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Abstract

We �rst review the basic properties of the well known classes of Toeplitz�
Hankel� Vandermonde� and other related structured matrices and re�
examine their correlation to operations with univariate polynomials� Then
we de�ne some natural extensions of such classes of matrices based on
their correlation to multivariate polynomials� We describe the correlation
in terms of the associated operators of multiplication in the polynomial
ring and its dual space� which allows us to generalize these structures to
the multivariate case� Multivariate Toeplitz� Hankel� and Vandermonde
matrices� Bezoutians� algebraic residues and relations between them are
studied� Finally� we show some applications of this study to root�nding
problems for a system of multivariate polynomial equations� where the
dual space� algebraic residues� Bezoutians and other structured matrices
play an important role� The developed techniques enable us to obtain a
better insight into the major problems of multivariate polynomial compu�
tations and to improve substantially the known techniques of the study of
these problems� In particular� we simplify and �or generalize the known
reduction of the multivariate polynomial systems to matrix eigenproblem�
the derivation of the B�zout and Bernshtein bounds on the number of the
roots� and the construction of multiplication tables� From the algorithmic
and computational complexity point� we yield acceleration by one order
of magnitude of the known methods for some fundamental problems of
solving multivariate polynomial systems of equations�
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� Introduction

The main goal of this paper is to summarize and to develop various techniques
in the areas of algebraic residues� dual spaces and structured matrices and to
demonstrate the power of application of these techniques to algorithmic study of
polynomial systems of equations� in particular we accelerate the known solution
algorithms by order of magnitude� Let us comment on the structure of our
presentation and on some speci
c new results of this paper�

It is well known that the important classes of Toeplitz� Hankel� Vander�
monde� and some other structured matrices have a natural characterization in
terms of the associate linear operators of scaling and displacements� We will
study some extensions of the classes of such matrices� based on their correlation
to the fundamental operations with polynomials� such as polynomial multiplica�
tion� multipoint evaluation� interpolation� and root
nding� We will start with a
review of the simpler and well known correlation to operations with univariate
polynomials and then will use the patterns of this study as basic samples for
our extended study where we involve multivariate polynomials� This will enable
us to give a natural introduction to some other large and important topics and
to introduce some major tools and concepts useful for our study of multivari�
ate polynomial systems of equations� such as the dual space� algebraic residues�
and Bezoutians� Using these tools and concepts enabled us to give a simple
and general reduction of the problem of solving a polynomial system to matrix
eigenproblem �in sections ��� and ���� and to simplify substantially the known
derivations of the fundamental upper bounds by B�zout and Bernshtein on the
number D of the roots of a given polynomial system �in section ������� Both
reduction to the eigenproblem and the bounds on the number of the roots are
known as the major steps of the solution of the systems� Another major step
�related to the bounds on the number of roots� is the computation of multiplica�
tion tables� that is� the matrices of the operations of multiplication modulo the
ideal de
ned by the given polynomial system �cf� ��	�� ����� ������ We treat this
step in section ��� by showing the matrix structure implicit in the multiplication
tables� A distinct though related study of such a structure was given in ��� and
��	� �cf� also ��
�� ������ Based on such a matrix structure� multiplication of a
multiplication matrix by a vector can be reduced to polynomial multiplication
and consequently accelerated� and our study enabled us to translate the latter
acceleration into faster solution of polynomial systems� In our study and expo�
sition� we used the structured matrices associated with univariate polynomials
as a springboard�

The correlation between structured matrices and univariate polynomials has
been well known and e�ectively used for the acceleration of structured matrix
computations� We extend these results to the structured matrices associated
with multivariate polynomials and exploit matrix structure to improve substan�
tially the known methods and algorithms for polynomial systems of equations�

Our improvement of the known algorithms for polynomial systems is pre�
sented in sections ��� and ���� In section ���� we specify our iterative algorithm
outlined in the conference paper ����� The algorithm quadratically converges
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right from the start to a selected root of a polynomial system of equations that
has D distinct and simple roots� and we approximate such a root by using order
of D� arithmetic operations �up to a polylogarithmic factor in D�� �Hereafter�
we will use the abbreviation �ops� for �arithmetic operations�� We say �ops�
rather than ��ops� to cover also rational computations with in
nite precision��
The algorithm can be applied recursively to compute several roots� In section
���� we devise algorithms� also running in D� time �up to a polylog factor�� that
compute the numbers of distinct roots and distinct real roots of a given poly�
nomial system of equations with real input coe�cients� This improves by one
order of magnitude the known algorithms �not involving structured matrices
and algebraic residues�� which all require at least order of D� time to solve any
of the cited computational problems�

Thus� we reached our main technical goal of developing the basic techniques
for the improvement of computations with multivariate polynomials by using
the associated structured matrices� the dual space and algebraic residues� We
were able to demonstrate the power of such techniques already in the present
paper� in our subsequent works we will show how to accentuate this power fur�
ther �in particular� by removing the assumption that the residue associated with
a given polynomial system is known or readily available� and to elaborate and
ameliorate the resulting algorithms from numerical and algebraic points of view�
Our progress in these directions has been reported in our recent conference pa�
pers ���� ����� In our present paper we have not touched these aspects and only
provided an illustrative example for our approach� Some of the presented tech�
niques appeared earlier in less developed form� In particular� some extensions of
the structured matrices associated with univariate polynomials were presented
in ����� but they only worked in much more restricted cases� and the restrictions
do not allow to apply them to solving polynomial systems�

We will use the following order of presentation� Section � deals with struc�
tured matrices associated with univariate polynomials� The concepts of the dual
space� Bezoutians and algebraic residues appear in simpli
ed form� In section ��
we substantially develop the latter concepts by presenting a natural generaliza�
tion of the material of section � to the multivariate case� In section �� we show
some applications to the polynomial root�
nding problem in the multivariate
case� Section 	 contains a summary and a brief discussion�

Some results of this paper were included into our proceedings papers ��
�
and ����� but various advanced techniques that we present and use here have
not been collected together so far� so we detail our presentation and give many
comments and some illustrative examples�
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� Basic properties of structured matrices and their
correlation to univariate polynomials� Dual
space� Bezoutians� and algebraic residues

In this section� we will recall the basic classical results on matrix structure�
presenting them from a polynomial point of view� This will give us a sample
pattern� which we will use as a springboard for developing similar techniques in
the multivariate case� The reader is referred to appendix A� for the summary
of the basic de
nitions� and to appendix B� for the summary of the estimates
for the computational complexity of some fundamental polynomial and matrix
computations�

��� Toeplitz operators and matrices

Consider a polynomial t � t�� t� x� � � �� t�d x
�d and the map of multiplication

by this polynomial t in the ring R � C �x� of polynomials in the variable x with
coe�cients from the complex 
eld C �

Mt � R � R

p �� t p�

The matrix M of this map in the monomial basis �obtained by computing the
polynomials Mt���� Mt�x�� Mt�x

��� � � �� has the form

�
���
xd

���
x�d

���

�������������

t� � �
���

� � � �

td t� �
���

� � �
��� �

t�d td �
� � �

��� �
� t�d �

�������������

������	T ���

The matrix M in
nitely continues rightward and downward� Its rows and
columns are indexed by the monomials �xi�� and its �i� j��th entry is the co�
e�cient of xi in the polynomial xj t�x� �the index �i� j� starting from ��� The
entries of M are invariant in their shift along the diagonal direction� This prop�
erty characterizes the class of Toeplitz matrices�

De�nition ����� A matrix T � �ti�j� is a Toeplitz matrix if for all i� j� the
entry ti�j depends only on i � j� that is� if ti�j � ti���j�� for all pairs of �i� j�
and �i� �� j � �� for which the entries ti�j and ti���j�� are de�ned�

It is immediately observed that any h�k Toeplitz matrix T where maxfh� kg �
d � � can be obtained as a submatrix of the matrix M de
ned in ���� Let
E � f�� � � � � xdg and F � fxd� � � � � x�dg be two linear subspaces of R and let �E
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�resp� �F � be the projection of R on the vector space generated by E �resp� F ��
Then the matrix T is just the matrix of the map

Tt � �F �Mt � �E �

The projections �E and �F select the 
rst columns and the middle rows of M �
respectively�

Proposition ����� A Toeplitz operator �associated with a Toeplitz matrix� is
the projection of the multiplication of a �xed polynomial by a polynomial� This
is a map from R to R�

Problem ����� Compute the product of an n � n Toeplitz matrix by a vector
as a subvector of the coe�cient vector of the product of two polynomials of R�

By theorem B���� of appendix B� we may solve problem ����� in O�n log�n��
ops�

Hereafter we use the abbreviation f�p�s� for formal power series� Similarly�
we de
ne the map

Mt

t � S � S

q��� �� t�x� � q��� � ���t��
���q�����

where S � C ����� is the ring of f�p�s� in the variable �� �i is the di�erential
form� p �� �

i�p
�i����� and �� is the projection of an f�p�s� in � and ��� into

an f�p�s� in S obtained by deleting all the monomials in ���� that is� �� is the
projection on the monomials of non�negative degree in �� The matrix of this
map is the transpose of the matrix of Mt� where we can extract the transpose
of the matrix T � ��������

t� � � � td � � � t�d �
� � �

���
� � �

���
� � �

t� � � � td
� � �

���
� � �

� t�

�������� �

��� Hankel operators and matrices

Next� consider the multiplication map de
ned by h��� � h��h���� � ��h�d�
�d�

� � � �an f�p�s� in �� as follows� for any polynomial p � C �x� we compute the
product p�����h��� and project it onto the monomials of non�negative degree�
�Then again� the reader may think of � as a variable and of ��� as its reciprocal�
and we interpret �i as the linear map p �� �

i�p
�i������ Here is the matrix M

	



representing such maps�

�
���
�d

���
��d

����������

h� hd �
��� � �

� ��� �

hd h�d �
��� � �

�
� �

h�d � �
� � � �

����������

��	H

���

The matrix M in
nitely continues rightward and downward in this case� Its
columns are indexed by monomials in x and its rows by monomials in �� The
�i� j��th entry of this matrix is the coe�cient of �i in ��jh��� �the index �i� j�
starting from ��� which explains why its entries are invariant in their shifts
into the antidiagonal direction� This property characterizes the class of Hankel
matrices�

De�nition ����� A matrix H � �hi�j� is a Hankel matrix if its entry hi�j
depends only on i � j� that is� if hi���j�� � hi�j for all pairs �i� j� of non�
negative integers i and j for which the entries are de�ned�

De�nition ����� The space of linear forms from R to C � that is� the dual space
of the ring of polynomials R� is denoted by bR� Such a map from C �x� to the ring
of f�p�s� in �� which we denote by both S and C ������ According to appendix A�

we identity bR with S � C ������

The matrix M is the matrix of the map

Hh � R � S ���

p�x� �� p�x� � h��� � ���p��
���h�����

where �� is the projection on the monomials of non�negative degree in ��
We immediately observe that any general k� l Hankel matrix H where max

fk� lg � n�� is a submatrix of the above matrixM � de
ned in ��� and associated
with some h��� � C ���� Let E � f�� x� � � � � xdg� F � f�� �� � � � � �dg be the two
monomial sets in x and �� respectively� and let �E and �F be the corresponding
projections on the vector spaces generated by these sets� Then the matrix H is
the matrix of the following map�

�F � Hh � �E �

The projections �E and �F select the 
rst columns and rows of the matrix M
of ����

Proposition ����� A Hankel operator �associated with a Hankel matrix� can
be de�ned as the projection of the multiplication of a �projected� polynomial by
a �xed Laurent polynomial�
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Problem ����� Compute the product of a �d���� �d��� Hankel matrix by a
vector as a subvector of the coe�cient vector of the product of a �xed polynomial
h��� by a polynomial in ����

By theorem B���� of appendix B� we may solve problem ����� in O�d log�d��
ops�

��� Bezoutians

Next� let us study linear maps from C ����� to C �x�� First� consider a polynomial
in two variables x and y�

	�x� y� �

d��X
i���j��

�i�j x
i yj �

To any element 
��� � C ������ we associate the constant coe�cient in � �that
is� the ��free term� of the product

	�x� ���� 
����

This de
nes a map B from C ����� to C �x�� We immediately verify that the matrix
of this map �which can be obtained by computing the constant coe�cients in �

of 	�x� ���� �j � B��� �
Pd��

i�� �i��x
i� B��� �

Pd��
i�� �i��x

i�� � � � is precisely the
coe�cient matrix ��i�j ���i�j�d�� of 	�x� y��

A fundamental example of such a polynomial is the Bezoutian de
ned as
follows�

De�nition ����� Let p and q be two polynomials of C �x�� The term Bezoutian
of p and q is used for both the bivariate polynomial

	q�p�x� y� �
p�x� q�y� � p�y� q�x�

x� y
�

X
��i�j�d��

�q�pi�j x
iyj

and the matrix

Bq�p �

��� �q�p��� � � � �q�p��d��
���

���
�q�pd���� � � � �q�pd���d��

��� �

Bq�p � C ����� � C �x� denotes the associated map� Bq�p�
� �� ��


	q�p�x� �

���
���
�

where ����� denotes the ��free term of ���� The image of this map can be ex�
pressed as the product

��� x� � � � � xd��� Bq�p���� � � � � �d���
t�

where 
��� �
P�

i���i�
i�






In particular� if p � p� � p� x � � � � � pd x
d� then the polynomial 	��p is of

the form

	��p�x� y� �
d��X
i��

xi	p
i �y��

where 	p
i �y� � pi���pi�� y� � � ��pd y

d�i��� This polynomial is also called the
i�th Horner polynomial� for it corresponds to the i�th polynomial� appearing in
the so�called Horner rule for polynomial evaluation� It can be also written as

	p
i �y� � ���y

�i��p�y��� ���

where �� is the projection on the set of polynomials in y� We immediately
observe that the matrix B��p associated with 	��p is a triangular Hankel matrix
of the form ��� p� � � � pd

��� � �
�

pd �

��� � �	�

More generally� we have the decomposition

	q�p�x� y� �
p�x� q�y�� p�y� q�x�

x� y

�
p�x�� p�y�

x� y
q�y��

q�x�� q�y�

x� y
p�y� � 	��p�x� y� q�y��	��q�x� y� p�y��

This implies
Bq�p�
� � B��p�q � 
��B��q�p � 
�

for any 
��� � C ����� or� in terms of operators�

Bq�p � B��p �M
t

q �B��q �M
t

p� ���

In term of matrices� this yields the Barnett formula�

Bq�p �

��� p� � � � pd
��� � �

�

pd �

���
��� q� � � � qd��

� � �
���

� q�

����
��� q� � � � qd

��� � �
�

qd �

���
��� p� � � � pd��

� � �
���

� p�

��� �

which extends the Gohberg�Semencul formula to the inverses of Hankel matrices
�see corollary ��	�� and compare ���� pp� ��	� �	�� �����

��� Vandermonde operators and matrices

Consider the linear space Rd of polynomials of degree at most d and d � �
distinct points in C � � � f��� � � � � �dg� Also consider the next two bases of Rd�

� the basis of monomials h�� x� � � � � xdi
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� and the basis of Lagrange interpolation polynomials

hLi � Li�x� �
Y
j ��i

x� �l
�i � �j

� i � �� � � � � di�

Any polynomial p � Rd can be decomposed in the latter basis as follows�

p�x� �
dX
i��

p��i�Li�x�� �
�

We deduce from this decomposition that the �d���� �d��� matrix of the basis
transformation from �xi�i�������d to �Li�x��i���������d is the Vandermonde matrix�

V ��� �

�����
� �� � � � �d�
� �� � � � �d�
���

���
� �d � � � �dd

����� �

Remark � Many authors use the name �Vandermonde matrix� for V t���� the
transpose of V ����

Problem ����� Multiply the matrix V ��� by a vector p � �p�� � � � � pd�
t or�

equivalently� evaluate a polynomial p�x� �
Pd

i�� pix
i on the set of points � �

f��� � � � � �dg�

Clearly� the multiplication of the row vector ��� �i� � � � � �
d
i �

t by the vector p �
�p�� � � � � pd� amounts to the evaluation of the polynomial p�x� � p�� � � �� pd x

d

at the point �i� Equivalently� the coe�cients p��i� of p � p�x� in the Lagrange
basis can be obtained by means of the evaluation of p � p�x� at the points �i�

Problem ����� Solve the linear system V ���v � w by interpolation to the
polynomial p�x� from its values w�� � � � � wd on the set � � f��� � � � � �dg�

The known algorithms solve problems ����� and ����� in O�d log�d� ops �see
���� pp� �	�����

Evaluation at a point is an example of a linear form �map�� and equation
�
� shows that the dual basis of �Li�i�������d �that is� the linear forms �maps�
that compute the coe�cients of a polynomial p in this basis� is the set of linear
forms ���i�i�������d of the evaluation at �i� ��i�p� � p��i�� Such an evaluation
will play important role in the following� so we will next de
ne it formally�

De�nition ����� For any point � � C � let �� � bR 	 bRd�� denote the linear
form that corresponds to the evaluation at �	

�� � R � C

p �� p����

�



Note that bR is subset of the dual space bRd made by the linear forms on
the vector space of polynomials of degree at most d and that the coordinates
of the evaluation �� � bRd in the dual basis h�� �� � � � � �di of bRd are obtained by
computing ���x

i�i�������d� This yields the vector ��� �� ��� � � � � �d�� In terms of
polynomials in �� we have

�� � � � � � � � � �� �� ��d �
�� �� ��d��

�� � y
�

Thus� the matrix of the basis transformation from the basis ���i�i�������d to the
dual basis h�� �� � � � � �di of h�� x� � � � � xdi is given by

V t��� �

�����
� � � � � �
�� �� � � � �d
���

���
�d� �d� � � � �dd

����� �

Problem ����� Multiply V t��� by a vector�

Problem ����� Solve the linear system V t���v � w�

Problems ����� and ����� can be solved in O�d log� d� ops �see ���� pp�����
����� Problem ����� can be also solved at this cost by reduction to problem
����� �see theorem B���� of appendix B���� A slower but technically interesting
approach relies on the observation that the multiplication of the latter matrix by
a vector 
 � ���� � � � � �d� amounts to the computation� in the monomial basis�
of the polynomial

dX
i��

�i
�� ��i ��

d��

�� �i �
�

If the interpolation points are the d�th roots of unity� we arrive at a special
Vandermonde matrix� sometimes called the Fourier matrix� In this special case�
problems ����������� represent forward and inverse discrete Fourier transforms
�DFTs� and can be solved by using O�d log d� ops� The inverse of the Fourier
matrix is the transpose of its conjugate �up to the factor d�� �See e�g� ���� pages
������

��� Relations between Bezoutians and Hankel matrices

The Hankel operators correspond to some maps from C �x� toC ������ whereas the
Bezoutians de
ne some maps from C ����� to C �x�� It is natural to ask if there is
a relationship between the maps of these two classes� This is what we are going
to examine next� We will use the basic concept of the ideal I � �p�� generated
by p � R� that is� the set of polynomials fp q� q � Rg�

In order to relate these two classes of operators to each other� we will next
describe the elements h��� � C ����� such that h vanishes on all multiples of a

xed polynomial p�x� � p� � p� x � � � � � pdx

d of degree exactly d �that is� on

��



the ideal generated by p�� �hjp v� � � for all elements v � R �see appendix A��
Note that this is equivalent to the fact that Hh vanishes on these elements� for
the coe�cients of �k in Hh�p� is �hjp x

k��

Proposition ����� The class of f�p�s� h � C ����� such that h vanishes on the
ideal �p� generated by a polynomial p � p��p� x�� � ��pd x

d of degree d �pd 
� ��
coincides with the class of rational functions

h��� �
���r�����

p�����
� h� � h� � � � � �� hd�� �

d�� � � � � � ���

where r�x� �
Pd��

i�� rix
i is any polynomial in Rd���

Proof� First� note that the rational fraction h��� � r��
d���r��

d�������rd��

pd�pd�� ������p� �d
is

an f�p�s� in �� having no terms ��i for i � �� since pd 
� ��
To show that h vanishes on the ideal �p� for h��� of ���� observe that

h���p�����v����� � ��� r�����v������

for v � R� has only terms with negative powers of � since r�x� and v�x� are
polynomials� Therefore� p�x�v�x� � h��� � � for any polynomial v�x� � R�

Now� let us prove the converse property� that is� let us prove ��� assuming
that h �or Hh� vanishes on �p�� for an f�p�s� h � h���� The latter assumption
means that

���p��
���h���� � ��

that is� p�����h��� is a f�p�s� in ���� with no constant term� p�����h��� �
��� r������ where r��� is an f�p�s� � C ������ Furthermore� by replacing ���

by x� we obtain that r�x� � x��p�x�h�x��� � ���x
��p�x�h�x����� so that r is

clearly a polynomial of degree less than deg�p�x�� � d� which proves the propo�
sition� �

The proposition implies that the class of the f�p�s� h � C ����� such that h
�or Hh� vanishes on �p� is the class of all multiples of the f�p�s� 	 � 	p��� �
���

p����� � �d��

pd�pd�� ������p� �d
� called the �algebraic� residue of p� �This concept

extends the concept of the residue of an analytic function�� We will next give a
characterization of this residue that can be easily generalized to the multivariate
case�

Proposition ����� Let p � p� � p�x � � � � � pdx
d be a �xed polynomial of

degree exactly d� Then the residue 	 � 	p��� is the unique element of C ����� that
satis�es	


� 	 vanishes on the multiples of p�

�� B��p�	� � ��

where B��p is the map de�ned in de�nition ����
�

��



Proof� Property �� of 	 follows from the de
nition of 	 and proposition
��	��� Now� by the de
nition of 	 � 	p���� the element 	p��� �

P�
i�� 	i�

i �P�
i�� 	�x

i��i of C ����� has the form

�

pd
�d�� � 	d�

d � � � � �

that is� 	� � � � � � 	d�� � �� 	d�� �
�
pd
� which means that the linear form �map�

associated with 	 vanishes on �� x� � � � � xd�� and equals �
pd

on xd���
Now we obtain from de
nition ����� that

B��p�	� � ��� x� ���� xd���B��p��� ���� �� �
pd�
t�

As B��p is of the form �	�� we immediately check that

B��p ��� � � � � ��
�

pd
�t � ��� �� � � � � ��t�

which implies property �� of 	 � that is� B��p�	� � ��
It remains to prove the uniqueness of the element of C ����� satisfying prop�

erties �� and �� in order to complete the proof of the proposition� Due to
property �� and proposition ��	��� this element is of the form

P�
i�� �i�

i �Pd��
i�� hi�

i
�pd � pd��� � � � � � p��
d�� Therefore� it is de
ned uniquely by

��� � � � � �d��� Now� by combining property �� and the last equation of de
�
nition ������ we obtain that ��� x� � � � � xd���B��p���� � � � � �d���

t � �� Substitute
�	� and 
nd the desired unique expressions� �� � � � � � �d�� � �� �d�� � �

pd
�

�

Proposition ����� The set �	p
i �i�������d�� is the dual basis of the monomial

basis �xi�i�������d�� for the inner product associated to 	 	

	�xi 	p
j �x�� �

�
� if i � j
� otherwise�

���

Proof� For � � i� j � d� �� we have �see ����

	�xi	p
j �x�� � 	�xi���x

�j��p�x��� � 	�xi�j��p�x���

The last equation holds because xi


x�j��p�x�� ���x

�j��p�x��
�
is in the vec�

tor space R�d�d�� and 	 vanishes on this vector space� If i � j� then xi�j��p�x�
is in the ideal �p� generated by p in R� and 	 vanishes on this ideal� On the other
hand� if i � j� then xi�j��p�x� is in the vector space R�d�d��� and 	 vanishes
on this vector space too� For i � j� we obtain 	�x��p�x�� � 	�pd x

d��� � ��
which proves the relations ���� �

We immediately deduce from this result the following corollary�

��



Corollary ����� Let B� � B��p and let H� � H� be the Hankel matrix of the
map H� of ��� for h � 	 � Then

B�H� � H�B� � Id�

where Id is the d� d identity matrix�

Proof� From ���� we deduce that

dX
j��

xj 	�xi 	p
j �x�� � xi�

On the other hand� the left�hand side of this equation equals B��p�x
i � 	�� Thus�

if we compose the two maps H� � Rd�� � C ����� and B��p � C ����� � Rd��� we
obtain that

B��p � H� �x
i� � B��p�x

i � 	� � xi�

for i � �� � � � � d� �� In other words�

B��p � H� � IRd��

or� equivalently� B�H� � Id� which shows that the inverse of the Bezoutian B�

is the Hankel matrix H� and vice versa� �

� Structured matrices associated to multivariate
polynomials� Dual space� Bezoutians� and al�
gebraic residues

Our next goal� is the extension of the approach and the results of the previous
section to the study of structured matrices associated with multivariate poly�
nomials as well as the advancements of the study of the dual space� Bezoutians
and algebraic residues introduced brie�y in the previous section� We will start
with recalling some de
nitions and techniques used in ���� ���� ����� ��	�������
����� Then� in sections ���� ���������� we will develop some new techniques to
be used in section ��

��� Polynomial ring

The de
nitions of the previous section and appendix A can be immediately
extended to the n�variate case� for any natural n� In this case� R � C �x� is
replaced by the ring C �x� � � � � � xn� of multivariate polynomials in x�� � � � � xn�
x and � are assumed to be vectors� rather than scalars� x � �x�� � � � � xn� and
� � ���� � � � � �n�� We keep denoting Rd the subspace of all polynomials of degree
at most d� Instead of working in the complex space C � we could have allowed

��



the vector spaces over any algebraically closed 
eld K � and then R would denote
the space of multivariate polynomials in x� with coe�cients from K � Our results
of this section would be easily extended� but� to simplify our presentation� we
will state them for K � C � We will let L � C �x��� � � � � � x��n � denote the ring of
Laurent�s polynomials in the variables x�� � � � � xn� For any element p of R� let

Mp � R � R ����

r �� p r

denote the operator of multiplication by p in R�
Hereafter� I � �p�� � � � � pn� denotes the ideal of R � C �x� generated by

the elements p�� � � � � pn� that is� the set of polynomial combinations
P

i piqi of
these elements� A � R
I denotes the quotient ring de
ned in R by I � and �
denotes the equality in A� We assume that the set of the common zeros of the
n polynomials p�� � � � � pn �that is� the set of the roots of the polynomial system
p� � � � � � pn � �� is �nite and denote it by Z � Z�I� � f��� � � � � �dg� This
implies that the vector space A has a 
nite dimension D� D � d� �D is the
number of roots counted with their multiplicities��

��� The quotient algebra

Our main objective is the analysis of the structure of A� in particular in order
to devise e�cient algorithms for computing the zeros in Z�I��

The 
rst operator that comes naturally in this study is the operator of
multiplication by an element of A� based on ����� For any element a � A� we
de
ne the map

Ma � A � A
b �� a b�

An important property of this operator is given in the next theorem �see ����
����� ������

Theorem ����� The set of the eigenvalues of the linear operator Ma is exactly
fa����� � � � � a��d�g�

Proof� Let p�x� �
Q

��Z�I��a�x� � a����� This polynomial vanishes on Z�I��

so that �according to the Nullstellensatz� see ���� there exists d � dp � N such
that p�x�d � I � Consequently� we haveY

��Z�I�

�Ma � a���I�d � ��

where I is the identity map � b� b� and the minimal polynomial of Ma dividesQ
��Z�I��T � a����d� for indeterminate T � This implies that an eigenvalue of

Ma is necessarily in the set fa����� � � � � a��d�g� On the other hand� we will show
in theorem ������ by the using dual space of linear forms on R� that for any
� � Z�I�� a��� is an eigenvalue of the transpose of Ma� �

��



Example Let n � ��

p� � x�
� � �x�x� � x� � �� p� � x�

� � x�
� � 
x��

We check �by hand computation� that a basis of A � C �x� � x��
�p�� p�� is
��� x�� x�� x� x�� and that the matrix of multiplication by x� in this basis is

Mx� �

����
� � � � �	



� � � � ��



� � � �



� �� � ��




���� �

The eigenvalues of Mx� are the 
rst coordinates of the roots� that is

��
����
����������������������

 i������������� ��������

 i� �����
�����

The theorem reduces the nonlinear problem of solving a polynomial sys�
tem of equations to a well known problem of linear algebra� The reduction�
however� involves the analysis of the structure of A and the properties of the
operators of multiplication� and this leads to the study of the dual space� the
multivariate Bezoutians� and structured matrices associated with multivariate
polynomials� This is needed� in particular� in order to express explicitly the
matrices of multiplication associated with the operatorMa� �Such matrices are
called multiplication tables�� The main di�culties stem from the requirement
to work modulo the ideal I � and the dual space� Bezoutians� and structured
matrices are e�ective tools for handling this nontrivial problem�

De�nition ����� Hereafter� N denotes the set of nonnegative integers� and we
�x a subset E 	 Nn � such that �x����E is a basis of A� bT e denotes the
cardinality of a set T �

��� Dual space

Let bR denote the dual of the C �vector space R� that is� the space of linear forms

� � R � C

p �� ��p��

�R will be the primal space for bR�� The evaluation at a �xed point � is a
well�known example of such a linear form�

�� � R � C

p �� p����

Another class of linear forms is obtained by using di�erential operators� Namely�
for any a � �a�� � � � � an� � Nn � consider the map

�a � R � C

p ��
�Qn

i�� ai�
�dx��

a� � � � �dxn�
an �p����� ����

�	



where dxi is the derivative with respect to the variable xi� We denote this linear
form by �a � ����

a� � � � ��n�
an and for any �a�� � � � � an� � Nn � �b�� � � � � bn� � Nn

observe that

�Qn
i�� ai�

�a



nY
i��

xbii

�
��� �

�
� if 
i� ai � bi�
� otherwise�

It immediately follows that ��a�a�Nn is the dual basis of the primal monomial
basis� By applying Taylor�s expansion formula at �� we decompose any linear
form 
 � bR as


 �
X
a�Nn


�xa� �a�

The map 
�
P

a�Nn 
�xa� �a de
nes a one�to�one correspondence between the
set of linear forms 
 and the set C ���� � � � � �n�� � C ����� � f

P
a�Nn �a�

a�
� � � � �ann g

of formal power series �f�p�s�� in the variables ��� � � � � �n�

As in the univariate case� we will identify bR with C ���� � � � � � �n��� The
evaluation at � corresponds to the constant �� under this de
nition� It will also
be denoted by �� � ���

Example
�� � ��� ����� � �x� x� � ��x�� x�� � ���

Let us next examine the structure of the dual space� We can multiply a
linear form by a polynomial �we say that bR is an R�module� as follows� For any

p � R and � � bR� we de
ne p � 
 as

p � 
 � R � C

q �� 
�p q��

What kind of operation does this multiplication induce on the formal power series
representation
 For any pair of elements p � R and d � N� d � �� we have

�dxi�
d
�xi p���� � �dxi�

d��
�p� xi dxip� ���

� �dxi�
d��

�
� dxi�p� � xi �dxi�

�
�p�

�
���

� d �dxi�
d�� �p���� � xi �dxi�

d �p����

� d �dxi�
d�� p����

Also we surely have dxi�xi p���� � d p���� Consequently� for any pair of elements
p � R� d � �d�� � � � � dn� � Nn � where di 
� � for a 
xed i� we obtain that

xi � �
d�p� � �d�xi p�

� �d�� � � � �
di��

i�� �
di��
i �

di��

i�� � � � �dnn �p��

that is� xi acts as the inverse of �i in C ������ This is the reason why in the
literature such a representation is referred to as the inverse systems �see� for

��



instance� ��	��� If di � �� then xi � �
d�p� � �� which allows us to rede
ne the

product p � 
 as follows�

Proposition ����� For any p� q � R and any 
��� � C ������ we have

p � 
�q� � 
�p q� � ���p��
��� 
�����q��

Example

x� � �� � ��� ���

�
�� � �x� x� � ��x�� x�� � �� � ��� ����x� � �x��x� � ��x�� x��

� �� ���� � �x� x� � ��x�� x�� � ��

For any linear form 
 � bR� let
H� � R � bR

r �� r � 


denote the operator of multiplication by 
� from R to bR�
��� The dual of the quotient algebra

Now� let bA be the dual space of A� It is possible to identify the set bA with the
elements of bR that vanish on I � Thus� the set bA will be also denoted by I��

Now� for any element a � A� we can describe the transposed operator M
t

a�

M
t

a � bA � bA

 �� a � 
 � 
 �Ma�

The matrix associated to this operator is the transpose of the matrix associated
to the matrix Ma�

We have already described the eigenvalues of this operator in theorem �����
and will give now a description of its eigenvectors �see ����� ������

Theorem ����� The common eigenvectors of the operators M
t

a� for a � A�
are �up to a scalar factor� the evaluations ��� � � � � ���d � where �� � p� p����

Proof� For any pair of polynomials a� b � R and any �i � Z�I�� we have

M
t

a���i��b� � ��i�a b� � a��i���i�b��

that is� M
t

a���i� � a��i���i � Moreover� ��i is in bA� because �i is a common
root of the polynomials in I � Then� for any a � R� ��i is an eigenvector of

M
t

a associated with the eigenvalue a��i�� �This also proves the converse part of
theorem �������

Conversely� let us prove that the common eigenvectors of �M
t

xi�i�������n are

�up to scalar factors� exactly ��� � � � � ���d � Let 
 � bA be a non�zero common

�




eigenvector of �M
t

xi�i�������n for the eigenvalues �
i�i�������n� xi � 
 � 
i 
 � ��
Then� for any monomial x� of R� we have

xi � 
�x
�� � 
�xi x

�� � 
i
�x
���

By induction� this implies that 
�x�� � 
�
��� or� in other words� 
 � 
����� �

where 
 � �
�� � � � � 
n� � C n and �� � bR is the evaluation at 
� As 
 � bA � I��
we have 
�p� � 
������p� � 
��� p�
� � �� for any p � I � which implies that

 � Z�I�� �

Both theorems ����� and ����� reduce the solution of a polynomial system
to matrix eigenproblem� but theorem ����� has an advantage compared to the�

orem ������ Each eigenvector of an operator M
t

a de�nes all the coordinates of
a root �whereas each eigenvalue of Ma de
nes only one coordinate or the inner
product of the vector of a root by a 
xed vector de
ned by a � A�� Indeed�

the evaluations ��i at the roots �i � Z�I� are eigenvectors of M
t

a� From these
evaluations ��i � we can recover the coordinates �i�j � ��i�xj� of the root ��i �
We will make this remark more precise in section ����

��� Quasi�Toeplitz and quasi�Hankel matrices

De�nition ����� Let E and F be two �nite subsets of Nn and letM � �m������E���F
be a matrix whose rows are indexed by the elements of E and columns by the
elements of F � Let ei be the i�th canonical coordinate vector of Nn �

� M is an �E�F � quasi�Toeplitz matrix i�� for all � � E� � � F � the entries
m��� � t��� depend only on � � �� that is� if for every i � �� � � � � n� we
have m��e

i
���e

i
� m���� provided that �� � � ei � E��� � � ei � F � such

a matrix M is associated with the polynomial TM �x� �
P

u�E�F tu x
u�

� M is an �E�F � quasi�Hankel matrix i�� for all � � E� � � F � the entries
m��� � h��� depend only on � � �� that is� if for every i � �� � � � � n�
we have m��e

i
���e

i
� m��� provided that �� � � ei � E��� � � ei � F �

such a matrix M is associated with the Laurent polynomial HM ��� �P
u�E�F hu�

u�

By working with Laurent polynomials� we may immediately extend these
de
nitions to subsets E�F of Zn� Z denoting the set of all integers�

For E � ��� � � � � h � �� and F � ��� � � � � k � ��� de
nition ��	�� turns into
the usual de
nition of h � k Hankel �resp� Toeplitz� matrices �see sections ���
and ����� For E and F forming rectangles in Nn � the quasi�Toeplitz matrices
appeared in ���� under the name of multilevel Toeplitz matrices� For our study
of the multivariate polynomial systems the latter class is not su�ciently general�
and we need our de
nition ��	�� due to ��
� �cf� also ������ Some other structured
matrices were also used in ���� in order to accelerate the computation of the
resultant� More recently� the properties of the multivariate structured matrices
of de
nition ��	�� were studied more intensively ����� ��
�� ��	�� ���� ����� in order

��



to devise more e�cient algorithms for solving polynomial systems of equations
�cf� also section ���

De�nition ����� Let �E � L� L be the projection map such that

�E�x
�� � x�

if � � E and �E�x
�� � � otherwise� We also let �E � C ����� � C ����� denote

the projection map such that �E��
�� � �� if � � E and �E��

�� � � otherwise�

We can describe the quasi�Toeplitz and quasi�Hankel operators in terms of
polynomial multiplication �see ����� ��
���

Proposition ����� The matrix M is an �E�F � quasi�Toeplitz �resp� an �E�F �
quasi�Hankel� matrix� if and only if it is the matrix of the operator �E�MTM ��F
�resp� �E � HHM

� �F ��

Proof� We will give a proof only for an �E�F � quasi�Toeplitz matrix M �
�M������E���F � �The proof is similar for a quasi�Hankel matrix�� The associ�
ated polynomial is TM �x� �

P
u�E�F tux

u� For any vector v � �v� � � C F � let

v�x� denote the polynomial v�x� �
P

��F v�x
� � Then

TM �x� v�x� �
X

u�E�F���F

xu�� tu v�

�
X

��u���E��F

x�

��X
��F

t��� v�

�A �

where we assume that v� � � if u 
� E � F � tu � � if u 
� E � F � Therefore� for
� � E� the coe�cient of x� equalsX

��F

t��� v� �
X
��F

M��� v� �

which is precisely the coe�cient � of Mv� �

Due to proposition ��	��� multiplication of an �E�F � quasi�Toeplitz �resp�
quasi�Hankel� matrix by a vector v � �v� � � C F reduces to �Laurent�s� polyno�
mial multiplication�

Algorithm ����� Multiplication of the �E�F � quasi�Toeplitz �resp�
quasi�Hankel� matrix M � �M������E���F by a vector v � �v� � � C F �

Multiply the polynomial TM �
P

u�E�F tu x
u �resp� HM ��� �

P
u�E�F hu�

u�

by v�x� �
P

��F v�x
� �resp� v����� �

P
��F v��

��� and output the projection

of the product on xE �resp� �E��

��



Hereafter� CPolMult�E�F � denotes the number of ops required to multiply a
polynomial with a support in E by a polynomial with a support in F � �We will
estimate CPolMult�E�F � in appendix B���� Algorithm ��	�� can be performed
by using CPolMult�E � F� F �� resp� CPolMult�E � F��F �� ops� According to
the estimates of the appendix B��� this means O�N log�N �CM�N � ops� where
N � bE � �F e �resp� bE � �F e� and where CM�N bounds the cost of the
evaluation of the polynomial HM �resp� TM � on a 
xed set of N points�

The displacement rank analysis developed for the study of matrices hav�
ing structure similar to the one of Toeplitz and Hankel matrices can be also
generalized to the multivariate case� Instead of the well�known displacement
matrices

Z �

�BBBBBBB�

� � � � � � � � � � � � � �

�
� � �

���

�
� � �

� � �
���

���
� � �

� � �
� � �

���
� � � � � � � � � �

�CCCCCCCA
and Zt� we use the following operators �one per variable��

ZE
i � �EMxi�E ����

and
ZE
�i � �EMx��

i
�E � ����

respectively� The displacement rank of a matrix M �that is� the rank of the
matrix obtained as the image of the displacement operator applied to the matrix
M� is bounded by the sum in i of the sizes of the boundary of E and F in the
direction i �see ����� ��
���

Example Let the sets E and F correspond to the set of the monomials in
x�� x� graphically represented as follows�

� �
� � � � �

Then the displacement rank is less than �� � � � in the direction x� and is less
than �� � � �� in the direction x��

In other words� the �atter the sets E and F in a 
xed direction� the smaller
the displacement rank in this direction�

If E � F � f���� � � � � �n� � Nn � � � �i � di� �g� the displacement rank of
a bEe � bEe quasi�Toeplitz �resp� quasi�Hankel� matrix� for bEe �

Q
j dj and

for the operator associated to Zi� is at most �bEe
di � �
Q

j ��i dj � Note that
�bEe
di equals � in the univariate case but can be a relatively large fraction of
bEe for large n�

��



��� Multivariate Bezoutians

In this section and in the next one� we will recall some basic de
nitions from
the theories of Bezoutians and algebraic residues �compare the special univariate
cases of sections ��� and ��	�� referring the reader to ���� ���� for further details
and to section � for some applications�

In addition to the vector of variables x� consider another vector y � �y�� � � � � yn�
of variables and write x��� � x� x��� � �y�� x�� � � � � xn�� � � � � x

�n� � y� For a

polynomial q � R� de
ne �i�q� �
q�x�i���q�x�i����

yi�xi
� the discrete di�erentiation of

q� For a sequence of n�� polynomials q� p�� � � � � pn � R� construct the following
polynomial in x and y�

	p�q� � 	q�p � det

�B� q�x� ���q� � � � �n�q�
���

���
���

pn�x� ���pn� � � � �n�pn�

�CA �
X
���

�q�p��� x
� y� � ����

where det�A� denotes the determinant of a matrix A� p � �p�� � � � � pn�� and �
and � vary in 
xed ranges� This polynomial of C �x�y� is called the Bezoutian
of q� p�� � � � � pn� It de
nes a map Bq�p�

Bq�p � bR � R


 ��
X
���

�q�p��� x
� 
�y���

By using the representation of 
 as a formal power series in ��� � � � � �n� we obtain
the value of Bq�p�
���� as the term free of ��� � � � � �n in the product

	q�p�x� �
���
����

This construction extends the construction of section ��� to the multivariate
case� The matrix of the map Bq�p in the monomial basis is the matrix of the
coe�cients ��q��� ��

If �x����E is a basis of A� then for any q in R� the polynomial 	p�q� can
be rewritten as

	p�q� �
X

����E

Bq�p
��� x

�y� � ��	�

This polynomial is obtained from ���� by reducing 	q�p modulo I �
To simplify the notation� we will occasionally write Bq

���� dropping the su�
perscript p for a 
xed ideal I � �p��

Example 	continued from section ���
 We have

	p��� � x�x� � �x�
� � ��� y� � y��x� � �y� � � y� � ��x�

�� y�
� � y�y� � �� y� � y�

� �x�x� � �y� � � y� � ���x� � �� y� � y� � ��x� ����

�� y�y� � y� � �� y� � ��

��



De�nition ����� The matrix

Bq�p � �Bq�p
��������E � ��
�

associated to the polynomial 	p�q� of �
��� is called the Bezoutian matrix or
the Bezoutian of q�p� This is the matrix of the map

Bq�p � bA � A


 ��
X

����E

Bq
��� x

�
�y��

in the monomial basis �x����E and its dual basis �cx����E �see de�nition ����

or appendix A�� When p is �xed� we will write Bq and Bq instead of Bq�p and
Bq�p�

Example 	continued
 The matrix of B� � B��p in the basis ��� x�� x�� x� x��
of A � C �x� � x��
�p�� p�� is

B� �

�������
�� �� �� �

�� �� � �

�� � � �

� � � �

������� �

The rows of this matrix are 
lled with the coe�cients of the monomials in x�� x�
in ����� It is a symmetric matrix� which is a property of the Bezoutians�

��� Bezoutians and algebraic residues

We will next de
ne the residue and recall some fundamental properties of the
multivariate Bezoutians and residues� to end with some correlations between
primal and dual multiplication tables in the next section�

De�nition ����� The residue of p � �p�� � � � � pn� is the unique linear form 	
in the set of linear forms on R such that


� 	 vanishes on �p��

�� B��p�	� � � � �p��

This de
nition extends the characterization of the residue of proposition
��	��� given in the univariate case� we now consider all polynomials modulo
the ideal �p�� in particular� Bp�q� is modulo �p�� This is not a constructive
de
nition� we prove the existence of 	 but give no general recipe for computing
	 yet�

Consider the decomposition 	��p �
P

����E B�
��� x

� y� and let us write

w��y� �
P

��E B�
���y

� � so that

	��p �
X
��E

x�w��y��

��



Then we have the following property�

Proposition ����� The set �w����E is the dual basis of �x�� for 	 	

	�x�w�� �

�
� if � � �
� otherwise�

Example 	continued
 The residue is de
ned on ��� x�� x�� x� x�� by

	��� � 	�x�� � 	�x�� � �� 	�x� x�� �
�

�

and vanishes on all multiples of p�� p�� According to ����� the dual basis of
��� x�� x�� x� x�� is

w� � � y�y��y���� y���� wx� � y��� y����� wx� � � y��y���� wx�x� � ��

Again� we are going to study the properties of the dual basis but do not give
yet any algorithm for actually computing this basis� According to proposition
��
��� for any a � A� we have the relations

a �
X
��E

	�ax��w� �
X
��E

	�aw��x
�� ����

We also have the following simple but fundamental property ����� ������

	��p �
X
��E

x�w��y� �
X
��E

w��x�y
� mod �p�x��p�y��� ����

which shows that B� is a symmetric matrix�
Moreover� we recall from ���� ���� that for any polynomial q � R we have

	q�p � 	��p�x�y� q�x� � 	��p�x�y� q�y� mod �p�x��p�y��� ����

In particular� we substitute q�x� � xi for i � �� � � � � n� and then for any 
xed
pair� � and �� of distinct roots of the polynomial system p � �� we write x � ��
y � � � Z�I� and deduce that

	��p��� �� � �� ����

If � � �� then 	��p��� �� � Jp���� where Jp � ��pi
�xj� is the Jacobian of p�

��	 Bezoutians and multiplication tables in primal and

dual bases

The notion of dual basis �for 	�� de
ned in the previous section� should not be

confused with the following notion of dual basis in the dual space bA�
��



De�nition ��
�� Given a basis �bi�i�������D of A� let �bbi�i�������D denote the

dual basis of �bi�� that is� the basis set of linear forms in bR that compute the
coe�cients of any a � A in the primal basis�

The next proposition relates the map Ba of de
nition ����� with q � a� to
the transformations between the primal bases �x�� and �w�� and their dual
bases �cx�� and �cw��� respectively�

Proposition ��
�� The matrix of the map Ba of de�nition ����
�


� from the basis �cx�� of bA to the basis �x�� of A is Ba � �	�aw�w����

�� from the basis �cw�� to the basis �w�� is Ha � �	�ax� x����

Proof� According to proposition ��
��� the coordinates of Ba�cx�� in the basis
�x����E are given by

	�Ba�cx��w���

The identities ���� and ���� imply that 	p�a� � a�x�	p���� and Ba�cx�� �
aB��cx�� � aw�� Therefore�

	�Ba�cx��w�� � 	�aB��cx��w�� � 	�aw�w���

In other words� we have Ba
��� � 	�Ba�cx��w��� This proves the 
rst part of the

proposition�
The coordinates of Ba�cw�� in the basis �w����E are given by

	�Ba�cw��x
���

According to identities ���� and ����� we also have

	�Ba�cw��x
�� � 	�aB��cw��x

�� � 	�ax� x���

which proves the second part of the proposition� �

Now� we deduce some simple correlations between multiplication tables in
the bases �x�� and �w���

De�nition ��
�� For any a in A� let Ma � �Ma
���� denote the matrix of the

map Ma in the basis �x�� and let Na � �Na
��������E denote its matrix in the

basis �w���

Proposition ��
�� The matrix Na of multiplication by a in A� in the basis
�w��� is the transpose Mt

a of the matrix Ma of multiplication by a in A� in the
basis �x���

��



Proof� For any � � E� we have

bx� �
X
��E

Ma
��� x

� � bw� �
X
��E

Na
���w� �

and
Ma

��� � 	�bx� w���

Na
��� � 	�ax�w���

Therefore� Na � Mt

a � �

The proposition also implies that the matrix of the transposed map M
t

a in
the dual basis �cx�� of �w�� is Ma�

��
 Multivariate Vandermonde matrices

Vandermonde matrices can be immediately generalized to the multivariate case�
in the following way�

De�nition ����� For a set �x����E of D monomials and a set � � ���� � � � � �D�
of D points of C n � de�ne the Vandermonde matrix of � on E by

VE��� � ���i �i�������D���E�

The rows of this matrix are the vectors �x����E of monomials evaluated at points
�i �for i � �� � � � � D��

VE��� is the matrix of the coe�cients �of ������E� in the f�p�s� representing
the evaluations ��i at the points �i�

Algorithm ����� Multiplication of a Vandermonde matrix VE��� by
a vector v and the solution in v of a linear system VE���v � w� for
given �� E and w�

Perform multipoint evaluation at the node�points �i� i � �� � � � � D� of the
associated multivariate polynomial with the coe�cient vector w �resp� perform
the converse operation of multivariate polynomial interpolation��

See ��� and ��	�� for a record �asymptotic� bounds on the number of ops in�
volved in algorithm ������ Certain simpli
cation of the computations is obtained
by using Tellegen�s theorem B���� of appendix B�

���� Relations between quasi�Hankel and Bezoutian ma�

trices

Motivated by applications of matrix computations to the solution of polynomial
systems� we are particularly interested in studying multiplication tables �see
theorems ������ �������

�	



De�nition ������ For any 
 in bA� let H� denote the quasi�Hankel matrix of
residues�

H� � �
�x���������E �

For any element a in A� we will also write Ha � Ha	� � where 	 is the residue
of p�

Let us extend corollary ��	��� by relating the Bezoutian B� with the quasi�
Hankel matrix of residues H��

Theorem ������ The inverse of H� is B��

Proof� By de
nition� w��x� �
P

��E B
�
��� x

� � Therefore� by using proposition
��
��� we obtain that

	�w� x
�� �

X
��E

B�
��� 	�x

����

equals � if � � � and is � otherwise� This is precisely the coe�cient ��� �� of
the matrix B�H�� Thus� we have

B�H� � ID�

where ID is the D �D identity matrix� �

Example 	continued
 We have

	��� � 	�x�� � 	�x�� � ��

	�x�x�� �
�

�
� 	�x��� � �

�

�
� 	�x��� �

�

�
� 	�x��x�� �

��

��
� 	�x��x

�
�� � �

��

��
� 	�x��x

�
�� � �

��


���
�

and

H� �

�������
� � � �




� � �



�



��
�


� �



�

 � ��

�


�



��
�
 � ��

�
 � ��

��


������� �

The polynomial associated to this quasi�Hankel matrix is

P �
�

�
���� �

�

�
��� �

�

�
��� �

��

��
����� �

��

��
���

�
� �

��


���
����

�
� �

The coordinates of the vector ��� ����� ��TH� are the coe�cients of �� ��� ��� ����
in the product�

��� ���� �P �

� ��
����� � �� � � �� �

��

�
��

� �
��

�
���� � � ��

� �
���

��
����

� �
��

�
��

��� �
��


��
��

���
��

��



which yields the vector ��������� ��
 �� We may verify that H� is the inverse of
the Bezoutian B� of the example of section ����

The matrices B� and H� express the transformation from the basis �x�� to
the dual basis �w����E �

Proposition ������ For any a � A� if v is the coordinate vector of a in the
monomial basis �x����E and w is the coordinate vector of a in the dual basis
�w����E � then we have

v � B�w� w � H� v�

Let us relate the matrices above to multiplication tables �compare section
�����

Proposition ������ For any linear form 
 � bA and any a � A� we have

Ha	� � Mt

aH� � H�Ma� ����

where Ma is the matrix of de�nition ������ In particular� we have

Ha � H�Ma � Mt

a H�� ����

Proof� For any pair a� p � R� we de
ne the operator

Ha	��p� � p � �a � 
� � a p � 
 � H��a p�

� a � �p � 
� � a �H��p��

Therefore� the operator Ha	� can be decomposed as follows�

Ha	� � H� �Ma �Mt

a � H��

In terms of matrices� this yields the following relation�

Ha	� �Mt

aH� � H�Ma�

�

A similar relation is also valid for the Bezoutian matrices �see de
nition
�������

Theorem ������ For any a � A� we have

Ba � B�M
t

a � MaB�� ����

Proof� According to ����� in terms of operators �see de
nition ����� with a � q�

we have 

 � bA that

Ba�
� �
X

����E

Ba
��� x

� 
�y��

� a�x�
X

����E

B�
���x

� 
�y�� � a�x�B��
�

�
X

����E

B�
��� x

� 
�a�y�y�� � B��a � 
��

�




Thus� we can decompose the map Ba as follows�

Ba �Ma � B� � B� �M
t

a�

In terms of matrices� this implies ����� �

According to proposition ������� the theorem can be also reformulated as
follows� For any a and b � A� let v be the coordinate vector of b in �w����E �
Then the coordinate vector of a b in the monomial basis �x����E is Bav�

We will use the relations ���� and ���� in section �� in order to transform the
eigenproblem of sections ��� and ��� into a generalized structured eigenproblem
�see in particular our demonstration in section �������

Proposition ������ If a b � � in A� then

BaHb � BbHa � ID�

Proof� According to ���� and ����� we have

BaHb � B�M
t

aM
t

b H� � B�H� � ID�

for MaMb � Ma b � ID� Similarly� we deduce that BbHa � ID� �

Proposition ������ For any a � A� we have the relations

� Ba � B�HaB��

� Ha � H�BaH��

Proof� According to ���� and ���� and proposition ������� we have

Ba � B�M
t

a and Mt

a � HaH
��
� � HaB��

which implies the 
rst relation of this proposition� The other relation is ob�
tained by inverting the 
rst one and applying proposition ������� �

���� Relations among Bezoutians� quasi�Hankel matrices

and multivariate Vandermonde matrices� in the case

of simple roots

Let us assume that the roots � � Z are simple� Then Jp��i� 
� �� where Jp �

det
�
�pi
�xj

�
is the Jacobian of p � �p�� � � � � pn��

Let VE�Z� be the multivariate Vandermonde matrix� de
ned in section ����
We recall that for any vector v � �v����E � the product VE�Z�v is the vector
�v����� � � � � v��D�� of the evaluations of the polynomial v�x� �

P
� v� x

� at the
roots �i � Z�I��

��



Proposition ������ For any polynomial a � R� we have

Ba � VE�Z��� diag �a���� Jp����� � � � � a��D� Jp��D��VE�Z��t�

where diag �l�� � � � � lD� represents the D �D diagonal matrix� with the diagonal
entries l�� � � � � lD�

Proof� As the rows of VE�Z� are given by the values of the monomial vector
�x�� at the roots �i � Z�I�� the matrix VE�Z�Ba V

t

E�Z� is the matrix

�	a�p��i� �j��i�j�������D�

According to equation ����� we have 	a�p��� �� � 	a�p��� �� � � if � 
� ��
If � � �� then� by construction� 	a�p�a���� �� � a��� Jp��� �see the end of

section ��
�� Consequently�
�	��p��i� �j�� is the diagonal matrix

diag �a���� Jp����� � � � � a��D� Jp��D�� �

�

Corollary ������ If the roots of the system p � � are simple� then

H� � VE�Z�t diag

�
�

Jp����
� � � � �

�

Jp��D�

�
VE�Z��

Proof� We have B� � VE�Z��� diag �Jp����� � � � � Jp��D��VE�Z��t� according
to proposition ������� and we deduce from theorem ������ that

H� � B��
� � VE�Z�tdiag

�
�

Jp����
� � � � �

�

Jp��D�

�
VE�Z��

�

If we substitute these relations into ����� we obtain the following property�

Corollary ������ If the roots of the system p � � are simple� then

Ma � V ��
E �Z�diag �a����� � � � � a��d�� VE�Z�� ��	�

According to theorem �����	� we have Ha � H�Ma� which yields�

Corollary ������ If the roots of the system p � � are simple� then

Ha � VE�Z�tdiag

�
a����

Jp����
� � � � �

a��D�

Jp��D�

�
VE�Z�� ����

��



���� Relations between Bezoutians and idempotents

As in section ����� we still assume that the roots � � Z are simple and denote
by J the Jacobian of p� Then for any � � Z � we have J��� 
� ��

Proposition ������ If the roots of the system p � � are simple� then the
vectors

e� �
�

J���
	��p�x� ��� � � Z�

form a basis� consisting of orthogonal idempotents of A� whose sum equals ��
that is� e�� � e�� e�e
 � � if � 
� �� and

P
��Z�I� e� � ��

Proof� According to the equation ����� for any q � R and for any � � Z�I�� we
have

	��p�x� �� q�x� � 	��p�x� �� q���

in the quotient ring B� Therefore�

	��p�x� ��	��p�x� �� � J���	��p�x� ���

and e� �
�

J��� 	��p�x� �� � e�� is an idempotent �J��� 
� �� assuming all roots of

the system p � � are simple�� Moreover� according to ����� we have

	��p�x� ��	��p�x� �� � 	��p�x� ��	��p��� �� � ��

for any pair of distinct roots �� � � Z�I�� which shows that e� e
 � � unless
� � �� We obtain from the de
nition of the residue 	 and from the Euler�Jacobi
identity �cf� ����� that

	��p�	� � � �by de�nition ������

�
X
��Z

�

J���
	��p�x� �� �

X
��Z

e� �by the Euler�Jacobi identity��

This shows that the sum of the idempotents equals � in A� and thus they form
a basis of A �which is of dimension D�� �

Now let us recover the root � from the idempotent e� � By de
nition� we
have

e� �
�

J���
	��p�x� �� �

�

J���

X
��E

x�

��X
�

B�
��� �

�

�A �

so that the coordinate vector �e� � of e� in the basis �x����E is

�e� � �
�

J���
B� ��

����E �

Equivalently� we have
������E � J���H� �e� �� ��
�

��



Corollary ������ The coordinates of e� in the dual basis �w�� are
�

J��� ��
���

Algorithm ������ Transition from an idempotent e� to the root �
Recover the root � from the idempotent vector e� � by means of multiplication of
e� by the quasi�Hankel matrix H� and computing the ratios of the coordinates
of the resulting vector�

Let us estimate the computational cost of performing the algorithm� If
v � H��e� � �

�
J��� ��

����E � �v�� vx� � � � � � vxn � vx�� � � � ��� then the i�th coordinate

of � is

�i �
vxi
v�

�

Therefore� the roots can be computed from the idempotent e� in at most n �
CPolMult�E� �E� ops� by using algorithm ��	�� applied for F � �E�

� Applications

In this section� we exploit the properties of and the relations between struc�
tured matrices in order to devise fast algorithms for solving polynomial systems
of equations� First we focus on structured generalized eigenproblem� involving
quasi�Hankel and Bezoutian matrices� Then we consider quasi�Toeplitz matri�
ces that generalize the Sylvester matrices� They are used for computing a basis
�x����E of A� the multiplication tables� and the 
rst coe�cients of the dual
basis of �x����E � for generic input� Using the machinery of the previous section
enables us to yield better insight into the subject and simplify substantially the
proofs of some known fundamental results� Finally� we focus on iterative meth�
ods converging to idempotents and based on using quasi�Hankel matrices and
on application of structured matrices to counting distinct roots and real roots
of a polynomial system� In this part of the paper� we improve dramatically the
known computational complexity estimates� though the algorithms are proposed
in preliminary form and require further elaboration for their implementation�

��� Reduction of solving a polynomial system to matrix

eigenproblems

Let us restate theorem ����� and ����� in terms of matrices rather than their
associated operators� For a 
xed element a � A� we consider the operator of
multiplication by a �

Ma � A � A
b �� a b�

whose matrix in the monomial basis �x����E is denoted byMa� The transposed

operator from bA to bA is de
ned by the map�

M
t

a � bA � bA

 �� a � 
 � 
 �Ma�

��



and its matrix in the dual basis is Mt

a � We have the following theorem� whose

rst two parts restate theorems ����� and ����� in terms of matrices �see ����
������

Theorem �����


� The eigenvalues of the matrices Ma and Mt

a of the linear operators Ma

and M
t

a are given by fa����� � � � � a��d�g�

�� The common eigenvectors of the matrices �Mt

xi�i�������n are �up to a scalar�
���i ���E�

�� If n � m� then the common eigenvectors of the matrices �Mxi�i�������n are
�up to a scalar factor� J�x� e�� � � �� J�x� ed� where J�x� is the Jacobian
of p�� � � � � pn� and ei are the idempotents associated with the roots�

Part � amounts to theorem ������ Part � is deduced from theorem ������ the
coordinates of the evaluation ��i at the root �i in the dual basis of �x����E are
precisely ���i ���E � The third part is proved in �����

As a consequence of theorem ������ we may compute easily the roots �i from
the eigenvectors of Mt

xi � as in algorithm �������

Proposition ����� If �x����E � ��� x�� � � � � xn� � � �� contains the monomials
�� x�� � � � � xn and v � �v����E � �v�� vx� � � � � � vxn � � � �� is a common eigenvector
of the matrices �Mxi�i�������n� then

� � �
vx�
v�

� � � � �
vxn
v�

�

is a root of p � ��

Algorithm ����� Computation of the roots of the polynomial sys�
tem p � ��

Assume that all the roots are simple� Compute and output the roots as the
scaled common eigenvectors of the matrices Mt

a for a � R�

Example 	continued
 Here is the normalized matrix V of the eigenvectors
�with eight digit accuracy� of the matrix Mt

x� �
�
������

��� ��� ��� ���

��������� ����������	 
 ���������� i ����������	 � ���������� i ����	�����

������	��� �������	��� � ��������� i �������	��� 
 ��������� i ���	��	��

���������� ���������� 
 ���������� i ���������� � ���������� i ����������

�
������

�

The columns of this matrix are the vectors ���i ���E for �i � Z�I�� Thus� we
immediately deduce that the four roots of p��x�� x�� � p��x�� x�� � � are given
by the next table�

�� �� �� ��

��������� ����������	 
 ���������� i ����������	 � ���������� i ����	�����

������	��� �������	��� � ��������� i �������	��� 
 ��������� i ���	��	��

�

��



We immediately check that V��iV��i � V	�i for i � �� �� �� ��
Algorithm ����� requires to compute all the eigenvectors of a D�D matrix�

Its complexity isO�D�� ops based on the customary QR algorithm and assuming
that the number of QR iterations per eigenvalue is bounded by a constant �see
����� pp� �����	��� On the other hand� if the multiplication of Mt

a by a vector
requires C ops� the cost for computing all the �simple� roots by some other
eigenmethods is bounded by O�C D� ops� under some mild non�degeneration
assumption �see Appendix B���� Furthermore� a selected root can be computed
in O�C� ops by using the power� Lanczos or Arnoldi methods �see ����� pp�
�
��	����

The cited applications of the QR� power� Lanczos and Arnoldi algorithms as
well as application of the Lanczos algorithm to the tridiagonalization of a Her�
mitian or real symmetric matrix �which we use in appendix B�	� may rely on
the subroutines from packages and libraries used for practical numerical matrix
computations� though certain complications may arise when the size D �D of
the matrix is very large� which is frequently the case for the matrices associ�
ated with polynomial systems of equations� Nevertheless� a chance to use the
well established machinery of applied linear algebra is valuable and seems to
be a major advantage of the eigenvalue approach over other solution techniques
such as ones based on computing Gr�bner basis ���� �also� the estimated asymp�
totic complexity of these methods is much higher� and ones called elimination
methods� supporting the cubic complexity estimates� of order D� ops ��
��

In the case of multiple roots� we have to take care of the eigenspaces of di�
mension larger than one� By a result of ����� the common eigenvectors of the
operators Mt

xi � i � �� � � � � n� are closely related to the roots� and this enables
us to reduce the solution of a polynomial system to computing a basis of each
eigenspace of the matrix Mt

x� and to the solution of n� � sub�eigenvector prob�
lems associated with the matrices Mt

xi � i � �� � � � � n� Exploiting the fact that
these matrices and the associated operators are commuting� another method is
proposed in ����� based on reordered Schur decomposition� Both methods lead
to a complexity bound of O�nD�� ops�

The structure of the matrices of multiplication is not yet clearly understood
in the multivariate case� and it is an open problem whether such a matrix can
be multiplied by a vector in O	�D� ops� as we have in the univariate case
�
�� Here O	�D� stands for O�D logcD� for a constant c� The multiplication
in O	�D�� ops is possible� however �see section � and Appendix B�� because
we may and will describe equivalent formulations of the eigenvector problem�
involving structured matrices� and this will enable us to reduce �from order of
D� down by roughly one order of magnitude� the known estimates for the cost
of computing a selected root of a polynomial system and counting the numbers
of its roots and of its real roots� Our accelerated solution algorithms of this
paper �unlike the ones of ��� and ����� rely mostly on the methods distinct from
the cited methods of applied linear algebra �with the exception of the algorithm
for the tridiagonalization of a real symmetric matrix involved in our algorithm
����	� and extend some known approaches to approximating the complex zeros
of a univariate polynomial� We select the methods that are ultimately reduced

��



to a few multiplications of the multiplication matrices by vectors� and this gives
us the desired complexity bound of O	�D�� ops because we exploit the structure
of the matrices to multiply them by vectors fast� �The methods using order of
D such matrix�by�vector multiplications have cubic complexity bound of order
at least D�� compare theorem B���� and remark 	 in appendix B����

The structure of the multiplication matrices is not easy to observe and to
exploit directly� however� Thus� we will multiply the matrices Mt

a by two 
xed
invertible matrices A and B in order to transform the problem into an equivalent
generalized eigenproblem� �AMt

aB � �AB�v � �� where the structure can
be exploited explicitly� We will give some examples of such a transformation
involving structured matrices�

����� Tranformation of the eigenproblem by using Hankel matrices

According to ����� for any 
 � bA and any a � R� we have

Ha	� �Mt

aH��

so that the solution of the eigenproblem �Ha	� � �H��v � � yields the eigen�
vector H� v of Mt

a � Let us next exploit this matrix equation assuming that we
have a normal form algorithm Nf� that is� one that projects R onto hx�i��E
along I or� in other words� one that computes the unique element of hx�i��E
in the same class modulo I �

Algorithm ����� Solution of a polynomial system via the solution
of a generalized eigenvector problem defined by using Hankel ma�
trices�

Fix two exponents ��� �� � E� Then proceed as follows	


� For all monomials x��� with �� � � E� compute in the normal form
Nf�x���� of x���	

� the coe�cient of x�� � which we denote by ���x
�����

� the coe�cient of x�� � which we denote by ���x
�����

�� Construct the two quasi�Hankel matrices	

� H�� � ����x
���������E�

� H�� � ����x
���������E�

�� Solve the polynomial system p�� via the solution of the generalized eigen�
vector problem	

�H�� � �H���v � �� ����

Let us specify stage �� The linear form that computes the coe�cient of x� in
A �for any � � E� is p� 	�w� p� � w� � 	�p�� Thus� we have

H�i � Mt

w�i
H��

��



for i � �� �� Therefore� if v is a generalized eigenvector of ����� then �v � H�v

is a generalized eigenvector of �Mt

w��
� �Mt

w��
� �v � �� and the corresponding

eigenvalue is
w�� ���

w�� ���
�if w����� 
� �� for one of the roots � � Z�I��

According to theorem ������ the common eigenvectors of Mt

w��
��Mt

w��
for

all pairs ��� �� � E are the multiples of the vectors ������E for � � Z�I�� The
roots � are easily computed from these vectors� by using algorithm ������

Example 	continued
 Suppose that we have computed the following normal
forms in the basis ��� x�� x�� x� x�� of A � C �x� � x��
�p�� p���

Nf��� � �� Nf�x�� � x�� Nf�x�� � x�� Nf�x�x�� � x�x��

Nf�x�
�� � � � x� � �x�x�� Nf�x�

�� � �� � �x� � �x�x��

Nf�x�x�
�� � �

��

�
�

��x�
�

�
x�
�

�
��x�x�

�
�

Nf�x�x�
�� �

�

�
�

�x�
�

�
�x�
�

�
��x�x�

�
�

Nf�x�
�x�

�� �
��


��
�

���x�
��

�
��x�
��

�
��
x�x�

��
�

We choose the monomial x�� � x� x� and x�� � x�� which yields the following
matrices�

H�� �

�������
� � � �

� �� � ��



� � � � ��



� ��

 � ��


 � ��

�


������� � H�� �

�������
� � � �

� � � �



� � � �



� �



�

 � ��

�


������� �

and we obtain

H�� H
��
�� �

�������
� �



�



�

 �

�

 � � �

� �



�	

 � �


 �

� � �

 �

������� �

We have �� � w�� � 	 � ��x� � x� � �� � 	 and �� � w�� � 	 � � 	 � Therefore�
H�� � �H�� and H�� � H�x��x���� so that

H�� H
��
�� �Mt

�
� �� x��x����

�

Indeed� the 
rst row of the latter matrix represents the polynomial �

 ��x� �

x� � ��� the second row is x� �
�

 ��x� � x� � ��� which is reduced to �


 in A�

This implies that x��� � �x� � x� � ��

�	



����� Transformation of the eigenproblem by using Bezoutian ma�
trices

The relations ���� on Bezoutians imply that

Ba � B�M
t

a �

As in algorithm ������ assume that we have a normal form algorithm that
computes an element in A reduced modulo I �

Algorithm ����� Solution of a polynomial system via the solution
of a generalized eigenvector problem defined by using Bezoutian
matrices�


� Compute the polynomials 	��p and 	x��p and their normal forms in x and
y�

�� Compute the matrices B� and Bx� associated with these normal forms�

�� Solve the polynomial system p�� via the solution of the generalized eigen�
vector problem

�Bx� � �B��v � ��

The generalized eigenvector of the pencil �Bx� � B�� �computed at stage ��
yields immediately the eigenvectors ���i ���E � and then scaling immediately gives
us the coordinates of the roots �i �cf� algorithm �������

Example 	continued
 B�� the Bezoutian of �� was already obtained in sec�
tion ���� Now� we obtain Bx� � the Bezoutian of x�� and the matrix B��

� Bx� �
M t

x� �

Bx� �

�������
� �� � �

�� �� � �

� � � �

� � � �

������� and B��
� Bx� �Mt

x� �

�������
� � � �

� � � ��

� � � �

� �	

 � ��



�



��



������� �

The 
rst row of this matrix represents the element x� in the basis ��� x�� x�� x�x��
of A� the second represents the element x��� and so on�

Computing the generalized eigenvectors of a pencil �A�B� can also be per�
formed in O�D�� ops� by the QZ algorithm assuming that the number of QZ
iterations per eigenvalue is bounded by a constant ����� pp� �
	����� When
the two matrices have a structure that allows matrix�by�vector multiplication
by using C ops� these eigenvectors can be computed in O�C D� ops� This is the
case for the quasi�Hankel matrices� with C � D log�D�� The multiplication of
the Bezoutian matrix B� by a vector can be performed in O�C D� ops by using
the fact that its inverse H� is a quasi�Hankel matrix� Multiplying a general
Bezoutian matrix by a vector with a quasi�linear complexity is an open problem�

��



��� Computation of multiplication matrices and the dual

space

����� Sylvester�s matrices

As a basic pattern� we will 
rst revisit the construction of the well�known
Sylvester matrix in the univariate case�

Given two univariate polynomials� p� � p��� � � � � � p��d� x
d� of degree d�

and p� � p��� � � � �� p��d� x
d� of degree d�� we will de
ne the multiplication by

p� modulo p� by the map�

Mp� � A � A

a �� a p��

in the basis h�� � � � � xd���i of A � C �x�
�p� �� The matrix of this map is de
ned
via the Sylvester matrix S of p� and p�� that is� the matrix of the coe�cients of
the polynomials

p�� x p�� � � � � x
d��� p�� p�� x p�� � � � � x

d��� p�

in the monomial basis� The matrix S takes the following form�

d��d�z �� �
p� � � � � xd���p� p� � � � � xd���p�����������

p��� � p��� p����d�
���

� � �
���

� � �

p��d��� � � � p��� p��d��� � � � p��d��d�
p��d� � � � p��� p��d� � � � p��d��d���
���

���
� � �

���
p��d��d��� � � � p��d� � p��d�

����������

�
x
�
xd���

�

�

xd��d���

������������������	
d� � d�

����
under the convention that p��i � � if i � d�� p��j � � if j � �� Let V��V��
and V denote the vector spaces generated by the monomials f�� � � � � xd���g�
f�� � � � � xd���g� and f�� � � � � xd��d���g� respectively� Then the Sylvester matrix
is the matrix of the map

S � V� � V� � V

�q�� q�� �� p� q� � p� q��

in the corresponding monomial basis� The determinant of this �d��d����d��d��
matrix is the resultant of p� and p��

To compute the matrix Mp� of the multiplication by p� modulo p�� we have
to reduce the polynomials p�� x p�� � � � � x

d��� p� modulo p�� Such a reduction
amounts to the subtraction of some multiples of p�� and the resulting poly�
nomials are expressed as linear combinations of the monomials of the basis

�




��� � � � � xd���� of A� The partition of the Sylvester matrix into four blocks as in
�����

S �

�
U V
Z W

�
�

enables us to interpret these subtractions in terms of matrix operations and
thus to analyze the structure of the matrix of multiplication� The block P� ��
U
Z

�
represents the multiples of p�� and the block P� �

�
V
W

�
represents

the multiples of p�� Therefore� reducing the multiples of p� by p� consists in
subtracting some linear combinations of the columns of P� from the columns of
P� so that Z is replaced by a zero block� These operations on the columns of
the Sylvester matrix are given explicitly by the following formula��

U V
Z W

� �
Id� �

�W��Z Id�

�
�

�
U � V W��Z V

� W

�
�

The block U �V W��Z is called the Schur complement of W is S� and we have
the following property�

Proposition ����� The matrix Mp� of multiplication by p� modulo p� in the
monomial basis h�� x� � � � � xd���i is the Schur complement of W in S	

Mp� � U � V W�� Z�

Note that the blocks U� V�W � and Z have Toeplitz structure� U and W are
triangular� and if d� � d� �resp� d� � d��� then so is Z �resp� V � also� Thus�
we have the following algorithm�

Algorithm ����� Multiplication by a polynomial modulo a polyno�
mial� in the univariate case�

Given three polynomials p�� p� and a of degrees d�� d� and less than d�� re�
spectively� compute the coe�cient vector of the polynomial ap� mod p� as the
matrix�by�vector product	

Mp�a � �U � V W��Z� a�

where a is the coe�cient vector of the polynomial a�

The computation reduces to multiplication of the Toeplitz matrices Z of size
d� � d� and U of size d� � d� by the vector a� solving the triangular Toeplitz
system

Wq � Za

of d� equations� multiplying the Toeplitz matrix V by the solution q of this
system� and subtracting the vectors Vq from Ua�

With application of the algorithms of appendix B�� �or� alternatively� the
equivalent operations of Toeplitz matrix�by�vector multiplication and the solu�
tion of a triangular Toeplitz linear system ����� one may perform algorithm �����

��



by using O�d log d� ops� where d � max�d�� d��� This yields the same asymptotic
complexity bound as in �
��

If an element of the quotient algebra is invertible� computing the inverse
requires to solve the linear system of equations�

S

�
u

v

�
� w�

where w � ��� �� � � � � ��t and u is the inverse of p� modulo p�� This can be
performed in O�d log��d�� ops by using the Morf�Bitmead�Anderson �BAM� al�
gorithm ���� p� ��	� For linear systems of moderate sizes� however� the currently
available implementations of this algorithm do not yet outperform the alterna�
tive numerically stable practical implementations that use O�d�� ops� though a
practically promising improvement of the BAM algorithm was recently reported
����� �����

In the next sections� we are going to extend the latter approach to the
multivariate case� Let us mention some of the main di�culties that are peculiar
to the multivariate case but do not occur in the univariate case�

� We lose the notion of the leading monomial of the highest degree�

� We have no natural monomial basis for representing the quotient modulo
a set of polynomials�

� When we homogenize the polynomials� we may introduce spurious solu�
tions �at in�nity� to a polynomial system of equations�

For the latter reasons and many others� we need to restrict our study to the
cases where we may describe easily the structure of the matrices� These are the
generic cases of two types that we are going to specify next�

����� The generic multivariate case

In order to generalize the Sylvester matrix construction to the multivariate case�
we consider n � � polynomials p�� � � � � pn and n � � vector spaces V�� � � � �Vn
generated by the monomials xFi � fx�� � � Fig� where Fi is the set of the
exponents�

Fi � f�i��� �i��� � � �g�

Let V be a vector space containing all the monomials of the polynomials pi x
�i �

for �i � Fi� so that we can de
ne the following map�

S � V� � � � � � Vn � V ����

�q�� � � � � qn� ��

nX
i��

pi qi�

Let F be the set of the exponents of all the monomials of V and let the matrix
of the map S in the monomial basis of V� � � � � � Vn and V be also denoted by

��



S and take the following form�

V�z �� � V�z �� � Vnz �� �

V

�����������
x��

�
�
�
x�N

������
� � �
� � �

x����p� � � � x����p� � � � � � � � � � � � � x�n��pn � � �
� � �
� � �

������ �

����
Let us decompose such a matrix S into blocks S � �S�� � � � � Sn�� where Si in�
volves only the coe�cients of pi� The matrix Si is a submatrix of the matrix of
multiplication by pi� de
ned in section ��	� More precisely� Si is the matrix of
the map

�F �Mpi � �Fi �

Thus� it is a quasi�Toeplitz matrix �see proposition ��	����

Algorithm ����� Multiplication of the matrix S of ���� by a vector�
For every j� compute the products x�i�jpi qi for all i and sum them together

in i� Output the sum for every j�
The complexity of this algorithm is bounded by CPolMult�F�� F � � � � ��

CPolMult�Fn� F � �see algorithm ����� and the algorithms of appendix B�
��

It is possible to consider the global matrix S as a quasi�Toeplitz matrix
by adding a new variable x�� The sum

Pn
i�� pi qi can be computed from the

product of p �
P

i pi x
i
� by

Pn
i�� qi x

n�i
� � Indeed� this sum is the coe�cient of

xn� in the product� Let F 
 and F 

 be the sets of the exponents of the monomials
in xn� x

F and �ni��x
n�i
� xEi � respectively� Then the matrix S is the matrix of the

operator
�F � �Mp � �F �� �

Remark � We can extend easily the construction of the map S to the case
where the number of polynomials p�� � � � � pm is greater than n� � �m � n��

Operators of this type have been extensively used in the literature� in or�
der� for instance� to de
ne resultants �see ����� ����� ������ Let us recall that
the vanishing of the resultant is the necessary and su�cient condition on the
coe�cients of the polynomials p�� � � � � pn� under which these polynomials have
a common root �in a projective variety X�� Two main examples appear in the
literature�

� The classical case corresponds to X � Pn� the projective space of dimen�
sion n� In this case� the polynomials p�� � � � � pn of degree d�� � � � � dn are ho�
mogenized� and the vanishing of the resultant is a necessary and su�cient
condition on their coe�cients under which the homogenized polynomials
have a common zero in Pn� This case is referred to as Macaulay case �see
������

��



� In the second case� the variety X � T is a toric variety� and the map S
is used to de
ne the toric resultant of the polynomials p�� � � � � pn� The
polynomials can also be homogenized in a toric sense� and the vanishing
of the resultant is a necessary and su�cient condition on their coe�cients
under which the toric�homogenized polynomials have a common zero in
the toric variety T �see ������ We refer to this case as the toric case�

Let us describe more carefully the monomials with exponents in Fi used in the
construction of the map S�

The Macaulay case Let us 
x integers d�� � � � � dn� and � � d�� � � ��dn�n�
For any d � N� let Rd denote the set of polynomials of degree not greater than
d� Let p�� � � � � pn be polynomials of degree d�� � � � � dn respectively� To construct
the map S that yields the resultant of these polynomials� we follow Macaulay�s
work and choose Vi � R��di � V � R� � so that we de
ne the map

S � R��d� � � � � �R��dn � R�

�q�� � � � � qn� ��

nX
i��

pi qi�

The toric case In this case� we replace the constraints on the degree of the
polynomials by the constraints on the support of the polynomials pi �that is�
the set of the exponents of the monomials with non�zero coe�cients in pi�� Let
C�� � � � � Cn be polytopes in ZN and let p�� � � � � pn � L be Laurent�s polynomials�
whose supports are in C�� � � � � Cn� respectively� In order to construct the map
S that yields the toric resultant� we 
x �at random� a direction � � Qn � For
any polytope C� let C
 denote the polytope obtained from C� by removing its
facets whose normals have positive inner products with � �see �	�������� For
Fi � �

P
j ��i Cj�


 and F � �
P

j Cj�

 � we de
ne the map

S � hxF� i � � � � � hxFni � hxF i

�q�� � � � � qn� ��
nX
i��

pi qi�

Many other examples of this type can be obtained by means of convenient
choices of the vector spaces V�� � � � �Vn� and V � We are going to examine the
properties of these maps in the generic cases�

De�nition ����� A property is generically true in the Macaulay case �or in
the toric case�� if this property is true for an algebraically open subset of the set
of all possible values of the coe�cients satisfying the given constraints on the
degree �or on the support� of the input polynomials�

Given polynomials p�� � � � � pn� we will compute from the matrix S�

� a basis �x����E of the quotient A � R
�p�� � � � � pn��

��



� the table of multiplication by a polynomial p� in A� from the matrix S
�note that the matrix S of S is not a square matrix anymore� so that we
have to choose a submatrix of S in order to compute the matrix Mp���

� the dual basis of the monomial basis �x����E of A�

These constructions will be valid for generic values of the coe�cients of
p�� � � � � pn but may fail for speci
c values� A more sophisticated method� de�
scribed in ����� circumvents this di�culty by the compression of pencils of ma�
trices�

����� A basis of A

First� we will de
ne a subset E� of exponents such that x
E� is generically a basis

of A � R
�p�� � � � � pn�� For that purpose� we choose p� � u��u� x�� � � ��un xn
�or p� � u��u� x�� � � ��un xn�u�� x

��
� � � � �u�n x

��
n in the toric case�� where

ui are parameters� We also choose subsets Ei 	 Fi for i � �� � � � � n� such that

�a� jE�j� � � �� jEnj � jF j and

�b� the matrix of the map

�S � hxE�i � � � � � hxEni � hxF i

�q�� � � � � qn� ��
nX
i��

pi qi

takes the form

�S �
E� E� � � �En

E�

F 


�
U V
Z W

�
�

����

where W is generically invertible�

In order to prove this generic property� it is su�cient to specify the coe�cients
of polynomials pi� for which it is satis
ed�

Theorem ����� If conditions �a� and �b� are satis�ed� then for generic values
of the coe�cients of p�� � � � � pn� �x

����E� � is a generating set of A� and we have

dimC �A� � jE�j�

Proof� As W is generically invertible� the same process as in section �����
enables us to reduce modulo �p� the elements x� p� for � � E�� in hx

�i��E� �
As this is valid for any value of the parameter ui� we can reduce in hx�i��E�

modulo �p� the monomial x� xi �resp� x
� x��i in the toric case�� for any variable

xi and any � � E�� By induction� for any polynomial p in R �or L in the
toric case� and any � � E�� we can reduce modulo �p� the polynomial x� p in
hx�i��E� �

Therefore� as � � �x����E� in the Macaulay case �or because any Laurent�s
monomial p � L is of the form p � p
x� with � � E� and p
 � L in the toric

��



case�� we can reduce modulo �p� any polynomial p in hx�i��E� �where p � R�
in the Macaulay case� or p � L� in the toric case�� This proves that �x����E� is
a generating set of A � R
�p�� � � � � pn� �A � L
�p�� � � � � pn� in the toric case�� �

Let us give now more details on how we choose the subset Ei in the Macaulay
case and in the toric case�

Macaulay case Let us choose Ei such that the matrix �S becomes the identity
matrix �see ������ when we replace the polynomial pi by x

di
i � We can choose� in

particular�

E� � f���� � � � � �n�� � � �i � di � �� i � �� � � � � ng�

E� � f� � ���� � � � � �n�� j�j � � � d�� � � �i � di � �� i � �� � � � � ng�

���

En � f� � ���� � � � � �n�� j�j � � � dng�

where j�j � j��j� � � �� j�nj�
Requirements �a� and �b� are easily veri
ed� therefore� by theorem ����	�

�x����E� is generically a generating set of A� and

dimC �A� � jE�j �

nY
i��

di�

which is the Bezout theorem�

Toric case In the toric case� the polynomial pi is replaced by p
t

i �
P

� ai�� t
w�x�

�where t is a new variable and w� � Q� �� The subsets of the exponents Ei are
chosen so that the corresponding matrix S�t� � �si�j�t�� satis
es

degt�si�i�t�� � degt�si�j�t�� for i 
� j

�see ������	� for more details�� The set E� is the set of the exponents in the mixed
cells of a regular triangulation of C� � � � � � Cn� so that� by construction� jE�j
is the mixed volume of C�� � � � � Cn� This yields Bernshtein theorem �part ��
�see ���� ������

Part � of Bernsthein theorem shows that generically the number of common
zeros of the system p� � � � � � pn � � is at least jE�j� Thus� we deduce that
dimC �A� � jE�j� and we have the following theorem�

Theorem ����� For generic values of the coe�cients of p�� � � � � pn� �x
����E�

is a basis of A� in both Macaulay and toric case�

Note that we gave simpler proofs than in the articles ����� �����

��



����� Matrices of multiplication in A

In this section� we still let S denote the map ����� constructed with using the

xed polynomials p�� � � � � pn and vector spaces V�� � � � �Vn�V and with various
choices of polynomial p� and vector space V� � hx�i��E� � The set of monomials
�x����E� � de
ned in the previous section� is a basis of A�

For any polynomial p�� we can also construct the table of multiplication by
p�� starting from a submatrix of S� Namely� we choose any subsets E


i 	 Fi�
i � �� � � � � n� such that simultaneously

�a
� jE

�j� � � �� jE


nj � jF j � jE�j�

�b
� and the corresponding columns in the matrix of S are linearly independent�

Generically� this is always possible� which we can show by giving a speci
c
example� Decomposing again the matrix of the map

�S � hxE�i � hxE
�

�i � � � � � hxE
�

ni � hxF i

�q�� � � � � qn� ��

nX
i��

pi qi

in the form ����� we obtain the following property�

Theorem ����� For generic values of the coe�cients of p�� � � � � pn� the matrix
of multiplication by p� in A is given by

Mp� � U � V W�� Z�

Proof� First� we will show thatW is invertible� Otherwise� there exists a vector
v 
� � in the kernel of W � Then we have�

V
W

�
v �

�
w

�

�
�

and w is not �� because the columns

�
V
W

�
of the matrix S are linearly inde�

pendent �condition �b
��� This implies that there is a non�zero polynomial of the
form w�x� �

Pn
i�� piqi in hx

�i��E� � which contradicts the fact that �x����E�

is a basis of A� Consequently� W is invertible�
Now� by the same argument as in section ������ U � VW��Z is the matrix

Mp� of multiplication by p� in the basis �x��� of A� �

Example 	continued
 Let p� � x�� x
E� � ��� x�� x�� x� x��� x

E� � xE� �
��� x�� x��� and

xF � ��� x�� x�� x�x�� x�
�� x�

�� x�
�� x�

�� x�
�x�� x�x�

���

��



Then we have

�S �

����������������

� � � � �� � � � � �
� � � � �� �� � �
 � �
� � � � � � �� � � �
� � � � � � �� � � �

� � � � � �� � � �
 �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �

����������������
�

We may verify that

U � V W�� Z �

�������
� � � � �	




� � � � ��



� � � �



� �� � ��



�������
is the matrix of multiplication� Mx� �

Given a matrix S of ����� in order to compute the product of the matrix
of multiplication Ma by a vector� we have to solve a linear system of equations
W u � v� which can be done e�ciently if W is structured and�or sparse� As we
can see from the previous example� the resultant matrices are sparse� the number
of non�zero terms per column is bounded by the maximal number of monomials
in each polynomial pi� which is small compared to the size of the matrix� In the

Macaulay case� the size of the matrix is bounded by �
�n��� d

n � � en dn� where
d � maxi�������n deg�pi�� which is asymptotically much larger that the number
of monomials in the polynomial pi �bounded by �n�dn ���

The sparsity of these matrices �which implies that their multiplication by a
vector has low cost� has been exploited in ���� in order to devise an algorithm
for the approximation of a selected root of a polynomial system by the �shifted�
implicit power method�

As we have seen� these resultant matrices have also a quasi�Toeplitz struc�
ture� and the techniques of ��� can be immediately extended to exploit this
structure instead of sparsity� by reduction to multiplication of multivariate poly�
nomials� Some simple techniques for exploiting the sparsity of these polynomials
can be found in ��	��

����� The dual basis

It is possible to construct the dual basis ������E� of �x����E � from the matrix
S� Let

�� �
X
��Nn

���� �
�

�	



be the f�p�s� representing �� in C ������ Then we have the following property�

Proposition ����
 The coe�cients ����� ���E����F of ������F in the dual basis
������E� are given by the matrix�

ID �VW��
�
�

Proof� Let ���� � ����� ���F denote the vector of the 
rst bF e coordinates of
�� and let � denote the matrix � � ����� ���E����F � As E� 	 F � we represent
this matrix as a � � � block matrix � � ��
j�

�� where �
 � ����� �����E�

and �

 � ����� ���E����F�E� � The linear forms �� vanish on the multiples of
p�� � � � � pn� which implies that

��
j�

�

�
V
W

�
� �

or� equivalently�
�
 V ��

W � �� ����

Since the set ������E� is the dual basis of �x����E� � we have that� for any
�� � � E�� ���x

�� � ���� equals � if � � � and � otherwise� In other words�
�
 � ID is the identity matrix� and we obtain from ���� that

�

 � �V W���

�

Algorithm ����� Computation of the normal form of a multivariate
polynomial�

For any polynomial p � hx�i��F � compute its normal form by multiplying
the matrix �IDj � V W��� by the coordinate vector of p�

Proposition ������ Algorithm ����� can be performed by using CLinSolve�W ��
CPolMult�E�� F ��D ops� where CLinSolve�W � denotes the arithmetic complexity
of solving a linear system of equations with the coe�cient matrix W �

Proof� The normal form of a polynomial p �
P

��F p� x
� is by de
nitionX

��E�

���p�x
��

The coe�cients ���p� �
P

��F ���� �
��p� �

P
��F ���� p� are obtained by

multiplication of � �
�
IDj � V W��

�
by the vector �p����F � �

Similarly� if we are interested in the coe�cients �
�x�����F of a linear form

 on a set of monomials F � knowing its value 
� � �
�x�����E � we have to
compute 
t

��� This can also be performed by using CLinSolve�W � ops� In an
application that we will point out in section ����	� we will assume a random
vector 
��

An upper estimate on CLinSolve�W � is given by theorem B���� of Appendix
B���

��



Example 	continued
 Let us be given the matrix

�I	j � V W��� �

�������
� � � � � �� ��



�	

 � �	



�



� � � � � � �	



��

 � ��



�



� � � � � � � �

 � �



�



�



� � � � �� � � �




��



��

 � ��




������� �

The normal form of x�x
�
� is de
ned by the last column of this matrix�

Nf�x�x
�
�� �

�

�
�

�

�
x� �

�

�
x� �

��

�
x�x��

as found in the example of section ������ The linear form �x�x� �in the last row
of this matrix� turns into

�x�x� � ���� � � ��
� � � ��

� �
�


�
��� �

��

�
��

� �
��

�
��

��� �
��

�
����

� � � � � �

��� Iterative methods in A

In this section� we describe iterative methods for solving the system p � ��
which exploit the properties of the quotient algebra A� These methods combine
symbolic and numeric computations and consist in applying some iterative pro�
cesses in A� Such a process converges towards an element e� of A from which we
can recover the root or split the problem into smaller subproblems� Unlike the
classical methods �such as Newton�s method�� this approach leads to controlled
and certi
ed iterative methods� Moreover� unlike the methods of applied linear
algebra cited in the introductory part of section ���� which all have linear con�
vergence� we will present quadratically convergent algorithms� which �roughly�
square the approximation error bound in each iteration step �rather than to de�
crease it by a 
xed constant factor� and as a result approximate the zeros within
the error bound ��b in O�log b� �rather than order of b� iteration steps� The
convergence remains very rapid also in the di�cult but practically important
case where the roots of the polynomial system are not very well separated from
each other�

The proposed e�cient iterative methods for solving the system p � � rely
on fast multiplication in A� which in turn relies on the knowledge of a non�
degenerate linear form 	 �that is� a generator of the A�module bA�� like the
residue de
ned in section ��
� Thus computing such a residue �or any non�
degenerate linear form� is a basic step and sometimes the bottleneck of this
approach� For a large class of polynomial ideals� speci
ed� for instance� in �����
we may e�ciently compute the residue� If we are only concerned about the
asymptotic complexity of this stage in terms of D� then the recipe of section
����	 applies� Indeed� we have already seen in section ����	 how to compute

�




the 
rst bF e coe�cients of an element of bA� This only requires to solve a
quasi�Toeplitz linear system of equations with coe�cient matrix W � and the
complexity of the solution is quasi�quadratic in the dimension of W � that is�
O	�D��� In ���� this technique is further speci
ed� but the practical value of
the resulting algorithm for the system p � � is still unclear� Recently� new
methods have been proposed to compute algebraically such a residue ����� �����
Analyzing the complexity of this process is still a problem under investigation�

The existence of a residue is guaranteed for a complete intersection quotient
algebra� that is� for a 
nite dimensional quotient algebra de
ned by n equations
in n variables ����� If the number of equations is larger than the number of vari�
ables� one has to take n random linear combinations of the input polynomials�
in order to apply the methods that we are going to describe�

Hereafter� we will assume that a non�degenerate linear form 	 � bA is known
�e�g� the residue�� and we will use it for computing e�ciently the product of
two elements in A�

����� Fast multiplication in A

For any element f � A� let �f � denote the coordinate vector of f in the basis
�x����E � Let us write w��x� �

P
��E B�

���x
� to denote the dual basis of

�x����E and B� � �B�
��������E to denote the Bezoutian of ��

We want to compute the product �f g� in A where

f ��
P

��E f� x
��

g ��
P

��E g� x
��

We may 
rst compute the polynomial f g and then reduce it to a linear
combination of the elements of the monomial basis hx�i in order to obtain �f g��
We may also proceed directly by using the projection formula�

f g �
X
��E

	�f g x��w�

�
X
��E

f g � 	�x��w��

In this case� we have to compute the coe�cients of the linear form f g � 	 and
then shift from the basis �w����E to the monomial basis �x����E � By using
relations ����� we may also proceed in an equivalent way� based on the formula

�f g� � Mg�f � � H��
� Hf	� �g� � B�Hf	� �g�� ����

As we want to compute the coe�cients f g � 	�x�� � 	�f g x�� for � � E� we
need to know the value of 	 for the monomials x����� for �� �� 
 � E� Let
�	 ��

P
u��E 	�xu� �u denote the leading part of the series 	 associated with the

residue 	 � We 
rst compute

g � �	 � ���g��
��� �	 ����

� ����
X
��E

g� �
����

X
u��E

	u�
u��

��



and then

f g � �	 � f � �g � �	 � � ���f��
��� g����� �	 ����

� ��

��
X
��E

f��
��

���X
��E

g��
��

�A
 X
u��E

	u �
u

��A �

The coe�cients �� of �� in f g��	 for � � E are precisely the coe�cients of f g in
the dual basis �w����E of A� Summarizing� we obtain the following algorithm�

Algorithm ����� Multiplication by a polynomial modulo the ideal
in a monomial basis�

To obtain the coe�cients of f g in the basis �x��	

� Compute the coe�cient vector 
 � ������E of �� for � � E� by multiply�
ing the Laurent polynomial f�����g����� by �	 ����

� Multiply the vector 
 � ������E by the matrix B� � H��
� � that is� solve

the linear system of equations H� v � 
� Output the vector v�

����� Fast inversion in A

Similar techniques can be used to compute the inverse �reciprocal� of an invert�
ible element f � A� By relation ����� for g � f��� we have

��� � H��
� Hf	� �f

��� or� equivalently� H���� � Hf	� �f
����

where H���� is the coe�cient vector of ������E in �	 � This yields the following
algorithm�

Algorithm ����� Inverse of a polynomial modulo the ideal in a mono�
mial basis�

To obtain the coe�cients of f�� in the basis �x��	

� Let u � ������E be the coe�cient vector of �� for � � E� in �	 �

� Compute the coe�cients of ���� for �� � � E in the Laurent polynomial
f����� � �	 ���� and obtain the matrix Hf	� �

� Solve the linear system Hf	� v � u� Output the vector v�

����� Computing selected simple roots of a polynomial system

As before� let Z denote the set of all common roots of the system p � �� We
assume here that the roots are simple�

By decomposing any element h of A in the basis of idempotents e� �see
section ������ we obtain that

h�x� �
X
��Z

h�x� e� �
X
��Z

h��� e� �

��



The second equation follows since e�h�x� � e�h���� Squaring h in the quotient
ring A gives us that

h� �
X
��Z

h���� e� �

Here and hereafter� for any element a � A� �a� denotes the vector of the
coe�cients of a in the basis �x����E � In particular� ��� � ��� �� � � � � ��t if the
basis starts with the monomial �� Let jj � jj denote a norm in CD �say� the
Euclidean �Hermitian� norm�

jjvjj � �v�v� � �

DX
i��

jvij
������ v � �vi�� i � �� � � � � D��

By minor abuse of notation� for any element a � A� we will let jjajj denote jj�a�jj�
Let h � R and assume that there is a unique root � � Z� for which the norm of
h��� is maximum� so that

jh���j
jh���j � � � �� ��	�

for some 
xed positive � and for any � � Z distinct from �� �Since all the roots
in Z are assumed to be distinct� we may� in principle� ensure the latter relation
with a high probability� by means of a random linear substitution of the vector
of the variables x�� Then� by iteratively computing and normalizing the squares�
we obtain

h� � h� hi�� � h�i 
jjh
�
i jj� i � �� �� � � � � k � ��

and arrive at the bounds

�k �� k
hk
jjhkjj

�
e�

jje� jj
k �

c

�� � ���k
�

so that we ensure the bound �k � ��b in k � k��� b� � O�log�b
��� recur�
sive steps for any positive b� The bounds show that the process very rapidly
�quadratically� converges to a multiple of the idempotent e� � right from the
start�

Proposition ����� In the case of a simple root � and for h � R such that
jh���j � jh���j for any �� � 
� �� � � Z�I�� the latter process of squaring and
normalization in A� always converges quadratically right from the start to a
multiple of the idempotent e��

We refer the reader to ���� and �
� on some preceding works on a similar
approach in the univariate case� A similar approach based on resultant matrices
is described in ����

By using proposition ������� we can compute the root � from the idempotent
e� � by means of its multiplication by H�� The transition from e� to the root �
of the system p � � can be performed in CLinSolve�H�� ops�

Thus� we have the following algorithm�

	�



Algorithm ����� Computation of the root that maximizes the mod�
ulus of a fixed polynomial�

Assume that the roots Z�I� are simple and that h � R is such that there
exists � � Z�I�� with jh���j � jh���j for any �� � 
� �� � � Z�I��

� Set u� �� h and �x a positive tolerance value � � ��b� b � ��

� Recursively� for k � �� �� � � � � N � �� compute vk�� � u�k and uk�� �
vk
jjvkjj

in A by algorithm ����
� until the norm jjuk���ukjj becomes smaller than
�����

� Multiply the last term uN by H��

This yields a multiple of the vector ������E � whose scaling gives us the root
� for which jh���j is maximal �compare algorithm ������� The overall cost of
approximating the root within an error norm ��b is O�D� log�b
��� ops up to a
�poly� logarithmic factor in D�

����� Computing the closest root

Suppose that we seek a root of the system p � � whose coordinate x� is the
closest to a given value u � C � Let us assume that u is not a projection of any
root of the system p � �� so that x� � u has reciprocal in A� Let ���x� denote
such a reciprocal� We have �� �x��x� � u� � � and ����� �

�
���u

� Therefore� a

root for which x� is the closest to u� is a root for which j�����j is the largest�
Consequently� iterative squaring of �� � ����� shall converge to this root�

The polynomial �� can be computed in the following way� LetMx��u denote
the multiplication by x��u in A� Then �� � �Mx��u�

������ and by the matrix
equation ����� we have

���� � H� �Hx� � uH��
������

���� de
ned by the latter equation can be computed in CLinSolve�Hx��u� �
CPolMult���E�E� ops �see algorithm ��	�� and the black box algorithms of
appendix B�� and B����

One may compute several roots of the polynomial system by applying the
latter computation �successively or concurrently� to several initial values u�

Example 	continued
 We illustrate this approach by computing 
rst the
root for which x� is maximal� We start with u� � x�� After � iterations� we
obtain

u	 � ���������� ���������x�� ����������x�� ���������x�x��

By multiplying the coe�cient vector of this polynomial by H� and dividing by
the 
rst coordinate� we obtain

���� ���E � ���� ��
���������
�������������
���

	�



where �� � ���
���������
�������
If we start with

u� � �x� �
�

�
��� � �

�


��
�

��


��
x� �

��

��
x� �

��

�
x�x��

the algorithm should converge to the root closest to �
� � Indeed� after � iterations�

we obtain

u	 � ����������� ��
�����
�x�� ����������x�� ����������x�x��

and after multiplication by H� and normalization� we arrive at

���	 ���E � ���� �����
��
� ��������� �����������

where �	 � ������
��
� ��������� is the root closest to �
� �

����� Splitting the set of roots

In addition to the repeated squaring iteration of algorithm ������ we will also
consider iteration associated to a slight modi
cation of the so�called Joukovski
map �see ������
��� z �� �

� �z �
�
z � and its variant z �� �

� �z �
�
z ��

The two attractive 
xed points of this map are � and ��� for its variant�
they turn into i and �i�

Algorithm ����� Sign iteration� u� � h � hx�i��E� un�� �
�
� �un �

�
un

� �
A� n � �� �� � � � �

Each iteration step of algorithm ����	 can be performed by using CLinSolve�Hun��
CPolMult���E�E� ops �see appendix B�� and B���� Hereafter� ��h� and ��h�
denote the real and imaginary parts of a complex h� respectively�

Proposition ����� Assume that for any root � � Z� ��h���� 
� �� Then the
sequence �un� converges quadratically to � �

P
��h������ e� �

P
��h������ e� �

that is� we have
kun � �k � K��

n

�for some constant K�� where

�� � max��h���������Z�I�

    h���� i

h��� � i

    �
�� � max��h���������Z�I�

    h��� � i

h��� � i

    �
and � � maxf��� ��g�

Proof� We apply the classical convergence analysis of the Joukovski map
�see ����� to the matrices of multiplication by un in A� whose eigenvalues are
fun���� � � Z�I�g� �

This iteration can be applied to count the number of roots in a half�space� based
on the following proposition�

	�



Proposition ����� The rank of the matrix H�� is the number of roots such
that ��h���� � � �where the roots are counted with their multiplicity��

Proof� As H� is invertible� the rank of H�� � H�M�� is the rank of M�� �
that is� the dimension of ��A equals

P
��h������ e�A� Since the dimension of

A� � e�A is the multiplicity of �� we yield the proposition� �

The ranks can be computed by the algorithm supporting theorem B�	�� �of
appendix B�� in O	�D�� ops�

By successive applications of the above splitting procedure� we can compute
e�ciently the numbers of all roots� the roots in a half space� in a 
xed box�
and those that are nearly real � � � See ���� for more advanced applications of
these techniques� which enables us to improve substantially the known estimates
for the computational complexity of these problems and some related ones�
Practical value of the latter theoretical improvements still has to be con
rmed
by experimentations� which is also another challenging problem�

��� Traces and real roots

In this section� we will keep assuming that the residue or a non�degenerate linear
form 	 is known� will suppose that the coe�cients of the polynomials pi are real�
and will study the problem of computing the numbers of distinct roots and of
real roots� We will next de
ne a special element of bR� called the trace�

De�nition ����� The linear form Tr is de�ned over any �xed �eld K by

Tr � R � K

p �� trace�Mp��

where trace�Mp� is the usual trace of the linear operator Mp�

By using this linear form� we de
ne the quasi�Hankel matrix

HTr � �Tr�x���������E�

In order to compute HTr� assuming that we know the table of the multiplication
by xi in A �i � �� � � � � n�� we may compute the values of x� �for 
 � � � �
and �� � � E� by induction� for we have x� � xi x

�� with j

j � j
j and
Tr��� � D � dimR�A�� By using the linearity of the trace� we compute all
the coe�cients of HTr �see� for instance� ������ Alternatively� we may apply the
following theorem �see ������

Theorem ����� Let J � R be the Jacobian of the polynomials p�� � � � � pn� Then

Tr � J � 	�

Example 	continued
 According to the example of section ���� we have

Tr�x�� � � �
��

�
�

��

�

	�



and also

	�x� J� � 	����� ��x� � �x� � ��x�x�� �
��

�
�

Algorithm ����� �application of the trace to a monomial set�� Compute and
output HTr � �Tr�x���������E as the product of

�	 �
X
���E

	� �
�

by J������

The number of ops involved in this algorithm is bounded by CPolMult��E�
�E�� Once the matrix HTr is computed� we apply the following theorem� due
to Hermite �see ����� ����� ������

Proposition ����� �Hermite�� Let J be the Jacobian of p � �p�� � � � � pn� and
let BJ be the Bezoutian of J � Then

� the rank of HTr or BJ is the number of distinct roots of the polynomial
system p � ��

� the signature of HTr or BJ is the number of its real roots�

Algorithm ����� Computation of the numbers of distinct roots and
real roots�

For a polynomial system p� � � � � � pn � �� de�ne the matrix HTr� then
compute the numbers of the distinct roots and the real roots of the system by ap�
plying proposition ����� and the algorithm supporting theorem B���
 �of appendix
B��

The overall randomized cost of computing the numbers of distinct roots and
real roots is O�D�� up to a polylogarithmic factor�

Example 	continued
 The normal form of the Jacobian J is

J � �
 � ��x� � �x� � ��x�x��

Note that 	�J� � �

 � �� � � is the dimension of A� The matrix HTr is given by

HTr �

�������
� �	


 � ��

 � 		


�


�	



����
�
 � 		


�
 � ��	��
��


� ��

 � 		


�

��	
�


����
��


� 		

�
 � ��	��

��

����
��


��	�
	
��


������� �

The Bezoutian matrix BJ is given by

BJ �

�������
�� ��� �� ���

��� ��� ��� ���

�� ��� � ���

��� ��� ��� ���

������� �

	�



The rank and the signature of both matrices are � and �� respectively� The
number of distinct roots is �� and the number of distinct real roots is ��

� Conclusions

Our goal� throughout this paper� was to demonstrate the power of the applica�
tion of the dual space� algebraic residues and the generalization of the structure
of Toeplitz and Hankel matrices to the solution of a polynomial system in the
multivariate case� In order to be able to yield the latter generalization� we
re�interpreted the associated operators in terms of operations in the polyno�
mial ring and in its dual� Multivariate Bezoutians and residues come naturally
into play under these studies� and the algebraic interpretation of the associated
operators yielded the relations between these matrices�

We developed in details the above machinery� which we consider useful and
appropriate for the study of polynomial systems of equations� Our study has
lead us to some new insights into this subject and� in particular� to simpli
�
cation of the reduction of a polynomial system to matrix eigenproblem and of
the known proofs of B�zout and Bernshtein bounds on the number of roots�
Both reduction to the eigenproblem and the latter bounds are highly important
for the theory and practice of solving polynomial systems� Furthermore� we
revealed and exploited the matrix structure implicit in multiplication tables�
which helped us to operate with them e�ciently�

Section � was devoted to applications of the developed techniques to yield one
order of magnitude improvement of the known algorithms for some fundamental
problems of multivariate polynomial root
nding�

Some brief comments on the main open issues and recent progress are now
in order� Namely� we have deduced the results of sections ��� and ��� assuming
that the residue or a non�degenerate linear form 	 associated with the ideal
I � �p�� � � � � pn� is known �or readily available�� This somewhat restricts the
class of polynomial systems to which application of our fast algorithms promises
to become practical� A major research challenge is an extension of these results
to a more general class of polynomial systems of equations having a 
nite num�
ber of solutions� Another research challenge is to extend the results of section
��� to approximating all the D roots of the system at the cost O�D�� �up to a
polylogarithmic factor�� Substantial progress in these directions based on fur�
ther extension of the techniques of this paper combined with some other new
techniques has been reported in ����� In ��� some further elaboration of the pre�
sented approach towards some practical problems of multivariate polynomial
root
nding and optimization was shown� and the assumption that 	 was known
was relaxed there�

We hope that our present work and our cited subsequent progress will mo�
tivate new interest in this recently open and challenging area�

		



References

��� W� Auzinger and H� Stetter� An elimination algorithm for the com�
putation of all zeros of a system of multivariate polynomial equations� in
Proc� Intern� Conf� on Numerical Math�� vol� �� of Int� Series of Numerical
Math�� Birkh�user� ����� pp� ������

��� D� Bernshtein� The number of roots of a system of equations� Funct�
Anal� and Appl�� � ���
	�� pp� ������	�

��� D� Bini and V�Y� Pan� Polynomial and Matrix Computations� Vol� 
	
Fundamental Algorithms� Birkh�user� Boston� �����

��� D� Bondyfalat� B� Mourrain and V� Y� Pan� Controlled iterative
methods for solving polynomial systems� Proc� ACM Intern� Symp� on
Symb� Algebr� Comp�� ACM Press� New York� ����� pp� �	���	��

�	� J� Canny and I� Emiris� An e�cient algorithm for the sparse mixed
resultant� in Proc� Intern� Symp� Applied Algebra� Algebraic Algor� and
Error�Corr� Codes �Puerto Rico�� G� Cohen� T� Mora� and O� Moreno� eds��
vol� ��� of Lect� Notes in Comp� Science� Springer Verlag� ����� pp� �������

��� J� Canny� E� Kaltofen� and Y� Lakshman� Solving systems of non�
linear polynomial equations faster� in Proc� of the Annual ACM�SIGSAM
Int� Symp� on Symb� and Alg� Comp� �ISSAC����� ACM Press� New York�
����� pp� ��������

�
� J� Cardinal� On two iterative methods for approximating the roots of a
polynomial� in Proc� AMS�SIAM Summer Seminar on Math� of Numerical
Analysis� �Park City� Utah� ���	�� J� Renegar� M� Shub� and S� Smale�
eds�� vol� �� of Lectures in Applied Math�� Am� Math� Soc� Press� �����
pp� ��	�����

��� J� Cardinal and B� Mourrain� Algebraic approach of residues and ap�
plications� in Proc� AMS�SIAM Summer Seminar on Math� of Numerical
Analysis� �Park City� Utah� ���	�� J� Renegar� M� Shub� and S� Smale�
eds�� vol� �� of Lectures in Applied Math�� Am� Math� Soc� Press� �����
pp� ��������

��� D� Cox� J� Little� and D� O�Shea� Ideals� Varieties� and Algorithms	
An Introduction to Computational Algebraic Geometry and Commutative
Algebra� Undergraduate Texts in Mathematics� Springer� �����

���� E� Cattani� A� Dickenstein� and B� Sturmfels� Computing multidi�
mensional residues� In L� Gonz�lez�Vega and T� Recio� editors� Algorithms
in Algebraic Geometry and Applications� volume ��� of Prog� in Math��
Birkh�user� Basel� �����

	�



���� R�M� Corless� P�M� Gianni� and B�M� Trager� A reordered Schur
factorization method for zero�dimensional polynomial systems with multiple
roots� In Proc� ACM Intern� Symp� on Symbolic and Algebraic Computa�
tion� ACM press� New York ���
� pp� ��������

���� M� Demazure� Charles Hermite� d�j� � � � � Notes informelles de calcul
formel �� Centre de Math�� Ecole Polytechnique �France�� ���
�

���� M� Elkadi and B� Mourrain� Approche e�ective des r�sidues al�
g�briques� Rapport de Recherche ����� INRIA� �����

���� M� Elkadi and B� Mourrain� Algorithms for residues and lojasiewicz
exponents� J� of Pure and Applied Algebra� ����� To appear�

��	� I� Z� Emiris and V� Y� Pan� The structure of sparse resultant matrices� in
Proc� ACM Intern� Symp� on Symbolic and Algebraic Computation� ACM
Press� New York� ���
� pp� ��������

���� I� Emiris and A� Rege�Monomial bases and polynomial system solving� in
Proc� ACM Intern� Symp� on Symbolic and Algebraic Computation� ACM
Press� New York� ����� pp� ��������

��
� P� Fuhrmann� A Polynomial Approach to Linear Algebra� Springer�
Verlag� �����

���� I� Gelfand� M� Kapranov� and A� Zelevinsky� Discriminants� Re�
sultants and Multidimensional Determinants� Birkh�user� Boston�Basel�
Berlin� �����

���� G� H� Golub and C� F� Van Loan� Matrix Computations �third edi�
tion�� John Hopkins� Univ� Press� Baltimore� Maryland� �����

���� P� Henrici� Applied and Computational Complex Analysis� volume I� Wi�
ley� �����

���� C� Hermite� Remarques sur le th�or�me de Sturm� C� R� Acad� Sci� de
Paris� �� ���	��� pp� 	��	��

���� D� Kapur and Y� N� Lakshman� Elimination methods� an introduction�
In B� Donald� D� Kapur� and J� Mundy� editor� Symbolic and Numerical
Computation for Arti�cial Intellengence� Academic Press� New York� �����
pages �	����

���� A� Kushnirenko� A Newton polyhedron and the number of solutions of
a system of k equations in k unknowns� Usp� Matem� Nauk�� �� ���
	��
pp� ������
�

���� F�S� Macaulay� Some formulae in elimination� Proc� London Math� Soc��
� ������� pp� ���
�

	




��	� F�S� Macaulay� The Algebraic Theory of Modular Systems� Cambridge
Univ� Press� �����

���� B� Mourrain� Computing isolated polynomial roots by matrix methods�
J� of Symbolic Computation� Special Issue on Symbolic�Numeric Algebra
for Polynomials� ��� �� ���� � pp� 
�	�
���

��
� B� Mourrain and V� Y� Pan� Multidimensional structured matrices and
polynomial systems� Calcolo� �� ������� pp� ��������

���� B� Mourrain and V� Y� Pan� Solving special polynomial systems by us�
ing structured matrices and algebraic residues� in Proc� of the workshop
on Foundations of Computational Mathematics �Rio de Janeiro� ���
��
F� Cucker and M� Shub� eds�� Springer� ���
� pp� ��
�����

���� B� Mourrain and V� Y� Pan� Asymptotic Acceleration of Solving Mul�
tivariate Polynomial Systems of Equations� Proc� ��th Ann� ACM Symp�
on Theory of Computing� ACM Press� New York� ����� pp� ��������

���� V� Y� Pan� M� AbuTabanjeh� Z� Chen� E� Landowne� and A�
Sadikou� New transformations of Cauchy matrices and Trummer�s prob�
lem� Computer and Math� �with Applics��� �	� ��� ����� pp� ��	�

���� V� Y� Pan and Z� Q� Chen� The Complexity of the Matrix Eigenproblem�
Proc� ��st Ann� ACM Symp� on Theory of Computing� ACM Press� New
York� �����

���� P� S� Pedersen� M��F� Roy� and A� Szpirglas� Counting real ze�
ros in the multivariate case� in E�ective Methods in Algebraic Geometry
�MEGA����� A� Galligo and F� Eyssette� eds�� Progress in Math�� Nice
�France�� Birkh�user� ����� pp� ��������

���� P� S� Pedersen and B� Sturmfels� Product formulas for resultants and
Chow forms� Math� Zeitschrift� ��� ������� pp� �

�����

���� P� S� Pedersen and B� Sturmfels� Mixed monomial basis� in E�ective
Methods in Algebraic Geometry �MEGA����� vol� ��� of Progress in Math��
Santander �Spain�� Birkh�user� ����� pp� ��	�����

��	� P� Penfield Jr�� R� Spencer� and S� Duinker� Tellegen�s Theorem
and Electrical Networks� M�I�T� Press� Cambridge� Massachussetts� ��
��

���� V� Olshevsky� V� Y� Pan� A uni�ed superfast algorithm for boundary
rational tangential interpolation problem and for inversion and factoriza�
tion of dense structured matrices� Proc� ��th Annual IEEE Symposium on
Foundations of Computer Science� IEEE Computer Society Press� �����
pp� ��������

��
� J� Renegar� On the worst�case arithmetic complexity of approximating
zeros of systems of polynomials� SIAM J� on Comput�� ��� ����� pp� �	��
�
��

	�



���� F� Rouillier� Syst�mes polynomiaux� PhD thesis� Univ� de Rennes� �����

���� J� Sebastiao e Silva� Sur une m�thode d�approximation semblable � celle
de Grae�e� Portugal Math� J�� � ������� pp� �
���
��

���� H� J� Stetter� Eigenproblems are at the heart of polynomial system solv�
ing� SIGSAM Bulletin� ��� � ������� pp� ����	�

���� E� E� Tyrtyshnikov� A uni�ed approach to old and new theorems on
distribution and clustering� Linear Algebra and Its Applications� ��� ������
pp� �����

���� B� Van der Waerden� Modern Algebra� Vol� II� Frederick Ungar Pub�
lishing Co� �����

	�



A Polynomials� Laurent�s polynomials� and the
dual space 	univariate case
� Basic De�nitions

Consider univariate polynomials p � p�x� �
Pd

i�� pix
i � R � C �x�� represented

by vectors of their complex coe�cients �p�� � � � � pd�� Let the subspace Rd denote
the vector space �of dimension d� �� of polynomials in R of degree at most d�

A 
xed polynomial p�x� of R generates the ideal I � �p�x�� in R� formed
by all polynomial multiples q�x� of p�x�� Let A � R
I denote the quotient ring
of polynomials reduced modulo p�x� �that is� modulo the ideal I�� If p�x� is of
degree d� then A is isomorphic to Rd��� as a vector space�

By introducing the reciprocal x��� we arrive at the ring of Laurent�s polyno�
mials C �x� x�� � � L and denote by L�c�d the subspace of Laurent�s polynomials

of the form
Pd

i��c �i x
i�

A polynomial p � Rd can be represented by the vector of its d�� coe�cients
or� equivalently� by the values p���� p
���� � � � � �

d �p
�d����� In other words� a primal

basis of Rd is h�� x� � � � � xdi� and its dual basis �that is� the set of linear forms
�maps� that compute the coe�cients of p in the primal basis� is the set of linear
forms

hp ��
�

i �
p�i����ii�������d�

We introduce a new variable � and let �i denote the ith element� p �� �
i �p

�i�����
of this dual basis� Thus� a linear form on Rd� that is� an element 
 of the dual
space bRd of Rd� is represented by a polynomial


 �

dX
i��

�i �
i�

For any p � Rd� we have 
�p� �
Pd

i�� �i
�
i �

d�i�

dxi �p���� and �i � 
�xi��

Next� consider linear forms 
 � bR on the primal space R� The restrictions
of the linear forms to Rd 	 R are the elements of bRd� which can be represented
by polynomials in � of degree at most d� This is valid for any d� therefore� an
element 
 � bR is a formal power series �f�p�s�� in ��


 �
�X
i��


�xi��i�

Such a ring of f�p�s� in the variable � is denoted by S � C ������
The duality between the polynomials and the f�p�s is de
ned as follows� For

any 
��� � S � C ����� and any p � C �x��

�
jp� � ���
���p��
�����

where �� � C ��
�� ������� C is the map computing the constant term�

For any p�x� � C �x� and 
��� � C ������ we de
ne an element of S � C �����
as follows�

p�x� � 
��� � ���p��
���
�����

��



where �� � C ���� ������ � C ����� is the projection on the monomials having
non�negative exponents in ��

Example
�� � x�� � ��� � � � � �� � �� � � � � ��

Contrary to ��
�� we introduce a new variable � for the �inverse� of x� which we
consider an element of the dual space�

B Some polynomial and linear algebra compu�
tations 	algorithms and complexity


We will recall the known estimates for the computational cost of performing
some basic algorithms used in this paper�

B�� Polynomial multiplication

In sections � and �� we reduced multiplication of various structured matrices by
vectors to polynomial multiplication� Now� let us recall the known arithmetic
complexity bounds for the latter operation �see ���� pp� 	������ As before� let
CPolMult�E�F � denote the number of arithmetic operations required for the
multiplication of a polynomial with support in E by a polynomial with support
in F �

Theorem B���� Let Ed � ��� � � � � d� 	 N� Then

CPolMult�Ed� Ed� � O�d log�d���

Theorem B���� Let Ed � f���� � � � � �n� � � � �i � di � �g� Then we have

CPolMult�Ed� Ed� � O�M log�M���

where d � max�d�� � � � � dn�� and M � cn� and c � � d� ��

Theorem B���� Let Ed�n be the set of exponents having total degree at most d
in n variables� Then

CPolMult�Ed�n� Ed�n� � O�CPolMult�ET � ET � log�T ���

where T � �n�dn � is the number of monomials of degree at most d in n variables�

Remark � Theorems B�
�
 and B�
�� can be extended to the computations over
any ring of constants �rather than over the complex �eld� at the expense of in�
creasing their complexity bounds by factors at most log log�d� and log log�c��
respectively� Theorem B�
�� applies over any �eld of constants having charac�
teristic ��

Theorem B���� O�d log�d�� ops are su�cient to reduce a given polynomial
p�x� of a degree d modulo a given polynomial q�x��

��



B�� Tellegen
s theorem on duality of multiplication of a

matrix and its transpose by a vector

Theorem B���� ����� Let W be a square matrix with no zero rows or columns�
Let CW ops su�ce to compute the product Wv for a vector v� Then CW ops
also su�ce to compute the product W tv � �vtW �t�

The proof of this theorem given in ��	� is constructive�

B�� Solving a linear system of equations

Application of the conjugate gradient algorithm ���� gives us the following result�

Theorem B���� Let W be a nonsingular N �N matrix� Performing �N mul�
tiplications of W and W t by vectors and O�N�� other arithmetic operations
su�ce to compute the solution v to a linear system Wv � w�

B�� Matrix eigenproblem

For an N �N matrix W � its eigenproblem is the problem of approximate com�
putation of its eigenvalues as well as the computation of the basis of the linear
space of the eigenvectors associated with each eigenvalue �����

The known record complexity estimates for the eigenproblem are summa�
rized in the next two theorems� reproduced from �����

Theorem B���� The deterministic arithmetic complexity of the eigenproblem
for any N � N matrix W is bounded by O�N�� � t�N� b� ops for t�N� b� �
O��N log��N���log�b� � log��N��� and for ��bjjW jj denoting the required upper
bound on the absolute output error of the approximation of the eigenvalues of W
where jj � jj denotes any �xed matrix norm� For generic N �N matrix W � the
complexity is bounded by O�M�N� log�N�� � t�N� b� ops� where M�N� denotes
the complexity of N �N matrix multiplication� M�N� � o�N�������

Remark � The latter acceleration �to the level below the order of N����� ops� by
means of asymptotically fast matrix multiplication is purely theoretical� because
an enormous overhead constant is hidden in the �o� notation above�

In the case where the matrix W can be multiplied by a vector fast and have
its minimum polynomial mW �x� of degree N �

deg �mW �x�� � N ����

�the latter equation holds for generic N �N matrix W �� there exist accelerated
randomized solution algorithms as speci
ed in the next theorem� but in appli�
cation to solving a polynomial system of equations� this still only implies cubic
complexity bound �see remark 	 below��

��



Theorem B���� If an n�n matrix W satis�es ����� then its eigenproblem can
be solved by means of generating �n�� random parameters and then performing
t�n� b��O�CWN� ops for t�n� b� and ��bjjW jj de�ned as in Theorem B���
 pro�
vided that Cw ops su�ce to multiply the matrix W by a vector� The cost bound
does not include the cost of the generation of random parameters� Assuming that
these parameters are sampled from a �xed �nite set S of cardinality bSe indepen�
dently of each other under the uniform probability distribution on S� the algo�
rithm supporting the above arithmetic complexity estimate either outputs FAIL�
URE or otherwise� with a probability at least ��� �n���n
��bSe������n
bSe��
produces correct output for a matrix W satisfying ����� The algorithm can be
applied to any n� n matrix W and outputs FAILURE unless ���� holds�

Remark � We have CW � O	�D�� for the matrix W of section �� which only
leads to cubic complexity bound for solving polynomial systems p � ��

B�� Tridiagonalization of a real symmetric matrix and the

computation of its rank and signature

In section ���� we needed an algorithm for computing the rank and the signature
of an N �N real symmetric �and quasi�Hankel� matrix W �

We start such an algorithm with tridiagonalizing the matrix� In exact arith�
metic� this can be done by means of the Lanczos algorithm� which for a given
real symmetric matrix W computes a unitary matrix Q and a real symmet�
ric tridiagonal matrix T � similar to W ����� p� ���� T � QtWQ�QtQ � I �
Compact representation of Lanczos algorithm can be found on p� �
� of �����
The algorithm starts with choosing a nonzero random vector of dimension N
and consists in performing O�N� multiplications of W by vectors and O�N��
other ops� Since the matrices W and T are similar to each other� both the rank
and the signature of W coincide with ones of T and� therefore can be computed
immediately from the Sturm sequence of the signs of the values of the character�
istic polynomials of T and all its leading principal �northwestern� submatrices
����� p� ���� Such a sequence can be computed at the cost O�N�� by using the
three�term recurrence relations for the characteristic polynomials of the leading
principal submatrices of W �cf� ����� pp� ��������� We arrive at the following
result�

Theorem B���� Let W be an N�by�N real symmetric matrix� Then applica�
tion of Lanczos randomized algorithm �which uses N random parameters� O�N�
multiplications of W by vectors and O�N�� other ops� and performing O�N�
additional ops su�ce to compute the rank and the signature of W � If the N
parameters are sampled independently of each other from a �nite set S under
the uniform probability distribution of S� then the algorithm on S� then the algo�
rithm may output FAILURE �at the tridiagonalization stage� with a probability
at most �N � ��N
��bSe� or otherwise outputs correct value of the rank and
signature�

��



IfW is a structured �resp� and real symmetric� matrix� whose multiplication
by a vector is expressed in terms of polynomial multiplication� one may combine
theorems B�����B���� and B�	�� in order to express the arithmetic cost of the
solution of the linear system Wv � w and the randomized arithmetic cost of
computing the rank �resp� and signature� of W in terms of the dimension of W �

Remark � Practical application of the original version of Lanczos algorithm
�as presented on p� ��� of �
��� may lead to some problems of numerical stabil�
ity� which are� however� avoided in the modi�ed versions of Lanczos algorithm
�see �
��� pp� ��������� Theoretically� the modi�cations may be a little slower
but not so in practice� The practical modi�cations also handle the remote pos�
sibility of the failure of Lanczos algorithm applied to a real symmetric matrix�

��


