i−1(2I + B̃βXβ,i−1) , i = 1, . . . , g(β),(6.5)

Xβ = −Xβ,g(β),(6.6)

and I is the identity matrix of an appropriate size.

1096 VICTOR Y. PAN

Algorithm 6.1. Approximating the RD of a c.-d.d. matrix.
Input: a positive integer h, n = 2h, a positive b, positive integers g(α) for all

binary strings α of length at most h, and an n× n c.-d.d. matrix V = ṼΛ.
Output: a set of matrices Ṽα for all binary strings α of length at most h, satis-

fying (6.1)–(6.6), and the values d̃et Vα for all α and d̃et V (q), q = 1, . . . , n, defined
according to Proposition 4.5 with det and v replaced by d̃et and ṽ, respectively.

Computations: Starting with V = ṼΛ for the empty string Λ, recursively apply
(6.1)–(6.6) and a fixed policy of defining Xβ,0, in order to compute Ṽβ0 and Ṽβ1 for
all binary strings β of length less than h. (For binary strings β of length h − 1, the
matrices Ṽβ0 and Ṽβ1 have size 1 × 1, so Ṽβ0 is inverted immediately, and then the

matrix Ṽβ1 is computed based on (2.1) and (2.2) for W = Ṽβ .) Finally, compute

d̃et Vα and d̃et V (q) for all α and q by applying Propositions 4.4 and 4.5, under the
above modification of the notation.

Correctness of the algorithm is immediately verified, provided that the value
b is chosen sufficiently large so that all matrices B̃β—which approximate the c.-d.d.
matrices Bβ—still have the property of being c.-d.d. and that the matrices X0 = Xβ,0
are chosen satisfying (5.8) for B = B̃β for all binary strings β. We note that (5.6)

and (6.4) together imply that ||I + B̃αXα|| ≤ 2−b and, consequently,

||Xα − B̃−1
α || ≤ 2−b||B̃−1

α ||,(6.7)

which extends (5.3).
The computational cost is bounded by OA((log n)

2g, nω) for g = max|β|<h g(β)
and for ω of (4.5). (Recursively apply (4.3)–(4.5) and Proposition 5.1.) A desired
upper bound on g (and, consequently, on the parallel time) will be ensured by (5.8),
(6.3), (6.4), and appropriate choice of b. Such a choice and its analysis will be shown
in the next sections. g(β) will in fact be independent of β, that is, we will choose
g(β) = g for all β.

Next, for a c.-d.d. matrix V filled with integers, we will apply Algorithm 6.1
for a sufficiently large b, and then we will apply the techniques of integer rounding
(compare [P85], [P87], and [BP94, p. 252]), to extend the resulting approximate RD
of V to the evaluation of the IRD of V . To yield this extension, we will choose b in
Algorithm 6.1 sufficiently large to ensure the following bounds:

|d̃et V (q) − det V (q)| < 1/2 , q = 1, . . . , n ,(6.8)

‖ Ṽβ1 − Vβ1 ‖<‖ V ‖−n /2 for all binary strings β, |β| < h,(6.9)

where d̃et V (q) and Ṽβ1 denote the approximations to det V (q) and Vβ1, respectively,
computed by Algorithm 6.1 for the fixed value of b.

Under (6.8) and (6.9), we recover the IRD of V as follows.
Algorithm 6.2.
Input: a set {d̃et V (q), q = 1, . . . , n} of approximations to det V (q) for all q and

an approximate RD of an n × n matrix V filled with integers, such that (6.8) and
(6.9) hold.

Output: the IRD of V .
Computations:
1. Round the values det Ṽ (q) to the closest integers; output the resulting integer

values of det V (q), q = 1, . . . , n.

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1097

2. Compute the matrices W̃β1 = Ṽβ1 det V (Q(β1)) and round their entries to the
closest integers; output the resulting integer matrices Wβ1 = Vβ1 det V (Q(β1)

for all binary strings β of length less than h.
3. For all binary strings β of length less than h and all binary strings γ filled with

zero bits and satisfying |β1γ| ≤ h, output the matricesWβ1γ = Vβ1γ detV
(Q(β1))

(cf. (4.1) and Definition 4.1).

Correctness of Algorithm 6.2 follows since, clearly, the values det V (q) are integers
for all q and since the matrices Wβ1 = Vβ1 det V (Q(β1)) are filled with integers for
all β (due to Proposition 4.3). The computational cost of performing the algorithm is
bounded by OA(1, n

2).

Remark 6.1. Instead of choosing the multipliers mβ1 based on Proposition 4.3,
one may follow the more straightforward recipe of [R95] and recursively define mβ by
using induction on |β| and by writing mβ1 = mβ det Vβ0. Then, however, the order
of log |mβ | grows from |β| (compare our bounds (4.2)) to |β|2, and the bit-precision
and the bit-complexity of the computations grow by the extra factor n. (The statement
of Proposition 5.1 of [R95] is false. Its proof relies on an erroneous claim that if a
matrix mA is filled with integers, then so is the matrix m adj A; this claim is false,
say, for m = 3 and the matrix A = diag (1/3, . . . , 1/3).)

7. Errors of the approximation of the RD and the transition from the
RD to the IRD for a c.-d.d. matrix. We are going to implement the next step
of the outline of section 1.6 by specifying a c.-d.d. matrix V , whose IRD will give us
the IRD of A modulo a prime p. We recall that, according to Definition 2.1, we write
I to denote the identity matrices of appropriate sizes. We will next specify (in terms
of n and ‖V ‖) a choice of the input parameter b of Algorithm 6.1 that will enable us
to satisfy the relations (6.8) and (6.9), where V is an n × n matrix of the following
class.

V = F −mI.(7.1)

F is an n× n matrix filled with nonnegative integers that are less than a fixed prime
p ≥ n (we will work with F = A mod p for an input matrix A), and

m = 10p2n2.(7.2)

Remark 7.1. The choice of a larger m would have made V more strongly diag-
onally dominant (which is what we would like to have) but would have involved larger
integers, which would have increased the Boolean cost of the resulting computations,
so we choose only a moderately large m. In fact, our construction allows us to choose
even a little smaller m.

Next, let us prove that the entries of the matrices V of this class and of all
matrices Vα of their RDs satisfy the following rough estimate, which will suffice for
our purpose.

Proposition 7.1. The entries of the matrices Vα +mI lie in the range between
−1/2 and p− 1/2 for all binary strings α of length at most h = log n.

Proof. By the definition of the matrix V , the entries of the matrix F = V +mI
range from 0 to p−1. By Proposition 4.2, it suffices to prove that the entries of every
Schur complement S of an l.p.s. B = V (q) in V range from −1/2 to p − 1/2. Since
S = G− EB−1C (assuming (2.1) for W = V) and since the entries of the submatrix
G+mI of F range from 0 to p− 1, it suffices to prove that the entries of the matrix

1098 VICTOR Y. PAN

EB−1C range between −1/2 and 1/2. Since the matrices F (q) = B +mI, C, and E
are submatrices of F , their entries also range from 0 to p− 1. Therefore,

||C|| < (p− 1)n, ||E|| < (p− 1)n,

−mB−1 = (I − F (q)/m)−1 =

∞∑
i=0

(F (q)/m)i,

||B−1|| ≤ (1/m)(1/(1− a)), a = ||F (q)||/m < (p− 1)n/m < 0.03.

Consequently, ||B−1|| < 2/m, ||EB−1C|| ≤ 2(p− 1)2n2/m < 1/2.
Hereafter, we will write

w = m+ (p− 1)n.(7.3)

Here are three corollaries of Proposition 7.1; the first and the third of them are
immediate.

Corollary 7.2. Let |α| = h, so that Vα = (vα) is a 1× 1 matrix. Then we have

|vα| < m+ p.

Corollary 7.3. ‖ V −1
β0 ‖< 1.1/m for all binary strings β of length at most

h− 1.
Proof. Write Fβ0 = Vβ0 + mI. Due to Proposition 7.1, we have ‖ Fβ0 ‖<

(p− 1)n < m/(10np). On the other hand,

V −1
β0 =

1

m
(I − Fβ0/m)−1 =

(
1

m

) ∞∑
i=0

(
Fβ0
m

)i
.

Therefore,

‖ V −1
β0 ‖≤

(
1

m

) ∞∑
i=0

(‖ Fβ0 ‖
m

)i
<

(
1

m

) ∞∑
i=0

1

(10np)i
=

10np

(10np− 1)m
<

1.1

m
.

Corollary 7.4. 2cβ = ||Vβ0Xβ,0 + I|| < 1/(10pn) ≤ 1/(10n2) for Xβ,0 = −I/m
and for all binary string β of length at most h− 1.

Hereafter, we will assume that n > 1 and that the matrices Xβ,0 for all β are
chosen as in Corollary 7.4, so that the relations (5.8) and even (5.7) hold. Our next
task is to estimate the desired range for b, which would enable us to recover the IRD.
In this section we will prove the following basic proposition.

Proposition 7.5. Under (7.1)–(7.3), both requirements (6.8) and (6.9) are satis-
fied if the matrices Vβ1 for all binary strings β of length less than h are approximated
by Algorithm 6.1 within an error norm bound

σ = 0.5/wn.(7.4)

Proof. We deduce from (7.1) and (7.3) that

‖ V ‖≤ m+ (p− 1)(n− 1) < w.

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1099

Therefore, we will satisfy (6.9) if we approximate the matrices Vβ1 within the error
norm bound (7.4). To prove that (6.8) is satisfied too, we need the next lemma.

Lemma 7.6. The requirement (6.8) is satisfied if the values vα for all binary
strings α of length h are approximated within an error bound

δ ≤ w1−n/(2n+ 2), w = m+ p < w.(7.5)

Proof of the lemma. By the virtue of Proposition 4.5, det V (q) is the product of
exactly q values vα for α denoting binary strings of length h. Under the assumptions
of Lemma 7.6, the maximum error of computing det V (q) may only increase if we
assume that q = n, that vα = w, and that the approximations to vα equal w + δ for
all α. Then, det V = wn is approximated by (w + δ)n, with an approximation error

E = (w + δ)n − wn = wn((1 + (δ/w))n − 1) = wn−1δ

n∑
i=1

(δ/w)i−1

(
n
i

)
.

We have (n1) = n, (ni) < 2n for all i, and δ/w < 1. Therefore, E < (n + (δ/w)
(n− 1)2n)δwn−1.

Equations (7.2) and (7.5) together imply that

w > (n− 1)2nδ ,

and we may rewrite our bound on E as follows:

E < (n+ 1)δwn−1 .

Substitute (7.5) and obtain that E < 1/2.
To complete the proof of Proposition 7.5, we observe that

σ = 0.5/wn < w1−n/(2n+ 2) < w1−n/(2n+ 2)

(compare (7.5)), and the values vα for all binary strings α of length h (except for
the string α(0) consisting of h zeros) are among the entries of the matrices Vβ1 for
|β| ≤ h − 1. vα(0) is an entry of V and is known exactly without any computation.
Therefore, the assumptions of Lemma 7.6 and, consequently, the requirement (6.8)
are satisfied too.

8. Estimating the error accumulation and the precision of the approx-
imation of the matrix inverse. In this section, we will extend Proposition 7.5 by
estimating the parameter b of Algorithm 6.1 (which expresses the precision of the
matrix inversion) to ensure (7.4) and, consequently, (6.8) and (6.9).

Proposition 8.1. Under some choice of b = O(n log p), the bounds (6.8) and
(6.9) can be satisfied in all applications of Newton’s iteration (6.5) within Algorithm
6.1, which is in turn applied to approximate the RD of a matrix V satisfying (7.1)
and (7.2).

The remainder of this section is devoted to the proof of Proposition 8.1. Due
to the bound (5.6), it is actually quite clear that we would ensure (7.4) if we choose
sufficiently large values b = O(n log p), g(α) of (6.4), and m of (7.1), but we will
deduce (7.4) already for m of (7.2) and g(α) = O(log(n log p)) for all α. As usually
in the proofs involving error analysis, some tedious estimates are required. The idea
of our proof is to condense estimating the error propagation into a single step, which
will allow its recursive extension to cover all the nodes Vα of the tree representing the

1100 VICTOR Y. PAN

RD. This basic step of our analysis will be given in the form of Proposition 8.2. (We
will first give some preliminaries, then will state and prove this proposition, and then
will show that its conclusion enables us to extend recursively its assumptions (and,
consequently, its conclusion too) and thus to extend the error estimates recursively
to all the descendants of the current node Vα of the tree.)

Proof of Proposition 8.1. Consider a path in the tree T from the root V to a leaf
Vα = (vα), |α| = h. Algorithm 6.1 follows such a path by recursively proceeding from
matrices Vβ to Vβ0 and Vβ1. For given Vβ and Vβ0, the algorithm approximates the
matrices V −1

β0 within the error norm bounds 2−b ‖ V −1
β0 ‖ and then extends such an

approximation to approximating Vβ1. The errors of the computed approximations to
Vβ are accumulated in computation of all descendands of Vβ along the paths in T .
We need to estimate the resulting overall errors in all the output matrices along all
such paths, assuming that b is large though of order O(n log p).

We will next analyze a single recursive step along such a path; that is, we will
first bound the matrix ∆(Vβ) of the initial errors of the approximation of W = Vβ ,
and then we will estimate the propagated errors of the approximation of S = Vβ1
caused by the combined errors due to the initial ones, given by ∆(Vβ), and ones of
Newton’s iterates for the inversion of Vβ0.

Hereafter, we will write M̃ to denote the approximations to matricesM computed
by Algorithm 6.1, for M denoting Vα (for any binary string α), a submatrix of Vα, or
any other auxiliary matrix involved. We will also write

∆(M) = M̃ −M .(8.1)

We will first estimate ‖ ∆(Vα1) ‖ in terms of ‖ ∆(Vα) ‖. For convenience, we write
W = Vα, S = Vα1, recall (2.1), (2.2), and estimate the error propagation in the
transition from W to B and S. From Proposition 7.1 and Corollary 7.3, we obtain
that

max{‖ B ‖, ‖ C ‖, ‖ E ‖, ‖ G ‖} ≤‖ W ‖≤ w ,(8.2)

‖ B−1 ‖< 1.1/m .(8.3)

We also write (cf. (8.1))

W̃ =

(
B̃ C̃

Ẽ G̃

)
, ∆(W) =

(
∆(B) ∆(C)
∆(E) ∆(G)

)
,

S̃ = G̃− ẼLC̃,

where L denotes the computed approximation to B̃−1. Then, clearly,

max{‖ B̃ ‖, ‖ C̃ ‖, ‖ Ẽ ‖, ‖ G̃ ‖} ≤‖ W̃ ‖,(8.4)

max{‖ ∆(B) ‖, ‖ ∆(C) ‖, ‖ ∆(E) ‖, ‖ ∆(G) ‖} ≤‖ ∆(W) ‖ .(8.5)

We will assume that the errors of the approximations obtained via Algorithm 6.1 are
sufficiently small so that the following inequalities hold (also cf. the bound ||B−1|| <
1.03/m obtained in the proof of Proposition 7.1):

‖ L− B̃−1 ‖≤ ν ‖ B̃−1 ‖, ν ≤ 1/(4000m2),(8.6)

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1101

‖ B̃−1 ‖< 1.11/m, ‖ L ‖≤ (1 + ν) ‖ B̃−1 ‖< 1.11(1 + ν)/m.(8.7)

Remark 8.1. The inequalities of (8.6) are reconciled with (5.3) for ν ≤ 2−b, L
replacing X, and B̃ replacing B.

In the next proposition we will bound approximation errors for Vβ0 and Vβ1 in
terms of a single positive parameter ∆ = ∆(β) defined by the errors of the approxi-
mation of Vβ and by the parameter ν, which is in turn defined by the error exponent

b of Newton’s iteration for the approximation of B̃−1.
Proposition 8.2. Suppose that the inequalities (8.2)–(8.7) hold and that a posi-

tive ∆ = ∆(β) satisfies the following bounds:

||∆(W)|| ≤ ∆, 40νm ≤ ∆ < 0.01 w,(8.8)

where W = Vβ and β is a binary string of length less than h. Then, we have
(a) ‖ ∆(B) ‖=‖ ∆(Vβ0) ‖≤ ∆,
(b) ‖ ∆(S) ‖=‖ ∆(Vβ1) ‖≤ 5∆.
Proof. Part (a) of the proposition follows immediately since Vβ0 is a submatrix of

Vβ . To deduce part (b), we will use the following bound (implied by (8.2) and (8.8)):

‖ W̃ ‖< 1.01 w,(8.9)

as well as the next proposition.
Proposition 8.3. For any 4-tuple of k× k matrices, X, X̃, Y , and Ỹ , we have
(a) ‖ ∆(X ± Y) ‖≤‖ ∆(X) ‖ + ‖ ∆(Y) ‖,
(b) ‖ ∆(XY) ‖≤‖ ∆(X) ‖ ‖ Y ‖ + ‖ ∆(Y) ‖ ‖ X ‖ + ‖ ∆(X) ‖ ‖ ∆(Y) ‖,

and if X and X̃ are nonsingular matrices, then also
(c) ‖ ∆(X−1) ‖≤‖ X−1 ‖ ‖ X̃−1 ‖ ‖ ∆(X) ‖.
Proof. The parts (a)–(c) follow immediatley from the next simple equations:
(a) ∆(X ± Y) = ∆(X)±∆(Y),
(b) ∆(XY) = ∆(X)Y +X∆(Y) + ∆(X)∆(Y),
(c) ∆(X−1) = X−1∆(X)X̃−1 = −X̃−1∆(X)X−1.
Since S = G − EB−1C under (2.2), we will next recursively extend the bound

||∆W || on the error norms of G,E,B, and C to yield some bounds on the error norms
of B−1, EB−1, EB−1C, and S.

We first apply part (c) of the latter proposition for X = B and ∆(X−1) =
B̃−1 −B−1 and obtain that

‖ ∆(B−1) ‖≤‖ B−1 ‖ ‖ B̃−1 ‖ ‖ ∆(B) ‖ .

Substitute (8.3) and (8.7) into the latter bound and obtain that

‖ ∆(B−1) ‖< 1.221 ‖ ∆(W) ‖ /m2.

Combine the relations (8.6) and (8.7) to obtain that ||L − B̃−1|| ≤ 1.11ν/m ≤
(1.11)∆/(4000m3). Combine the latter bounds on the norms, recall (8.8), and deduce
that

‖ L−B−1 ‖≤‖ ∆(B−1) ‖ + ‖ L− B̃−1 ‖< (1.221 + (1.11)/(4000m))∆/m2

< 1.3∆/m2 .(8.10)

1102 VICTOR Y. PAN

Apply part (b) of Proposition 8.3 for X = E, Y = L, and deduce that

‖ ∆(EL) ‖≤‖ ∆(E) ‖ ‖ L ‖ + ‖ L−B−1 ‖ (‖ E ‖ + ‖ ∆(E) ‖) .
Recall from (7.2) and (7.3) that w/m ≤ 1.02. By combining the two latter

inequalities with our bounds on ‖ L ‖, ‖ L − B−1 ‖, ‖ E ‖, and ‖ ∆(E) ‖ (see
(8.4)–(8.10)), obtain that

‖ ∆(EL) ‖≤
(
1.11

m
(1 + ν) +

(
1.3

m2

)
1.01w

)
∆ ≤ 2.5

m
∆ .(8.11)

Then again, we apply part (b) of Proposition 8.3, this time for X = EL, Y = C,
and obtain that

‖ ∆(ELC) ‖≤‖ ∆(EL) ‖ ‖ C̃ ‖ + ‖ ∆(C) ‖ ‖ EL ‖ .
Substitute our previous estimates (8.2), (8.4)–(8.9), and (8.11) into the latter

inequality and deduce that

‖ ∆(ELC) ‖≤
((

2.5

m

)
1.01w +

1.11

m
(1 + ν)w

)
∆ ≤ 3.7∆w/m.

Now, since w/m ≤ 1.02, we have

‖ ∆(ELC) ‖≤ 4∆.

We obtain ‖ ∆(G) ‖≤ ∆ from (8.5) and (8.8). By applying part (a) of Proposition
8.3 for X = G, Y = ELC, we deduce that

‖ ∆(S) ‖≤‖ ∆(ELC) ‖ + ‖ ∆(G) ‖≤ 5∆,

which proves Proposition 8.2.
Now, we observe that the assumptions of Proposition 8.2 are satisfied for W = V ,

W̃ = V , and ∆ = 40νm, and we extend them to W = Vα for all α. The extension
from W = Vβ to W = Vβ0 for any β is trivial. We will comment on the extension to
W = V1, which will be our sample for the extension from W = Vβ to W = Vβ1 for any

β. We write B̃ = B = V0, L = −X1,g, X1,0 = −I/m, g ≥ 4, and define by (6.5) the

matrices X1,i for all i. Now, observe that ||I +X1,0W || = ||F ||/m, ||I +X1,0W̃ || ≤
||F ||/m+∆/m ≤ (∆ + (p− 1)n)/m < 1/(10pn) < 1/m1/2.

Therefore, (5.6) implies that

‖ Xi +B−1 ‖≤‖ B−1 ‖ /m2i−1

, i = 1, . . . , g,

and, consequently, since L = −Xg for g ≥ 4, we have

‖ L−B−1 ‖≤ ν ‖ B−1 ‖ for ν ≤ 1/m8 < 1/(4000m2n12),

thus satisfying (8.6). The remaining assumption (8.7) of Proposition 8.2 is also easily
verified (by using (8.5) and (8.8) and by following the line of the proof of Corollary
7.3).

Now, we are ready to extend Proposition 8.2 recursively, which will give us the
desired upper bound on ||∆(Vα)|| in terms of b. By applying this proposition recur-
sively, we extend its assumptions toW = V0,W = V1, ∆ = 40νm. (In the subsequent

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1103

recursive extension from W = Vβ1 to W = Vβ for any binary string β of length at
most h− 1, we will choose ν depending on α but satisfying (8.6) for all α.)

Apply the bounds of parts (a) and (b) of Proposition 8.2 recursively and obtain
that

‖ ∆(W) ‖≤ ∆

|α|∑
i=0

5i < n3∆

for W = Vα and all α (with |α| ≤ h = log n). Let us choose a b that enables us
to reconcile the initial choice of ∆ = 40νm and the latter bound on ||∆(W)|| with
(8.6)–(8.8). Recall Remark 8.1, recall that the choice of g according to (6.4) implies
the bound (6.7) on the output approximation to the inverse, substitute ν = 2−b, and
obtain the desired estimate:

‖ ∆(Vα) ‖< (40mn3∆)2−b < 22−bw2n(8.12)

for all α.

Let us choose b of order n log p satisfying the bound

b ≥ 3 + log n+ (n+ 2) logw,

which is compatible with the choice of b = log(1/ν) and with (8.6). Substitute this
bound on b into the preceding upper bound on ‖ ∆(Vα) ‖ and obtain that

‖ ∆(Vα) ‖< 0.5 w−n

for all α. This satisfies the requirement (7.4) of Proposition 7.5 and completes the
proof of Proposition 8.1.

Remark 8.2. By Corollary 7.4, c(β) = O(log n) for all binary strings β of length
at most h − 1. Furthermore, (6.4) and the above choice of b are compatible with the
choice of g = g(β) of order log b = log(n log p) for all β.

9. Computations with rounding-off: Estimates for the finite precision
and computational cost. So far, we assumed the infinite precision of computing
the RD and IRD by means of Algorithms 6.1 and 6.2. Next, we will show that this
is not necessary for obtaining the result of Proposition 8.1; that is, we will prove the
following.

Proposition 9.1. The estimates of Proposition 8.1 hold even if the computa-
tions by Algorithms 6.1 and 6.2 are performed with a precision of b̃ bits, for some
b̃ = O(n log p) provided that a single extra Newton’s step (6.5) is performed in each
application of Algorithm 6.1.

Proof. Let us first assume the computations of Newton’s step (6.5) with the
infinite precision, but in the transition from W = Vα to S = Vα1 for all binary
strings α, |α| < h, let the computations be performed with rounding to the b̃-bit
precision. Assuming B−1 available, the latter transition involves two multiplications
and a subtraction of k × k matrices for k = 2h−|α| (compare (2.2)). By applying
the techniques of backward error analysis [W65], [BL80], we bound the norm of the
matrix ε(S) of the errors of the approximation to S caused by rounding:

‖ ε(S) ‖≤ nO(1)2−b̃ ‖ W ‖ (1+ ‖ L ‖ ‖ W ‖)

1104 VICTOR Y. PAN

for L denoting the computed approximation to B−1 (cf. (8.6), (8.7)). By applying
the relations (8.2), (8.7), (7.2), (7.3), and Proposition 7.1, we obtain that

‖ ε(S) ‖≤ mO(1)2−b̃ .

By choosing b̃ of order n log p, we make ‖ ε(S) ‖ less than 2 ‖ ∆(W) ‖ for W = Vα
and for all α. This is less than 40% of the upper bound that we have in part (b) of
Proposition 8.2. Combining both of these bounds gives us cumulative upper bound
7 ‖ ∆(W) ‖, which shows the overall impact of the above rounding errors. This enables

us to preserve the validity of the bound (8.12) (since
∑h
i=0 7

i ≤ n3 for h = log n) and,
consequently, of the entire proof of Proposition 8.1.

It remains to estimate the impact of rounding to b̃-bit precision when we perform
Newton’s steps (6.5). Then again, we deal with two matrix multiplications (we ignore
the errors caused by the simple addition step 2I + (WXi−1)). By applying backward
error analysis again, we estimate that

‖ ε(Xi) ‖≤ nO(1)2−b̃ ‖ Xi−1 ‖ (2+ ‖ W ‖ ‖ Xi−1 ‖) ,(9.1)

where ε(Xi) denotes the matrix of the errors of approximation of Xi due to rounding
in performing iteration (6.5).

Our next goal is to prove the bound

‖ Xi−1 ‖≤ 1.1(1 + 1/m̃)/m < 1.21/m for i ≥ 1,(9.2)

ignoring for simplicity the terms of order 2−2b̃ or less.
We have from Corollary 7.4 that ‖I + BX0‖ < 1

m̃ for m̃ = 10pn ≥ 20p and for
X0 = −I/m. Then we obtain from (5.6) that

‖ I +BXi−1 ‖≤ 1/m̃2i−1

.

Therefore,

‖ Xi−1 +B−1 ‖≤‖ B−1 ‖ /m̃2i−1

.

Consequently,

‖ Xi−1 ‖≤‖ B−1 ‖
(
1 +

1

m̃2i−1

)

for i = 1, 2, Substitute (8.3) and arrive at inequality (9.2).
Substitute bound (9.2) on ‖ Xi−1 ‖ and the bound ‖ W ‖≤ w of (8.2) into (9.1),

recall (7.2) and (7.3), and obtain that

‖ ε(Xi) ‖≤ (np)O(1)2−b̃ for all i .

By choosing a sufficiently large b̃, though of order n log p, we easily ensure that

‖ ε(Xi) ‖< 2−b/ ‖ B ‖ .

Therefore,

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1105

‖ I +B(Xi + ε(Xi)) ‖≤‖ I +BXi ‖ + ‖ B ‖ ‖ ε(Xi) ‖

≤‖ I +BXi−1 ‖2 +2−b .

Since Newton’s iteration (6.5) stops if ‖ I +BXi−1 ‖≤ 2−b, we may assume that
‖ I +BXi−1 ‖> 2−b, so that the rounding may at worst change (6.7) into the bound

‖ I +B(Xi + ε(Xi)) ‖≤ 2 ‖ I +BXi ‖≤ 2σ ‖ I +BX0 ‖2i

< 2(2 ‖ I +BX0 ‖)2i

,

where σ =
∑i
s=0 2

s < 2i+1. Since ‖ I + BX0 ‖≤ 1/m, the impact of the rounding
on the residual norm of the output approximation computed by Newton’s iteration
is more than compensated by a single extra step (5.5), (6.5), and this completes the
proof of Proposition 9.1.

Let us next summarize our current complexity extimates for the computation of
the IRD before we improve them slightly in the next section. Choose b and b̃ of order
n log p and choose g of order log(n log p), which is consistent with (6.4) under (5.7) or
(5.8). Now, by combining the results of Corollaries 4.6 and 7.3 and Propositions 8.1
and 9.1 with Remark 8.2 and the estimates for the arithmetic parallel complexity of
performing Algorithms 6.1 and 6.2 and by using the B-principle, obtain the following
corollary.

Corollary 9.2. Algorithm 6.2 computes the IRD of a matrix V satisfying (7.1)
and (7.2) at the cost OA((log n)

2 log(n log p), nω/ log n) for ω of (4.5). Furthermore,
b̃-bit precision suffices in these computations for some b̃ of order n log p.

10. Pipelined computation of the IRD. Our next goal is a modification of
Algorithm 7.1, which, as we claimed in section 1.6, will enable us to improve by factor
log n the asymptotic time-complexity bounds of Corollary 9.2, without increasing
the processor bound by more than a constant factor. To achieve this goal, we will
incorporate into our construction the techniques of pipelining along the lines of [PR91]
(where such techniques were called stream contraction and applied to computing the
RD of a matrix over semirings of a certain class). Here are our informal underlying
observations.

Algorithm 6.1 is not fully efficient because it spends substantial time and work
on refining the approximations to the inverses of the matrices B̃β = Ṽβ0 (cf. (6.5));
this delays the subsequent use of such approximations in the inversion of the matrices
Ṽβ10 = B̃β1, which anyway starts with a much cruder approximation −I/m. Next, we

will modify Algorithm 6.1. We will start the Newton process of the inversion of B̃β1
by relying on the available rough approximations to B̃−1

β , and then we will recursively
produce a stream of better approximations when the process progresses.

In other words, we are going to pipeline the recursion on α (decomposition) and
the Newton one (inversion). To approximate the matrix Vβ1 of the RD and ERD, we
will start using the intermediate approximations to the inverse V −1

β0 , as soon as they
are computed by Newton’s iteration. We will update the resulting approximation to
Vβ1 as soon as the approximation to V −1

β0 is refined; that is, in the process of the

computation of the matrix Ṽβ1, we will keep refining every step of the computations
as soon as we refine its input.

More precisely, we will initialize this process by fixing some natural g, to be
specified later on. As before, α and β will denote binary strings, |α| ≤ h, |β| < h, and
γ will denote the unary strings consisting of zero bits. u(α) will denote the number
of bits one in a binary string α. t will denote integers in the range from t0 to g + h.

1106 VICTOR Y. PAN

Here, t0 = u(α) in (10.1) and (10.3) (where α is fixed), t0 = u(β) + 1 in (10.4)–(10.7)
(where β is fixed), and t0 = 0 elsewhere, that is, in (10.2).

We will now define the following matrices whose subscripts α, β, γ, and t range
as specifed above:

Vα,t =

(
Bα,t Cα,t
Eα,t Gα,t

)
,(10.1)

Vγ,t = Vγ(10.2)

(cf. Definition 2.6),

Vαγ,t = (Vα,t)
(q) for |αγ| ≤ h, q = 2h−|αγ|,(10.3)

Xβ,t,0 =

{ −I/m for t = u(β) + 1,
−Xβ,t−1 for t > u(β) + 1,

(10.4)

Xβ,t,i+1 = Xβ,t,i(2I + Vβ0,tXβ,t,i), i = 0, 1, 2, 3, 4,(10.5)

Xβ,t = −Xβ,t,4,(10.6)

Vβ1,t+1 = Gβ,t − Eβ,tXβ,tCβ,t.(10.7)

Now, we are ready to specify our pipelined algorithm.
Algorithm 10.1. Stream contraction for approximating the RD.
Input: natural g, h, and n = 2h; an n× n matrix V .
Output: for all binary strings α of length at most h, matrices Vα,g+u(α) satisfying

the equations (10.1)–(10.7) and approximating the matrices Vα, respectively.
Computations:
Stage 0. Apply (10.2) for t = 0 to define the matrices Vγ,0 , |γ| = 0, . . . , h.
Stage t, t = 1, . . . ,g + h.
Concurrently in all binary strings β of length less than h with u(β) < t, compute

successively:
(a) Xβ,t,0, based on (10.4),
(b) Xβ,t,i+1 for i = 0, 1, 2, 3, 4, based on (10.5),
(c) Xβ,t, by (10.6),
(d) Vβ1,t+1 = Gβ,t − Eβ,tXβ,tCβ,t, based on (10.1) and (10.7),
(e) Vβ1γ,t+1, by (10.3) where α = β1.

These rules are complemented by the following.
Stopping criterion: Output the matrices Vα,g+u(α) for all binary strings α of

length at most h and cancel all the subsequent computations involving these matrices.
For the reader’s convenience, we will next list the matrices computed at stages 1,

2, and 3, letting γ0, γ1, γ2, γ3 denote unary strings filled with zeros.
Stage 1:
Xγ0,1,0 = −I/m,

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1107

Xγ0,1,i+1 = Xγ0,1,i(2I + Vγ00Xγ0,1,i), i = 0, 1, 2, 3, 4,

Xγ0,1 = −Xγ0,1,4,
Vγ01,2 = Gγ0 − Eγ0Xγ0,1,Cγ0 for Gγ0 , Eγ0 , Cγ0 of (3.1), |γ0| < h,

Vγ01γ1,2 = V
(q)
γ01,2

for q = 2h−1−|γ0γ1|, |γ0γ1| < h.

Stage 2: Xγ0,2,0 = −Xγ0,1,
Xγ0,2,i+1 = Xγ0,2,i(2I + Vγ00,2Xγ0,2,i), i = 0, 1, 2, 3, 4,

Xγ0,2 = −Xγ0,2,5,
Vγ01,3 = Gγ0 − Eγ0Xγ0,2Cγ0 for |γ0| < h,

Vγ01γ1,3 = V
(q)
γ01,3

for q = 2h−1−|γ0γ1|, |γ0γ1| < h,

Xγ01γ1,2,0 = −I/m,

Xγ01γ1,2,i+1 = Xγ01γ1,2,i(2I + Vγ01γ10,2Xγ01γ1,2,i), i = 0, 1, 2, 3, 4,

Xγ01γ1,2 = −Xγ01γ1,2,5,
Vγ01γ11,3 = Gγ01γ1,2 − Eγ01γ1,2Xγ01γ1,2Cγ01γ1,2 for Gγ01γ1,2, Eγ01γ1,2, Cγ01γ1,2 of

(10.1), with α = γ01γ1, t = 2, |γ0γ1| < h− 1,

Vγ01γ11γ2,3 = V
(q)
γ01γ11,3

for q = 2h−2−|γ0γ1γ2|, |γ0γ1γ2| < h− 1.

Stage 3: Xγ0,3,0 = −Xγ0,2,
Xγ0,3,i+1 = Xγ0,3,i(2I + Vγ00Xγ0,3,i), i = 0, 1, 2, 3, 4,

Xγ0,3 = −Xγ0,3,5,
Vγ01,4 = Gγ0 − Eγ0Xγ0,3Cγ0 for |γ0| < h,

Vγ01γ1,4 = V
(q)
γ01,4

for q = 2h−1−|γ0γ1|, |γ0γ1| < h,

Xγ01γ1,3,0 = −Xγ01γ1,2,
Xγ01γ1,3,i+1 = Xγ01γ1,3,i(2I + Vγ01γ10,3Xγ01γ1,3,i), i = 0, 1, 2, 3, 4,

Xγ01γ1,3 = −Xγ01γ1,3,5,
Vγ01γ11,4 = Gγ01γ1,3 − Eγ01γ1,3Xγ01γ1,3Cγ01γ1,3 for Gγ01γ1,3, Eγ01γ1,3, Cγ01γ1,3 of

(10.1) with α = γ01γ1, t = 3, |γ0γ1| < h− 1,

Vγ01γ11γ2,4 = V
(q)
γ01γ11,4

for q = 2h−2−|γ0γ1γ2|, |γ0γ1γ2| < h− 1,

Xγ01γ11γ2,3,0 = −I/m,

Xγ01γ11γ2,3,i+1 = Xγ01γ11γ2,3,i(2I + Vγ01γ11γ20,3Xγ01γ11γ2,3,i), i = 0, 1, 2, 3, 4,

Xγ01γ11γ2,3 = −Xγ01γ11γ2,3,5,
Vγ01γ11γ21,4 = Gγ01γ11γ2,3−Eγ01γ11γ2,3Xγ01γ11γ2,3Cγ01γ11γ2,3 forGγ01γ11γ2,3, Eγ01γ11γ2,3,

Cγ01γ11γ2,3 of (10.1), with α = γ01γ11γ2, t = 3, |γ0γ1γ2| < h− 2,

Vγ01γ11γ21γ3,4 = V
(q)
γ01γ11γ21,3

, q = 2h−3−|γ0γ1γ2γ3|, |γ0γ1γ2γ3| < h− 2.

Correctness of Algorithm 10.1 is immediatley verified. It remains to specify the
choice of natural g, which would satisfy the requirements of Proposition 7.5, and then
to estimate the resulting compuational cost.

As in section 8, we assume infinite precision computations in Algorithm 10.1,
but the same techniques of backward error analysis as in section 9 enable relatively
simple transition to the case of computations with rounding to finite precision of order
n log p bits.

The analysis of the approximation errors and of the computation precision given
in section 8 is easily extended. In particular, the extension of Proposition 8.2 and its
proof is immediate provided that in its statement Vβ , Vβ0, and Vβ1 are replaced by
Vβ,t, Vβ0,t+1, and Vβ1,t+1, t > u(β). Furthermore, the assumptions of this proposi-
tion are extended recursively with each increase of t and the length |β| by 1. Such
an extension is analyzed as in section 9. (The transition from Vβ,t to Vβ1,t+1 involves
five Newton steps (10.5), versus four steps used in section 8; an extra step compen-
sates us for the impact of the rounding errors; this suffices according to the analysis

1108 VICTOR Y. PAN

in section 9.) The small factor 5 of the error propagation bound of part (b) of Pro-
postion 8.2 (even when it increases to 7 due to the rounding errors) is immediately
suppressed by Newton’s steps (10.5). To accomodate the factors 5 or 7, we also should
increase the upper bound on ||V −1

β0,tXβ,t,0 + I|| obtained in Corollary 7.4; the increase

is from 1/(10n2) to 1/(2n2) or to 7/(10n2), respectively. This, however, implies only
a nominal increase of g, which we may set equal to

g = 1 + �log(b/(2 log n))�,(10.8)

say. (2 log n in the denominator replaces log(10n2), which more than compensates
us for the error propagation factors 5 or 7.) The computation of every Vα,g+u(α)

involves at least 5g Newton steps (10.5), so that the output error norm bound 2−b is
guaranteed under (10.8). Therefore, to satisfy the requirement (7.4) of Proposition
7.5, it is sufficient to choose b of order n log p. Then, by (10.8), we have

g = O(log(n log p)).(10.9)

Now, let us estimate the computational cost of performing Algorithm 10.1.
For any t, Stage t amounts essentially to ten steps of multiplication of at most

n/k pairs of k × k matrices for k = 2�, � = 1, 2, . . . , h. All these multiplications
for k = 2� and for all � are performed concurrently. Their overall cost is bounded by
OA(log n, n

ω), 2 ≤ ω < 2.376 (compare (4.5) and observe that
∑h
�=1 2

�(n/2�)ω = O(nω)
for ω > 1). Summarizing these bounds for all stages t, t = 1, . . . , g+ h, we obtain the
following proposition.

Proposition 10.1. Algorithm 10.1 supports approximating the RD of a
c.-d.d. n × n matrix V of (7.1) within the error norm bound 2−b, at the overall
cost OA((log n)(log n+ g), nω) for g of (10.8) and ω of (4.5).

By combining Algorithms 10.1 and 6.2, summarizing the estimates for the com-
putational cost of their performance, given in particular in (10.9) and Proposition
10.1, and extending the rounding error analysis applied in the proof of Proposition
9.1, we obtain the following corollary.

Corollary 10.2. The IRD of a c.-d.d. n × n matrix V of (7.1) can be exactly
computed at the computational cost OA((log n) log(n log p), n

ω) for ω of (4.5), 2 ≤
ω < 2.376; moreover, this computation can be performed by only involving operations
with b̃-bit precision numbers for b̃ = O(n log p).

11. Computing modulo a fixed prime of the ERD of an integer matrix.
Our next goal is probabilistic extension of Corollary 10.2 from the class of matrices
V of (7.1) to the class of all strongly nonsingular integer matrices A. In this section,
we will compute the IRD and even the ERD of A modulo a fixed prime p; in the next
section we will shift to the IRD of A.

Let A = (ai,j) be a strongly nonsingular n × n matrix filled with integers ai,j .
Then by virtue of Proposition 3.2, there exists the RD of A. Let p be a fixed prime,
let 0 ≤ fi,j = ai,j mod p < p for all i, j, and let

F = (fi,j) = A mod p .(11.1)

(Here and hereafter, we assume that 0 ≤ a mod p < p for any integer a.)
We will compute modulo p the ERD of the matrix F as an auxiliary stage of

computing the ERD of A. At first, we should examine if there exists the ERD modulo
p of F .

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1109

Lemma 11.1 (see [IR82]). Let f(n) be a function defined on the set of positive
integers such that f(n) > 0 and limn→∞ f(n) = ∞. Then there exist two positive
constants C and n0 such that, for any n > n0, the interval

J = {p : f(n)/n < p < f(n)}(11.2)

contains at least f(n)/(C log f(n)) distinct primes.
Lemma 11.2. Let f(n), hq(n), and kq(n), q = 1, . . . , Q be some functions in n

such that hq(n) are integer valued, hq(n) �= 0,

0 < (hq(n))
1/kq(n) ≤ f(n)/n, kq(n) > 0, limn→∞f(n) = ∞(11.3)

for q = 1, . . . , Q. Let p be a random prime in the interval J of (11.2). Then for
the positive constants C and n0 of Lemma 11.1 and for any fixed n > n0, we have
hq(n) �= 0 mod p for q = 1, . . . , Q with a probability at least 1−(CK(n) log f(n))/f(n),

where K(n) =
∑Q
q=1 kq(n).

Proof. Let lq(n) primes lying in the interval J divide hq(n). Then their product
also divides hq(n) and, therefore, cannot exceed hq(n). As these primes lie in the
interval J , each of them exceeds f(n)/n, and their product exceeds (f(n)/n)lq(n).
Hence, (f(n)/n)lq(n) < hq(n). Compare this inequality with the assumed bound
hq(n) ≤ (f(n)/n)kq(n) and obtain that lq(n) < kq(n). This holds for all q. Therefore,
the number of primes lying in J and dividing at least one of the integers hq(n) (for any

q) is at most
∑Q
q=1 lq(n) <

∑Q
q=1 k(n) = K(n). Compare this number with the overall

number of primes in J estimated in Lemma 11.1 and obtain the desired probability
estimate.

Proposition 11.3. Let ρ > 2 be a fixed scalar, let A be a strongly nonsingular
n × n integer matrix, where n > 1, ‖A‖ > 1, and let p be a prime chosen randomly
(under the uniform probability distribution) in the interval J = {p : nρ−1 log ‖ A ‖<
p < nρ log ‖ A ‖}. Then p ≥ n, and the matrix F of (11.1) is strongly nonsingular
modulo p with a probability at least 1−Pρ,n for Pρ,n < (n+1)Cn1−ρ and for a positive
constant C of Lemmas 11.1 and 11.2.

Proof. Apply Lemma 11.2 for f(n) = nρ log ||A||, hq(n) = |detA(q)|, Q = n, and

kq(n) = (q log ||A||)/ log (nρ−1 log ||A||),
q = 1, . . . , n. Recall from Proposition 2.4 that |detA(q)| ≤ ||A(q)||q ≤ ||A||q for all
q, q ≤ n, and deduce that (11.3) holds for all q ≤ n. We immediately deduce that
K(n) =

∑n
q=1 kq(n) = ((n+1)n log ||A||)/(2 log(nρ−1 log ||A||)) and (log f(n))/f(n) =

(log(nρ log ||A||))/(nρ log ||A||). Substitute these expressions forK(n) and (log f(n))/f(n)
into Lemma 11.2 and obtain that (detA(q)) mod p �= 0 for q = 1, . . . , n with a proba-
bility at least 1− Pρ,n, where

Pρ,n <
(n+ 1)nC log (nρ log ||A||)
2nρ log (nρ−1 log ||A||) =

(n+ 1)C

2nρ−1

(
1 +

log n

log (nρ−1 log ||A||)
)

for all k. By assumption, we have ||A|| ≥ 2, ρ > 2, n ≥ 2, and it follows that
log(nρ−1 log ||A||) > log n. Combine this bound with the above bound on Pρ,n and
obtain the claimed estimate of Proposition 11.3.

Now, we will assume that a prime p has been chosen in the interval J of Proposi-
tion 11.3 and the matrix F of (11.1) is strongly nonsingular modulo p and, therefore,
possesses its ERD modulo p.

1110 VICTOR Y. PAN

The next algorithm computes modulo p such an ERD, representing each auxiliary
or output rational value as a pair of its numerator and denominator given as two
integers reduced modulo p. (This enables us to avoid the costly stage of computing
integer reciprocals modulo p.) The RD modulo p of A is computed already at Stage
1 of the algorithm. Subsequent stages yield the extending set of the RD modulo p via
the computation of the dual RD modulo p (see the definitions of the extending set
and the dual RD in section 3).

Algorithm 11.1. Computing the ERD modulo a fixed prime.
Input: a prime p and a pair of strongly nonsingular n×n matrices A and F = A

mod p filled with integers.
Output: the (common) ERD modulo p of A and F .
Computations:
Stage 0. Compute m = 10(np)2 and the c.-d.d. matrix V = F −mI (cf. (7.1),

(7.2)).
Stage 1. Compute modulo p the IRD of V by applying Algorithms 10.1 and

6.2. Then, compute modulo p the RD of V , by dividing modulo p all the computed
matrices mαVα of the IRD by the computed multipliers mα for all α; represent the
result of each division by a pair of an entry ofmαVα reduced modulo p andmα mod p.
Output the computed RD modulo p of V , which is also the RD modulo p of F = V
mod p.

Stage 2. Recall Proposition 4.5 and compute det V .
Stage 3. Recall from Proposition 2.4 that | det V | ≤‖ V ‖n and apply Newton’s

iteration (5.5) for B = V in order to compute an approximation X to V −1 satisfying
(5.3) for B = V and for b satisfying

2−b/m <‖ V ‖−n /2.2 .(11.4)

Then, compute the entries of the matrix X det V and round them to the closest
integers, which gives us adj V .

Stage 4. Compute the matrix Ŵ = (adj V) mod p − mI. Apply Algorithms
10.1 and 6.2 to compute modulo p the IRD of Ŵ (we will prove that this is the dual
IRD modulo p of A, V, and F). Then compute modulo p the matrices Ŵβ0 of the

RD of Ŵ for all binary strings β of length less than h. Output this set of matrices,
to be denoted {(Ŵβ0/det V) mod p}. Their entries are the pairs of integers, each

reduced modulo p; one integer of each pair is an entry of Ŵβ0 mod p and another is
(detV) mod p. (This set of matrices defines the extending set {V −1

β0 mod p} of the
RD modulo p of the input matrix F .)

To verify correctness of Algorithm 11.1, first extend Corollary 7.3 to obtain that
‖ V −1 ‖≤ 1.1/m. Together with (11.4), this implies the bound

‖ X det V − adj V ‖< 1/2

for the matrix X computed at Stage 3 of Algorithm 11.1. Therefore, the rounding at
this stage correctly defines adj V .

Furthermore, the matrices Ŵα mod p (see Stage 4) represent the RD modulo
p of adj V . Therefore, the set {(Ŵα/det V) mod p} represents the RD modulo p
of V −1. To complete the correctness proof, it remains to observe that the set of
matrices {(Ŵβ0/det V) mod p, |β| < h} is nothing else but the extending set {B−1

β0

mod p, |β| < h} of the (common) RD modulo p of the three matrices A, V , and F = V
mod p = A mod p. This follows from the next simple result.

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1111

Proposition 11.4. Let {Vα} and {Wα} denote the RD and the dual RD of a
pair of n×n matrices V and W = V −1, respectively. Then, V −1

α = Wα for all binary
strings α of length at most h.

Proof. Compare (2.3) and (2.4) to obtain that V −1
0 = W0, V

−1
1 = S−1 =

W1. Recursively extend this observation to all binary strings α, to complete the
proofs of both of Proposition 11.4 and, consequently, of the correctness of Algorithm
11.1.

Similarly to deducing Corollary 10.2, we estimate the complexity of performing
Algorithm 11.1. We arrive at the following proposition.

Proposition 11.5. The ERD modulo a fixed prime p of an n × n matrix A
filled with integers and strongly nonsingular modulo p (that is, such that (det A(q))
mod p �= 0 for all q), as well as detA(q) mod p for all q can be computed at the cost
OA((log n) log(n log p), n

ω) for ω of (4.5), 2 ≤ ω < 2.376; moreover, this computation
can be performed by computing with the b̃-bit precision operands for b̃ = O(n log p).

Remark 11.1. One can be tempted to simplify Algorithm 11.1 and to compute
modulo p the extending set {V −1

α0 } of the RD of the matrix V via a more straightfor-
ward application of the techniques of sections 3–10. In particular, one may proceed
by following the recipe of [R95]: first approximate the matrices V −1

α0 closely enough,
then multiply the approximations by appropriate integer multipliers Mα to arrive at
approximations (within an error norm bounded by less than 1/2) to integer matrices
MαV

−1
α0 , and then recover the matrices MαV

−1
α0 via rounding and V −1

α0 via divisions
by Mα. The problem with this approach is in bounding the size of the multipliers
Mα. We need to have log |Mα| = Õ(n) in order to support the bit-precision bounds
of Proposition 11.5, but if we follow the cited recipe, we would only reach the bounds
of order Õ(n2) on log |Mα|, which would imply involving extra factor n in the bit-
precision and the bit-complexity bounds. Here, the notation Õ(s) should be read as
O(s logc s) for a constant c independent of s.

12. p-adic lifting of the ERDs and the recovery of the inverses, deter-
minants, and ranks of integer matrices. In the previous section, we computed
the ERD modulo p of an integer matrix A, which is strongly nonsingular modulo p.
We will now compute its p-adic (Newton–Hensel’s) lifting, that is, the ERD modulo
p2g

of A for a fixed natural g ≥ h = log n. We will achieve this by incorporating
the known techniques [MC79] for p-adic lifting of matrix inverses into our Algorithm
10.1. In this application we will slightly simplify the algorithm by replacing the four
steps of Newton’s iteration of (10.4)–(10.6) by a single step of the computation of the
matrix

Xβ,t = Xβ,t,0(2I − Vβ0,tXβ,t,0),(12.1)

where

Xβ,t,0 =

{
V −1
β0,t mod p for t = u(β) + 1,

Xβ,t−1 for t > u(β) + 1,
(12.2)

and all matrices V −1
β0,t mod p are supplied as an input to the p-adic lifting algorithm.

(The latter expression for Xβ,t,0 replaces (10.4).) The only other change versus Al-
gorithm 10.1 is that all the arithmetic operations in (10.7) and (12.1) are performed
modulo p2s

for s = t− 1− u(β) and for u(β) denoting (as in section 10) the number
of bits one in a binary string β. Hereafter we refer to the resulting algorithm as
Algorithm 12.1.

1112 VICTOR Y. PAN

Correctness of the resulting algorithm follows because (12.1) and the inductive
assumption that Xβ,t−1 = V −1

β0,t−1 mod p2s

, s = t− 2− u(β), together imply that

(I − Vβ0,tXβ,t − (I − Vβ0,tXβ,t,0)
2) mod p2s+1

= 0 ,

and, therefore,

Xβ,t = V −1
β0,t mod p2s+1

(12.3)

(compare [MC79] or [BP94, Fact 3.3.1, p. 244]).
The arithmetic complexity estimates OA((g+ log n) log n, nω) of Proposition 10.1

are extended to the case of Algorithm 12.1, where g denotes a fixed natural input
value, g ≥ h = log n.

We will keep assuming that p is a prime fixed in the interval J of Proposition 11.3,
‖A‖ > 1, n > 1, and the matrix F of (11.1) is strongly nonsingular. Furthermore,
hereafter we will assume that

g = 1 +

⌊
log

1 + n log ‖A‖
log p

⌋
.(12.4)

Then, we have

4‖A‖2n ≥ p2g

> 2‖A‖n.(12.5)

Therefore, by the virtue of Proposition 2.4, the value 0.5p2g

exceeds |detA| as
well as the maximum absolute value of any entry of adj A. We observe that

q =

{
q mod p if q mod p < 0.5q,
(q mod p)− p otherwise,

provided that q is an integer and 2|q| < p. These observations, Corollary 4.6, and
relations (12.5) together enable us to recover det A from (det A) mod p2g

and adj A
from (adj A) mod p2g

, as the p-adic lifting of the ERD is completed. Then, we may
immediately compute A−1 = (adj A)/det A, since A is a nonsingular matrix.

Remark 12.1. We may control the computational precision at the last lifting
stage (where the precision is the largest) simply by performing this stage modulo pq,
where q = �log(2‖A‖n)�+ 1, so that 2‖A‖n ≤ pq ≤ 2p‖A‖n.

Summarizing the algorithms and the complexity estimates of this and the previous
sections, we arrive at the following proposition.

Proposition 12.1. Let A be a strongly nonsingular n×n matrix filled with inte-
gers. Let n > 1, let ‖A‖ > 1, and let p be a prime from the interval J of Proposition
11.3 for a fixed ρ > 2. Furthermore, let the matrix A be strongly nonsingular modulo
p too. Then, one may compute A−1 and det A(k), k = 1, 2, . . . , n, in two stages that
amount essentially to application of Algorithms 11.1 and 12.1, respectively, and are
performed at the arithmetic cost bounded by OA((log n) log(n log p), n

ω), at the first
stage (compare Proposition 11.5) and OA((log n) log(n log ||A||), nω), at the second
stage, for ω of (4.5), 2 ≤ ω < 2.376.

Assuming p chosen from the interval J of Proposition 11.3, we obtain that log p =
O(log(n log ||A||)), so that the overall arithmetic cost is dominated by the cost of the
second stage.

Corollary 12.2. Under the assumptions of Proposition 12.1, one may compute
A−1 and det A(k) for k = 1, 2, . . . , n, at arithmetic cost OA((log n) log(n log ‖A‖), nω)
for ω of (4.5).

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1113

Let us extend Proposition 12.1 and Corollary 12.2 to estimate at first the bit-
precision and then the Boolean complexity of the same computations.

We immediately recall the bound O(n log p) on the bit-precision required in
Algorithm 11.1, that is, at the first stage of the computations of Proposition 12.1.
At the second stage (that is, essentially for Algorithm 12.1), we revisit the derivation
of Proposition 10.1, where we estimated the complexity of the stage of numerical
approximation of the RD and ERD of V , and recall or estimate again that this stage
is essentially reduced to at most g+h substages for g of (12.4) and for h = log n, such
that the cost of performing each substage is dominated by the cost of ten steps of
multiplication of at most n/k pairs of k×k matrices for k = 2� and � = 0, 1, . . . , h−1.
At the stage of the application of Algorithm 12.1, only four (instead of ten) steps
are needed. At each of such four steps, all the matrix multiplications are performed
concurrently, as in the case of the derivation of Proposition 10.1. Furthermore, at
every step of Substage t of the second stage, t = 1, . . . , g + h, at most n/2l pairs of
matrices of the sizes 2l×2l are encountered for l = n−|β|−1, u(β) < t. Such matrices

are pairwise multiplied together modulo p2t−u(β)

,

t− u(β) ≤ λ(t) = min {t, g}.(12.6)

The above bounds on the modulo imply some bit-precision bounds since compu-
tation modulo � can be performed with 2�log ��-bit-precision. Furthermore, we recall
the known estimates OB((log k) log log k, k) for the Boolean complexity of performing
an arithmetic operation modulo 2k− 1 (see [AHU74], [BP94], [CK91], [RT90]), which
can be extended to our computations whenever we perform them with k-bit-precision.

By combining the latter estimates with estimates for the arithmetic cost and
for the bit-precision of our computations, we bound the Boolean cost of performing
Algorithm 11.1, that is, the first stage of the computations supporting Proposition
12.1 (cf. Corollary 10.1) by

OB((log n)(log(n log p))
2 log log(n log p), nω+1 log p),

and we bound the Boolean cost of performing the tth stage of Algorithm 12.1 by

OB((log n)(log(2
λ(t) log p)) log log(2λ(t) log p), nω2λ(t) log p), t = 1, . . . , g + h.

(Compare (12.6) and recall that the tth stage of Algorithm 12.1 is the tth substage
of the second stage of the computations of Proposition 12.1.)

By summarizing all these estimates, for p lying in the interval J of Proposition
11.3 and for g satisfying (12.4), (12.5), we estimate the Boolean complexity of our
computations. To simplify the expressions for the resulting estimates, we write

A = (ai,j), a = logmax
i,j

|ai,j |(12.7)

and obtain that g = O(log(na)), g+ h = O(log(na)), 2g log p = O(na) for g of (12.4),
log p = O(log(na)), log(n log p) = O(log(n log a)). Then, we rewrite our Boolean cost
bounds as follows:

OB((log n)(log(n log a))
2 log log(n log a), nω+1 log(na))

for performing Algorithm 11.1,

OB((log n)(log(na)) log log(na), n
ω+1a)

1114 VICTOR Y. PAN

for performing the tth stage of Algorithm 12.1 for t = g+1, . . . , g+h, where λ(t, g) =
g + 1, and

OB((log n)(t+ log log(na)) log(t+ log log(na)), nω2t log p)

for performing the tth stage of Algorithm 12.1 for t = 1, . . . , g, where λ(t, g) = t.
By applying the B-principle, we bound the overall cost of performing the first g =
O(log(na)) stages of Algorithm 12.1 by

OB((log n)(log(na))
2 log log(na), nω+1a/ log(na)),

and we bound the overall cost of performing its last h = log n stages by

OB((log n)
2(log(na)) log log(na), nω+1a).

Then again, we apply the B-principle to yield the same parallel Boolean time bound,
O((log n)(log(na))2 log log(na)), in all the three estimates (for Algorithm 11.1, for the
first g stages of Algorithm 12.1, and for its last h stages), which gives us the Boolean
processor bounds

O((nω+1(log(n log a))2 log log(n log a))/(log(na) log log(na)))

= O(nω+1(log(n log a))2/ log(na)),

O(nω+1a/ log(na)),

and

O((nω+1a log n)/ log(na))

for these three groups of computations, respectively. We note that the sum of the
three latter bounds gives us O((log n)(a+ log n)nω+1/ log(na)).

By using the Boolean cost bounds of Proposition 11.5 for computing detA(k) mod
p for all k, and by combining the cited Boolean time bound and the latter processor
bound, we obtain the following proposition.

Proposition 12.3. Under the assumptions of Proposition 12.1, one may compute
the inverse matrix A−1 mod p and detA(k) mod p, k = 1, . . . , n, at the Boolean cost

OB((log n)(log(n log a))
2 log log(n log a), nω+1 log(na)),

and one may compute the matrix A−1 and detA(k), k = 1, . . . , n, at the Boolean cost
OB((log n)(log(na))

2 log log(na), (log n)(a+ log n)nω+1/ log(na)) for ω of (4.5) and a
of (12.7).

Remark 12.2. Our choice of a prime p and our complexity estimates rely on the
bounds of Proposition 2.4 on |detW |. For a large class of matrices W , such bounds
can be refined a little (e.g., by using Hadamard’s upper bound on |detA|) and so can
our complexity estimates. Likewise, by expressing the estimates of Proposition 12.3
in terms of ||A|| rather than a, one may obtain some slightly refined (though more
complicated) estimates. Finally, our estimates for parallel Boolean cost can be slightly
improved if, instead of the bounds OB((log k) log log k, k) on the cost of an arithmetic
operation, we will rely on the bounds OB(log k, k log log k), which hold for the cost of

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1115

an addition, a subtraction and a multiplication (see, e.g., [BP94, p. 297]). We may
rely on the latter bound because the ops of the latter three classes are most numerous
among all the ops in our algorithms. Similar observations apply to the estimates of
Theorems 1.1 and 1.2.

It remains to work out the strong nonsingularity issue in order to extend the com-
plexity estimates of Corollary 12.2 and Proposition 12.3 to estimates of Theorem 1.1.
(Note that, in terms of a, the bounds of Corollary 12.2 turn into OA((log n) log(na),
nω), as required in Theorem 1.1.)

We will first assume that A is a nonsingular matrix. In this case, AAT is an
s.p.d. matrix and, consequently, a strongly nonsingular matrix, by Corollary 2.11.
Consequently, AAT is strongly nonsingular modulo p, with a probability 1− Pρ,n for
Pρ,n bounded according to Proposition 11.3. Therefore, we may apply the results of
this section to compute at first (AAT)−1 and then A−1 = AT (AAT)−1 and x = A−1f
satisfying Ax = f . (Strong nonsingularity (modulo p) of AAT is tested as a by-product
of computing (AAT)−1.) We may also immediately compute det(AAT) = (detA)2,
though this does not give us the sign of detA. The matrix A is singular (that is, det
A = 0) if and only if application of the same approach to a matrix A requires us to
invert a singular matrix at some step.

Next, we will apply randomization to relax the assumptions about (strong) non-
singularity of A when we compute rank A and the sign of det A. Towards this goal,
we fix ρ > 2, a sufficiently large finite set of integers, S, and two matrices U and
L, as specified in Proposition 2.19; we compute the matrix Ã = UAL (cf. Remark
12.3 at the end of this section), fix a random prime p in the interval J of Proposition
11.3, and extend Algorithm 11.1 to compute (det Ã(k)) mod p for k = 1, . . . , n, and
r(p) = max{k, (det Ã(k)) mod p �= 0}. Let us write r̃ = max{k, det Ã(k) �= 0},
so that rank A ≥ r̃ ≥ r(p). Furthermore, r̃ = rank A with a probability at least
Pr = 1 − (r̃ + 1)r̃/|S| (due to Proposition 2.19), and r̃ = r(p), with a probability
1 − Pρ,n, estimated in Proposition 11.3. Thus, we output r(p) as rank A and arrive
at the estimate of Theorem 1.1 for the randomized cost of computing rank A. (Note
that in this case, the computations modulo p suffice; thus, in our computation of
rank A, we omit the p-adic lifting stage and rely on the first Boolean cost estimate of
Proposition 12.3.)

Let us extend this technique to the computation of the sine of det A. If r(p) < n,
then (det A) mod p = 0, and we output detA = 0, which is correct with a probability
at least 1 − Pρ,n. Otherwise, that is, if r(p) = n, then we have n ≥ rank A ≥
r(p) = n; that is, A is nonsingular. Furthermore, by using the randomization based
on Proposition 2.19, we may compute detA = det(UAL), because UAL is strongly
nonsingular, with a probability at least 1−(n+1)n/|S| if A is nonsingular. By letting
|S| = n4, say, and by applying Propositions 11.5 and 12.3 to the matrix UAL, we
arrive at the desired algorithm for detA, supporting Theorem 1.1.

Now, assume that r(p) < n and that the r(p)× r(p) leading principal submatrix

B = Ã(r(p)) of Ã is nonsingular. Let us write Ã = (BD
C
E), G = (I0

−B−1C
I), and

observe that ÃG = (BD
0
Q), where Q = 0 if and only if r(p) = rank A. (Compare

[KP91] and [BP94, pp. 110 and 333].) This gives us an algorithm for verification
whether r(p)=rank A (at the cost within the asymptotic cost bounds of Theorem 1.1).
If so, then the n−r columns of the matrix LG(0

I), where I denotes the (n−r)×(n−r)
identity matrix, give us a basis for the null-space, N(A), of A (compare Definition
2.17). We recall from Fact 2.1 that if there exists a solution x to a linear system
Ax = f , then it can be represented as x = x0 + z, x0 being a fixed specific solution

1116 VICTOR Y. PAN

and z being a vector from N(A).
Let g be the r-dimensional prefix-subvector of f , made by the first r components

of f . Let y = B−1g be the solution to the nonsingular system By = g. Then, a
specific solution x0 to the system UAx = U f is given by x0 = LG(y

0) if the latter
linear system is consistent, and we have UAx0 �= U f otherwise. This completes our
proof of Theorem 1.1.

Remark 12.3. Our computations supporting Theorem 1.1 include some n × n
matrix multiplications (of A by AT , L, and U). Their cost bound is dominated by
the complexity bounds of Theorem 1.1, and a similar argument applies to yield the
extension of this theorem to Theorem 1.2, to be shown in section 14 (cf. Proposition
14.1). The increase of the matrix norm in the transition from A to AAT and Ã = UAL
may cause the increase only by a constant factor in the estimate for the precision of
the computations and their Boolean complexity (if we choose, say, S = {1, 2, . . . , |S|}
and |S| = nO(1)).

13. Some definitions and auxiliary results on computations with struc-
tured matrices. Our next goal is to show that the computational cost of our algo-
rithms supporting Theorem 1.1 decreases dramatically, to the level of the estimates
of Theorem 1.2, provided that the input matrix has Toeplitz-like structure. In this
section we will recall some definitions and some simple and/or well-known facts on
Toeplitz-like matrices, which we will use in the next section towards the stated goal
(cf. (1.1) and (1.2) of section 1.1, Definition 2.18, and [BP94], [CKL-A87], [KKM79],
[P92]).

Proposition 13.1. The product of a k × k Toeplitz matrix (cf. Definition 2.18)
and a vector of dimension k can be computed at the cost OA(log k, k) (via reduction
to three FFTs, each on O(k) points, or to convolution of two vectors of dimension
O(k)).

Definition 13.2. For a k× k matrix A and for the matrix Z of Definition 2.18,
write F+(A) = A−ZAZT , F−(A) = A−ZTAZ. If F (A) = GHT for a pair of k× �
matrices G and H and for F = F+ or F = F−, then the pair of G, H is called an
F -generator of A of length �. (Note that, in this case, the pair H, G is an F -generator
of AT of the same length.) The minimum length � of an F -generator of A, for fixed
A and F , is called the F -rank of A, is denoted by rF (A), and is equal to rank F (A).
A k × k matrix A is called a Toeplitz-like matrix if it is given with its F -generator
(for F = F+ or F = F−) having a length bounded by a constant independent of k.
F -generators and F -ranks, for both F = F+ and F = F−, are also called displacement
generators and displacement ranks (following the original definitions of [KKM79]).

Proposition 13.3. rF (T) ≤ 2 if T is a Toeplitz matrix, and rF (T) ≤ 1 if T is
a triangular Toeplitz matrix for F = F+ and F = F−. In particular, rF (I) = 1.

The correlation to (1.2) is given by the following result.
Proposition 13.4. G, H is an F+-generator (respectively, F−-generator) of A

having a length �, G = (g1, . . . ,g�), H = (h1, . . . ,h�), if and only if

A =
∑�
s=1 L(gs) L

T (hs) (respectively, if and only if A =
∑�
s=1 LT (gs) L(hs)).

Based on the latter results, we will operate with the F -generators of Toeplitz-like
matrices, rather than with the matrices themselves. Such a representation is memory
space efficient and also enables us to use less sequential time and fewer processors in
Toeplitz-like computations, due to the following corollary (cf. Propositions 13.1 and
13.4).

Corollary 13.5. The product of a k × k Toeplitz-like matrix by a vector of
dimension k can be computed at the cost OA(log k, k).

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1117

The next result gives us more specific estimates—the cost bound of Toeplitz-like
matrix multiplication is proportional to the square of the sum of the lengths of the
F -generators of the input matrices, and such a length is roughly doubled in a matrix
addition or multiplication.

Proposition 13.6. Given F -generators, GA, HA of length �A and GB , HB of
length �B, of k×k matrices A and B, respectively (for F = F+ or F = F−), one may
compute an F -generator GAB , HAB of AB of length at most �A + �B + 1 at the cost
OA(log k, (�A + �B)

2k), whereas an F -generator of A + B of length at most �A + �B
is immediately available cost-free.

In view of the latter results, we will study various bounds on the F -ranks and the
length of F -generators, in particular regarding the matrices involved in the RD and
Newton’s iteration with Toeplitz-like input.

Proposition 13.7.

(a) rF+(A) ≤ rF−(A)+2, rF−(A) ≤ rF+(A)+2 for any matrix A. Furthermore,
an F+-generator (respectively, F−-generator) of a length � for any matrix A can be
immediately transformed (at the cost OA(log n, n) of performing O(1) convolutions or
FFTs) into an F−-generator (respectively, F+-generator) of length at most � + 2 for
A.

(b) If A is nonsingular, then rF+(A
−1) = rF−(A).

The next result is immediately verified (compare Definition 2.6).

Proposition 13.8. Let GHT = F+(W) for a k×k matrix W . Then (GHT)(i) =
F+(W

(i)) for i = 1, 2, . . . , k; furthermore, rF+(C) ≤ rF+(W)+1, rF+(E) ≤ rF+(W)+
1, under (2.1), and rF+(T) ≤ rF+(W) + 2 for any submatrix T of W formed by
contiguous sets of row and columns of W .

It follows that rF+(B) ≤ rF+(W), under (2.1).

We observe similar relations for trailing principal submatrices and the operator
F−. By Proposition 2.7, S−1 is a trailing principal submatrix of W−1. Therefore,
rF−(S

−1) ≤ rF−(W
−1). By applying Proposition 13.7 (b) for A = S and A = W , we

obtain that rF+(S) ≤ rF+(W).

Proposition 13.9. Let (2.1) and (2.2) hold, where B, S, and W are nonsingular
matrices. Then max{rF+

(B), rF+
(S)} ≤ rF+

(W).

By applying the latter proposition recursively, we bound the F+-rank throughout
the RD.

Corollary 13.10. Let Vα be a matrix of the RD of a matrix A. Then, rF+(Vα) ≤
rF+(A).

So far, we have no tools yet to counter the growth of the length of the F -generators
in the process of Newton’s iteration. Developing such tools (which we call the tech-
niques for the truncation of a generator (TG)) is our next task. Namely, we will next
(in Proposition 13.11) show how to compute a shorter F -generator of a matrix having
small F -rank but given with its longer F -generator. This is our first technique of TG.
It will be used to refine p-adic (Newton–Hensel’s) lifting to bound the length of the F -
generators of the matrices involved there. We will prove easily, based on Propositions
13.7 and 13.9, that such matrices have small F -rank if so has the input matrix. For
Newton’s iteration of Algorithm 5.1, such a property does not hold, and the F -rank
of the computed approximations to the Toeplitz-like inverses may grow quite rapidly.
These approximations, however, always have matrices with small F -rank nearby, and
we will periodically shift to the latter matrices and then restart Newton’s process.
Our tool for such a shift will be Algorithm 13.1 (see [PBRZ99] on some alternative
tools).

1118 VICTOR Y. PAN

Proposition 13.11. Let an F -generator of a k × k matrix A of length � (for
F = F+ or F = F−) and an upper bound r∗ < l on the F -rank rF (A) be given. Then
an F -generator of A of length at most r∗ can be computed at the cost OA(l, kl).

Proof. Apply the proof of Proposition A.6 of [P92] or the solution of Problem 2.11
of [BP94, pp. 111–112]. Verify that all the computations (including the computation
of the LSP factorization or, alternatively, the PLU factorization) can be performed
at the claimed overall cost.

Let us next show the promised alternative algorithm for controlling the length of
F -generators of matrices involved in Newton’s process. The algorithm relies on the
SVD truncation of F -generator, which is our second TG technique.

Algorithm 13.1 ([P92b], [P93], [P93a]).
Input: F = F+ or F = F−, an F -generator G, H of a k × k matrix A of length

l, and a natural r′ < l.
Output: an F -generator G′, H ′ of a k × k matrix A′ of length at most r′ such

that

‖A′ −A‖2 ≤ 2(1 + 2(rF (A)− r′)k)min
Y

‖Y −A‖2 ,(13.1)

where the minimum is over all k × k matrices Y of F -rank at most r′.
Computations:
Stage 1. Compute the singular value decomposition (SVD) of the matrix GHT =

F (A); that is, compute a pair U and V of unitary k× l matrices and an l× l diagonal
matrix Σ = diag(σ1, . . . , σl) for positive σ1, . . . , σl satisfying

GHT = F (A) = UΣV T .

Stage 2. Compute and output an F -generator G′, H ′ of A′ of length at most r′

as follows:

G′ = UΣr′ , H ′ = V Ir′,l,

where Σr′ = diag(σ1, . . . , σr′ , 0, . . . , 0) and Ir′,l = diag(1, . . . , 1, 0, . . . , 0) are l × l
matrices of rank r′.

On the correctness proof of this algorithm, on the bound OA(log k, k/ log k) for
l = O(1), and on the computational cost of its performance, see [P92b], [P93], [P93a].

Remark 13.1. Bound (13.1) is proved in [P92b], [P93], [P93a], based on approx-
imate computation of the SVD at Stage 1 of the algorithm. Any improvement of the
approximation of the SVD would decrease the factor 2 of (13.1), which turns into 1 if
the SVD is computed exactly.

Remark 13.2. If r′ ≥ rF (A), then (13.1) implies that ‖A′ − A‖2 = minY ‖Y −
A‖2 = 0, and then Algorithm 13.1 is an alternative to the algorithm supporting Propo-
sition 13.11, except that the latter algorithm is rational (it can be performed with no
errors over the rational), whereas Algorithm 13.1 has a nonrational, though numeri-
cally stable stage of computing the SVD. This suggests that the algorithm supporting
Proposition 13.11 should be applied in Algorithm 12.1, at the p-adic lifting stage,
whereas Algorithm 13.1 is a better candidate to use in numerical applications of Al-
gorithm 11.1, performed with rounding.

14. Improvement of the algorithms for the ERD, IRD, inverse, deter-
minant, and rank in the Toeplitz and Toeplitz-like cases. Let us apply the
techniques and the results of the previous section to reexamine the computation of

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1119

the ERD and IRD of a strongly nonsingular n×n matrix A filled with integers in the
case where A is a Toeplitz or Toeplitz-like matrix given with its F+-generator G, H
of length r = rF+(A) = O(1).

We recall that rF+(Vα) ≤ r for all matrices Vα of the RD of A (compare Corol-
lary 13.10), and we will apply either the algorithm supporting Proposition 13.11 or
Algorithm 13.1 in order to decrease (to a level at most r) the length of the computed
F -generators of these matrices, in all cases where this length exceeds r. Likewise, we
will obtain from Propositions 13.6–13.8 that the computation of Vβ1,t+1, according
to (10.1)–(10.7), only involves matrices whose F -ranks are bounded from above by
3r + rF+(Xβ,t) + 6.

According to our analysis, the matrixXβ,t approximates B−1
β0 for all binary strings

β of length at most h−1, and since rF+(Bβ0) ≤ r, we have rF−(B
−1
β0) ≤ r, rF+(B

−1
β0) ≤

r+ 2 (compare Proposition 13.7). We will apply Algorithm 13.1 in order to compute
an F+-generator of length at most r + 2 for a matrix X ′

β,t approximating Xβ,t and,

therefore, also V −1
β0 . (The approximation of V −1

β0 by X ′
β,t deteriorates slightly, versus

the approximation by Xβ,t, but since X
′
β,t still closely approxiamtes the matrix Vβ0,

we more than compensate ourselves for such a deterioration by performing an extra
Newton step in (10.5).) Then, all matrices involved in the computation of the ERD
and the IRD of A will be represented by their F+-generators of length O(r).

A similar argument is applied to the computation of the p-adic lifting of the ERD
of A, except that this argument is simplified since (12.3) and Proposition 13.7 together
imply that

rF+(Xβ,t+1 mod p2t−u(β)

) ≤ rF−(Xβ,t+1 mod p2t−u(β)

) + 2

= rF+(B
−1
β0 mod p2t−u(β)

) + 2 ≤ r + 2.

Thus, to keep the length of the associated F+-generators bounded, we just apply the
rational algorithm that supports Proposition 13.11, instead of applying Algorithm
13.1. In fact, we may also apply other alternative techniques for bounding the length
of an F -generator of Xα,i+1; such techniques may rely on using distinct operators F ,
such as F+(A) = AZ − ZA (see [BP94, p. 189]) or operators using some f -circulant
matrices instead of Z (see [PBRZ99], [P00]).

Finally, it is easily verified (cf. [P96b]) that the computation (of section 12) of
a basis for the null-space of A also involves only matrices represented by their F+-
generators of length O(r) for a matrix A given with its F+-generator of length r.

Let us now turn to estimating the computational cost, in the case of Toeplitz or
Toeplitz-like input. There are two new features versus the case of a general integer
input matrix A.

(1) Performing every matrix multipication, we operate with F+-generators of
Toeplitz-like matrices involved in these multiplications and apply Propositions 13.4,
13.6, and Corollary 13.5.

(2) Some of these matrix multiplications are followed by the application of the
algorithms supporting Proposition 13.11 or Algorithm 13.1.

The manipulation with the F+-generators enables us to decrease the arithmetic
processor bound of Corollary 12.2 from nω to n log n, because concurrent multiplica-
tions of O(2t) pairs of (n/2t)×(n/2t) Toeplitz-like matrices for t = 1, . . . , h, h = log n
are performed at the overall cost bounded by OA(log n, n log n) (versus OA(log n, n

ω)
in the case of general integer input matrices). The estimated overall cost of the re-
quired computations (of A−1, det A, and so on) is dominated by the estimated cost of

1120 VICTOR Y. PAN

all Toeplitz-like matrix multiplications involved, because, according to section 13, the
estimated cost of such a multiplication dominates the estimated cost of the application
of both Algorithm 13.1 and the algorithm supporting Proposition 13.11.

Summarizing, we obtain the following result.

Proposition 14.1. If the n× n input Toeplitz-like matrix A is strongly nonsin-
gular and is filled with integers, then one may modify the randomized computation of
its ERD and IRD according to the algorithms of sections 6–12 in order to perform all
these computations at the overall cost OA((log n) log(n log ‖A‖), n log n).

The cost bounds of Proposition 14.1 are immediatley extended to the solution
of all the computational problems listed in Theorem 1.1, where now we assume a
Toeplitz-like input matrix A and represent its inverse or the basis matrix for its null-
space by their short F -generators. (Verifying the correctness of the computation of the
rank and the inverse, we should also deal with short F -generators and use Proposition
13.11 to avoid processing n2 entries of n×n matrices, which would have required order
of n2 ops.)

To obtain a similar extension of the Boolean complexity bounds of Proposition
12.3 and Theorem 1.1, let us examine the precision of the computations by our algo-
rithms simplified in the Toeplitz-like case. We recall that our Toeplitz-like computa-
tions can be ultimately reduced to vector convolutions (Propositions 13.1, 13.4, and
13.6). Thus, we will bound the cost of our computations at the p-adic lifting stage
based on the following estimate.

Proposition 14.2. Given two vectors of dimension n filled with integers lying
in the range from 0 to 2k − 1, the convolution of these vectors can be computed at the
Boolean cost OB((log(kn), kn log log(kn)).

Proof. The well-known binary segmentation techniques (see, e.g., [BP94, section
3.9]) reduces our convolution problem to the multiplication of two integers lying in
the range from 0 to 2kn− 1, and the known algorithms solve this task at the required
cost.

The resulting Boolean cost bounds for performing the p-adic lifting stage will
repeat the bounds of section 12, except that the Boolean (like arithmetic) processor
bounds will decrease by factor nω−1/ log n.

Let us show that this holds also for the Boolean cost of the rest of our computation.

When we approximate the ERD of an input Toeplitz-like matrix, we will effec-
tively reduce the computations to performing FFTs (see Propositions 13.1 and 13.4)
and will recall Corollary 3.4.1 on pp. 255–256 of [BP94], which shows a numerically
stable implementation of FFT. We also recall that the known algorithms for the com-
putation of the SVD of a matrix are numerically stable (see [GL89/96], [P93]). From
these observations, we deduce that we may perform the computations with the same
bit-precision (up to a constant factor independent of n), no matter whether we apply
our original Algorithm 11.1 for an arbitrary n × n input matrix or its Toeplitz-like
modification. Since in the latter case we use by factor nω−1/ log n fewer arithmetic
processors, we will also use by factor nω−1/ log n fewer Boolean processors, thus re-
placing nω for ω of (4.5) by n log n in the Boolean cost estimates of section 12.

This enables us to extend Theorem 1.1 to arrive at Theorem 1.2.

Remark 14.1. Inspection of our algorithms shows immediately that Proposition
14.1 and Theorem 1.2 can be extended to the case where the input matrix A is given
with its F -generator of length r, provided that both time and processor bound increase
by factor r. It is possible to confine the cost increase to processor bound (increasing it

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1121

by factor r2). The only nontrivial stage is the decrease of the length of F -generators
(cf. Proposition 13.11 and Algorithm 13.1). The algorithm supporting Proposition
13.11, however, can be modified by extending the probabilistic techniques of the proof
of Theorem 1.1 (this would include, in particular, application of Proposition 2.19
using n + r extra random parameters), whereas Algorithm 13.1 should be replaced by
an alternative approach of [PBRZ99].

Remark 14.2. It may seem that Theorems 1.1 and 1.2 can be supported by a
substantially simpler construction, and simplified construction has indeed been pro-
posed in [R95]. Unfortunately, however, the construction of [R95] has no power for
supporting the claimed results. In particular, the construction relies on the two “sim-
plifying” recipes cited in our Remarks 6.1 and 11.1, and each of the recipes invalidates
the resulting algorithm. (See [P96c] for more details on these and some other of the
many mishaps of [R95], and note also that the main result of the paper [R93], cited
in [R95], is a rediscovery of some results of [BT90] and [BP91].) It is instructive, for
getting better insight, to discuss two other major gaps of the construction of [R95] and
of its analysis presented in [R95]. Both gaps are in area of Toeplitz-like computations,
where [R95] becomes particularly prone to serious errors. In [R95], an algorithm of
[BA80] is used in order to decrease the length of an F-generator of a matrix A to the
level r =rank F (A). Unlike our Algorithm 13.1 for the SVD truncation and our algo-
rithm supporting Proposition 13.11, the algorithm of [BA80] only works if (F (A))(r),
the r×r l.p.s of F (A), is nonsingular. Furthermore, to support the algorithm of [R95],
one must have matrix (F (A))(r) well-conditioned. Actually, to salvage the algorithm
of [R95] at this point, one would have had to use some techniques that are absent
from [R95] and are substantially more advanced than ones used in [R95]. Likewise,
some techniques are required to prevent the F -ranks of the computed approximations
to A−1 from their disturbing growth (from the desired constant level to the level n)
in less than log n Newton’s steps, and then again, such techniques are absent from
[R95] and are substantially more advanced than ones used in [R95]. The growth of the
F -ranks immediately implies the growth by the extra factor nω−1 log n (for ω of (4.5))
of both arithmetic and Boolean processor complexity bounds, versus the ones claimed
in [R95].

15. Discussion. Our paper leaves as a major open question of theoretical im-
portance whether the level of our parallel complexity estimates of Theorem 1.2 for
Toeplitz and Toeplitz-like computations can be reached by means of purely algebraic
approach, using no rounding to the closest integers. This question is also of practical
interest because the algorithms of this paper involve the exact computation of detA
and, therefore, at some stage require us to use the precision of computation of order
log |detA|, which generally means the order of n log ||A||, even if we only need the
output with a much lower precision. Historically, a similar open problem had arisen
for computations with general integer matrices, after the appearance of [P85], [P87].
In that case (for general integer matrices), the subsequent works of [KP91], [KP92],
[P91], and [P92] gave us an alternative randomized algebraic solution that involved
no rounding. Will this be eventually done also in the Toeplitz-like case or at least in
the Toeplitz case?

Acknowledgments. Detailed and thoughtful comments by a referee and by a
reviewer helped me a great deal to improve my original draft and to make it more
accessible for the reader. The request by the area editor Joachim von zur Gathen to
incorporate the appendix into the body of the paper also served the same goal.

1122 VICTOR Y. PAN

REFERENCES

[AGr88] G. S. Ammar and W. B. Gragg, Superfast solution of real positive definite Toeplitz
systems, SIAM J. Matrix Anal. Appl., 9 (1988), pp. 61–76.

[AHU74] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, MA, 1974.

[B68] E. H. Bareiss, Sylvester’s identity and multistep integer-preserving Gaussian elim-
ination, Math. Comp., 22 (1968), pp. 565–578.

[BA80] R. R. Bitmead and B. D. O. Anderson, Asymptotically fast solution of Toeplitz
and related systems of linear equations, Linear Algebra Appl., 34 (1980), pp.
103–116.

[Be68] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
[Be84] S. Berkowitz, On computing the determinant in small parallel time using a small

number of processors, Inform. Process. Lett., 18 (1984), pp. 147–150.
[BGH82] A. Borodin, J. von zur Gathen, and J. Hopcroft, Fast parallel matrix and GCD

computation, Inform. and Control, 52 (1982), pp. 241–256.
[BGY80] R. P. Brent, F. G. Gustavson, and D. Y. Y. Yun, Fast solution of Toeplitz systems

of equations and computation of Padé approximations, J. Algorithms, 1 (1980),
pp. 259–295.

[BK87] A. Bruckstein and T. Kailath, An inverse scattering framework for several prob-
lems in signal processing, IEEE Acoustics, Speech and Signal Processing (ASSP)
Magazine, January 1987, pp. 6–20.

[BL80] D. Bini and G. Lotti, Stability of fast algorithms for matrix multiplication, Numer.
Math., 36 (1980), pp. 63–72.

[BMP98] D. Bondyfalat, B. Mourrain, and V. Y. Pan, Controlled iterative methods for
solving polynomial systems, in Proceedings of the Annual ACM International
Symposium on Symbolic and Algebraic Computation, ACM, New York, 1998,
pp. 252–259.

[BP91] D. Bini and V. Y. Pan, Parallel complexity of tridiagonal symmetric eigenvalue
problem, in Proceedings of the 2nd Annual ACM-SIAM Symposium on Discrete
Algorithms, ACM, New York, SIAM, Philadelphia, 1991, pp. 384–393.

[BP93] D. Bini and V. Y. Pan, Improved parallel computation with Toeplitz-like and Hankel-
like matrices, Linear Algebra Appl., 188/189 (1993), pp. 3–29.

[BP94] D. Bini and V. Y. Pan, Polynomial and Matrix Computations, Fundamental Algo-
rithms 1, Birkhäuser, Boston, 1994.

[BT71] W. S. Brown and J. F. Traub, On Euclid’s algorithm and the theory of subresul-
tants, J. ACM, 18 (1971), pp. 505–514.

[BT90] M. Ben-Or and P. Tiwari, Simple algorithm for approximating all roots of a poly-
nomial with real roots, J. Complexity, 6 (1990), pp. 417–442.

[Bun85] J. R. Bunch, Stability of methods for solving Toeplitz systems of equations, SIAM
J. Sci. Statist. Comput., 6 (1985), pp. 349–364.

[C47/48] S. Chandrasekhar, On the radiative equilibrium of a stellar atmosphere, Astrophys.
J., 106 (1947), pp. 152–216, 107 (1948), pp. 48–72.

[C74] R. W. Cottle, Manifestation of the Schur complement, Linear Algebra Appl., 8
(1974), pp. 189–211.

[Ch85] A. L. Chistov, Fast parallel calculation of the rank of matrices over a field of arbi-
trary characteristics, in Fundamentals of Computation Theory (Cottbus, 1985),
Lecture Notes in Comput. Sci. 199, Springer, Berlin, 1985, pp 63–69.

[CK91] D. G. Cantor and E. Kaltofen, On fast multiplication of polynomials over arbi-
trary rings, Acta Inform., 28 (1991), pp. 697–701.

[CKL-A87] J. Chun, T. Kailath, and H. Lev-Ari, Fast parallel algorithm for QR-factorization
of structured matrices, SIAM J. Sci. Statist. Comput., 8 (1987), pp. 899–913.

[Cs76] L. Csanky, Fast parallel matrix inversion algorithms, SIAM J. Comput., 5 (1976),
pp. 618–623.

[dH87] F. R. de Hoog, On the solution of Toeplitz systems, Linear Algebra Appl., 88/89
(1987), pp. 123–138.

[E67] J. Edmonds, Systems of distinct representatives and linear algebra, J. Res. Nat. Bur.
Standards, 71B (1967), pp. 241–245.

[EG88] D. Eppstein and Z. Galil, Parallel algorithmic techniques for combinatorial com-
putation, Annual Rev. Comput. Sci., 3 (1988), pp. 233–283.

[EP97] I. Z. Emiris and V. Y. Pan, The structure of sparse resultant matrices, in Proceed-
ings of the Annual ACM International Symposium on Symbolic and Algebraic

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1123

Computation, ACM, New York, 1997, pp. 189–196.
[F64] L. Fox, An Introduction to Numerical Linear Algebra, Oxford University Press,

Oxford, UK, 1964.
[G84] J. von zur Gathen, Parallel algorithms for algebraic problems, SIAM J. Comput.,

13 (1984), pp. 802–824.
[G86] J. von zur Gathen, Parallel arithmetic computations: A survey, in Mathematical

Foundations of Computer Science, Lecture Notes in Comput. Sci. 233, Springer,
Berlin, 1986, pp. 93–112.

[GKO95] I. Gohberg, T. Kailath, and V. Olshevsky, Fast Gaussian elimination with par-
tial pivoting for matrices with displacement structure, Math. Comp., 64 (1995),
pp. 1557–1576.

[GL89/96] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins University
Press, Baltimore, MD, 1989 (2nd ed.), 1996 (3rd ed.).

[H91] S. Haykin, Adaptive Filter Theory, 2nd ed., Prentice-Hall, Englewood Cliffs, NJ,
1991.

[H95] G. Heinig, Inversion of generalized Cauchy matrices and other classes of structured
matrices, in Linear Algebra for Signal Processing, IMA Vol. Math. Appl. 69,
Springer, New York, 1995, pp. 95–114.

[IR82] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory,
Springer, Berlin, 1982.

[J92] J. Jà Jà, An Introduction to Parallel Algorithms, Addison-Wesley, Reading, MA,
1992.

[K74] T. Kailath, A view of three decades of linear filtering theory, IEEE Trans. Inform.
Theory, 20 (1974), pp. 146–181.

[K87] T. Kailath, Signal processing applications of some moment problems, in Moments
in Mathematics, Proc. Sympos. App. Math. 37, AMS, Providence, RI, 1987, pp.
71–100.

[K95] E. Kaltofen, Analysis of Coppersmith’s block Wiedemann algorithm for the parallel
solution of sparse linear systems, Math. Comput., 64 (1995), pp. 777–806.

[KAGKA89] R. King, M. Ahmadi, R. Gorgui-Naguib, A. Kwabwe, and M. Azimi-Sadjadi,
Digital Filtering in One and Two Dimensions: Design and Applications, Plenum
Press, New York, 1989.

[KKM79] T. Kailath, S.-Y. Kung, and M. Morf, Displacement ranks of matrices and linear
equations, J. Math. Anal. Appl., 68 (1979), pp. 395–407.

[KLM78] T. Kailath, L. Ljung, and M. Morf, A new approach to the dertemination of Fred-
holm resolvents of nondisplacement kernels, in Topics in Functional Analysis, I.
Gohberg and M. Kac, eds., Academic Press, New York, 1978, pp. 169–184.

[KP91] E. Kaltofen and V. Y. Pan, Processor efficient parallel solution of linear systems
over an abstract field, in Proceedings of the 3rd Annual ACM Symposium on
Parallel Algorithms and Architectures, ACM, New York, 1991, pp. 180–191.

[KP92] E. Kaltofen and V. Y. Pan, Processor-efficient parallel solution of linear systems
II. The positive characteristic and singular cases, in Proceedings of 33rd Annual
IEEE Symposium on Foundations of Computer Science, IEEE Computer Society,
Los Alamitos, CA, 1992, pp. 714–723.

[KP94] E. Kaltofen and V. Y. Pan, Parallel solution of Toeplitz and Toeplitz-like linear
systems over fields of small positive characteristic, in Proceedings of the First
International Symposium on Parallel Symbolic Computation, Lecture Notes Ser.
Comput. 5, World Scientific, Singapore, 1994, pp. 225–233.

[KR90] R. Karp and V. Ramachandran, A survey of parallel algorithms for shared memory
machines, in Handbook for Theoretical Computer Science, J. van Leeuwen, ed.,
North-Holland, Amsterdam, 1990, pp. 869–941.

[KS91] E. Kaltofen and B. D. Saunders, On Wiedemann’s method for solving sparse
linear systems, Proc. AAECC-9, Lecture Notes in Comput. Sci. 539, Springer,
Berlin, 1991, pp. 29–38.

[KVM78] T. Kailath, A. Vieira, and M. Morf, Inverses of Toeplitz operators, innovations,
and orthogonal polynomials, SIAM Rev., 20 (1978), pp. 106–119.

[L-AK84] H. Lev-Ari and T. Kailath, Lattice filter parametrization and modelling of non-
stationary processes, IEEE Trans. Inform. Theory, IT-30 (1984), pp. 2–16.

[L-AKC84] H. Lev-Ari, T. Kailath, and J. Cioffi, Least squares adaptive lattice and transver-
sal filters; a unified geometrical theory, IEEE Trans. Inform. Theory, IT-30
(1984), pp. 222–236.

[Le92] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays,

1124 VICTOR Y. PAN

Trees and Hypercubes, Morgan Kaufmann, San Mateo, CA, 1992.
[LRT79] R. J. Lipton, D. Rose, and R. E. Tarjan, Generalized nested dissection, SIAM J.

Numer. Anal., 16 (1979), pp. 346–358.
[Ma75] J. Makhoul, Linear prediction: A tutorial review, Proc. IEEE, 63 (1975), pp. 561–

580.
[MC79] R. T. Moenck and J. H. Carter, Approximate algorithms to derive exact solutions

to systems of linear equations, in Symbolic and Algebraic Computation, Lecture
Notes in Comput. Sci. 72, Springer, Berlin, 1979, pp. 63–73.

[Morf74] M. Morf, Fast Algorithms for Multivariable Systems, Ph.D. Thesis, Stanford Uni-
versity, Stanford, CA, 1974.

[Morf80] M. Morf, Doubling algorithms for Toeplitz and related equations, in Proceedings of
the IEEE International Conference on Acoustics, Speech and Signal Processing,
IEEE Computer Society, Los Alamitos, CA, 1980, pp. 954–959.

[MP98] B. Mourrain and V. Y. Pan, Asymptotic acceleration of solving multivariate poly-
nomial systems of equations, in Proceedings of the ACM Symposium on Theory
of Computing, ACM, New York, 1998, pp. 488–496.

[MRK88] G. L. Miller, V. Ramachandran, and E. Kaltofen, Efficient parallel evaluation
of straight-line code and arithmetic circuits, SIAM J. Comput., 17 (1988), pp.
687–695.

[Mu81] B. R. Musicus, Levinson and Fast Choleski Algorithms for Toeplitz and Almost
Toeplitz Matrices, Internal Report, Lab. of Electronics, M.I.T., Cambridge, MA,
1981.

[OP98] V. Olshevsky and V. Y. Pan, A unified superfast algorithm for boundary rational
tangential interpolation problem and for inversion and factorization of dense
structured matrices, in Proceedings of the 39th Annual IEEE Symposium on
Foundations of Computer Science, IEEE Computer Society, Los Alamitos, CA,
1998, pp. 192–201.

[OP99] V. Olshevsky and V. Y. Pan, Polynomial and rational interpolation and multipoint
evaluation (with structured matrices), in Proceedings of the 26th International
Colloquium on Automata, Languages and Programming (ICALP 99), Lecture
Notes in Comput. Sci. 1644, J. Wiedermann, P. van Emde Boas, and M. Nielsen,
eds., Springer, Berlin, 1999, pp. 585–594.

[P85] V. Y. Pan, Fast and efficient parallel algorithms for the exact inversion of integer
matrices, in Proceedings of the 5th Annual Conference on Foundations of Soft-
ware Technology and Theoretical Compututer Science, Lecture Notes in Comput.
Sci. 206, Springer-Verlag, New York, 1985, pp. 504–521.

[P87] V. Y. Pan, Complexity of parallel matrix computations, Theoret. Comput. Sci., 54
(1987), pp. 65–85.

[P90] V. Y. Pan, Computations with dense structured matrices, Math. Comp., 55 (1990),
pp. 179–190.

[P91] V. Y. Pan, Complexity of algorithms for linear systems of equations, in Computer
Algorithms for Solving Linear Algebraic Equations (The State of the Art), E.
Spedicato, ed., NATO Adv. Sci. Inst. Ser. F Comput. and Systems Sci. 77,
Springer, Berlin, 1991, pp. 27–56.

[P92] V. Y. Pan, Parametrization of Newton’s iteration for computations with structured
matrices and applications, Comput. Math. Appl., 24 (1992), pp. 61–75.

[P92a] V. Y. Pan, Complexity of computations with matrices and polynomials, SIAM Rev.,
34 (1992), pp. 225–262.

[P92b] V. Y. Pan, Parallel solution of Toeplitz-like linear systems, J. Complexity, 8 (1992),
pp. 1–21.

[P93] V. Y. Pan, Decreasing the displacement rank of a matrix, SIAM J. on Matrix Anal.,
Appl. 14 (1993), pp. 118–121.

[P93a] V. Y. Pan, Concurrent iterative algorithm for Toeplitz-like linear systems, IEEE
Trans. Parallel and Distributed Systems, 4 (1993), pp. 592–600.

[P93b] V. Y. Pan, Parallel solution of sparse linear and path systems, in Synthesis of Parallel
Algorithms, J.H. Reif, ed., Morgan Kaufmann, San Mateo, CA, 1993, pp. 621–
678.

[P95] V. Y. Pan, Optimal (up to polylog factors) sequential and parallel algorithms for
approximating complex polynomial zeros, in Proceedings of the 27th Annual
ACM Symposium on Theory of Computing, ACM, New York, 1995, pp. 741–
750.

[P96] V. Y. Pan, A new approach to parallel computation of polynomial GCD and to

PARALLEL ALGORITHMS FOR TOEPLITZ-LIKE MATRICES 1125

related parallel computations over abstract fields, in Proceedings of the Sev-
enth Annual ACM–SIAM Symposium on Discrete Algorithms, ACM, New York,
SIAM, Philadelphia, PA, 1996, pp. 518–527.

[P96a] V. Y. Pan, Optimal and nearly optimal algorithms for approximating polynomial
zeros, Comput. Math. Appl., 31 (1996), pp. 97–138.

[P96b] V. Y. Pan, Parallel computation of polynomial GCD and some related parallel com-
putations over abstract fields, Theoret. Comput. Sci., 162 (1996), pp. 173–223.

[P96c] V. Y. Pan, Effective parallel computations with Toeplitz and Toeplitz-like matrices
filled with integers, in The Mathematics of Numerical Analysis (Park City, Utah,
1995), Lectures in Appl. Math. 32, J. Renegar, M. Shub, and S. Smale, eds.,
Amer. Math. Soc., Providence, RI, 1996, pp. 591–641.

[P97] V. Y. Pan, Solving a polynomial equation: Some history and recent progress, SIAM
Rev., 39 (1997), pp. 187–220.

[P00] V. Y. Pan, Nearly optimal computations with structured matrices, in Proceedings of
the 11th Annual ACM–SIAM Symposium on Discrete Algorithms, ACM, New
York, SIAM, Philadelphia, 2000, pp. 953–962.

[P00a] V. Y. Pan, Matrix structure, polynomial arithmetic, and erasure-resilient encod-
ing/decoding, to appear in Proceedings of the ACM International Symposium
on Symbolic and Algebraic Computation, ACM, New York, 2000.

[PBRZ99] V. Y. Pan, S. Branham, R. Rosholt, and A. Zheng, Newton’s iteration for struc-
tured matrices, in Fast Reliable Algorithms for Matrices with Structure, SIAM,
Philadelphia, PA, 1999, pp. 189–210.

[PP95] V. Y. Pan, F. P. Preparata, Work-preserving speed-up of parallel matrix compu-
tations, SIAM J. Comput., 24 (1995), pp. 811–821.

[PR89] V. Y. Pan and J. Reif, Fast and efficient parallel solution of dense linear systems,
Comput. Math. Appl., 17 (1989), pp. 1481–1491.

[PR91] V. Y. Pan and J. Reif, The parallel computation of the minimum cost paths in
graphs by stream contraction, Inform. Process. Lett., 40 (1991), pp. 79–83.

[PR93] V. Y. Pan and J. Reif, Fast and efficient parallel solution of sparse linear systems,
SIAM J. Comput., 22 (1993), pp. 1227–1250.

[PSLT93] V. Y. Pan, A. Sadikou, E. Landowne, and O. Tiga, A new approach to fast
polynomial interpolation and multipoint evaluation, Comput. Math. Appl., 25
(1993), pp. 25–30.

[PZHY97] V. Y. Pan, A. Zheng, X. Huang, and Y. Yu, Fast multipoints polynomial evalua-
tion and interpolartion via computations with structured matrices, Ann. Numer.
Math., 4 (1997), pp. 483–510.

[Q94] M.J. Quinn, Parallel Computing: Theory and Practice, McGraw-Hill, New York,
1994.

[R93] J. Reif, An O(n log3 n) algorithm for the real root problem, in Proceedings of the 34th
Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, Los Alamitos, CA, 1993, pp. 626–635.

[R95] J. Reif, Work efficient parallel solution of Toeplitz systems and polynomial GCD,
in Proceedings of the 27th Annual ACM Symposium on Theory of Computing,
ACM, New York, 1995, pp. 751–761.

[RT90] J. Reif and S.R. Tate, Optimal size integer division circuits, SIAM J. Comput., 19
(1990), pp. 912–924.

[St69] V. Strassen, Gaussian elimination is not optimal, Numer. Math., 13 (1969), pp.
354–356.

[Ste94] W. F. Stewart, Introduction to the Numerical Solution of Markov Chains, Prince-
ton University Press, Princeton, NJ, 1994.

[VSBR83] L. Valiant, S. Skyum, S. Berkowitz, and C. Rackoff, Fast parallel computation
of polynomials using few processors, SIAM J. Comput., 12 (1983), pp. 641–644.

[W65] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, UK,
1965.

