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Abstract

We first review the basic properties of the well known classes of Toeplitz,
Hankel, Vandermonde, and other related structured matrices and re-
examine their correlation to operations with univariate polynomials. Then
we define some natural extensions of such classes of matrices based on
their correlation to multivariate polynomials. We describe the correlation
in terms of the associated operators of multiplication in the polynomial
ring and its dual space, which allows us to generalize these structures to
the multivariate case. Multivariate Toeplitz, Hankel, and Vandermonde
matrices, Bezoutians, algebraic residues and relations between them are
studied. Finally, we show some applications of this study to rootfinding
problems for a system of multivariate polynomial equations, where the
dual space, algebraic residues, Bezoutians and other structured matrices
play an important role. The developed techniques enable us to obtain a
better insight into the major problems of multivariate polynomial compu-
tations and to improve substantially the known techniques of the study of
these problems. In particular, we simplify and /or generalize the known
reduction of the multivariate polynomial systems to matrix eigenproblem,
the derivation of the Bézout and Bernshtein bounds on the number of the
roots, and the construction of multiplication tables. From the algorithmic
and computational complexity point, we yield acceleration by one order
of magnitude of the known methods for some fundamental problems of
solving multivariate polynomial systems of equations.
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1 Introduction

The main goal of this paper is to summarize and to develop various techniques
in the areas of algebraic residues, dual spaces and structured matrices and to
demonstrate the power of application of these techniques to algorithmic study of
polynomial systems of equations; in particular we accelerate the known solution
algorithms by order of magnitude. Let us comment on the structure of our
presentation and on some specific new results of this paper.

It is well known that the important classes of Toeplitz, Hankel, Vander-
monde, and some other structured matrices have a natural characterization in
terms of the associate linear operators of scaling and displacements. We will
study some extensions of the classes of such matrices, based on their correlation
to the fundamental operations with polynomials, such as polynomial multiplica-
tion, multipoint evaluation, interpolation, and rootfinding. We will start with a
review of the simpler and well known correlation to operations with univariate
polynomials and then will use the patterns of this study as basic samples for
our extended study where we involve multivariate polynomials. This will enable
us to give a natural introduction to some other large and important topics and
to introduce some major tools and concepts useful for our study of multivari-
ate polynomial systems of equations, such as the dual space, algebraic residues,
and Bezoutians. Using these tools and concepts enabled us to give a simple
and general reduction of the problem of solving a polynomial system to matrix
eigenproblem (in sections 3.2 and 3.3) and to simplify substantially the known
derivations of the fundamental upper bounds by Bézout and Bernshtein on the
number D of the roots of a given polynomial system (in section 4.2.3). Both
reduction to the eigenproblem and the bounds on the number of the roots are
known as the major steps of the solution of the systems. Another major step
(related to the bounds on the number of roots) is the computation of multiplica-
tion tables, that is, the matrices of the operations of multiplication modulo the
ideal defined by the given polynomial system (cf. [25], [16], [26]). We treat this
step in section 4.2 by showing the matrix structure implicit in the multiplication
tables. A distinct though related study of such a structure was given in [6] and
[15] (cf. also [27], [28]). Based on such a matrix structure, multiplication of a
multiplication matrix by a vector can be reduced to polynomial multiplication
and consequently accelerated, and our study enabled us to translate the latter
acceleration into faster solution of polynomial systems. In our study and expo-
sition, we used the structured matrices associated with univariate polynomials
as a springboard.

The correlation between structured matrices and univariate polynomials has
been well known and effectively used for the acceleration of structured matrix
computations. We extend these results to the structured matrices associated
with multivariate polynomials and exploit matrix structure to improve substan-
tially the known methods and algorithms for polynomial systems of equations.

Our improvement of the known algorithms for polynomial systems is pre-
sented in sections 4.3 and 4.4. In section 4.3, we specify our iterative algorithm
outlined in the conference paper [28]. The algorithm quadratically converges



right from the start to a selected root of a polynomial system of equations that
has D distinct and simple roots, and we approximate such a root by using order
of D? arithmetic operations (up to a polylogarithmic factor in D). (Hereafter,
we will use the abbreviation “ops” for “arithmetic operations”. We say "ops"
rather than "flops" to cover also rational computations with infinite precision.)
The algorithm can be applied recursively to compute several roots. In section
4.4, we devise algorithms, also running in D? time (up to a polylog factor), that
compute the numbers of distinct roots and distinct real roots of a given poly-
nomial system of equations with real input coefficients. This improves by one
order of magnitude the known algorithms (not involving structured matrices
and algebraic residues), which all require at least order of D? time to solve any
of the cited computational problems.

Thus, we reached our main technical goal of developing the basic techniques
for the improvement of computations with multivariate polynomials by using
the associated structured matrices, the dual space and algebraic residues. We
were able to demonstrate the power of such techniques already in the present
paper; in our subsequent works we will show how to accentuate this power fur-
ther (in particular, by removing the assumption that the residue associated with
a given polynomial system is known or readily available) and to elaborate and
ameliorate the resulting algorithms from numerical and algebraic points of view.
Our progress in these directions has been reported in our recent conference pa-
pers [4], [29]. In our present paper we have not touched these aspects and only
provided an illustrative example for our approach. Some of the presented tech-
niques appeared earlier in less developed form. In particular, some extensions of
the structured matrices associated with univariate polynomials were presented
in [41], but they only worked in much more restricted cases, and the restrictions
do not allow to apply them to solving polynomial systems.

We will use the following order of presentation. Section 2 deals with struc-
tured matrices associated with univariate polynomials. The concepts of the dual
space, Bezoutians and algebraic residues appear in simplified form. In section 3,
we substantially develop the latter concepts by presenting a natural generaliza-
tion of the material of section 2 to the multivariate case. In section 4, we show
some applications to the polynomial root-finding problem in the multivariate
case. Section 5 contains a summary and a brief discussion.

Some results of this paper were included into our proceedings papers [27]
and [28], but various advanced techniques that we present and use here have
not been collected together so far, so we detail our presentation and give many
comments and some illustrative examples.



2 Basic properties of structured matrices and their
correlation to univariate polynomials. Dual
space, Bezoutians, and algebraic residues

In this section, we will recall the basic classical results on matrix structure,
presenting them from a polynomial point of view. This will give us a sample
pattern, which we will use as a springboard for developing similar techniques in
the multivariate case. The reader is referred to appendix A, for the summary
of the basic definitions, and to appendix B, for the summary of the estimates
for the computational complexity of some fundamental polynomial and matrix
computations.

2.1 Toeplitz operators and matrices

Consider a polynomial t = tg+t1 x+ -+ tag z2¢ and the map of multiplication
by this polynomial ¢ in the ring R = C[z] of polynomials in the variable « with
coefficients from the complex field C:
Mi: R - R
p — tp.

The matrix M of this map in the monomial basis (obtained by computing the
polynomials M(1), M(z), My(z?),...) has the form

1 Mt 0 -7
x¢ tq to
: T (1)
x2d tod ta
L O toa -

The matrix M infinitely continues rightward and downward. Its rows and
columns are indexed by the monomials (z?), and its (4, j)-th entry is the co-
efficient of x* in the polynomial 27 t(z) (the index (i, ;) starting from 0). The
entries of M are invariant in their shift along the diagonal direction. This prop-
erty characterizes the class of Toeplitz matrices:

Definition 2.1.1 A matrizc T = (t; ;) is a Toeplitz matriz if for all 1,7, the
entry t; ; depends only on i — j, that is, if t;; = tit1,j+1 for all pairs of (i,7)
and (i + 1,7 + 1) for which the entries t; ; and t;y1 ;41 are defined.

It is immediately observed that any hxk Toeplitz matrix 7" where max{h, k} <
d + 1 can be obtained as a submatrix of the matrix M defined in (1). Let
E={1,...,2¢} and F = {2¢,..., 22?} be two linear subspaces of R and let 75



(resp. 7r) be the projection of R on the vector space generated by E (resp. F).
Then the matrix T is just the matrix of the map

T =npoM;omg.

The projections 7 and 7 select the first columns and the middle rows of M,
respectively.

Proposition 2.1.2 A Toeplitz operator (associated with a Toeplitz matriz) is
the projection of the multiplication of a fized polynomial by a polynomial. This
is a map from R to R.

Problem 2.1.1 Compute the product of an n x n Toeplitz matriz by a vector
as a subvector of the coefficient vector of the product of two polynomials of R.

By theorem B.1.1 of appendix B, we may solve problem 2.1.1 in O(nlog(n))
ops.

Hereafter we use the abbreviation f.p.s. for formal power series. Similarly,
we define the map

Mip: S — S
q(9) = t(x) *q(9) = w4 (H(07")q(9)),

where S = (C[[d]] is the ring of f.p.s. in the variable 9, ' is the differential
form: p — %p“’)(o), and 7, is the projection of an f.p.s. in @ and 97! into
an f.p.s. in S obtained by deleting all the monomials in 9~!, that is, m is the
projection on the monomials of non-negative degree in 9. The matrix of this
map is the transpose of the matrix of M;, where we can extract the transpose
of the matrix T

to tq tag O
to tq
0 to

2.2 Hankel operators and matrices

Next, consider the multiplication map defined by h(9) = ho+h19+- - -+hsg0>?+

- (an f.p.s. in 9) as follows: for any polynomial p € Clx] we compute the
product p(9~1)h(9) and project it onto the monomials of non-negative degree.
(Then again, the reader may think of 9 as a variable and of ! as its reciprocal,
and we interpret 9° as the linear map p — %p(i)(O).) Here is the matrix M



representing such maps:

1 [ ho ha -]

: Do H

ad hd h2d (2)
a?d h2d

The matrix M infinitely continues rightward and downward in this case. Its
columns are indexed by monomials in « and its rows by monomials in 0. The
(i, 7)-th entry of this matrix is the coefficient of 9° in 9=7h(9) (the index (i, 5)
starting from 0), which explains why its entries are invariant in their shifts
into the antidiagonal direction. This property characterizes the class of Hankel
matrices.

Definition 2.2.1 A matric H = (h;;) is a Hankel matriz if its entry h; ;
depends only on i + j, that is, if hit1 j—1 = hij for all pairs (i,7) of non-
negative integers i and j for which the entries are defined.

Definition 2.2.2 The space of linear forms from R to C, that is, the dual space
of the ring of polynomials R, is denoted by R. Such a map from Clz] to the ring
of f.p.s. in 9, which we denote by both S and C[[0]]. According to appendiz A,
we identity R with S = C[[d]).

The matrix M is the matrix of the map

H,:R — S (3)
p(z) — p(x)*h(d) =my(p(0~")h()).

where 7 is the projection on the monomials of non-negative degree in 0.

We immediately observe that any general k x [ Hankel matrix H where max
{k,1} < n+1is a submatrix of the above matrix M, defined in (2) and associated
with some h(9) € C[J]. Let E = {1,x,...,2%}, F = {1,0,...,0%} be the two
monomial sets in x and 9, respectively, and let 7y and 7 be the corresponding
projections on the vector spaces generated by these sets. Then the matrix H is
the matrix of the following map:

7I'FOHh07TE.

The projections 7g and 7 select the first columns and rows of the matrix M

of (2).

Proposition 2.2.3 A Hankel operator (associated with a Hankel matriz) can
be defined as the projection of the multiplication of a (projected) polynomial by
a fized Laurent polynomial.



Problem 2.2.1 Compute the product of a (d+ 1) x (d+ 1) Hankel matriz by a
vector as a subvector of the coefficient vector of the product of a fized polynomial
h(d) by a polynomial in O~ .

By theorem B.1.1 of appendix B, we may solve problem 2.2.1 in O(dlog(d))
ops.

2.3 Bezoutians

Next, let us study linear maps from C[[9]] to C[z]. First, consider a polynomial
in two variables x and y:

d—1
Oz, y)= Y bija'y.

i=0,5=0

To any element A(9) € C[[0]], we associate the constant coefficient in 0 (that
is, the d-free term) of the product

O(z, 1) A(9).

This defines a map B from C[[0]] to C[x]. We immediately verify that the matrix
of this map (which can be obtained by computing the constant coefficients in 9
of O(x,071) 07 : B(1) = Zf;ol 0; 02", B(9) = Zf;ol 6;12",...) is precisely the
coefficient matrix [6; j]o<i,j<da—1 of O(z,y).

A fundamental example of such a polynomial is the Bezoutian defined as
follows:

Definition 2.3.1 Let p and q be two polynomials of Clz]. The term Bezoutian
of p and q is used for both the bivariate polynomial

p(z) q(y) —p(y) g(z) i
Ogp(z,y) = R = Z 017y’
y 0<i,j<d—1
and the matriz o o
90:0 e 90:d-1
Bgp = : :
egfl,o e 03f1,d71

By, : C[[0]] — Clz] denotes the associated map, By, ,(A) — o (O4,(z,071)A(9))
where mo(-) denotes the O-free term of (.). The image of this map can be ex-
pressed as the product

[L,2,...,27Y Byo[ho,. s A1,

where A(0) = Y oo N0



In particular, if p = po + p1 @ + - -+ + pg ¢, then the polynomial ©, , is of
the form

d—1
el,p(xv y) = Z xi ef(y)v
=0

where ©%(y) = piy1 +Diyay+- - +pay? "L This polynomial is also called the
1-th Horner polynomial, for it corresponds to the i-th polynomial, appearing in
the so-called Horner rule for polynomial evaluation. It can be also written as

Of(y) =74 (v~ "p(v)), (4)

where 7, is the projection on the set of polynomials in y. We immediately
observe that the matrix B; , associated with ©1 , is a triangular Hankel matrix
of the form

pr - Pd
Do (5)
Dd 0

More generally, we have the decomposition

0, p(z,y) = 22 Q(yﬁ :z(w o(z)
M q(y) — M
xr Y - y

p(y) = O1p(2,9) q(y) — Or4(x,y) p(y).
This implies
Byp(A) = Bip(gxA) — Big(p*A)
for any A(9) € C[[d]] or, in terms of operators,
Bq,P = BLP o M; — Bl#] o M; (6)
In term of matrices, this yields the Barnett formula,

Pr - DPd qo ' dd-1 qr 44 Po - Pd—1
By = s . = .
Pd 0 0 ) 4d 0 0 Po
which extends the Gohberg-Semencul formula to the inverses of Hankel matrices
(see corollary 2.5.4 and compare [3], pp. 135, 156, 160).

2.4 Vandermonde operators and matrices

Consider the linear space Ry of polynomials of degree at most d and d + 1
distinct points in C : = = {&,...,&4}. Also consider the next two bases of Ry:

e the basis of monomials (1,z,...,2%)



e and the basis of Lagrange interpolation polynomials

-& .
L; = Li(z) = Li=0,....d).
( (z) g&—ﬁj =0 )

Any polynomial p € R, can be decomposed in the latter basis as follows:

p(x) =Y p(&) Li(x). (7)

=0

We deduce from this decomposition that the (d+1) x (d+ 1) matriz of the basis
transformation from (x*);=o,....q t0 (L;(x))i=o0,1,....4 is the Vandermonde matrix,

1 & --- 56:

1
vE = | &1 5:1

1 & - &

Remark 1 Many authors use the name “Vandermonde matriz” for V¥(Z), the
transpose of V(Z2).

Problem 2.4.1 Multiply the matriz V(Z) by a vector p = (po,-.., pq)t or,

equivalently, evaluate a polynomial p(z) = E?:o pixt on the set of points = =

{607 . '7€d}-

Clearly, the multiplication of the row vector (1,&;, ..., &%)t by the vector p =
(po, - .., pa) amounts to the evaluation of the polynomial p(z) = pgy + - - - + pg 2%
at the point &;. Equivalently, the coefficients p(§;) of p = p(x) in the Lagrange
basis can be obtained by means of the evaluation of p = p(z) at the points &;.

Problem 2.4.2 Solve the linear system V(Z)v = w by interpolation to the
polynomial p(z) from its values wo, ..., wq on the set = = {&o,..., &}

The known algorithms solve problems 2.4.1 and 2.4.2 in O(d log>d) ops (see
[3], pp- 25-26).

Evaluation at a point is an example of a linear form (map), and equation
(7) shows that the dual basis of (L;);=o,... 4 (that is, the linear forms (maps)
that compute the coefficients of a polynomial p in this basis) is the set of linear
forms (1¢,)i=o,....a of the evaluation at &: 1¢,(p) = p(&). Such an evaluation
will play important role in the following, so we will next define it formally:

Definition 2.4.1 For any point £ € C, let 1. € RcC ﬁd,l denote the linear
form that corresponds to the evaluation at &:

]_EZR — (C
p — p().



Note that R is subset of the dual space ﬁd made by the linear forms on
the vector space of poanomlals of degree at most d and that the coordinates
of the evaluation 1¢ € Ry in the dual basis (1,9, ..., %) of Ry are obtained by
computing 1¢(x%);—o 4. This yields the vector (175,52,...75‘1). In terms of
polynomials in 0, we have

1—(£9)'*!
1-¢y

Thus, the matrix of the basis transformation from the basis (1¢, )i=o,....q to the
dual basis (1,9, ...,0%) of (1,z,...,2%) is given by

le=1+€0+ - +(€9)! =

11 - 1
oE) = §:0 IS §:d
& & - &

Problem 2.4.3 Multiply V*(Z) by a vector.
Problem 2.4.4 Solve the linear system V*(Z)v = w.

Problems 2.4.3 and 2.4.4 can be solved in O(dlog®d) ops (see [3], pp.141-
144). Problem 2.4.3 can be also solved at this cost by reduction to problem
2.4.1 (see theorem B.2.1 of appendix B.2). A slower but technically interesting
approach relies on the observation that the multiplication of the latter matrix by
a vector A = [\, ..., \s] amounts to the computation, in the monomial basis,

of the polynomial
1— s d+1
}:A 1-&o "
1- 61

If the interpolation points are the d-th roots of unity, we arrive at a special
Vandermonde matrix, sometimes called the Fourier matrix. In this special case,
problems 2.4.1-2.4.4 represent forward and inverse discrete Fourier transforms
(DFTs) and can be solved by using O(dlogd) ops. The inverse of the Fourier
matrix is the transpose of its conjugate (up to the factor d). (See e.g. [3], pages
9-12).

2.5 Relations between Bezoutians and Hankel matrices

The Hankel operators correspond to some maps from C[z] toC[[0]], whereas the
Bezoutians define some maps from C[[9]] to C[z]. It is natural to ask if there is
a relationship between the maps of these two classes. This is what we are going
to examine next. We will use the basic concept of the ideal I = (p), generated
by p € R, that is, the set of polynomials {p¢,q € R}.

In order to relate these two classes of operators to each other, we will next
describe the elements h(9) € C[[J]] such that h vanishes on all multiples of a
fixed polynomial p(x) = po + p1 x + - + pax? of degree exactly d (that is, on

10



the ideal generated by p): (h|pv) = 0 for all elements v € R (see appendix A).
Note that this is equivalent to the fact that H, vanishes on these elements, for
the coefficients of 9% in Hy,(p) is (h|px*).

Proposition 2.5.1 The class of f.p.s. h € C[[9]] such that h vanishes on the
ideal (p) generated by a polynomial p = po+p1 v+ - -+pax? of degree d (pqg # 0)
coincides with the class of rational functions

871 871
h(a): p(;(_l)):h0+h13+~~+hd13d1+~~~, (8)

where r(x) = Zd_ol riz® is any polynomial in Ry_1.

1=

a—1 a-2_ . .
Proof. First, note that the rational fraction h(9) = T02d+p‘|;7‘1198+.j‘+p:‘5?ll—1 is

an f.p.s. in 9, having no terms 3~ for i > 0, since py # 0.
To show that h vanishes on the ideal (p) for h(9) of (8), observe that

R()p(0 (@) =0 r(d w1,

for v € R, has only terms with negative powers of 9 since r(z) and v(z) are
polynomials. Therefore, p(z)v(z) * h(9) = 0 for any polynomial v(x) € R.

Now, let us prove the converse property, that is, let us prove (8) assuming
that h (or Hp) vanishes on (p), for an f.p.s. h = h(9). The latter assumption
means that

T (p(07") h(9)) =0,

that is, p(@~1)h(9) is a f.p.s. in 971, with no constant term: p(d~1)h(9) =
9~ 1r(071), where r(9) is an f.p.s. € C[[0]]. Furthermore, by replacing 9!
by x, we obtain that 7(z) = 2 'p(z)h(z™!) = 7 (z tp(z)h(x 1)), so that r is
clearly a polynomial of degree less than deg(p(z)) = d, which proves the propo-
sition. a

The proposition implies that the class of the f.p.s. h € C[[J]] such that h

(or Hj,) vanishes on (p) is the class of all multiples of the f.p.s. 7 = 7,(9) =
p(aa—_ll) = - +p47182:~~ .57, called the (algebraic) residue of p. (This concept
extends the concept of the residue of an analytic function.) We will next give a
characterization of this residue that can be easily generalized to the multivariate

case.

Proposition 2.5.2 Let p = po + pix + --- + pax? be a fized polynomial of
degree exactly d. Then the residue T = 7,(0) is the unique element of C[[D]] that
satisfies:

1. 7 vanishes on the multiples of p,
2. BLP(T) = 1,

where By p, is the map defined in definition 2.5.1.

11



Proof. Property 1. of 7 follows from the definition of 7 and proposition
2.5.1. Now, by the definition of 7 = 7,(9), the element 7,(9) = Y oo, 70" =
Yoo, T(x)0" of C[[9]] has the form

1
— o ot
Pd

thatis, o = =74 2 =0,74 1 = pid, which means that the linear form (map)
associated with 7 vanishes on 1,z,..., 2% 2 d=1,

and equals p%l on r
Now we obtain from definition 2.3.1 that

Bip(r) =[1,2,....2* "|B1,[0,...,0,1/pg]".
As By, is of the form (5), we immediately check that

1
Bl,p [07"'707 _]t = [1707"'70]t7
Pd

which implies property 2. of 7, that is, By ,(7) = 1.

It remains to prove the uniqueness of the element of C[[9]] satisfying prop-
erties 1. and 2. in order to complete the proof of the proposition. Due to
property 1. and proposition 2.5.1, this element is of the form ) .°/ X9 =
E;-i:_ol hi3"/(pa + pa—10 + -+ + pod?). Therefore, it is defined uniquely by
Ao, --->Ad—1- Now, by combining property 2. and the last equation of defi-
nition 2.3.1, we obtain that [1,z,...,24 By »[No,...,Aa—1]* = 1. Substitute
(5) and find the desired unique expressions: A\g = --- = Ag_2 = 0, A\y_1 = p%'
O

Proposition 2.5.3 The set (O7);—¢,....a—1 is the dual basis of the monomial

basis (x")i=0,....a—1 for the inner product associated to T:

wﬂ%wnz{lﬁi:j ©)

0 otherwise.

Proof. For 0 <i,7 <d— 1, we have (see (4))
r(@ () = r(atr (xIp(r))) = (a I p(a))

The last equation holds because z* (z77~!p(z) — 74 (z~7"!p(z))) is in the vec-
tor space R_ 4,42 and 7 vanishes on this vector space. If i > j, then 2' =7~ 1p(z)
is in the ideal (p) generated by p in R, and 7 vanishes on this ideal. On the other
hand, if i < j, then 2"=7~!p(z) is in the vector space R_g4 4—2, and T vanishes
on this vector space too. For i = j, we obtain 7(z7'p(z)) = 7(pgx?~') = 1,
which proves the relations (9). ad

We immediately deduce from this result the following corollary.

12



Corollary 2.5.4 Let By = By, and let Hy = H; be the Hankel matriz of the
map H, of (8) for h =1. Then

By Hy = Hy B =1,
where 14 is the d x d identity matriz.

Proof. From (9), we deduce that

d
ij (2t Of(z)) = zt.

=0

On the other hand, the left-hand side of this equation equals By (2" 7). Thus,
if we compose the two maps H, : Rq—1 — C[[0]] and By, : C[[9]] — R4—_1, we
obtain that

Bi,oH (') =By y(z" % 1) = 2,

fori=0,...,d— 1. In other words,
BipoH,=1g, ,

or, equivalently, By H; = [ 4, which shows that the inverse of the Bezoutian B
is the Hankel matrix H; and vice versa. d

3 Structured matrices associated to multivariate
polynomials. Dual space, Bezoutians, and al-
gebraic residues

Our next goal, is the extension of the approach and the results of the previous
section to the study of structured matrices associated with multivariate poly-
nomials as well as the advancements of the study of the dual space, Bezoutians
and algebraic residues introduced briefly in the previous section. We will start
with recalling some definitions and techniques used in [1], [8], [13], [25]-[28],
[40]. Then, in sections 3.8, 3.10-3.12, we will develop some new techniques to
be used in section 4.

3.1 Polynomial ring

The definitions of the previous section and appendix A can be immediately
extended to the n-variate case, for any natural n. In this case, R = Clz] is
replaced by the ring Clxy,...,z,] of multivariate polynomials in z1,...,2n;
x and O are assumed to be vectors, rather than scalars, x = (xy,...,2,) and
0= (01,...,0,). Wekeep denoting R, the subspace of all polynomials of degree
at most d. Instead of working in the complex space C, we could have allowed

13



the vector spaces over any algebraically closed field K, and then R would denote
the space of multivariate polynomials in x, with coefficients from K. Our results
of this section would be easily extended, but, to simplify our presentation, we
will state them for K = C. We will let L = Clzi",...,2E!] denote the ring of

Laurent’s polynomials in the variables 1, ..., z,. For any element p of R, let
M,:R — R (10)
r o~ pr

denote the operator of multiplication by p in R.

Hereafter, I = (p1,...,pn) denotes the ideal of R = C[x]| generated by
the elements pi,...,p,, that is, the set of polynomial combinations ), pig; of
these elements. A = R/I denotes the quotient ring defined in R by I, and =
denotes the equality in A. We assume that the set of the common zeros of the
n polynomials py,...,pn (that is, the set of the roots of the polynomial system
p1 = --- = p, = 0) is finite and denote it by Z = Z(I) = {(1,...,(s}. This
implies that the vector space A has a finite dimension D, D > d. (D is the
number of roots counted with their multiplicities.)

3.2 The quotient algebra

Our main objective is the analysis of the structure of A, in particular in order
to devise efficient algorithms for computing the zeros in Z(I).

The first operator that comes naturally in this study is the operator of
multiplication by an element of A, based on (10). For any element a € A, we
define the map

An important property of this operator is given in the next theorem (see [1],
[40], [26]):

Theorem 3.2.1 The set of the eigenvalues of the linear operator M, is exactly

{a(¢r),- -+ alCa)}-

Proof. Let p(x) = [[;cz((a(x) — a(¢)). This polynomial vanishes on Z(I),
so that (according to the Nullstellensatz, see [9]) there exists d = d, € N such
that p(x)? € I. Consequently, we have

(eZ(I)

where I is the identity map : b — b, and the minimal polynomial of M, divides
[Teezn(T — al{))?, for indeterminate T'. This implies that an eigenvalue of

M, is necessarily in the set {a((1),...,a(Cqs)}. On the other hand, we will show
in theorem 3.4.1, by the using dual space of linear forms on R, that for any
¢ € Z(I), a(¢) is an eigenvalue of the transpose of M,. a
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Example Letn =2,
p1L = 12+ 22130 — 11 — 1,p2 = 212 + 192 — 814,

We check (by hand computation) that a basis of A = Clzy,22]/(p1,p2) is
(1,21, 22,21 x2) and that the matrix of multiplication by z; in this basis is

0 1 0 -u
o |1 10 -
T — 1
“lo o o 1

0 -2 1 2

5
The eigenvalues of M., are the first coordinates of the roots, that is

6.8200982, —0.19395427 4 0.20520688 i, —0.19395427 — 0.20520688 i, 0.36781361.

The theorem reduces the nonlinear problem of solving a polynomial sys-
tem of equations to a well known problem of linear algebra. The reduction,
however, involves the analysis of the structure of A and the properties of the
operators of multiplication, and this leads to the study of the dual space, the
multivariate Bezoutians, and structured matrices associated with multivariate
polynomials. This is needed, in particular, in order to express explicitly the
matrices of multiplication associated with the operator M,. (Such matrices are
called multiplication tables.) The main difficulties stem from the requirement
to work modulo the ideal I, and the dual space, Bezoutians, and structured
matrices are effective tools for handling this nontrivial problem.

Definition 3.2.2 Hereafter, N denotes the set of nonnegative integers, and we
fiz a subset E C N, such that (x*)acp is a basis of A. |T'] denotes the
cardinality of a set T.

3.3 Dual space

Let R denote the dual of the C-vector space R, that is, the space of linear forms
AR — C
p = Ap).

(R will be the primal space for ]?i) The evaluation at a fized point  is a
well-known example of such a linear form:

1.:R — C
p = p(0).
Another class of linear forms is obtained by using differential operators. Namely,
for any a = (ay,...,a,) € N*, consider the map
0*:R — C
P (de)™ e (de)™ (9)(0), (11)

H:'L:1 @5
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where d, is the derivative with respect to the variable z;. We denote this linear
form by 9® = (9;)% ---(9p)* and for any (ay,...,a,) € N* (by,...,b,) € N*
observe that

1 a (TT b, [ 1if Yi,a; = by,
1" '8 (1_[1 Ti ) 0)= { 0 otherwise.

i=1 Qi

It immediately follows that (0®)aen» is the dual basis of the primal monomial
basis. By applying Taylor’s expansion formula at 0, we decompose any linear

form A € R as
A=) A
acNn

Themap A — ), » A(x) 0 defines a one-to-one correspondence between the
set of linear forms A and the set C[[01,...0,]] = C[[0]] = {>_ cxn Aa0y" -+~ O }
of formal power series (f.p.s.) in the variables 9y, ...,0,.

As in the univariate case, we will identify R with Cl[o1,---,0,]]- The
evaluation at 0 corresponds to the constant 1, under this definition. It will also
be denoted by 15 = 9°.

Example

Let us next examine the structure of the dual space. We can multiply a
linear form by a polynomial (we say that R is an R-module) as follows. For any
p € R and )\ € R, we define px A as

pxA:R — C
¢ — Alpg).

What kind of operation does this multiplication induce on the formal power series
representation? For any pair of elements p € R and d € N, d > 1, we have

(de))* (2:ip)(0) = (do))" " (p+ 24 da,p) (0)
= (@) (24 (p) + i ()’ () 0)
dx)*™" (P)(0) + 2 (da,)” ()(0)
)

Also we surely have d,, (z; p)(0) = d p(0). Consequently, for any pair of elements
p € R,d=(dy,...,d,) € N*, where d; # 0 for a fixed i, we obtain that

zix%(p) = 9%(x:ip)
d di—1 ad;—1 qdi dn
= 00,570 aiﬁl o 0n" (p),
that is, x; acts as the inverse of 9; in C[[0]]. This is the reason why in the
literature such a representation is referred to as the inverse systems (see, for
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instance, [25]). If d; = 0, then x; * 9%(p) = 0, which allows us to redefine the
product px A as follows:

Proposition 3.3.1 For any p,q € R and any A(9) € C|[[9]], we have
pxA@) = Apq) = 7+ (p(071) A(9))(0)-

Example

(14 07 02) (w1 + 22702 + 1027 12)
= O 82(1 + 221 22 + 1056%3?2) =2.

(21 % (1 + 07 &) (14 221 22 + 1027 25)

For any linear form A € ﬁ, let

Hpr:R — R

r = rxA

denote the operator of multiplication by A, from R to R.

3.4 The dual of the quotient algebra

Now, let A be the dual space of A. It is possible to identify the set A with the
elements of R that vanish on I. Thus, the set A will be also denoted by I+.
Now, for any element a € A, we can describe the transposed operator MZ:

M A - A
A —» axA=AoM,.

The matrix associated to this operator is the transpose of the matrix associated
to the matrix M,.

We have already described the eigenvalues of this operator in theorem 3.2.1
and will give now a description of its eigenvectors (see [26], [40]):

Theorem 3.4.1 The common eigenvectors of the operators ﬂz, fora € A,
are (up to a scalar factor) the evaluations 1¢,,...,1¢,, where 1¢ :p — p(().

Proof. For any pair of polynomials a,b € R and any (; € Z(I), we have
—t
M, (1) (b) = 1¢; (ad) = a(Gi) 1¢; (D),

that is, HZ(lc;) = a(() 1. Moreover, 1, is in A, because (; is a common
root of the polynomials in /. Then, for any a € R, 1, is an eigenvector of

MZ associated with the eigenvalue a(¢;). (This also proves the converse part of
theorem 3.2.1.)

Conversely, let us prove that the common eigenvectors of (M;i)izlw,,n are

(up to scalar factors) exactly 1c,,...,1¢,. Let A € A be a non-zero common
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eigenvector of (M;i)izlymyn for the eigenvalues (v;)i=1,..n: i * A —v A = 0.
Then, for any monomial x* of R, we have

;i x A(x%) = A(z; xY) = 1 A(x).

By induction, this implies that A(x®) = v* A(1) or, in other words, A = A(1) 1,,
where vy = (71,...,7,) € C* and 1, € R is the evaluation at v. As A € A= IT,
we have A(p) = A(1)1,(p) = A(1) p(y) = 0, for any p € I, which implies that
v e Z(I). O

Both theorems 3.2.1 and 3.4.1 reduce the solution of a polynomial system
to matrix eigenproblem, but theorem 3.4.1 has an advantage compared to the-
orem 3.2.1: Fach eigenvector of an operator ﬂz defines all the coordinates of
a root (whereas each eigenvalue of M, defines only one coordinate or the inner
product of the vector of a root by a fixed vector defined by a € A). Indeed,
the evaluations 1., at the roots (; € Z(I) are eigenvectors of ﬂ’; From these
evaluations 1., we can recover the coordinates (; ; = 1¢,(z;) of the root 1,.
We will make this remark more precise in section 4.1.

3.5 Quasi-Toeplitz and quasi-Hankel matrices

Definition 3.5.1 Let E and F be two finite subsets of N* and let M = (Mo g)acE,ger
be a matriz whose rows are indexed by the elements of E and columns by the
elements of F'. Let e, be the i-th canonical coordinate vector of N*.

e M is an (E, F) quasi-Toeplitz matriz iff, for all « € E, 3 € F, the entries
Mq,3 = ta—g depend only on o — 3, that is, if for every ¢ =1,...,n, we
have Mmoye, pre, = Ma,p, provided that o,a + e, € E; 3,8 +¢; € F; such
a matriz M is associated with the polynomial Ty(x) = EueEH; tyxt.

e M is an (E, F) quasi-Hankel matriz iff, for all o € E, 3 € F, the entries
Mq,3 = hoyp depend only on o + 3, that is, if for every i = 1,...,n,
we have Mo—¢, gre, = Ma,g provided that a,a —e; € E; 3,8+ ¢, € F;
such a matriz M is associated with the Laurent polynomial Hy(9) =
>uep—p hud".

By working with Laurent polynomials, we may immediately extend these
definitions to subsets E, F' of Z™, 7Z denoting the set of all integers.

For E =[0,...,h— 1] and F = [0,...,k — 1], definition 3.5.1 turns into
the usual definition of h x k Hankel (resp. Toeplitz) matrices (see sections 2.1
and 2.2). For E and F forming rectangles in N* the quasi-Toeplitz matrices
appeared in [41] under the name of multilevel Toeplitz matrices. For our study
of the multivariate polynomial systems the latter class is not sufficiently general,
and we need our definition 3.5.1 due to [27] (cf. also [28]). Some other structured
matrices were also used in [6], in order to accelerate the computation of the
resultant. More recently, the properties of the multivariate structured matrices
of definition 3.5.1 were studied more intensively [28], [27], [15], [4], [29], in order
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to devise more efficient algorithms for solving polynomial systems of equations
(cf. also section 4).

Definition 3.5.2 Let 7y : L — L be the projection map such that
mp(x¥) =x

if « € E and mg(x*) = 0 otherwise. We also let g : C[[0]] — C[[9]] denote
the projection map such that mg(0%) = 0* if a« € E and wg(0%) = 0 otherwise.

We can describe the quasi-Toeplitz and quasi-Hankel operators in terms of
polynomial multiplication (see [28], [27]).

Proposition 3.5.3 The matriz M is an (E, F) quasi- Toeplitz (resp. an (E, F)
quasi-Hankel) matriz, if and only if it is the matriz of the operator tpo My, omp
(resp. TR OHHM O7TF).

Proof. We will give a proof only for an (E, F') quasi-Toeplitz matrix M =
(My,8)acke,per. (The proof is similar for a quasi-Hankel matrix.) The associ-
ated polynomial is T (x) = Y, c gy tux®. For any vector v = [vg] € CF, let
v(x) denote the polynomial v(x) =3 ;- vx”. Then

Ty(x)v(x) = Z x" ¢, 05
WEE+F,B€F
= D x| X te-svs ),
a=u+pEE+2 F BEF

where we assume that vg =0ifu g E+ F, t, = 0if v ¢ E'+ F. Therefore, for
a € E, the coefficient of x* equals

Y tagvg =Y Magug,

BEF BEF

which is precisely the coefficient « of Mv. a

Due to proposition 3.5.3, multiplication of an (E, F) quasi-Toeplitz (resp.
quasi-Hankel) matrix by a vector v = [vg] € CI" reduces to (Laurent’s) polyno-
mial multiplication.

Algorithm 3.5.4 MULTIPLICATION OF THE (E,F) QUASI-TOEPLITZ (RESP.
QUASI-HANKEL) MATRIX M = (M, 5)acE ser BY A VECTOR v = [v5] € CF .

Multiply the polynomial Thy = EueEﬂp tux® (resp. Hy(0) =3 icp_p hud")
byv(x) = 5cr vx? (resp. v(0° 1) = > per v30~ P ) and output the projection
of the product on x¥ (resp. OF ).
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Hereafter, Cpoinrui(E, F') denotes the number of ops required to multiply a
polynomial with a support in E by a polynomial with a support in F. (We will
estimate Cponwt(E, F) in appendix B.1.) Algorithm 3.5.4 can be performed
by using Cpoinuit(E + F, F), resp. Cpovui(E — F,—F), ops. According to
the estimates of the appendix B.1, this means O(N log® N + Cyr,n) ops, where
N = |E — 2F] (resp. |E + 2F]) and where Cy,n bounds the cost of the
evaluation of the polynomial Hj; (resp. Ty ) on a fixed set of N points.

The displacement rank analysis developed for the study of matrices hav-
ing structure similar to the one of Toeplitz and Hankel matrices can be also
generalized to the multivariate case. Instead of the well-known displacement
matrices

Qcevvervennnn 0
L

Z=1 y
Q:evv-- 0 1 0

and Z*, we use the following operators (one per variable):

and
ZE =g M 17, (13)

respectively. The displacement rank of a matrix M (that is, the rank of the
matrix obtained as the image of the displacement operator applied to the matrix
M) is bounded by the sum in ¢ of the sizes of the boundary of E and F' in the
direction i (see [28], [27]).

Example Let the sets E and F correspond to the set of the monomials in
x1, T2 graphically represented as follows:

o [e] [e]

Then the displacement rank is less than 2 x 2 = 4 in the direction x; and is less
than 2 x 5 = 10 in the direction x».

In other words, the flatter the sets E and F in a fixed direction, the smaller
the displacement rank in this direction.

HE=F={(a1,...,an) € N*; 0 < a; <d;—1}, the displacement rank of
a | E| x | E] quasi-Toeplitz (resp. quasi-Hankel) matrix, for [E] = [];d; and
for the operator associated to Z;, is at most 2| E']/d; = 2[];,; d;. Note that
2| E/d; equals 2 in the univariate case but can be a relatively large fraction of
|E] for large n.
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3.6 Multivariate Bezoutians

In this section and in the next one, we will recall some basic definitions from
the theories of Bezoutians and algebraic residues (compare the special univariate
cases of sections 2.3 and 2.5), referring the reader to [8], [13] for further details
and to section 4 for some applications.

In addition to the vector of variables x, consider another vectory = (y1,...,¥n)
of variables and write x(*) = x, x() = (y1,22,...,2,), ..., x(") = y. For a
polynomial ¢ € R, define 0;(¢) = %, the discrete differentiation of
q- For a sequence of n+ 1 polynomials q: plL7 ..., Pn € R, construct the following
polynomial in x and y:

q(x)  Oi(g) - Oale)
Op(q) = Og,p = det = Z 03;% x*y”, (14)
where det(A) denotes the determinant of a matrix A, p = (p1,...,Pn), and «

and f vary in fixed ranges. This polynomial of C[x,y] is called the Bezoutian
of ¢,p1,...,pn. It defines a map By p:

Bq7p:lA2 — R
A DB XY AY?).
a,B

By using the representation of A as a formal power seriesin 0y, ..., d,, we obtain
the value of B, p(A(9)) as the term free of 0, ..., 0, in the product

O¢,p(X, ail)A(a)-

This construction extends the construction of section 2.3 to the multivariate
case. The matrix of the map B, p in the monomial basis is the matrix of the
coefficients [07 ;].

If (x*)aeck is a basis of A, then for any ¢ in R, the polynomial Op(¢) can
be rewritten as

Opla) = 3 BIEx"Y. (15)
o,BEE

This polynomial is obtained from (14) by reducing ©, p, modulo I.

To simplify the notation, we will occasionally write Bg’ﬁ, dropping the su-
perscript p for a fixed ideal I = (p).

Example (continued from section 3.2) We have

Op(].) = I1$2+2$22+(—2y1 +y2)x1+(y1+2y2—1)x2
-2 y12 + Y1Y2 + 16 Y1 — Y2
= Sxime+ (y2o— 2y +14)x + 2y2+y1 — 1) 20 (16)

+5y1y2 —y2 + 14y — 4.
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Definition 3.6.1 The matriz
Byp = [BLRa,peE, (17)

associated to the polynomial ©p(q) of (15), is called the Bezoutian matrix or
the Bezoutian of ¢, p. This is the matriz of the map

Byp: A

N
=) BlsxTAGY)
a,fEE

S

in the monomial basis (x*)acp and its dual basis (@)QE_E (see definition 3.8.1
or appendiz A). When p is fized, we will write B, and B, instead of By p and
Byp-

Example (continued) The matrix of By = By p in the basis (1,21, 22,21 22)
of A= Clzy,22]/(p1,p2) is

-4 14 -1 5

14 -2 1 0
By =

-1 1 2 0

5 0 0 O

The rows of this matrix are filled with the coefficients of the monomials in z1, z2
in (16). It is a symmetric matrix, which is a property of the Bezoutians.

3.7 Bezoutians and algebraic residues

We will next define the residue and recall some fundamental properties of the
multivariate Bezoutians and residues, to end with some correlations between
primal and dual multiplication tables in the next section.

Definition 3.7.1 The residue of p = (p1,...,pn) 18 the unique linear form T
in the set of linear forms on R such that

1. 7 vanishes on (p),
2. By p(1) — 1€ (p).

This definition extends the characterization of the residue of proposition
2.5.2, given in the univariate case; we now consider all polynomials modulo
the ideal (p), in particular, Bp(¢) is modulo (p). This is not a constructive
definition; we prove the existence of 7 but give no general recipe for computing
T yet.

Consider the decomposition ©1,, = > 5. p Biﬂ x®y? and let us write

Wa(Y) =Y ser Bi’ﬁyﬁ, so that

O1p = Z x*wo(y).

a€El
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Then we have the following property:

Proposition 3.7.2 The set (Wy)acr s the dual basis of (x) for T:

o _J1lifa=p
T(x% wp) = { 0 otherwise.

Example (continued) The residue is defined on (1,21, z2, 21 x2) by

(1) = 7(z1) = 7(22) =0, 7(w122) =

ot =

and vanishes on all multiples of p;,ps. According to (16), the dual basis of
(1,21, 22, 1 22) is

wi =51y —ya+14y1—4, wp, =y2—2y1+14, wp, =2924+y1—1, Wy, ., = 5.

Again, we are going to study the properties of the dual basis but do not give
yet any algorithm for actually computing this basis. According to proposition
3.7.2, for any a € A, we have the relations

a= Zr(axo‘)waz ZT(awa)xo‘. (18)

acElE ackE

We also have the following simple but fundamental property ([8], [13]):

O1p= ) x"Waly) = ) wa(x)y" mod (p(x),p(y)), (19)

a€EFE a€cFlE

which shows that B; is a symmetric matrix.
Moreover, we recall from [8], [13] that for any polynomial ¢ € R we have

Ogp = O1,p(X,y) ¢(X) = O1,5(x,y) ¢(y) mod (p(x),p(¥y))- (20)

In particular, we substitute ¢(x) = x; for 1 = 1,...,n, and then for any fixed
pair, ¢ and 7, of distinct roots of the polynomial system p = 0, we write x = (,
y =n € Z(I) and deduce that

©1,5(¢,n) = 0. (21)
If ¢ =7, then ©1 5(¢,n) = Jp((), where J, = (9p;/dz;) is the Jacobian of p.

3.8 Bezoutians and multiplication tables in primal and
dual bases

The notion of dual basis (for 7), defined in the previous section, should not be
confused with the following notion of dual basis in the dual space A:
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Definition 3.8.1 Given a basis (b;)i=1,..p of A, let (b;)i=1,...p denote the
dual basis of (b;), that is, the basis set of linear forms in R that compute the
coefficients of any a € A in the primal basis.

The next proposition relates the map B, of definition 3.6.1 with ¢ = a, to
the transformations between the primal bases (x®) and (w,) and their dual
bases (x®) and (Wg), respectively.

Proposition 3.8.2 The matriz of the map B, of definition 3.6.1,
1. from the basis (x%) of A to the basis (x*) of A is By = (T(awa wg3)),

2. from the basis (W,) to the basis (wo) is H, = (T(ax*x")).

Proof. According to proposition 3.7.2, the coordinates of Ea(@) in the basis
(x%)ack are given by
7(Bo(xP) wy).

The identities (20) and (19) imply that ©p(a) = a(x)Op(1), and B,(x%) =
a By (xP) = awg. Therefore,

o~

T(Ba(x7) Wa) = 7(aB1(XP) Wa) = T(a Wa Ws).

In other words, we have B, ; = T(Ea()fcﬁ) Wq ). This proves the first part of the
proposition. _
The coordinates of B,(wp) in the basis (W, )aecr are given by

7(Ba(Wp)x®).

According to identities (20) and (19), we also have

7(Ba(W5)x%) = 7(aBi(Wp) x) = 7(ax” x7),
which proves the second part of the proposition. a

Now, we deduce some simple correlations between multiplication tables in
the bases (x*) and (w,).
Definition 3.8.3 For any a in A, let M, = (Mg ;) denote the matriz of the

map M, in the basis (x*) and let N, = (N g)a,per denote its matriz in the
basis (We )-

Proposition 3.8.4 The matriz N, of multiplication by a in A, in the basis

(Wo), is the transpose MY of the matriz M, of multiplication by a in A, in the
basis (x%).
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Proof. For any a € E, we have

bx” = Z Mg sx7, bwg = Z N 5w,

YEE YEE
and
Mg 5= 7(bx° wy),
N§ 5 =T1(ax® wg).
Therefore, N, = M?. m|

The proposition also implies that the matrix of the transposed map Mz in
the dual basis (x) of (wy) is M,.

3.9 Multivariate Vandermonde matrices

Vandermonde matrices can be immediately generalized to the multivariate case,
in the following way.

Definition 3.9.1 For a set (x*)acr of D monomials and a set £ = (&1,...,€p)
of D points of C™, define the Vandermonde matriz of & on E by

Ve(&) = [&]i=1,....D,acE-

The rows of this matriz are the vectors [x%|ncp of monomials evaluated at points

& (fori=1,...,D).

Ve(€) is the matrix of the coefficients (of (0%)ncr) in the f.p.s. representing
the evaluations 1, at the points &;.

Algorithm 3.9.2 MULTIPLICATION OF A VANDERMONDE MATRIX Vg(£) BY
A VECTOR v AND THE SOLUTION IN v OF A LINEAR SYSTEM VE(g)V = Ww, FOR
GIVEN ¢, E AND w.

Perform multipoint evaluation at the node-points &, 1 = 1,...,D, of the
associated multivariate polynomial with the coefficient vector w (resp. perform
the converse operation of multivariate polynomial interpolation).

See [6] and [15], for a record (asymptotic) bounds on the number of ops in-
volved in algorithm 3.9.2. Certain simplification of the computations is obtained
by using Tellegen’s theorem B.2.1 of appendix B.

3.10 Relations between quasi-Hankel and Bezoutian ma-
trices

Motivated by applications of matrix computations to the solution of polynomial
systems, we are particularly interested in studying multiplication tables (see
theorems 3.2.1, 3.4.1).
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Definition 3.10.1 For any A in .2, let Hy denote the quasi-Hankel matriz of

residues,
Hy = (A(x**7))apep-

For any element a in A, we will also write H, = Hq.r, where 7 is the residue
of p.

Let us extend corollary 2.5.4, by relating the Bezoutian B; with the quasi-
Hankel matrix of residues H;.

Theorem 3.10.2 The inverse of Hy is B;.

Proof. By definition, w,(x) =3 cx B! _ x7. Therefore, by using proposition
3.7.2, we obtain that

7(wo x) = Z Bi’,y T(x71F)
YEE

equals 1 if & = 3 and is 0 otherwise. This is precisely the coefficient («, 3) of
the matrix B; H;. Thus, we have

By Hy =1p,

where [ p is the D x D identity matrix. O

Example (continued) We have

(1) = 7(x1) = 7(22) = 0,
1 2 2 29 12 398
T(x122) = gﬁ(xf) = —gaT(Ig) = 577(1512) gﬁ(xﬂg) %,T(x%xg) 125°
and .
0 0 0 £
0 -2 1 20
5 5 25
H = o L 2z _12
5 5 25
1020 _12 _308
5 25 25 125

The polynomial associated to this quasi-Hankel matrix is

1 2 2 29 12 398
P=200y — 202+ 202+ 22929, — =29,02 — 2229202,
5102 T gt 5 55002 T 9p 010 T 1or 010

The coordinates of the vector [1,0, —1,0]” H; are the coefficients of 1,9y, 92, 9, 0»
in the product:
(1-o7hHP=

39 17 543
20,20, — 9, — 20, — gaﬁ < 201 +28,° +

25

12 398
0201 = = 0,°01 — = 001",
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which yields the vector [0, -1, —2, 17] We may verify that Hj is the inverse of
the Bezoutian By of the example of section 3.6.

The matrices By and H; express the transformation from the basis (x*) to
the dual basis (W )ack:

Proposition 3.10.3 For any a € A, if v is the coordinate vector of a in the
monomial basis (Xx*)necp and w is the coordinate vector of a in the dual basis
(Wo)ack, then we have

v=Bw, w=H;v.

Let us relate the matrices above to multiplication tables (compare section
3.8).

Proposition 3.10.4 For any linear form A € A and any a € A, we have
Hyn = MiH)\ = Hpy M,, (22)
where M, is the matriz of definition 3.8.8. In particular, we have
H, = H{M,=M!H,. (23)
Proof. For any pair a,p € R, we define the operator

Haa(p) = px(axA)=apxA="Hy(ap)
= ax*x(pxA)=axHar(p).

Therefore, the operator H,xa can be decomposed as follows:
Hasa = Ha o Mg = ME o Hy.
In terms of matrices, this yields the following relation:

Houn = MPH) = Hy M,,.

A similar relation is also valid for the Bezoutian matrices (see definition
3.6.1):

Theorem 3.10.5 For any a € A, we have
B, =By M} = M, B;. (24)

Proof. According to (20), in terms of operators (see definition 3.6.1 with a = ¢)
we have VA € A that

Bi(A) = Y Bisx"A(Y)
o,BEE
= a(x) Y BLx"A(y’) =a(x)Bi(A)
o,BEE
= > Blix*Aa(y)y?) =Bi(axA).
o,BEE
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Thus, we can decompose the map B, as follows:
Ea :ma Ogl :El Omz.
In terms of matrices, this implies (24). a

According to proposition 3.10.3, the theorem can be also reformulated as
follows: For any a and b € A, let v be the coordinate vector of b in (Wa)acE-
Then the coordinate vector of ab in the monomial basis (X*)acr 1S Byv.

We will use the relations (23) and (24) in section 4, in order to transform the
eigenproblem of sections 3.2 and 3.3 into a generalized structured eigenproblem
(see in particular our demonstration in section 4.1.2).

Proposition 3.10.6 Ifab=1 in A, then
B,H,=By,H, =1p.
Proof. According to (23) and (24), we have
B.Hy = B; M* M} Hy = B H; = Ip,

for M, My, = M, = I p. Similarly, we deduce that By H, = Ip. O

Proposition 3.10.7 For any a € A, we have the relations
e B, =B, H, B,
e H,=H, B, H;.
Proof. According to (24) and (23) and proposition 3.10.2, we have
B,=B/M! and M!=H,H,'=H,By,

which implies the first relation of this proposition. The other relation is ob-
tained by inverting the first one and applying proposition 3.10.6. a

3.11 Relations among Bezoutians, quasi-Hankel matrices
and multivariate Vandermonde matrices, in the case
of simple roots

Let us assume that the roots ( € Z are simple. Then Jp((;) # 0, where Jp =

det (g—g’;) is the Jacobian of p = (p1,...,pn)-

Let Vg(Z) be the multivariate Vandermonde matrix, defined in section 3.9.
We recall that for any vector v = [v,]ack, the product Vg(Z) v is the vector

[v(¢1),...,v(Cp)] of the evaluations of the polynomial v(x) =) v, X at the
roots ¢; € Z(I).
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Proposition 3.11.1 For any polynomial a € R, we have
B, = Vp(2) ' diag (a(¢1) Jp(G1), - -,a(Cp) Jp(¢p)) VE(Z) ™,

where diag (I1, .. .,Ip) represents the D x D diagonal matriz, with the diagonal
entries ly,...,lp.

Proof. As the rows of Vg (Z) are given by the values of the monomial vector
[x“] at the roots ¢; € Z(I), the matrix Vg(Z) B, VE(Z) is the matrix

[ea,p(gia Cj)]i,j:l,...,D-

According to equation (21), we have 0, ((,n) = n
If n = ¢, then, by construction, ©, p(a)((,¢) = a(¢) Jp(¢) (see the end of

section 3.7). Consequently,

(01 p(¢i, ¢j)) is the diagonal matrix

dla‘g (a’(gl) Jp(gl)v cee 70’(CD) Jp(CD)) .

Corollary 3.11.2 If the roots of the system p = 0 are simple, then

1
To(C)" 7 Jp(Cp)

Proof. We have B; = Vg(Z) ! diag (Jp((1),- .-, Jp((p)) Ve(Z)~t, according
to proposition 3.11.1, and we deduce from theorem 3.10.2 that

Hy = Vg(2)" diag ( > Ve(2).

1 1
(€)" Jp(Cp)

H, = B;l = VE(Z)tdiag <J > VE(Z)
P

O
If we substitute these relations into (24), we obtain the following property:
Corollary 3.11.3 If the roots of the system p = 0 are simple, then
M, = Vi (2)diag (a(G1), - a(Ca)) Vi(2). (25)
According to theorem 3.10.5, we have H, = H; M,, which yields:

Corollary 3.11.4 If the roots of the system p = 0 are simple, then

a(C1) a(¢p)
Jo(C1)” 7 Tp(Cp)

H, = Vg(2)'diag ( ) Ve(2). (26)
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3.12 Relations between Bezoutians and idempotents

As in section 3.11, we still assume that the roots { € Z are simple and denote
by J the Jacobian of p. Then for any ¢ € Z, we have J(() # 0.

Proposition 3.12.1 If the roots of the system p = 0 are simple, then the
vectors

1
€ = melyp(xvg)v (€ Z,

form a basis, consisting of orthogonal idempotents of A, whose sum equals 1,
that is, €% = e¢, ece, =0 if ( #n, and Yceznec =1

Proof. According to the equation (20), for any ¢ € R and for any ¢ € Z(I), we
have

01,p(%,¢) ¢(x) = O1,p(x,¢) ¢(¢)
in the quotient ring B. Therefore,

617P(x7 C) 617P(x7 C) = J(C)el,p(xv C)v

and e, = ﬁ 01p(x,() = e% is an idempotent (J(¢) # 0, assuming all roots of
the system p = 0 are simple). Moreover, according to (21), we have

O1,p(x,¢) O1,p(x,1) = O1,p(x,()O1,p(¢,n) =0,

for any pair of distinct roots ¢,n € Z(I), which shows that e; e, = 0 unless
¢ = 1. We obtain from the definition of the residue 7 and from the Euler-Jacobi
identity (cf. [13]) that

©1p(1) = 1 (by definition 3.7.1)
1
= Z S ita) 01p(x,0) = Z e; (by the Euler—Jacobi identity).
ez (©) ez

This shows that the sum of the idempotents equals 1 in A, and thus they form
a basis of A (which is of dimension D). O

Now let us recover the root ¢ from the idempotent e.. By definition, we
have

o0 = -1 ST xe e
ey Q1) = 5 2 x| 2 Basd” |

a€EFE Jé3

€ =
so that the coordinate vector [ec] of e, in the basis (x*)qcp is

lec] = %Bl [(“lacE-

Equivalently, we have
[¢“lace = J(C) Hi [ec]. (27)
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Corollary 3.12.2 The coordinates of e in the dual basis (W) are ﬁ[ga].

Algorithm 3.12.3 TRANSITION FROM AN IDEMPOTENT e; TO THE ROOT (
Recover the root ¢ from the idempotent vector e, by means of multiplication of
ec by the quasi-Hankel matriz Hy and computing the ratios of the coordinates
of the resulting vector.

Let us estimate the computational cost of performing the algorithm. If

v = Hiled] = 55" ]ace = [01,02,, ., Vs, 052, ], then the i-th coordinate
of ( is
Vg,
Gi=—.
U1

Therefore, the roots can be computed from the idempotent e; in at most n +
Cpoimuit(E,2E) ops, by using algorithm 3.5.4 applied for F = 2E.

4 Applications

In this section, we exploit the properties of and the relations between struc-
tured matrices in order to devise fast algorithms for solving polynomial systems
of equations. First we focus on structured generalized eigenproblem, involving
quasi-Hankel and Bezoutian matrices. Then we consider quasi-Toeplitz matri-
ces that generalize the Sylvester matrices. They are used for computing a basis
(x¥)ack of A, the multiplication tables, and the first coefficients of the dual
basis of (x*)ncr, for generic input. Using the machinery of the previous section
enables us to yield better insight into the subject and simplify substantially the
proofs of some known fundamental results. Finally, we focus on iterative meth-
ods converging to idempotents and based on using quasi-Hankel matrices and
on application of structured matrices to counting distinct roots and real roots
of a polynomial system. In this part of the paper, we improve dramatically the
known computational complexity estimates, though the algorithms are proposed
in preliminary form and require further elaboration for their implementation.

4.1 Reduction of solving a polynomial system to matrix
eigenproblems

Let us restate theorem 3.2.1 and 3.4.1 in terms of matrices rather than their
associated operators. For a fixed element a € A, we consider the operator of
multiplication by a :

M, A — A

b — ab,

whose matrix in the monomial basis (x*),cg is denoted by M,. The transposed
operator from A to A is defined by the map:

A

-
— axA=AoM,,
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and its matrix in the dual basis is M. We have the following theorem, whose
first two parts restate theorems 3.2.1 and 3.4.1 in terms of matrices (see [1],

[26]):

Theorem 4.1.1

1. The eigenvalues of the matrices M, and M} of the linear operators M,
and Mz are given by {a((1), ..., a(Cq)}.

2. The common eigenvectors of the matrices (M3, )i=1,...n are (up to a scalar)
[(FacE-

3. If n = m, then the common eigenvectors of the matrices (My,)i=1,...n are

(up to a scalar factor) J(x)eq, ..., J(x)eq, where J(x) is the Jacobian
of P1,--.,Pn, and e; are the idempotents associated with the roots.

Part 1 amounts to theorem 3.2.1. Part 2 is deduced from theorem 3.4.1: the
coordinates of the evaluation 1., at the root (; in the dual basis of (x*).ck are
precisely [(¥]oer. The third part is proved in [13].

As a consequence of theorem 4.1.1, we may compute easily the roots {; from
the eigenvectors of M, as in algorithm 3.12.3:

Proposition 4.1.2 If (x*)ace = (1,21,...,2Zn,...) contains the monomials
Lz, ...,y and v = [Va|ace = (V1,00 -, Vz,,...) 1S a common eigenvector
of the matrices (M, )i=1,...n, then

Vay Uz,

C:(_v"'v_)

(% U1
is a root of p = 0.

Algorithm 4.1.3 COMPUTATION OF THE ROOTS OF THE POLYNOMIAL SYS-
TEM p = 0.

Assume that all the roots are simple. Compute and output the roots as the
scaled common eigenvectors of the matrices MY for a € R.

Example (continued) Here is the normalized matrix V' of the eigenvectors
(with eight digit accuracy) of the matrix M :
1.0 1.0 1.0 1.0
6.8200982  —0.19395427 + 0.205206881 —0.19395427 — 0.205206881 0.36781361
—2.8367388 —0.61937124 — 1.3895199i  —0.61937124 4 1.3895199i  1.6754769
—19.346814  0.40526841 + 0.142404191 0.40526841 — 0.142404191  0.61626304

The columns of this matrix are the vectors [(¥]acr for ¢; € Z(I). Thus, we
immediately deduce that the four roots of p;(x1,z2) = p2(z1,22) = 0 are given
by the next table:

G1 C2 (3 Ca
6.8200982 —0.19395427 + 0.20520688 1 | —0.19395427 — 0.205206881 | 0.36781361 |
—2.8367388 | —0.61937124 — 1.3895199 1 —0.61937124 + 1.3895199 i 1.6754769
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We immediately check that V2 ;Vs,;, = V4, for ¢ =1,2,3,4.

Algorithm 4.1.3 requires to compute all the eigenvectors of a D x D matrix.
Its complexity is O(D?) ops based on the customary QR algorithm and assuming
that the number of QR iterations per eigenvalue is bounded by a constant (see
[19], pp. 341-359). On the other hand, if the multiplication of M} by a vector
requires C' ops, the cost for computing all the (simple) roots by some other
eigenmethods is bounded by O(C D) ops, under some mild non-degeneration
assumption (see Appendix B.4). Furthermore, a selected root can be computed
in O(C) ops by using the power, Lanczos or Arnoldi methods (see [19], pp.
470-506).

The cited applications of the QR, power, Lanczos and Arnoldi algorithms as
well as application of the Lanczos algorithm to the tridiagonalization of a Her-
mitian or real symmetric matrix (which we use in appendix B.5) may rely on
the subroutines from packages and libraries used for practical numerical matrix
computations, though certain complications may arise when the size D x D of
the matrix is very large, which is frequently the case for the matrices associ-
ated with polynomial systems of equations. Nevertheless, a chance to use the
well established machinery of applied linear algebra is valuable and seems to
be a major advantage of the eigenvalue approach over other solution techniques
such as ones based on computing Grébner basis [22] (also, the estimated asymp-
totic complexity of these methods is much higher) and ones called elimination
methods, supporting the cubic complexity estimates, of order D3 ops [37].

In the case of multiple roots, we have to take care of the eigenspaces of di-
mension larger than one. By a result of [26], the common eigenvectors of the
operators My , i = 1,...,n, are closely related to the roots, and this enables
us to reduce the solution of a polynomial system to computing a basis of each
eigenspace of the matrix M} and to the solution of n — 1 sub-eigenvector prob-
lems associated with the matrices My , ¢ = 2,...,n. Exploiting the fact that
these matrices and the associated operators are commuting, another method is
proposed in [11], based on reordered Schur decomposition. Both methods lead
to a complexity bound of O(n D?) ops.

The structure of the matrices of multiplication is not yet clearly understood
in the multivariate case, and it is an open problem whether such a matrix can
be multiplied by a vector in O*(D) ops, as we have in the univariate case
[7]. Here O*(D) stands for O(Dlog® D) for a constant ¢. The multiplication
in O*(D?) ops is possible, however (see section 3 and Appendix B), because
we may and will describe equivalent formulations of the eigenvector problem,
involving structured matrices, and this will enable us to reduce (from order of
D3 down by roughly one order of magnitude) the known estimates for the cost
of computing a selected root of a polynomial system and counting the numbers
of its roots and of its real roots. Our accelerated solution algorithms of this
paper (unlike the ones of [4] and [26]) rely mostly on the methods distinct from
the cited methods of applied linear algebra (with the exception of the algorithm
for the tridiagonalization of a real symmetric matrix involved in our algorithm
4.4.5) and extend some known approaches to approximating the complex zeros
of a univariate polynomial. We select the methods that are ultimately reduced
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to a few multiplications of the multiplication matrices by vectors, and this gives
us the desired complexity bound of O*(D?) ops because we exploit the structure
of the matrices to multiply them by vectors fast. (The methods using order of
D such matrix-by-vector multiplications have cubic complexity bound of order
at least D3, compare theorem B.4.2 and remark 5 in appendix B.4.)

The structure of the multiplication matrices is not easy to observe and to
exploit directly, however. Thus, we will multiply the matrices M} by two fixed
invertible matrices A and B in order to transform the problem into an equivalent
generalized eigenproblem, (AM!B — AAB)v = 0, where the structure can
be exploited explicitly. We will give some examples of such a transformation
involving structured matrices.

4.1.1 Tranformation of the eigenproblem by using Hankel matrices

According to (22), for any A € A and any a € R, we have
Ha*A = M;HAv

so that the solution of the eigenproblem (H,.n — AHA)v = 0 yields the eigen-
vector Hy v of MF. Let us next exploit this matrix equation assuming that we
have a normal form algorithm Nf, that is, one that projects R onto (x*)ncp
along I or, in other words, one that computes the unique element of (x*),cp
in the same class modulo I.

Algorithm 4.1.4 SOLUTION OF A POLYNOMIAL SYSTEM VIA THE SOLUTION
OF A GENERALIZED EIGENVECTOR PROBLEM DEFINED BY USING HANKEL MA-
TRICES.

Fixz two exponents ag, 1 € E. Then proceed as follows:

1. For all monomials x*T° with a,3 € E, compute in the normal form
Nf(xHF) of x*H7:

e the coefficient of x*°, which we denote by oo(x*T7),
e the coefficient of x**, which we denote by oy (x**7).

2. Construct the two quasi-Hankel matrices:

o Hyy = (00(x"7))aper,
o Hyy = (01(x"*7))apek-

3. Solve the polynomial system p=0 via the solution of the generalized eigen-
vector problem:
(Hyy, — AHy,) v = 0. (28)

Let us specify stage 3. The linear form that computes the coefficient of x in
A (for any o € E) is p — 7(wa p) = W, * 7(p). Thus, we have

HUi = M:va,Hlv
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for ¢ = 0,1. Therefore, if v is a generalized eigenvector of (28), then v = Hyv
is a generalized eigenvector of (M‘f‘,1 — MM, )V =0, and the corresponding

Waq
waq, ()

eigenvalue is Tz (if wa,(¢) # 0) for one of the roots ¢ € Z(I).
xQ

According to theorem 4.1.1, the common eigenvectors of Mg, ——AMg ~ for

all pairs o, a1 € E are the multiples of the vectors [(*]ocp for ¢ € Z(I). The
roots ( are easily computed from these vectors, by using algorithm 4.1.3.

Example (continued) Suppose that we have computed the following normal
forms in the basis (1,z1, 22,21 x2) of A = Clz1,x2]/(p1,pe):

Nf(l) = 17Nf(x1) = thf(JCQ) = xg,Nf(xlxg) =122,
Nf(x12) =14z — 2x1x27Nf(x22) =147z + 2212,

14 12217 a2 292129
Nf L =
(x2217) 5 5 + 5 5
7 611 2o 122129
Nf R Y S e
(x1227) 5 + 5 + 5 5
198 2097, 1225 398z,7
Nf(z1220%) = — — — .
(2172:7) = S+ =52 25 25

We choose the monomial x%° = x1 o and x*' = x5, which yields the following
matrices:

0 0 0 1 00 1 0
0 -2 1 2 00 0 £
HO’U: 12 7H0’1: 9 )
0 1 2 2 1 00 2
29 12 398 1 2 12
L5 -5 —% 0 5 5 —35
and we obtain
1L 1 2
5 5 5
i 0 0 o0
H, H,'=
_2 14 _1 g
5 5 5
1
o 0o i o0

We have 09 = wq, *7 = (222 + 21 — 1) 7 and 01 = w,, *7 = 57. Therefore,
H,, =5H,and H,, = Hy3,45,—1, 50 that

1 _ gt

Ho'l HO'() - M%(? zotz1—1)"

Indeed, the first row of the latter matrix represents the polynomial %(2 T2 +
x1 — 1), the second row is 1 X %(2 x2 + 1 — 1), which is reduced to % in A.
This implies that xl_l =21y +x1 — 1.
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4.1.2 Transformation of the eigenproblem by using Bezoutian ma-
trices

The relations (23) on Bezoutians imply that
B, = B, M.

As in algorithm 4.1.4, assume that we have a normal form algorithm that
computes an element in A reduced modulo I.

Algorithm 4.1.5 SOLUTION OF A POLYNOMIAL SYSTEM VIA THE SOLUTION
OF A GENERALIZED EIGENVECTOR PROBLEM DEFINED BY USING BEZOUTIAN
MATRICES.

1. Compute the polynomials ©1 p and ©,,  and their normal forms in x and
y.

2. Compute the matrices By and B, associated with these normal forms.

3. Solve the polynomial system p=0 via the solution of the generalized eigen-
vector problem
(Byy —AB;)v=0.

The generalized eigenvector of the pencil (By,, B1) (computed at stage 3)
yields immediately the eigenvectors [(¢]q4eE, and then scaling immediately gives
us the coordinates of the roots ¢; (cf. algorithm 4.1.3).

Example (continued) B, the Bezoutian of 1, was already obtained in sec-
tion 3.6. Now, we obtain B.,, the Bezoutian of z1, and the matrix Bl_lBgE1 =
Mt -

1

0 -2 1 0 0 1 0 0
-2 12 0 5 1 1 0 -2
B, = and By ' By, = My =
1 0 00 0 0 0 1
14 12 1 29
0 5 00 3 ~% 5 3

The first row of this matrix represents the element x; in the basis (1, 1, x2, z122)
of A, the second represents the element 22, and so on.

Computing the generalized eigenvectors of a pencil (A, B) can also be per-
formed in O(D3?) ops, by the QZ algorithm assuming that the number of QZ
iterations per eigenvalue is bounded by a constant [19], pp. 375-386. When
the two matrices have a structure that allows matrix-by-vector multiplication
by using C' ops, these eigenvectors can be computed in O(C D) ops. This is the
case for the quasi-Hankel matrices, with C' < D log(D). The multiplication of
the Bezoutian matrix B; by a vector can be performed in O(C D) ops by using
the fact that its inverse H; is a quasi-Hankel matrix. Multiplying a general
Bezoutian matrix by a vector with a quasi-linear complexity is an open problem.
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4.2 Computation of multiplication matrices and the dual
space

4.2.1 Sylvester’s matrices

As a basic pattern, we will first revisit the construction of the well-known
Sylvester matrix in the univariate case.

Given two univariate polynomials, py = po,o + - + po,a, 2% of degree dj
and p; =p1o+ ... +p1a, ¥4 of degree di, we will define the multiplication by
po modulo p; by the map:

My A — A

a = apo,

in the basis (1,...,2%71) of A = C[z]/(p1). The matrix of this map is defined
via the Sylvester matrix S of py and p;, that is, the matrix of the coefficients of
the polynomials

dy

do—1
Po,Tpo,..-,T 0

_1p07p17xp17"'7x P1

in the monomial basis. The matrix S takes the following form:

do+d1
po P xdl_lpo pl e e . de_lpl
70,0 0 P1,0 P1,1—do 1 )
) . T
Po,d; —1 Po,0 | P1,d1—1 P1,d1—do phi—1 do + dy
Po,d, T Po,1 P1,d; P1,di—do+1
L P0,do+d1—1 Do, do 0 D1,dy plotdi—1
(29)
under the convention that py; = 0 if ¢ > do, p1,; = 0if j < 0. Let Vy, V1,
and V denote the vector spaces generated by the monomials {1,... 24171},
{1,...,2%~1Y "and {1,... ,2d0+t4 -1} respectively. Then the Sylvester matrix
is the matrix of the map
S:VoxVy — V
(q0,q1) = DPoqo+p1au,

in the corresponding monomial basis. The determinant of this (dy+d; ) x (dp+d;)
matrix is the resultant of py and p;.

To compute the matrix M, of the multiplication by py modulo p;, we have
to reduce the polynomials pg, 2 po,- .., 2% ' py modulo p;. Such a reduction
amounts to the subtraction of some multiples of p;, and the resulting poly-
nomials are expressed as linear combinations of the monomials of the basis
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(1,...,2%71) of A. The partition of the Sylvester matrix into four blocks as in

(29),
s=[2v)

enables us to interpret these subtractions in terms of matrix operations and
thus to analyze the structure of the matrix of multiplication. The block Py, =

v
W } represents
the multiples of p;. Therefore, reducing the multiples of py by p; consists in
subtracting some linear combinations of the columns of P; from the columns of
Py so that Z is replaced by a zero block. These operations on the columns of

the Sylvester matrix are given explicitly by the following formula:

[ g ] represents the multiples of py, and the block P, =

U v I, 0] [Uv-vwlz V
Z W || =Wz I, |~ 0 W

The block U — VW17 is called the Schur complement of W is S, and we have
the following property:

Proposition 4.2.1 The matriz M,, of multiplication by py modulo p, in the
monomial basis (1,x,...,2% 1) is the Schur complement of W in S:

My, =U-VW1Z

Note that the blocks U, V, W, and Z have Toeplitz structure, U and W are
triangular, and if dy < dy (resp. dp > di), then so is Z (resp. V) also. Thus,
we have the following algorithm:

Algorithm 4.2.2 MULTIPLICATION BY A POLYNOMIAL MODULO A POLYNO-
MIAL, IN THE UNIVARIATE CASE.

Given three polynomials po,p1 and a of degrees dy,dy and less than dy, re-
spectively, compute the coefficient vector of the polynomial apy mod p1 as the
matriz-by-vector product:

Mya=(U-VW™'2)a,
where a is the coefficient vector of the polynomial a.

The computation reduces to multiplication of the Toeplitz matrices Z of size
dy x dy and U of size d; x d; by the vector a, solving the triangular Toeplitz
system

Wq=Za

of dy equations, multiplying the Toeplitz matrix V' by the solution q of this
system, and subtracting the vectors Vg from U,.

With application of the algorithms of appendix B.1 (or, alternatively, the
equivalent operations of Toeplitz matrix-by-vector multiplication and the solu-
tion of a triangular Toeplitz linear system [4]), one may perform algorithm 4.2.2
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by using O(dlog d) ops, where d = max(dy, d; ). This yields the same asymptotic
complexity bound as in [7].

If an element of the quotient algebra is invertible, computing the inverse
requires to solve the linear system of equations:

S{HZW,

where w = [1,0,...,0]* and u is the inverse of py modulo p;. This can be
performed in O(d log?(d)) ops by using the Morf-Bitmead-Anderson (BAM) al-
gorithm [3], p. 135. For linear systems of moderate sizes, however, the currently
available implementations of this algorithm do not yet outperform the alterna-
tive numerically stable practical implementations that use O(d?) ops, though a
practically promising improvement of the BAM algorithm was recently reported
[36], [30].

In the next sections, we are going to extend the latter approach to the
multivariate case. Let us mention some of the main difficulties that are peculiar
to the multivariate case but do not occur in the univariate case:

e We lose the notion of the leading monomial of the highest degree.

e We have no natural monomial basis for representing the quotient modulo
a set of polynomials.

e When we homogenize the polynomials, we may introduce spurious solu-
tions (at infinity) to a polynomial system of equations.

For the latter reasons and many others, we need to restrict our study to the
cases where we may describe easily the structure of the matrices. These are the
generic cases of two types that we are going to specify next.

4.2.2 The generic multivariate case

In order to generalize the Sylvester matrix construction to the multivariate case,

we consider n + 1 polynomials pg,...,p, and n + 1 vector spaces Vp, ..., V,
generated by the monomials xfi = {x“, a € F;}, where F; is the set of the
exponents,

F; ={Bi1,Bi2,...}.

Let V be a vector space containing all the monomials of the polynomials p; x%,
for 8; € F;, so that we can define the following map:

S Vox--xV, — V (30)

(q07"'7Qn) = sz%
=0

Let F be the set of the exponents of all the monomials of V and let the matrix
of the map & in the monomial basis of Vy x -+ x V,, and V be also denoted by
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S and take the following form:

Vo V1 Vn
7 -\ N 7 -\ N /_/%
x4t
v<e o xPoipy oo xPraipy e xPrip,
XN
(31)
Let us decompose such a matrix S into blocks S = [Sy,...,S,], where S; in-

volves only the coefficients of p;. The matrix S; is a submatrix of the matrix of
multiplication by p;, defined in section 3.5. More precisely, S; is the matrix of
the map

T o My, o,

Thus, it is a quasi- Toeplitz matrix (see proposition 3.5.3).

Algorithm 4.2.3 MULTIPLICATION OF THE MATRIX S OF (31) BY A VECTOR.
For every j, compute the products x”ip; q; for all i and sum them together
in 1. Output the sum for every j.
The complezity of this algorithm is bounded by Cpoinrue(Fo, F) + -+ -+
Croimuit(Fn, F) (see algorithm 8.5.4 and the algorithms of appendiz B.1).

It is possible to consider the global matrix S as a quasi-Toeplitz matrix
by adding a new variable zy. The sum_zfzo pi ¢; can be computed from the
product of p = 3, p; ¥} by St o gizg~". Indeed, this sum is the coefficient of
xf in the product. Let F' and F" be the sets of the exponents of the monomials
in 2y x" and Ufzoxg*ifo, respectively. Then the matrix S is the matrix of the
operator

TE! OMpoﬂ'Fw.

Remark 2 We can extend easily the construction of the map S to the case
where the number of polynomials py, ..., pm is greater than n+1 (m > mn).

Operators of this type have been extensively used in the literature, in or-
der, for instance, to define resultants (see [24], [42], [18]). Let us recall that
the vanishing of the resultant is the necessary and sufficient condition on the
coefficients of the polynomials po,-..,pn, under which these polynomials have
a common root (in a projective variety X ). Two main examples appear in the
literature:

e The classical case corresponds to X = P™, the projective space of dimen-
sion n. In this case, the polynomials py, . .., p, of degree dy, . .., d, are ho-
mogenized, and the vanishing of the resultant is a necessary and sufficient
condition on their coefficients under which the homogenized polynomials
have a common zero in P™. This case is referred to as Macaulay case (see

[24]).
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e In the second case, the variety X = 7 is a toric variety, and the map S
is used to define the toric resultant of the polynomials py,...,p,. The
polynomials can also be homogenized in a toric sense, and the vanishing
of the resultant is a necessary and sufficient condition on their coefficients
under which the toric-homogenized polynomials have a common zero in
the toric variety 7 (see [18]). We refer to this case as the toric case.

Let us describe more carefully the monomials with exponents in F; used in the
construction of the map S.

The Macaulay case Let us fix integers dy, ...,d,, and v =dy +---+d, —n.
For any d € N, let Ry denote the set of polynomials of degree not greater than
d. Let po, ..., p, be polynomials of degree dy, . .., d, respectively. To construct
the map S that yields the resultant of these polynomials, we follow Macaulay’s
work and choose V; = R,_4,, V = R, so that we define the map

S: Ru—do X oo X Ru—dn — RU

n
(qov"'vqn) = Z DPiqi.
=0

The toric case In this case, we replace the constraints on the degree of the
polynomials by the constraints on the support of the polynomials p; (that is,
the set of the exponents of the monomials with non-zero coefficients in p;). Let
Co,...,C, be polytopes in Z" and let py, ...,p, € L be Laurent’s polynomials,
whose supports are in Cy,...,C,, respectively. In order to construct the map
S that yields the toric resultant, we fix (at random) a direction § € Q. For
any polytope C, let C? denote the polytope obtained from C, by removing its
facets whose normals have positive inner products with 6 (see [5],[33]). For
F; = (3,4 C))° and F = (3, C;)°, we define the map

S (xy xox (xy = (x)

n
(q07"'7Qn) = Zplql
=0

Many other examples of this type can be obtained by means of convenient
choices of the vector spaces Vy,...,V,, and V. We are going to examine the
properties of these maps in the generic cases.

Definition 4.2.4 A property is generically true in the Macaulay case (or in
the toric case), if this property is true for an algebraically open subset of the set
of all possible values of the coefficients satisfying the given constraints on the
degree (or on the support) of the input polynomials.

Given polynomials py, ..., p,, we will compute from the matrix S:

e a basis (x%)yep of the quotient A = R/(p1,...,Pn),
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e the table of multiplication by a polynomial py in A, from the matrix S
(note that the matrix S of S is not a square matrix anymore, so that we
have to choose a submatrix of S in order to compute the matrix M, ),

e the dual basis of the monomial basis (x*).cr of A.

These constructions will be valid for gemeric values of the coefficients of
P1,-...,Pn but may fail for specific values. A more sophisticated method, de-
scribed in [26], circumvents this difficulty by the compression of pencils of ma-
trices.

4.2.3 A basis of A

First, we will define a subset Ej of exponents such that x° is generically a basis
of A= R/(p1,...,pn). For that purpose, we choose py = ug+uy 1 +---+u, T,
(or pp = up+uy 14+ -+ Up Ty +u_ xfl +---u_px, " in the toric case), where
u; are parameters. We also choose subsets E; C F; for ¢ = 0,...,n, such that

(a) |Eo|+ -+ |En| = |F| and
(b) the matrix of the map

3:<XE°)><~~~><<XE") — (xF>
(QO7"'7qn) (g sz%
i=0

takes the form
Ey, E,-- E,

A =

where W is generically invertible.

In order to prove this generic property, it is sufficient to specify the coefficients
of polynomials p;, for which it is satisfied.

Theorem 4.2.5 If conditions (a) and (b) are satisfied, then for generic values
of the coefficients of p1,...,Pn, (X*)ach,- s a generating set of A, and we have

dime(A) < |Ey.

Proof. As W is generically invertible, the same process as in section 4.2.1
enables us to reduce modulo (p) the elements x* py for a € Ejy, in (X*)ach,-
As this is valid for any value of the parameter u;, we can reduce in (x*)acp,
modulo (p) the monomial x* z; (resp. x® x; ! in the toric case), for any variable
x; and any a € Ey. By induction, for any polynomial p in R (or L in the
toric case) and any a € Ey, we can reduce modulo (p) the polynomial x* p in
(Xa>a€E0'

Therefore, as 1 € (x*)qep, in the Macaulay case (or because any Laurent’s
monomial p € L is of the form p = p'x* with a € Ey and p’ € L in the toric
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case), we can reduce modulo (p) any polynomial p in (x*),epg, (where p € R,
in the Macaulay case, or p € L, in the toric case). This proves that (x%).cg, is
a generating set of A = R/(p1,...,pn) (A= L/(p1,...,pn) in the toric case). O

Let us give now more details on how we choose the subset E; in the Macaulay
case and in the toric case.

Macaulay case Let us choose E; such that the matrix S becomes the identity
matrix (see [24]), when we replace the polynomial p; by x‘f‘. We can choose, in
particular,

Ey = {(ar,---,a,); 0<a; <d; —1,i=1,...,n},
E, = {a=(a1, - an)lo|<v—dy; 0<a; <d; —1,i=2,...,n},
En = {a:(alv"'van);|a|Sy_dn}v

where |a| = |ai| + -+ + |an].

Requirements (a) and (b) are easily verified; therefore, by theorem 4.2.5,
(x%)acE, is generically a generating set of A, and

dimc(A) < |Eo| = Hdm
im1

which is the BEZOUT THEOREM.

Toric case In the toric case, the polynomial p; is replaced by pf = > a; o t"*x"
(where t is a new variable and w, € Q). The subsets of the exponents E; are
chosen so that the corresponding matrix S(¢) = (s; ;(t)) satisfies

degi(si,i(t)) < degi(si ;(t)) for i # j

(see [18],]5] for more details). The set Ey is the set of the exponents in the mized
cells of a regular triangulation of Cy @ --- @ C,,, so that, by construction, |Ep|
is the mixed volume of C, ..., C,,. This yields BERNSHTEIN THEOREM (part 1)
(see [2], [23]).

Part 2 of Bernsthein theorem shows that generically the number of common
zeros of the system p; = ... = p, = 0 is at least |Ep|. Thus, we deduce that
dimg(A) > |Ep|, and we have the following theorem:

Theorem 4.2.6 For generic values of the coefficients of p1,...,Pn, (X¥)acE,
is a basis of A, in both Macaulay and toric case.

Note that we gave simpler proofs than in the articles [16], [34].
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4.2.4 Matrices of multiplication in A

In this section, we still let S denote the map (30), constructed with using the
fixed polynomials pi,...,p, and vector spaces Vi,...,V,,V and with various
choices of polynomial py and vector space Vo = (x*)acr,. The set of monomials
(x*)acE,, defined in the previous section, is a basis of A.

For any polynomial py, we can also construct the table of multiplication by
Do, starting from a submatrix of S. Namely, we choose any subsets E! C F;,
t=1,...,n, such that simultaneously

(@) [Bll+ - +|Ey| = |F| = |Eol,
(V') and the corresponding columns in the matrix of S are linearly independent.

Generically, this is always possible, which we can show by giving a specific
example. Decomposing again the matrix of the map

St (x) x (xF1) x - x (xFn) = (xT)

(QO7"'7Q7’L) = Zp1Q1
=0

in the form (32), we obtain the following property:

Theorem 4.2.7 For generic values of the coefficients of p1,...,pn, the matriz
of multiplication by py in A is given by

M,y =U-VWZ.

Proof. First, we will show that W is invertible. Otherwise, there exists a vector
v # 0 in the kernel of W. Then we have

v ]e=[5]

and w is not 0, because the columns ] of the matrix S are linearly inde-

w
pendent (condition (b’)). This implies that there is a non-zero polynomial of the
form w(z) = >0 | pigi in (x*)aecr,, which contradicts the fact that (x*)acp,
is a basis of A. Consequently, W is invertible.

Now, by the same argument as in section 4.2.1, U — VW ~1Z is the matrix
M,, of multiplication by py in the basis (x*), of A. O

Example (continued) Let py = x1, x5 = (1,21, 22,71 72), xF1 = xF2 =
(1,21, x2), and

F _ 2 2 3 3 2 2
x' = (1@, 20, 0120, 217, 227, 217, 227, 01 T2, 1 227).

44



Then we have

000O0O|l-1 0 0o 0 0 O
100 0/-1 -1 0 -8 0 0
00000 O -1 0 0 0
00102 0 -1 0 0 -8
g_|0L1roo0f1 -1 0 1 -8 0
“loooo0o|jl0o 0O O 1 0 0
000O0O[l0O 1 0 0 1 o0
00000 O 0 0 0 1
0o0oo01/0 2 1 0 0 1
00000 0O 2 0 1 0 |

We may verify that

14
0 1 0o -4
1 1 0 -L
U- VW lz=
0o 0 0 1
29
0 —2 1 2

is the matrix of multiplication, M, .

Given a matrix S of (32), in order to compute the product of the matrix
of multiplication M, by a vector, we have to solve a linear system of equations
W u = v, which can be done efficiently if W is structured and/or sparse. As we
can see from the previous example, the resultant matrices are sparse: the number
of non-zero terms per column is bounded by the maximal number of monomials
in each polynomial p;, which is small compared to the size of the matrix. In the
Macaulay case, the size of the matrix is bounded by ((ntl)d) < e™d", where
d = max;—o,...,deg(p;), which is asymptotically much larger that the number
of monomials in the polynomial p; (bounded by (™+4)).

The sparsity of these matrices (which implies that their multiplication by a
vector has low cost) has been exploited in [4], in order to devise an algorithm
for the approximation of a selected root of a polynomial system by the (shifted)
implicit power method.

As we have seen, these resultant matrices have also a quasi-Toeplitz struc-
ture, and the techniques of [4] can be immediately extended to exploit this
structure instead of sparsity, by reduction to multiplication of multivariate poly-
nomials. Some simple techniques for exploiting the sparsity of these polynomials
can be found in [15].

4.2.5 The dual basis

It is possible to construct the dual basis (04 )ack, Of (X*)ack, from the matrix

S. Let
Oa = Z Oa,B 9°
BEN”
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be the f.p.s. representing o, in C[[0]]. Then we have the following property:

Proposition 4.2.8 The coefficients [0u,glacE, geF of(a@)geF in the dual basis
(0a)ack, are given by the matrix

[Ip|—vw= ],

Proof. Let [04] = [0a.g]ger denote the vector of the first | F'| coordinates of
0o and let ¥ denote the matrix ¥ = [04,8lacE, ser. As Ey C F, we represent
this matrix as a 1 x 2 block matrix ¥ = [¥'|Z"], where ¥’ = [04,8]a,8eE,
and X" = [04 glack,,peF—E,- The linear forms o, vanish on the multiples of
P1,--->Pn, which implies that

=12 | gy | =0

or, equivalently,

SV 4+ W =0. (33)
Since the set (04)aep, is the dual basis of (x%)qer,, we have that, for any
a,B € Ey, 04(x?) = 0405 equals 1 if @« = 3 and 0 otherwise. In other words,
Y =1p is the identity matrix, and we obtain from (33) that

»W=—_vw

Algorithm 4.2.9 COMPUTATION OF THE NORMAL FORM OF A MULTIVARIATE
POLYNOMIAL.

For any polynomial p € (x”)scr, compute its normal form by multiplying
the matriz [Ip| — VW 1] by the coordinate vector of p.

Proposition 4.2.10 Algorithm 4.2.9 can be performed by using Cpinsorwe(W)+
Cproimuit(Eo, F)+D ops, where CpLinsoiwe(W) denotes the arithmetic complexity
of solving a linear system of equations with the coefficient matriz W .

Proof. The normal form of a polynomial p = Z,@eF ps x” is by definition

Z ou(p) x*.

a€FEy

The coefficients 04 (p) = > 3¢ 0a,60%(P) = Y ey 0a,pPs are obtained by
multiplication of £ = [Ip| — V W ™!] by the vector [pglger. a

Similarly, if we are interested in the coefficients [A(x™)]wer of a linear form
A on a set of monomials F, knowing its value Ay = [A(x%)]acr, We have to
compute A§Y. This can also be performed by using Crinseive(W) ops. In an
application that we will point out in section 4.3.5, we will assume a random
vector Ag.

An upper estimate on Cinsoive (W) is given by theorem B.3.1 of Appendix
B.3.
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Example (continued) Let us be given the matrix

1000 1 -1 % 1& _14 1
Li— VW= 0100 1 7 3 2 _12 ¢
o010 0 o0 -2 -1 1. 2
0001 -2 2 -8B 1L 20 _1»

The normal form of z;z2 is defined by the last column of this matrix:

Nf(x xz)——+§x —l—zx —Ex x

113) = g g1+ 522 = = T,

as found in the example of section 4.1.1. The linear form ¢,,, (in the last row
of this matrix) turns into

68 11 29 12
Trray = 0102 —201% +20,° — ?313 + ?323 + 351252 - 331322 +e

4.3 Tterative methods in A

In this section, we describe iterative methods for solving the system p = 0,
which exploit the properties of the quotient algebra 4. These methods combine
symbolic and numeric computations and consist in applying some iterative pro-
cesses in A. Such a process converges towards an element e of A from which we
can recover the root or split the problem into smaller subproblems. Unlike the
classical methods (such as Newton’s method), this approach leads to controlled
and certified iterative methods. Moreover, unlike the methods of applied linear
algebra cited in the introductory part of section 4.1, which all have linear con-
vergence, we will present quadratically convergent algorithms, which (roughly)
square the approximation error bound in each iteration step (rather than to de-
crease it by a fixed constant factor) and as a result approximate the zeros within
the error bound 2% in O(logb) (rather than order of b) iteration steps. The
convergence remains very rapid also in the difficult but practically important
case where the roots of the polynomial system are not very well separated from
each other.

The proposed efficient iterative methods for solving the system p = 0 rely
on fast multiplication in A, which in turn relies on the knowledge of a non-
degenerate linear form 7 (that is, a generator of the .A-module A), like the
residue defined in section 3.7. Thus computing such a residue (or any non-
degenerate linear form) is a basic step and sometimes the bottleneck of this
approach. For a large class of polynomial ideals, specified, for instance, in [28],
we may efficiently compute the residue. If we are only concerned about the
asymptotic complexity of this stage in terms of D, then the recipe of section
4.2.5 applies. Indeed, we have already seen in section 4.2.5 how to compute
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the first |F'] coefficients of an element of A. This only requires to solve a
quasi-Toeplitz linear system of equations with coefficient matrix W, and the
complexity of the solution is quasi-quadratic in the dimension of W, that is,
O*(D?). In [29] this technique is further specified, but the practical value of
the resulting algorithm for the system p = 0 is still unclear. Recently, new
methods have been proposed to compute algebraically such a residue [10], [14].
Analyzing the complexity of this process is still a problem under investigation.

The existence of a residue is guaranteed for a complete intersection quotient
algebra, that is, for a finite dimensional quotient algebra defined by n equations
in n variables [13]. If the number of equations is larger than the number of vari-
ables, one has to take n random linear combinations of the input polynomials,
in order to apply the methods that we are going to describe. R

Hereafter, we will assume that a non-degenerate linear form v € A is known
(e.g. the residue), and we will use it for computing efficiently the product of
two elements in A.

4.3.1 Fast multiplication in A

For any element f € A, let [f] denote the coordinate vector of f in the basis
(x*)ack. Let us write wo(x) = > 5.5 B 5x* to denote the dual basis of
(x*)ack and By = (Bi’ﬁ)a”@e}; to denote the Bezoutian of 1.

We want to compute the product [f ¢] in A where

f = ZQGE fOé xa7
= EaeE o X%,
We may first compute the polynomial f ¢ and then reduce it to a linear

combination of the elements of the monomial basis (x*) in order to obtain [f g].
We may also proceed directly by using the projection formula:

fg = > (fgx*)wa

a€EFE
= Z fgx1(x*)wg.
a€E

In this case, we have to compute the coefficients of the linear form f g x 7 and
then shift from the basis (W, )aer to the monomial basis (x*)aecp. By using
relations (23), we may also proceed in an equivalent way, based on the formula

[f 9] = My[f] = H{ " Hyir 9] = By Hyo-[g]. (34)

As we want to compute the coefficients f g x 7(x*) = 7(f gx*) for a € E, we
need to know the value of 7 for the monomials x*t%+7 for o, 3,7 € E. Let

Ti=3 e pT(x") 0" denote the leading part of the series T associated with the
residue 7. We first compute

g*7 = i (9(07)7(9))

= 7r+((z 9o 07)( Z 7.0"))

aElE ueE3 E
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and then

fogx7 = fx(gx7)=m(f(071)g(07")7(9))

Ty (Z faa—a> > gso? (Z T au>

acElE BEE uwe3 FE

The coefficients A\, of 9% in f gx7 for a € E are precisely the coefficients of f ¢ in
the dual basis (Wq)acr of A. Summarizing, we obtain the following algorithm:

Algorithm 4.3.1 MULTIPLICATION BY A POLYNOMIAL MODULO THE IDEAL
IN A MONOMIAL BASIS.
To obtain the coefficients of f g in the basis (x):

e Compute the coefficient vector A = [Aqlack of 0% for a € E, by multiply-
ing the Laurent polynomial f(0~1)g(0~1) by 7(9).

o Multiply the vector A = [A\o]acr by the matriz By = H ", that is, solve
the linear system of equations Hy v = A. Output the vector v.
4.3.2 Fast inversion in A

Similar techniques can be used to compute the inverse (reciprocal) of an invert-
ible element f € A. By relation (34), for g = f~!, we have

(1] = H " Hyyr [f Y] or, equivalently, H[1] = Hp. [f '],

where H;[1] is the coefficient vector of (0%)scp in 7. This yields the following
algorithm:

Algorithm 4.3.2 INVERSE OF A POLYNOMIAL MODULO THE IDEAL IN A MONO-
MIAL BASIS.
To obtain the coefficients of f~1 in the basis (x%):

o Let u = [A\y]ackr be the coefficient vector of 0% for « € E, in 7.

o Compute the coefficients of 9°TP for o, 3 € E in the Laurent polynomial
f(07) - 7(8), and obtain the matriz H .

o Solve the linear system Hy.r v =u. Output the vector v.

4.3.3 Computing selected simple roots of a polynomial system

As before, let Z denote the set of all common roots of the system p = 0. We
assume here that the roots are simple.

By decomposing any element h of A in the basis of idempotents e (see
section 3.12), we obtain that

h(x) = h(x)ec = h(()ec.

ez ez
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The second equation follows since ech(x) = ech((). Squaring h in the quotient

ring A gives us that
W’ =" h(()ec.
=¥

Here and hereafter, for any element a € A, [a] denotes the vector of the
coefficients of a in the basis (x*),ecg. In particular, [1] = (1,0,---,0)" if the
basis starts with the monomial 1. Let || - || denote a norm in CP [say, the
Euclidean (Hermitian) norm,

D
VIl = (v,v) = (Zlvilz)m, v=(v),i=1,...,D]

By minor abuse of notation, for any element a € A, we will let ||a|| denote ||[a]]|.
Let h € R and assume that there is a unique root ¢ € Z, for which the norm of
h(¢) is maximum, so that

[L(OI/IR(m)]| =1 = p, (35)

for some fixed positive p and for any 7 € Z distinct from ¢. (Since all the roots
in Z are assumed to be distinct, we may, in principle, ensure the latter relation
with a high probability, by means of a random linear substitution of the vector
of the variables x.) Then, by iteratively computing and normalizing the squares,
we obtain

hO = hv hi+1 = h?/Hh?”v 1= 07]—7"'7k_ ]-7

and arrive at the bounds

hk €¢ &
e = || - | < 2

hell llecll™ = (1+p)*"
so that we ensure the bound ¢, < 27% in k = k(p,b) = O(log(b/p)) recur-
sive steps for any positive b. The bounds show that the process very rapidly
(quadratically) converges to a multiple of the idempotent e, right from the
start.

Proposition 4.3.3 In the case of a simple root ( and for h € R such that
[h(Q)| > |h(n)| for any n,m # (,n € Z(I), the latter process of squaring and
normalization in A, always converges quadratically right from the start to a
multiple of the idempotent e..

We refer the reader to [39] and [7] on some preceding works on a similar
approach in the univariate case. A similar approach based on resultant matrices
is described in [4].

By using proposition 3.12.1, we can compute the root  from the idempotent
ec, by means of its multiplication by H;. The transition from e to the root ¢
of the system p = 0 can be performed in Cp;n5010e(H1) OpS.

Thus, we have the following algorithm:
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Algorithm 4.3.4 COMPUTATION OF THE ROOT THAT MAXIMIZES THE MOD-
ULUS OF A FIXED POLYNOMIAL.

Assume that the roots Z(I) are simple and that h € R is such that there
exists ¢ € Z(I), with |h(C)| > |h(n)| for any n,n # (,n € Z(I).

e Set ug := h and fiz a positive tolerance value e =27° b > 1.

e Recursively, for k =0,1,--- N — 1, compute vip41 = u} and ups1 = m
in A by algorithm 4.8.1, until the norm ||ug41 — wi|| becomes smaller than
0.5,

o Multiply the last term uy by H;.

This yields a multiple of the vector [(*]ocr, whose scaling gives us the root
¢ for which |h(¢)| is maximal (compare algorithm 4.1.3). The overall cost of
approximating the root within an error norm 2~ is O(D?log(b/p)) ops up to a
(poly) logarithmic factor in D.

4.3.4 Computing the closest root

Suppose that we seek a root of the system p = 0 whose coordinate z; is the
closest to a given value u € C. Let us assume that u is not a projection of any
root of the system p = 0, so that z; — u has reciprocal in A. Let p;(x) denote
such a reciprocal. We have p; (x)(z1 —u) =1 and p1(¢) = C%u Therefore, a
root for which z; is the closest to u; is a root for which |p1({)| is the largest.
Consequently, iterative squaring of p; = p1(¢) shall converge to this root.

The polynomial p; can be computed in the following way. Let M., _,, denote
the multiplication by x1 —u in A. Then p; = (M., )~ (1), and by the matrix
equation (24), we have

[p1] = Hy (H,, —uwHy)"'[1].

[p1] defined by the latter equation can be computed in CrLinsoive(Hzy—u) +
Cpoimut(—2E,E) ops (see algorithm 3.5.4 and the black box algorithms of
appendix B.1 and B.3).

One may compute several roots of the polynomial system by applying the
latter computation (successively or concurrently) to several initial values u.

Example (continued) We illustrate this approach by computing first the
root for which z; is maximal. We start with ug = x1. After 4 iterations, we
obtain

ug = 7.6055995 + 7.7975926x1 — 0.46159096z2 — 15.740471z125.

By multiplying the coefficient vector of this polynomial by H; and dividing by
the first coordinate, we obtain

[(¥]aer = [1.,6.820095, —2.836734, —19.34680),
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where (; = (6.820095, —2.836734).
If we start with

1., 78 228 32 16
’U,gE(JJl——) = ——C" — — 1——1’2—71'11}2,
the algorithm should converge to the root closest to % Indeed, after 4 iterations,

we obtain
ug = 0.15292071 4 0.89409187x; 4 0.1627076622 + 0.29923055z 22,
and after multiplication by H; and normalization, we arrive at
[($]ace = [1.,0.3678148,1.675476,0.6162664],

where (4 = (0.3678148,1.675476) is the root closest to %

4.3.5 Splitting the set of roots

In addition to the repeated squaring iteration of algorithm 4.3.4, we will also
consider iteration associated to a slight modification of the so-called Joukouvski
map (see [20],[7]): z — 1(z+ 1) and its variant z — 1(z—1).

The two attractive fixed points of this map are 1 and —1; for its variant,

they turn into i and —i.

Algorithm 4.3.5 SIGN ITERATION. wg = h € (X*)acp. Unt1 = 2(un — L) €
A n=0,1,....

Each iteration step of algorithm 4.3.5 can be performed by using Crinsorve (Hu, )+
Cproimut(—3E, E) ops (see appendix B.1 and B.3). Hereafter, R(h) and S(h)
denote the real and imaginary parts of a complex h, respectively.

Proposition 4.3.6 Assume that for any root ( € Z, R(h(()) # 0. Then the
sequence (un) converges quadratically to 0 = 3 )50 € — Dos(h(c))<0 €
that is, we have

in — ol < K"

(for some constant K ), where

1

h

Q) =
¢)+1
Q) +i
Q-

Pt = mazs(n(cy)>o,cez(n) h(
h(¢) +i
h(

P = MaTx(n(¢))<0,ce2(I) |77 3 |

1

and p = max{p*, p~}.

Proof. We apply the classical convergence analysis of the Joukovski map
(see [20]) to the matrices of multiplication by w, in A, whose eigenvalues are
{un(),C € Z(D)}. 0
This iteration can be applied to count the number of roots in a half-space, based
on the following proposition:
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Proposition 4.3.7 The rank of the matriz H,+ is the number of roots such
that S(h(C)) > 0 (where the roots are counted with their multiplicity).

Proof. As H; is invertible, the rank of H,+ = H{M_,+ is the rank of M+,
that is, the dimension of o+ A equals 3 4, ()~ ecA. Since the dimension of
A = ec A is the multiplicity of ¢, we yield the proposition. O
The ranks can be computed by the algorithm supporting theorem B.5.1 (of
appendix B), in O*(D?) ops.

By successive applications of the above splitting procedure, we can compute
efficiently the numbers of all roots, the roots in a half space, in a fixed box,
and those that are nearly real ... See [29] for more advanced applications of
these techniques, which enables us to improve substantially the known estimates
for the computational complexity of these problems and some related ones.
Practical value of the latter theoretical improvements still has to be confirmed
by experimentations, which is also another challenging problem.

4.4 Traces and real roots

In this section, we will keep assuming that the residue or a non-degenerate linear
form 7 is known, will suppose that the coefficients of the polynomials p; are real,
and will study the problem of computing the numbers of distinct roots and of
real roots. We will next define a special element of R, called the trace.

Definition 4.4.1 The linear form Tr is defined over any fized field K by

Tr:R — K
p — trace(M,),
where trace(M,,) is the usual trace of the linear operator M,.

By using this linear form, we define the quasi-Hankel matrix
Hry = [Te(x**7)]a pem-

In order to compute Hrt,, assuming that we know the table of the multiplication
by x; in A (i = 1,...,n), we may compute the values of x” (for v = a + 8
and a,3 € E) by induction, for we have x7 = ;X7 with |y/| < || and
Tr(l) = D = dimg(A). By using the linearity of the trace, we compute all
the coefficients of Hr, (see, for instance, [38]). Alternatively, we may apply the
following theorem (see [13]):

Theorem 4.4.2 Let J € R be the Jacobian of the polynomials p1,...,p,. Then

Tr=Jxr.

Example (continued) According to the example of section 3.8, we have

20 34
Tr(z) =1+ = = =
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and also 34
T(J,'l J) = T(—16 — 161‘1 + 41’2 + 341’11‘2) = g
Algorithm 4.4.3 (application of the trace to a monomial set). Compute and
output Ht, = [Tr(xo‘+ﬁ)]a7ge}3 as the product of
T = Z Ta 0%
a€3 E
by J(O71).

The number of ops involved in this algorithm is bounded by Cponruit (3 E,
—FE). Once the matrix Hr, is computed, we apply the following theorem, due
to Hermite (see [21], [32], [12]):

Proposition 4.4.4 (Hermite). Let J be the Jacobian of p = (p1,...,pn) and
let By be the Bezoutian of J. Then

e the rank of Hy. or By is the number of distinct roots of the polynomial
system p =0,
e the signature of Hy. or By is the number of its real roots.

Algorithm 4.4.5 COMPUTATION OF THE NUMBERS OF DISTINCT ROOTS AND
REAL ROOTS.

For a polynomial system py = --- = p, = 0, define the matriz Hy., then
compute the numbers of the distinct roots and the real roots of the system by ap-
plying proposition 4.4.4 and the algorithm supporting theorem B.5.1 (of appendiz
B).

The overall randomized cost of computing the numbers of distinct roots and

real roots is O(D?) up to a polylogarithmic factor.

Example (continued) The normal form of the Jacobian J is
J=—-84+40x1 — 225 + 2021 2>.

Note that 7(J) = £ x 20 = 4 is the dimension of A. The matrix Hr, is given by

4 34 _12  _as
5 5 25
34 1166 _ 448 _ 16492
H _ 5 25 25 125
Tr= 1 12 a8 104 6976
5 25 25 125
448 16492 6976 234354
25 125 125 625

The Bezoutian matrix B is given by
—4 =50 52 —40
=50 602 —36 200
52 =36 6 —10
—40 200 -10 100

By
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The rank and the signature of both matrices are 4 and 2, respectively. The
number of distinct roots is 4, and the number of distinct real roots is 2.

5 Conclusions

Our goal, throughout this paper, was to demonstrate the power of the applica-
tion of the dual space, algebraic residues and the generalization of the structure
of Toeplitz and Hankel matrices to the solution of a polynomial system in the
multivariate case. In order to be able to yield the latter generalization, we
re-interpreted the associated operators in terms of operations in the polyno-
mial ring and in its dual. Multivariate Bezoutians and residues come naturally
into play under these studies, and the algebraic interpretation of the associated
operators yielded the relations between these matrices.

We developed in details the above machinery, which we consider useful and
appropriate for the study of polynomial systems of equations. Our study has
lead us to some new insights into this subject and, in particular, to simplifi-
cation of the reduction of a polynomial system to matrix eigenproblem and of
the known proofs of Bézout and Bernshtein bounds on the number of roots.
Both reduction to the eigenproblem and the latter bounds are highly important
for the theory and practice of solving polynomial systems. Furthermore, we
revealed and exploited the matrix structure implicit in multiplication tables,
which helped us to operate with them efficiently.

Section 4 was devoted to applications of the developed techniques to yield one
order of magnitude improvement of the known algorithms for some fundamental
problems of multivariate polynomial rootfinding.

Some brief comments on the main open issues and recent progress are now
in order. Namely, we have deduced the results of sections 4.3 and 4.4 assuming
that the residue or a non-degenerate linear form 7 associated with the ideal
I = (p1,...,pn) is known (or readily available). This somewhat restricts the
class of polynomial systems to which application of our fast algorithms promises
to become practical. A major research challenge is an extension of these results
to a more general class of polynomial systems of equations having a finite num-
ber of solutions. Another research challenge is to extend the results of section
4.3 to approximating all the D roots of the system at the cost O(D?) (up to a
polylogarithmic factor). Substantial progress in these directions based on fur-
ther extension of the techniques of this paper combined with some other new
techniques has been reported in [29]. In [4] some further elaboration of the pre-
sented approach towards some practical problems of multivariate polynomial
rootfinding and optimization was shown, and the assumption that 7 was known
was relaxed there.

We hope that our present work and our cited subsequent progress will mo-
tivate new interest in this recently open and challenging area.
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A Polynomials, Laurent’s polynomials, and the
dual space (univariate case). Basic Definitions

Consider univariate polynomials p = p(z) = Z?:o pir' € R = C[z], represented
by vectors of their complex coefficients (po, . . .,pq). Let the subspace Ry denote
the vector space (of dimension d + 1) of polynomials in R of degree at most d.

A fixed polynomial p(x) of R generates the ideal I = (p(z)) in R, formed
by all polynomial multiples ¢(z) of p(z). Let A = R/I denote the quotient ring
of polynomials reduced modulo p(z) (that is, modulo the ideal I). If p(x) is of
degree d, then A is isomorphic to R;_1, as a vector space.

By introducing the reciprocal !, we arrive at the ring of Laurent’s polyno-
mials Clz,27!] = L and denote by L_. 4 the subspace of Laurent’s polynomials
of the form Z;-i:fc A\

A polynomial p € R4 can be represented by the vector of its d+ 1 coefficients
or, equivalently, by the values p(0),p'(0),..., ﬁp(d)(O). In other words, a primal
basis of Ry is (1,,...,2%), and its dual basis (that is, the set of linear forms
(maps) that compute the coefficients of p in the primal basis) is the set of linear

forms
1

(= = O)ico,..

We introduce a new variable 9 and let 9" denote the i*" element, p — - p(*)(0),
of this dual basis. Thus, a linear form on R, that is, an element A of the dual
space Ry of Ry, is represented by a polynomial

d
A=) N0
=0

For any p € Ry, we have A(p) = Y0, )\iii!fi(—;?(p)(o) and \; = A(z?).

Next, consider linear forms A € R on the primal space R. The restrictions
of the linear forms to Ry C R are the elements of Ry, which can be represented
by polynomials in 9 of degree at most d. This is valid for any d; therefore, an
element A € R is a formal power series (f.p.s.) in 9:

oo

A=) Ao

Such a ring of f.p.s. in the variable 9 is denoted by S = C[[9]].
The duality between the polynomials and the f.p.s is defined as follows: For
any A(9) € S = CJ[[0]] and any p € C[z],

(Alp) = mo(A(2)p(071)),

where 7 : C[07][[0]] — C is the map computing the constant term.
For any p(z) € C[z] and A(9) € C[[9]], we define an element of S = C[[0]]
as follows:

p(z) * A(9) = 71 (p(071)A(9)),
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where 7y : C[07!][[0]] — C[[d]] is the projection on the monomials having
non-negative exponents in 9.

Example
(1+2%)%(*+30-2)=0°+40-2.

Contrary to [17], we introduce a new variable 9 for the “inverse” of z, which we
consider an element of the dual space.

B Some polynomial and linear algebra compu-
tations (algorithms and complexity)

We will recall the known estimates for the computational cost of performing
some basic algorithms used in this paper.

B.1 Polynomial multiplication

In sections 1 and 2, we reduced multiplication of various structured matrices by
vectors to polynomial multiplication. Now, let us recall the known arithmetic
complexity bounds for the latter operation (see [3], pp. 56-64). As before, let
Cpoimut(E, F) denote the number of arithmetic operations required for the
multiplication of a polynomial with support in E by a polynomial with support
in F.

Theorem B.1.1 Let E; =[0,...,d] CN. Then
Cproimut(Ea, Eq) = O(dlog(d)).
Theorem B.1.2 Let Eq = {(a1,...,a,) ; 0<a; <d; —1}. Then we have
Croimuit(Ea, Ea) = O(M log(M)),
where d = maz(dy,...,d,), and M =c", and c =2d+ 1.

Theorem B.1.3 Let FEq,, be the set of exponents having total degree at most d
in n variables. Then

Croimuit(Ean, Ean) = O(Cproivwt (BT, Ev)log(T)),

where T = ("}?) is the number of monomials of degree at most d in n variables.

Remark 3 Theorems B.1.1 and B.1.2 can be extended to the computations over
any ring of constants (rather than over the complex field) at the expense of in-
creasing their complexity bounds by factors at most loglog(d) and loglog(c),
respectively. Theorem B.1.3 applies over any field of constants having charac-
teristic 0.

Theorem B.1.4 O(dlog(d)) ops are sufficient to reduce a given polynomial
p(z) of a degree d modulo a given polynomial q¢(x).
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B.2 Tellegen’s theorem on duality of multiplication of a
matrix and its transpose by a vector

Theorem B.2.1 [35]. Let W be a square matriz with no zero rows or columns.
Let Cyw ops suffice to compute the product Wv for a vector v. Then Cy ops
also suffice to compute the product Wrv = (v*W)®.

The proof of this theorem given in [35] is constructive.

B.3 Solving a linear system of equations

Application of the conjugate gradient algorithm [19] gives us the following result:

Theorem B.3.1 Let W be a nonsingular N X N matriz. Performing 2N mul-
tiplications of W and W* by vectors and O(N?) other arithmetic operations
suffice to compute the solution v to o linear system Wv = w.

B.4 Matrix eigenproblem

For an N x N matrix W, its eigenproblem is the problem of approximate com-
putation of its eigenvalues as well as the computation of the basis of the linear
space of the eigenvectors associated with each eigenvalue [19].

The known record complexity estimates for the eigenproblem are summa-
rized in the next two theorems, reproduced from [31].

Theorem B.4.1 The deterministic arithmetic complezity of the eigenproblem
for any N x N matriz W is bounded by O(N?) + t(N,b) ops for t(N,b) =
O((N log®(N))(log(b) 4 log?(N))) and for 2=°||W|| denoting the required upper
bound on the absolute output error of the approzimation of the eigenvalues of W
where || - || denotes any fized matriz norm. For generic N x N matrizc W, the
complezity is bounded by O(M(N)log(N)) + t(N,b) ops, where M(N) denotes
the complexity of N x N matriz multiplication, M (N) = o( N2-37%).

Remark 4 The latter acceleration (to the level below the order of N?-37% ops) by
means of asymptotically fast matriz multiplication is purely theoretical, because
an enormous overhead constant is hidden in the ”0” notation above.

In the case where the matrix W can be multiplied by a vector fast and have
its minimum polynomial my(z) of degree N,

deg (mw (z)) = N (36)

(the latter equation holds for generic N x N matrix W), there exist accelerated
randomized solution algorithms as specified in the next theorem, but in appli-
cation to solving a polynomial system of equations, this still only implies cubic
complexity bound (see remark 5 below).
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Theorem B.4.2 If an nxn matrizc W satisfies (36), then its eigenproblem can
be solved by means of generating 4n — 2 random parameters and then performing
t(n,b)+O(CwN) ops for t(n,b) and 27°||W|| defined as in Theorem B.4.1 pro-
vided that C,, ops suffice to multiply the matric W by a vector. The cost bound
does not include the cost of the generation of random parameters. Assuming that
these parameters are sampled from a fized finite set S of cardinality | S indepen-
dently of each other under the uniform probability distribution on S, the algo-
rithm supporting the above arithmetic complexity estimate either outputs FAIL-
URE or otherwise, with a probability at least (1 —(n+1)n/(2|57))(1 —2n/[S]),
produces correct output for a matric W satisfying (36). The algorithm can be
applied to any n x n matric W and outputs FAILURE unless (36) holds.

Remark 5 We have Cy = O*(D?) for the matriz W of section 4, which only
leads to cubic complexity bound for solving polynomial systems p = 0.

B.5 Tridiagonalization of a real symmetric matrix and the
computation of its rank and signature

In section 4.4, we needed an algorithm for computing the rank and the signature
of an N x N real symmetric (and quasi-Hankel) matrix W.

We start such an algorithm with tridiagonalizing the matrix. In exact arith-
metic, this can be done by means of the Lanczos algorithm, which for a given
real symmetric matrix W computes a unitary matrix () and a real symmet-
ric tridiagonal matrix T', similar to W [19], p. 311: T = Q*WQ,Q*Q = I.
Compact representation of Lanczos algorithm can be found on p. 473 of [19].
The algorithm starts with choosing a nonzero random vector of dimension N
and consists in performing O(N) multiplications of W by vectors and O(N?)
other ops. Since the matrices W and T are similar to each other, both the rank
and the signature of W coincide with ones of T and, therefore can be computed
immediately from the Sturm sequence of the signs of the values of the character-
istic polynomials of T" and all its leading principal (northwestern) submatrices
[19], p. 440. Such a sequence can be computed at the cost O(N), by using the
three-term recurrence relations for the characteristic polynomials of the leading
principal submatrices of W (cf. [19], pp. 339-440). We arrive at the following
result.

Theorem B.5.1 Let W be an N-by-N real symmetric matriz. Then applica-
tion of Lanczos randomized algorithm (which uses N random parameters, O(N)
multiplications of W by vectors and O(N?) other ops) and performing O(N)
additional ops suffice to compute the rank and the signature of W. If the N
parameters are sampled independently of each other from a finite set S under
the uniform probability distribution of S, then the algorithm on S, then the algo-
rithm may output FAILURE (at the tridiagonalization stage) with a probability
at most (N + 1)N/(2|S]) or otherwise outputs correct value of the rank and
signature.
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If W is a structured (resp. and real symmetric) matrix, whose multiplication
by a vector is expressed in terms of polynomial multiplication, one may combine
theorems B.1.1-B.1.3 and B.5.1 in order to express the arithmetic cost of the
solution of the linear system Wv = w and the randomized arithmetic cost of
computing the rank (resp. and signature) of W in terms of the dimension of W.

Remark 6 Practical application of the original version of Lanczos algorithm
(as presented on p. 473 of [19]) may lead to some problems of numerical stabil-
ity, which are, however, avoided in the modified versions of Lanczos algorithm
(see [19], pp. 479-489). Theoretically, the modifications may be a little slower
but not so in practice. The practical modifications also handle the remote pos-
sibility of the failure of Lanczos algorithm applied to a real symmetric matric.

64



