
COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS
WHERE THE OUTPUT IS REAL∗

DARIO BINI† AND VICTOR Y. PAN‡

SIAM J. COMPUT. c© 1998 Society for Industrial and Applied Mathematics
Vol. 27, No. 4, pp. 1099–1115, August 1998 010

Abstract. Surprisingly simple corollaries from the Courant–Fischer minimax characterization
theorem enable us to devise a very effective algorithm for the evaluation of a set S interleaving the
set E of the eigenvalues of an n×n real symmetric tridiagonal (rst) matrix Tn (as well as a point that
splits E into two subsets of comparable cardinalities). Furthermore, we extend this algorithm so as to
approximate all the n eigenvalues of Tn at nearly optimal sequential and parallel cost, that is, at the
cost of staying within polylogarithmic factors from the straightforward lower bounds. The resulting
improvement of the known processor bound in NC algorithms for the rst-eigenproblem is roughly
by factor n. Our approach extends the previous works [M. Ben-Or and P. Tiwari, J. Complexity,
6(1990), pp. 417–442] and [M. Ben-Or et al., SIAM J. Comput., 17(1988), pp. 1081–1092] for the
approximation of the zeros of a polynomial having only real zeros, and our algorithm leads to an
alternative and simplified derivation of the known record parallel and sequential complexity estimates
for the latter problem.

Key words. symmetric tridiagonal eigenvalues, approximation algorithms, computational com-
plexity, real polynomial zeros

AMS subject classifications. 68Q05, 68Q40, 68H05

PII. S0097539790182482

1. Introduction.

1.1. The problem. The problem of approximating the eigenvalues of an n× n
Hermitian or real symmetric matrix A is one of the central problems of practical
matrix computations [GL], [Par]. The first step of its solution in all the customary
algorithms is the reduction of the input matrix A to the real symmetric tridiagonal
(rst) form; this step can be effectively parallelized [Pan87], [BP94, Proposition 5.4,
p. 325].

In the present paper, we consider the remaining eigenvalue problem for an n× n
rst-matrix Tn. From technical and theoretical points of view, this problem is closely
related to approximating the zeros of polynomials having only real zeros. In com-
puting practice, such polynomials usually appear as the characteristic polynomials
of Hermitian (or real symmetric) matrices, which also cover the class of orthogonal
polynomials. Given the coefficients of an nth-degree polynomial p(λ) having only real
zeros, λ1, . . . , λn, we may compute the entries of an n × n rst-matrix Tn that has
the characteristic polynomial p(λ) and the eigenvalues λ1, . . . , λn. In Appendix A
and also in [BP94, pp. 117–120], we achieve this by applying the extended Euclidean
scheme to p(λ) and p′(λ), whereas, for a given Tn, we may compute the coefficients of
p(λ) by applying a simpler algorithm, which we present in section 5. In the practice
of matrix computations, the reduction of the rst-eigenvalue problem to computing

∗ Received by the editors June 1, 1990; accepted for publication June 11, 1996; published elec-
tronically May 19, 1998. The results of this paper were presented at the Second Annual ACM-SIAM
Symposium on Discrete Algorithms, San Francisco, CA, 1991.

http://www.siam.org/journals/sicomp/27-4/18248.html
† Dipartimento di Matematica, Università di Pisa, 56100 Pisa, Italy (bini@dm.unipi.it). This

research was supported by NSF grant 8805782 and by the Italian M.P.I. 40% funds.
‡ Department of Mathematics and Computer Science, Lehman College, City University of New

York, Bronx, NY 10468 (vpan@lcvax.lehman.cuny.edu). This research was supported by NSF grant
8805782 and by PSC-CUNY Awards 668541 and 669210.

1099

1100 DARIO BINI AND VICTOR Y. PAN

the coefficients of the characteristic polynomial p(λ) is avoided because of the numer-
ical stability problems (in particular, the value |p(0)| = |detTn| can be very large);
this does not apply, however, to computing the values of p(λ), which is a customary
auxiliary step of the rst-eigenvalue computation [Par], [GL, pp. 437–440].

1.2. Our results (outline). Our main result is a new parallel NC algorithm
for approximating the eigenvalues of an rst-matrix Tn given its entries. We assume
the customary arithmetic and Boolean PRAM models of parallel computation (where
in each parallel step each nonidle processor performs one arithmetic or, respectively,
Boolean operation), and we deduce nearly optimum upper bounds on parallel time and
the number of processors required by our algorithm. (By nearly optimum we mean
upper bounds that are within polylogarithmic factors from the known, and in our
case straightforward, lower bounds.) This is a dramatic improvement of the previous
best parallel solution, based on the reduction of the problem to approximating the
zeros of p(λ) and on the solution of the latter problem by means of the algorithm of
[BOT]. Our approach avoids using extended Euclidean computations involved in the
algorithm of [BOT], and this gives us the edge over [BOT].

The sequential version of our algorithm, as well as its extension to the sequential
and parallel approximation of the zeros of p(λ) given the coefficients, supports the
same complexity estimates as the algorithm of [BOT] does, and in the sequential
case, these upper estimates are nearly optimal too. Our approach, however, may be
considered conceptually simpler and easier to comprehend, as the reader may observe
from the comparison of our techniques with ones of [BOT], made in the beginning of
section 2.

1.3. Our complexity estimates. To estimate the sequential and parallel cost,
we will write OA(t, p) and OB(t, p) for the algorithms that require O(t) parallel steps
using p arithmetic processors and O(t) parallel steps using p bit-serial processors,
respectively. The bounds OA(t, sp) and OB(t, sp) imply the bounds OA(st, p) and
OB(st, p), respectively, for s ≥ 1, according to Brent’s scheduling principle of parallel
computing [Br]. (In particular, OA(t, p) and OB(t, p) imply the sequential arith-
metic cost bound OA(tp, 1) and the sequential Boolean cost bound OB(tp, 1), respec-
tively.) Under this notation, our algorithm supports approximating the eigenvalues of
Tn (whose entries have magnitudes at most 2m), within the absolute error bound
2−h, at the arithmetic and Boolean parallel cost bounded by OA(log2 n(log2 b +
log n) log logn, n/ log log n) and OB(log2 n log(nb)(log2 b + log n) log logn log log(nb),
n2b/ log log n), respectively, and at the sequential cost bounded byOA(n log2 n(log2 b+
log n), 1) and OB(n2b log2 n log(nb)(log2 b + log n) log log(nb), 1), respectively, where
b = m + h. For approximating all the n zeros of a polynomial p(λ) having only
real zeros, the same sequential cost bounds hold, but the parallel cost bounds change
(in particular, to OA(log2 n(log2 b + log n), (n/ log b)2) under the arithmetic PRAM
model) since we need to add the cost of performing the extended Euclidean algorithm
that supports the transition from p(λ) to Tn. In section 8, we comment on some ways
to further minor improvements.

1.4. A parallel modification. Our major concern in this paper is about the
computational complexity estimates. On the other hand, caring more about numeri-
cal stability of lower precision computations than about decreasing their asymptotic
complexity, we have modified our main algorithm in [BP92] (cf. our Remark 5.1 in
section 5 and comments in section 8). In the parallel NC algorithm of [BP92], we
only need about n/ log n times more processors but achieve substantially improved

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1101

numerical stability, which makes the algorithm competitive with the known alterna-
tive practical algorithms for the symmetric eigenvalue problem. In [B] and in [BG1],
further progress in this direction has been obtained.

1.5. Organization of the paper. We will organize our paper as follows: in
section 2, we deduce some properties of interlacing sets by using the Cauchy inter-
lace theorem for the matrix eigenvalues. In section 3, for each eigenvalue of Tn, we
compute either its approximation within a fixed error bound or an interval containing
this eigenvalue but no other eigenvalues of Tn. In section 4, given an interval con-
taining only one eigenvalue, we compute an approximation to this eigenvalue within
the required precision by means of Newton’s method and of the bisection of the ex-
ponents. In section 5, we describe an algorithm for the simultaneous computation of
the values of the characteristic polynomial and its derivative at a set of points. In
section 6, we summarize the construction of sections 2–5 and devise an algorithm for
the approximation of all the eigenvalues. In section 7, we estimate the bit-complexity
of the algorithm. In section 8, we briefly discuss some results that appeared more
recently, after this paper had been submitted for publication—in particular, some
results related to the complexity estimates and to practical performance of the algo-
rithm of the present paper. In section A.1 of the appendix, we discuss the relations
between the polynomial root-finding problem and the problem of the computation of
the eigenvalues of a matrix, and in section A.2, the reduction of a Hermitian or real
symmetric matrix to the tridiagonal form.

2. Interlacing sets and splitting points for the set of the eigenvalues.
In the following, all logarithms are to the base 2.

Hereafter, Tn denotes an n × n rst-matrix having diagonal entries a1, . . . , an,
subdiagonal entries b1, . . . , bn−1, and a set Λ of n eigenvalues, Λ = {λ1 ≤ · · · ≤ λn}.
Without loss of generality, suppose that b1 . . . bn−1 6= 0. (Indeed, if bj = 0 for some
j, the eigenvalue problem would be split into two eigenvalue problems of smaller
dimensions.) We assume that |ai|, |bi| ≤ 2m, m is a positive integer, and then, by
virtue of Gerschgorin’s theorem ([GL, p. 341]),

− 3(2m) ≤ λi ≤ 3(2m).(2.1)

We say that the set R = {r0, . . . , rk} interleaves the set Q = {q1, . . . , qk} and
that R is an interlacing set for Q if r0 ≤ q1 ≤ r1 ≤ q2 ≤ · · · ≤ qk−1 ≤ rk−1 ≤ qk ≤ rk,
where, in particular, we will allow r0 = −∞ and/or rk = +∞, and then we will write
R = {ri, . . . , rk−j}, where i, j = 0, 1. We say that s is a splitting point of the level
(g, h) for the set Q if qg < s < qh.

In this section, we will prove some simple corollaries from Cauchy’s interlace theo-
rem [Par, p. 186] or from the Courant–Fischer minimax characterization [GL, p. 411].
Later on, they will lead us to simple algorithms for the evaluation of the interlacing
sets and splitting points for the set of the eigenvalues of Tn. Using such sets and/or
points will enable us to devise divide-and-conquer algorithms for approximating the
eigenvalues of Tn, and we will specify such an algorithm in section 6.

It is instructive to compare these results with the techniques of [BOT] and [BFKT]
dealing with a polynomial p(λ) that has only real zeros and can be considered as the
characteristic polynomial of Tn. Specifically, the algorithm of [BOT] relies on com-
puting the Sturm and pseudoremainder sequences associated with p(λ) and defining a
set S of real points that interleaves the set of the zeros of p(λ). Computing such a set
S is the central (and also most innovative, most intricate, and most involved) part of

1102 DARIO BINI AND VICTOR Y. PAN

the algorithm of [BOT], and here we will introduce our main innovation too: we will
replace the major techniques of [BOT] by some simple corollaries from Cauchy’s in-
terlace theorem or the Courant–Fischer minimax characterization theorem, and then,
we will immediately arrive at a set interleaving the set of the eigenvalues Λ of Tn.

Technically, it may also be interesting that Cauchy’s theorem or the Courant–
Fischer minimax characterization may replace Sturm sequences in at least one more
application. Namely, in [BFKT], the Sturm sequences have been used for computing
a splitting point (rather than the interleaving set) for the set of the zeros of p(λ); then
again, some simple corollary from Cauchy’s theorem or the Courant–Fischer minimax
characterization will give us a simple algorithm for computing such a splitting point
for the eigenvalues of Tn, and this computation is more effective than one of [BFKT].
We will give more comments later on, after the statement of our Corollary 2.1.

Hereafter, Diag(B1, . . . , Bs) denotes the block diagonal matrix having diagonal
blocks B1, . . . , Bs.

We will rely on the following result, known as Cauchy’s interlace theorem.
Theorem 2.1. If Ar denotes an r × r principal submatrix of an n × n real

symmetric matrix A, then the eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn of A and the eigenvalues
µ1 ≤ µ2 ≤ · · · ≤ µr of Ar satisfy the following relations:

λi ≤ µi ≤ λi+n−r, i = 1, . . . , r.

Proof. The latter relations hold for r = n−1 (see Corollary 8.1-4 to the Courant–
Fischer theorem in [GL, p. 411]). In the general case, it is sufficient to apply these
relations to a sequence A = An, An−1, An−2, . . . , Ar of principal submatrices of A
such that Ai is a principal submatrix of Ai+1. An alternative proof can be found on
pp. 186–187 of [Par].

We are ready to prove the following basic result.
Theorem 2.2. The eigenvalues of Tn satisfy the following relations:
(a) If nk is a multiple of 2(k + 1) and if {µ1 < µ2 < · · · < µ k

k+1n
} is the set

of all the eigenvalues of the k × k principal submatrices T̃i of Tn, i = 1, . . . , n
k+1 , T̃i

containing the (s, s) entries as of Tn for s = (i− 1)(k + 1) + j, j = 1, . . . , k, then

λ nk
2(k+1)

≤ µ nk
2(k+1)

≤ λn(k+2)
2(k+1)

.

(b) If 1 ≤ j ≤ n−2 and if {γ1 ≤ γ2 ≤ · · · ≤ γn−1} is the set of all the eigenvalues
of the two principal submatrices of Tn,

Tj =

a1 b1

b1 a2
. . .

. . .
. . . bj−1

bj−1 aj

 , T̂n−j−1 =

aj+2 bj+2

bj+2 aj+3
. . .

. . .
. . . bn−1

bn−1 an

 ,

then

λi ≤ γi ≤ λi+1, i = 1, . . . , n− 1.

In other words, part (a) defines a splitting point of the level (nk
2(k+1) ,

n(k+2)
2(k+1)) for the

set of the eigenvalues of Tn, and part (b) defines an interlacing set for this set of the
eigenvalues.

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1103

Proof. Theorem 2.2 immediately follows from Theorem 2.1. In particular, to prove
part (a), apply Theorem 2.1 to the r×r principal submatrix of Tn (where r = n− n

k+1)
obtained by deleting the (i(k + 1))th rows and columns of Tn for i = 1, 2, . . . , n

k+1 .

This submatrix is the block diagonal matrix Diag(T̃1, . . . , T̃ n
n+1

). To prove part (b),

apply Theorem 2.1 to the (n − 1) × (n − 1) principal submatrix of Tn obtained by
deleting the ith row and column of Tn; this submatrix is the 2 × 2 block diagonal
matrix Diag(Tj , T̂n−j−1).

Remark 2.1. To extend part (a) to the case of any n, apply Theorem 2.2 to the
tridiagonal matrix

(
Tn O
O qIs

)

for an appropriate s < 2k + 2 and any fixed real q, where Is is the s × s identity
matrix.

Apply part (a) of Theorem 2.2 for k = 1, then modify it by replacing T̃i by the
1-by-1 matrices (a2i) for i = 1, . . . , n2 , and thus arrive at Corollary 2.1.

Corollary 2.1. If n is a multiple of 4, {σ1 ≤ σ2 ≤ · · · ≤ σn
2
} = {a2i−1, i =

1, . . . , n2 }, {θ1 ≤ θ2 ≤ · · · ≤ θn
2
} = {a2i, i = 1, . . . , n2 }, then

λn
4
≤ σn

4
≤ λ 3

4n
, λn

4
≤ θn

4
≤ λ 3

4n
.

Corollary 2.1 in a weaker form has been proven in [BFKT], where it states some
properties of the zeros of the polynomials generated by the Euclidean scheme for the
two polynomials p(λ) = det(λI − Tn) and p′(λ) and where it is used in order to solve
the root-finding problem in NC for a polynomial having only real zeros. The result of
part (b) of Theorem 2.2 has been proven in [BOT], still in terms of the zeros of the
polynomials generated by the Euclidean scheme. The proofs in both papers [BFKT]
and [BOT] are quite intricate, whereas the matrix formulation of these properties is
a straightforward consequence of Theorem 2.1, and the results can be immediately
extended to polynomial zeros (as we pointed out in the introduction).

Let us again apply the Courant–Fischer theorem in order to obtain still another
interlacing set for the set Λ of the eigenvalues of Tn; this time, we will rely on a
suitable rank-one modification of the matrix Tn (cf. Remark 2.1 at the end of this
section).

Theorem 2.3. Let {φ1 ≤ φ2 ≤ · · · ≤ φn} be the set of all the eigenvalues of the
matrices Sk = Tk− Diag(0, . . . , 0, bk), Rn−k = T̂n−k− Diag(bk, . . . , 0), where Tk and
T̂n−k are defined in Theorem 2.2. Set φn+1 = φn + 2bk, φ0 = φ1 + 2bk.

If bk > 0, then

φi ≤ λi ≤ φi+1, i = 1, . . . , n.

If bk < 0, then

φi−1 ≤ λi ≤ φi, i = 1, . . . , n.

Proof. Theorem 2.3 follows from Theorem 8.1-5 of [GL, p. 412], applied to the
matrix equation

Tn = Diag(Sk, Rn−k) + 2bkee
T ,

1104 DARIO BINI AND VICTOR Y. PAN

where e = (ei), ei = 1/
√

2 for i = k, and i = k + 1, ei = 0 elsewhere.
A different proof of Theorem 2.3 is given in [Cu] and [BNS], where this theorem

is used for separating the eigenvalues of an rst-matrix as a basis for devising practi-
cally effective divide-and-conquer algorithms for approximating the eigenvalues and
eigenvectors of rst-matrices. As in [BNS] and [Cu], we may extend our algorithm
to computing the eigenvectors of Tn, although our approach does not require us to
compute the eigenvectors if we only need to compute the eigenvalues.

Remark 2.2. The algorithm supporting our asymptotic complexity estimates can
be based on Theorems 2.2 or 2.3 as well. Application of Theorem 2.3 leads to some
advantages for practical computation, particularly due to the possibility of using the
so-called secular function (cf. [Cu], [BP92]).

3. Computing the number of the eigenvalues in the intervals of nearly
interlacing sets. With a set interleaving the zeros of p(λ) (and the eigenvalues of Tn)
available, the subsequent approximations to these zeros (and to these eigenvalues) are
obtained by using more customary techniques of [BOT]; for the sake of completeness,
we will elaborate a modification of these techniques in this section and in section 4.
(Some additional care is required here since we actually start not with an interlacing
set but with its approximation.) The resulting algorithm consists of three main stages.
At the first stage, specified in this section, we approximate some eigenvalues of Tn
within a required error bound and cover each remaining eigenvalue by a real line
interval containing no other eigenvalues of Tn. Such an eigenvalue may lie arbitrarily
close to the end of the interval and, consequently, to other eigenvalues of Tn. However,
the second stage ensures sufficiently strong isolation of all such eigenvalues from each
other (by means of the bisection and the double exponential sieve algorithms). In the
third stage, we rapidly approximate the isolated eigenvalues by means of Newton’s
iteration. The second and the third stages are described in section 4.

Now, let the set {d0, . . . , dn} interleave the set Λ of the eigenvalues of Tn,

d0 < λ1 ≤ d1 ≤ λ2 ≤ d2 ≤ · · · ≤ dn−1 ≤ λn < dn.(3.1)

Let the pairs, d−i , d+
i , of approximations to the real points di be given for

i = 1, . . . , n− 1, such that for a fixed ∆, we have

d+
i − d−i = 2∆, d−i ≤ di ≤ d+

i , i = 0, . . . , n;(3.2)

that is, the values di lie in the intervals

Ii = {λ : d−i ≤ λ ≤ d+
i }, i = 0, . . . , n.(3.3)

Let us be given ∆, d−i , d+
i = d−i +2∆ for i = 0, . . . , n, and the black box subrou-

tine for the exact evaluation of the value at point λ of the characteristic polynomial
of Tn,

p(λ) = det(Tn − λI).(3.4)

In this section, for every eigenvalue λj of Tn (for j = 1, . . . , n), either we will compute
its approximation, within the absolute error bound 2∆, or we will determine that the
interval

Kj = {λ : d+
j−1 ≤ λ ≤ d−j−}(3.5)

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1105

contains λj and no other eigenvalues of Tn. This problem was solved in [BOT]; we
propose an alternative solution.

With no loss of generality, we assume that

p(d−i) p(d+
i) 6= 0, i = 0, . . . , n,(3.6)

and we will use the next definition and simple auxiliary results implied by (3.1)–(3.6).

Definition 3.1. The number of the eigenvalues of Tn in a real interval I is
called the index of I and is denoted c(I).

Proposition 3.1. Any interval Kj cannot contain more than one eigenvalue of
Tn.

Proposition 3.2. d−i ≤ λi+1 ≤ d+
i+1, for i = 0, 1, . . . , n− 1.

Corollary 3.1. If Ii ∩ Ii+1 ∩ · · · ∩ Ii+h 6= �, then the points λ̃i+j = 1
2 (d−i+j +

d+
i+j−1) approximate λi+j within the absolute error bound 2∆ for j = 1, 2, . . . , h.

Moreover, h ≤ c(I), where I = {λ : d−i ≤ λ ≤ d+
i+h}. Furthermore, c(I) ≤ h + 2, if

in addition, Ii−1 ∩ Ii = Ii+h ∩ Ii+h+1 = �.

We will also use the following simple fact.

Proposition 3.3. Let p(a)p(b) 6= 0, I = {λ : a ≤ λ ≤ b}. Then p(a)p(b) < 0 if
and only if c(I) is odd.

Algorithm 3.1.

Input: Positive rational ∆, an integer n, and a set of rational numbers D =
{d−i , d+

i , i = 1, . . . , n − 1} ∪ {d+
0 = −3(2−m), d−n = 3(2m)} such that (3.1), (3.2),

and (3.6) hold, and d+
0 ≤ λ1, λn ≤ d−n (compare (2.1)).

Output: For every j, j = 1, . . . , n, either the interval Kj of (3.5) containing a

unique eigenvalue λj of Tn or an approximation λ̃j to λj such that |λj − λ̃j | < 2∆.

Stage 1 (form the union of the overlapping intervals): For i = 0 and for every
i such that d+

i < d−i , determine the maximum h = h(i) such that d+
i+j−1 ≥ d−i+j ,

for j = 1, . . . , h, letting h(i) = 0 if d+
i < d−i+1. Output λ̃i+j = (d−i+j + d+

i+j−1)/2,

j = 1, . . . , h. (By virtue of Corollary 3.1, |λi+j − λ̃i+j | ≤ 2∆.) Save the values
ηi = (d−i + d+

i)/2, νi+h+1 = (d−i+h + d+
i+h)/2 as candidates for being approximations

to λi and λi+h+1. Write

Ji,h = {λ : d−i ≤ λ ≤ d+
i+h} =

h⋃
j=0

Ii+j(3.7)

and observe that

λi ≤ d+
i = d−i + 2∆,

λi+h+1 ≥ d−i+h ≥ d+
i+h − 2∆,

so that

|λi − ηi| ≤ ∆ if λi ∈ Ji,h,

|λi+h+1 − νi+h+1| ≤ ∆ if λi+h ∈ Ii,h.

1106 DARIO BINI AND VICTOR Y. PAN

Stage 2 (define the indices of the intervals Kj of (3.5) and Ji,h of (3.7)): Compute
p(d−i) and p(d+

i) for all i. Recall the relations (3.5)–(3.7), Propositions 3.1 and 3.3,
and Corollary 3.1. For all i and j, define

c(Kj) =

{
0 if p(d−j+1) p(d

+
j) > 0,

1 otherwise,

c(Ji,h) = h+ 1 if

{
either h is even and p(d−i)p(d+

i+h) < 0,
or h is odd and p(d−i)p(d+

i+h) > 0;

otherwise, either c(Ji,h)− h = 0 or c(Ji,h)− h = 2.(3.8)

Output the set of indices j such that c(Kj) = 1, in which case λj−1 ∈ Kj .
Stage 3 (choose approximations among the candidate values): By the beginning

of this stage, for every j, j = 1, . . . , n, it has been determined whether

λj ∈ Kj+1 (see Stage 2)

or

|λj − λ̃j | ≤ 2∆ (for λ̃j defined in Stage 1),

or, otherwise, at least one of the next two bounds hold:

|λj − ηj | ≤ ∆,

|λj − νj | ≤ ∆.

It remains to distinguish between the two latter cases and to choose an approximation
to λj by one of the two candidates νj and ηj . This process relies on the two following
simple rules:

(a) For every interval Ji,h, of the two candidate values ηi and νi+h+1, exactly
c(Ji,h) − h values should be selected as approximations within ∆ to λi and/or λi+h

(due to the observations made at the end of the description of Stage 1).
As soon as we decide about selecting one of the two candidate values ηi and

νi+h+1, we apply the latter rule in order to decide if we should or should not select
another of the two candidates (recall that we know the parity of c(Kj)− h).

(b) For every j, j = 1, . . . , n, of the two consecutive candidate values νj and ηj ,
separated by the single interval Kj , exactly 1− c(Kj) values should be selected as an
approximation to the eigenvalue λj of Tn. (Indeed, d−j−1 < νj < d+

j−1 < d−j < ηj < d+
j

and d−j−1 ≤ λj ≤ d+
j , so that either d+

j−1 ≤ λj ≤ d−j , and then c(Kj) = 1, or

d−j−1 ≤ λj ≤ d+
j−1, and then |νj −λj | ≤ ∆, or d−j ≤ λj ≤ d+

j , and then |ηj −λj | ≤ ∆.)
Rule (b) implies that neither of the values νj and ηj should be selected if c(Kj) =

1; otherwise, we choose exactly one of them as an approximation to λj .
Recursive application of rules (a) and (b) completely defines the selection of the

approximations to λj among all the candidate values ηj and νj for all j provided
that we are given the values p(d+

i) and p(d−i) for all i and that we know whether
the leftmost interval Jj,h contains λj . The latter inclusion can be easily checked by
using (3.1), (3.2), and Propositions 3.1–3.3. We shall decrease the parallel time of this

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1107

selection process by using the following equivalent procedure (the equivalence can be
easily verified by inspection).

To select an approximation to λj by ηj or by νj , first partition the set S of all the
intervals Ji,h satisfying (3.8) into the maximal subsets whose consecutive intervals
are only interleaved with intervals Kj having indices 0 and with intervals Ji,h having
indices h + 1. Number the intervals in each maximal subset from left to right by
1, 2, For each subset, let N(i, h) denote the number assigned to the interval Ji,h
in this enumeration. Let δ = 0 if there is no interval Kj having index 1 to the left of
the subset and let δ = 1 otherwise. Then determine the indices of the intervals of the
subset as follows:

c(Ji,h) = h+ 1 + (−1)δ+N(i,h).(3.9)

Select both ηi and νi+h+1 as approximations within ∆ to λi and λi+h+1 if
c(Ji,h) = h+ 2 and select none of them if c(Ji,h) = h (according to rule (a)).

Finally, for every i such that c(Ji,h) = h + 1, apply rule (b) to select one of the
ηi and νi+h+1 as an approximation within ∆ to λi or to λi+h+1, respectively.

4. Approximation to the eigenvalues by using Newton’s iterations, dou-
ble exponential sieve, and the bisection method. In this section we will com-
plement Algorithm 3.1 with an algorithm that approximates (within a fixed absolute
output error ∆) an eigenvalue λj of Tn given a pair of real c and d, such that the
interval K = {λ : c ≤ λ ≤ d} contains only this eigenvalue of Tn. We will apply the
techniques of [BOT] and [R] based on the following result of [R].

Theorem 4.1. Let p(x) = an
∏n

i=1(x− ξi) be a polynomial. Let x(0) ∈ C be such
that |x(0) − ξ1| ≤ |x(0) − ξ2| ≤ · · · ≤ |x(0) − ξn|. If

|x(0) − ξ1| < 1

5n2
|x(0) − ξ2|,(4.1)

then the sequence x(i+1) = x(i) − p(x(i))/p′(x(i)), i = 0, 1, . . . , generated by Newton’s

method, converges to ξ1; moreover, |x(i) − ξ1| ≤ 23−2i |x(0) − ξ1|.
If we have an initial approximation x(0) such that c < x(0) < d and

|x(0) − λj | ≤ 1

5n2
min{x(0) − c, d− x(0)},(4.2)

then we may invoke Theorem 4.1 and use Newton’s iteration, thus arriving at the
desired approximation to λj in dlog log(0.8 d−c

∆n2)e Newton’s steps. This observation
leads us to the next procedure, which consists of the double exponential sieve process
(Stages 2 and 3), bisection (Stage 4), together ensuring (4.1), and Newton’s iteration
(Stage 5), which outputs a real point λ̃ such that

|λ̃− λ| ≤ ∆, λ = λj .(4.3)

Algorithm 4.1.
Input: Natural numbers c < d such that c < λ < d and a positive rational ∆.
Output: A rational λ̃ such that |λ− λ̃| < ∆.
Stage 1. If d − c < 2∆, then output λ̃ = c+d

2 and stop. Otherwise, set β = 0,
compute p(c) and p((c + d)/2), set c0 = c, d0 = d, and restrict further computations
to the interval [c, c+d

2] if p(c)p((c + d)/2) < 0 and to the interval [c+d
2 , d] otherwise.

Suppose, with no loss of generality, that p(c) < 0, p((c + d)/2) > 0, and perform the
following stages.

1108 DARIO BINI AND VICTOR Y. PAN

Stage 2. Set γ0 = (c0 + d0)/2 and apply the bisection of the exponents (also
called the double exponential sieve) procedure to the interval [c0, (c0 + d0)/2]; that

is, successively evaluate p(γi) for γi = c0 + (d0 − c0)2
−2i , i = 1, 2, . . ., until either

γi − c0 < 2∆ or γi − c0 < β or p(γi) ≤ 0. In the first case, output (c0 + γi)/2 and
stop; in the second case, set d0 = γi, x0 = (c0 + γi)/2 and go to Stage 4; otherwise,
set β = γi − c0 and go to the next stage. (Note that the second case may only occur
for β ≥ 2∆ > 0, that is, not at the first pass through Stage 2.)

Stage 3. Set c1 = γi and d1 = γi−1. (Note that d1−c1 ≥ c1−c0 ≥ 2∆.) Compute
p((c1 + d1)/2). If p((c1 + d1)/2) < 0, then set c0 = (c1 + d1)/2, d0 = d1 and go to the
next stage (in this case, λ ∈ [c0, d0] and d0 − c0 < min{c0 − c, d − d0}). Otherwise,
set c0 = c1, d0 = (c1 + d1)/2, and go to Stage 2.

Stage 4. Apply dlog(5n2)e bisection steps to [c0, d0] in order to find a starting
point x(0) satisfying (4.1).

Stage 5. Apply dlog log(0.8d0−c0
∆n2)e Newton’s steps (starting with x(0)) in order

to arrive at an approximation λ̃ to λ such that |λ̃− λ| < ∆.
Since β only grows, whereas d0 − c0 decreases by at least two times, in each

recursive call to Stages 2 and 3, there can only be O(log2(m+ log(∆−1))) such calls,
and there can only be O(log(m + log(∆−1))) Newton’s iteration steps at Stage 5
provided that −3(2m) < c < d < 3(2m).

5. Computing the values of the characteristic polynomial and its deriva-
tive at a set of points. We will concurrently apply Algorithm 4.1 to all the se-
lected intervals, each containing a single eigenvalue of Tn. At any of the O(log2(m+
log(∆(−1)))) steps we will have to compute the values p(λ) and p′(λ) at a set of at
most n points. In this section we will devise an algorithm for computing the values
of the characteristic polynomial p(λ) = pn(λ) = det(Tn − λI) of Tn and of its first
derivative at a given set of n points.

Due to the tridiagonal structure of the matrix Tn, we have the following three-
term recurrence for the polynomials pi(λ) = det(Ti − λI):

p0(λ) = 1, p1(λ) = a1 − λ,

pi+1(λ) = (ai+1 − λ) pi(λ)− b2i pi−1(λ), i = n− 1, n− 2, . . . , 1,(5.1)

or in the equivalent matrix form,

(
pi+1(λ)
pi(λ)

)
=

(
ai+1 − λ −b2i

1 0

)(
pi(λ)
pi−1(λ)

)
,

so that (
pi+1(λ)
pi(λ)

)
= Fi . . . F0

(
1
0

)
,(5.2)

Fj =

(
aj+1 − λ −b2j

1 0

)
, j = 0, . . . , i, b0 = 0.(5.3)

Now, we will compute the coefficients of p(λ). At this stage, we do not have to
restrict our computation to the real or complex case; we may allow the input entries
of Tn from any field F.

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1109

Algorithm 5.1.

Input: A positive integer n = 2h (compare Remark 2.1), and a1, . . . , an, b1, . . . , bn−1

(the entries of Tn, being the elements of a field F).

Output: α0, . . . , αn ∈ F, such that p(λ) = det(Tn − λI) =
∑n

i=0 αiλ
i.

Computation: First setH
(0)
j = Fj , j = 0, . . . , n−1; then, for i = 1, 2, . . . , log n =

h, compute H
(i)
j = H

(i−1)
2j+1 H

(i−1)
2j , j = 0, . . . , 2−in − 1, output the coefficients of the

polynomial p(λ) = (1 0)H
(h)
0 (1

0).

The ith level of the computation is essentially reduced to 8n/2i multiplications

of the entries of the matrices H
(i)
j , which are polynomials of degrees at most 2i, and

to four additions of the products. Over the complex or real fields F, this means
the OA(log n, n) cost bound at each level i [AHU], [BM]; that is, the overall cost of
Algorithm 5.1 is OA(log2 n, n).

Given the coefficients of p(λ), and therefore, of p′(λ), we may compute the values
of both p(λ) and p′(λ) on a fixed set of n points, at the cost OA(log2 n log log n,
n/ log log n) (see [AHU], [BM], [RT]).

Now recall that we apply Newton’s iteration to approximate the n eigenvalues
of Tn. Each Newton’s iteration step essentially amounts to computing the ratio
p(x)/p′(x) at n points, which now means the cost OA(log2 n log log n, n/ log log n),
and this is also an estimate for the cost of performing Algorithm 3.1.

Remark 5.1. Given the matrix Tn and a scalar x, p(λ) can be evaluated at
λ = x at the cost OA(log n, n). It is sufficient to apply Algorithm 5.1 replacing λ by
λ+ x and performing the computation modulo λ. The same computation modulo λ2

outputs the linear polynomial p(x) + p′(x)λ. Thus, given an n× n rst-matrix Tn, we
may compute p(λ) and p′(λ) at O(n) points at the cost OA(log n, n2), avoiding the
evaluation of the coefficients of p(λ). Even though the number of processors grows,
the numerical stability of the computations is greatly improved in this way, which
is the basis of the practical modification of our algorithm presented in [BP92]. The
latter algorithm actually uses a slightly different modification of Algorithm 5.1, which
yields the same output values of p(λ) and p′(λ) at the same computation cost but in,
numerically, a more stable way. Besides improved numerical stability, we have also
modified (in [BP92]) the isolation stage so as to bound the relative output errors,
which is important for practical implementation.

6. The main algorithm. By using the tools and steps described in the pre-
ceding sections, we will now devise our main algorithm for the approximation of the
eigenvalues of an n × n rst-matrix Tn with integer entries. This is a divide-and-
conquer algorithm, which recursively reduces the original computational problem to
two problems of half-size.

Algorithm 6.1.

Input: Two positive integers m and n, positive u; n integers a1, . . . , an and n−1
nonzero integers b1, . . . , bn−1, such that n is a power of 2 (compare Remark 2.1), |ai|,
|bi| ≤ 2m. (This input defines an rst-matrix Tn and the tolerance 2−u to the output
errors.)

Output: Reals γ1, . . . , γn such that |γi−λi| < 2−u, where λi are the eigenvalues
of Tn, i = 1, . . . , n.

Stage 1. Compute the coefficients of the characteristic polynomial of Tn by ap-
plying Algorithm 5.1.

1110 DARIO BINI AND VICTOR Y. PAN

Stage 2. Apply Algorithm 6.1 to the input set

u+ 1, m,
n

2
, a1, . . . , an

2−1, an
2
− bn

2
, b1, . . . , bn2−1,

which defines an rst-matrix Sn
2
, and to the input set

u+ 1, m,
n

2
, an

2 +1 − bn
2
, an

2 +2, . . . , an, bn2 , . . . , bn−1,

which defines an rst-matrix Rn
2
, thus obtaining approximations δ1 ≤ δ2 ≤ · · · ≤ δn

to the eigenvalues of Sn
2

and Rn
2

within the absolute error bound ∆ = 2−u−1. (The
matrices Sn

2
and Rn

2
have been defined in Theorem 2.3.)

Stage 3. Recall that the set of all the eigenvalues of Sn
2

and Rn
2

interleaves the

set {λi} (see Theorem 2.3), set d+
i = δi + ∆, d−i = δi −∆, and apply Algorithms 3.1

and 4.1, to obtain γ1, . . . , γn such that |γi − λi| < 2−u.
The overall cost of performing the algorithm is OA(log3 n log log n(log2 b+ log n),

n/ log log n), b = u+m, but this bound can be decreased to OA(log2 n log log n(log2 b+
log n), n/ log log n), since we need the output of Algorithm 4.1 with a precision lower
than b bits until we arrive at the stage of approximating the eigenvalues of the original
matix Tn (see the details in [BOT]).

Remark 6.1. An equivalent version of Algorithm 6.1 can be obtained by replacing
the matrices Sn

2
and Rn

2
at Stage 3 by the matrices Tn

2
and T̂n

2−1 of part (b) of
Theorem 2.2.

7. Bit-complexity estimates. We will prove the following result.
Theorem 7.1. Algorithm 6.1 can be implemented at the Boolean cost bounded by

OB(log(nb) log2 n(log2 b+ log n) log logn log log(bn), n2 b+logn
log log n), where |ai|, |bi| ≤ 2m,

b = m+ u.
The most expensive computations in Algorithm 6.1 are the evaluation of the

coefficients of the characteristic polynomial p(λ) of Tn at Stage 1, performed by means
of Algorithm 5.1, and the evaluation at Stage 3 of the values of p(λ) and p′(λ) on a set
of n points, performed by means of the multipoint polynomial evaluation algorithm
of [AHU], [BM].

We will use the following auxiliary result.
Theorem 7.2. Let n be a power of 2, k a positive integer, p = 2nk/2 + 1,

u(x) and v(x) two polynomials with coefficients in Zp (Zp is the ring of integers with
arithmetic modulo p), deg v(x) = n2 ≤ deg u(x) = n1 = O(n). Then the coefficients
of the polynomial

w(x) = u(x)v(x)

can be computed modulo p at the Boolean cost OB(log n log(nk) log log(nk), n2k).
Moreover, if the polynomial v(x) is monic, the coefficients of the two polynomials
q(x) and r(x) such that

u(x) = v(x)q(x) + r(x)

and degree(r(x)) < n2 can be computed modulo p at the Boolean cost bounded by

OB(log n log log n log(nk) log log(nk), n2k
log log n).

Proof. We just need to combine the known estimates from [AHU] and [RT]. The
Boolean cost of each arithmetic operation in Zp is OB(log d log log d, d), d = dlog pe

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1111

(see [AHU, p. 226], [RT]). Moreover, 2jk 6= 1 mod p, j = 1, . . . , n − 1, and 2nk =
1 mod p; that is, 2k is a primitive nth root of 1 in Zp, and any integer power of 2, in
particular, n, has its inverse in Zp. Therefore, in Zp, we may compute the product
of a pair of nth-degree polynomials, by means of three FFTs, at the arithmetic cost
OA(log n, n) and, therefore, at the Boolean cost OB(log n log(nk) log log(nk), n2k).
Finally, no divisions are needed for computing q(x) and r(x), since v(x) is monic, and
the computation can be performed in Zp by using the polynomial division algorithm
of [RT]. We arrive at the cost bounds OA(log n log log n, n/ log log n) and, therefore,

OB(log n log(nk) log logn log log(nk), n2k/ log log n).

Now, recall that the ith stage of Algorithm 5.1 (which evaluates the coefficients of
the characteristic polynomial of Tn) consists in evaluating 8(n/2i) products of pairs
of polynomials of degrees at most 2i−1 and having integer coefficients whose absolute
values are less than 2i+m2i+1

, for i = 1, 2, . . . , log n. Such coefficients are well defined
by their values modulo p = 2nk/2 + 1, already for k = 4m + 4. Therefore, we may
use integer arithmetic modulo p, apply Theorem 7.2, and deduce that the cost of
performing Algorithm 5.1 is given by

OB(log2 n log(nm) log log(nm), n2m).

This bound is dominated by the cost bound of Theorem 7.1, since b = m+ u, u > 0,
and Brent’s principle enables us to multiply the time bound by s = log logn and
simultaneously divide the processor bound by s.

Now, consider the evaluation of p(x) and p′(x) at a set of points γ1, γ2, . . . , γn. We
first observe that |γi| ≤ 2m+2, since γi, for i = 1, . . . , n, are approximations, within
absolute errors at most 2−u ≤ 1, to the eigenvalues of rst-matrices having the 1-norms
at most 3(2m). Moreover, we may consider γi a binary value, γi = yi/2

u+logn, where
yi is an integer, |yi| ≤ 2m+2+u+logn, since we are looking for an approximation within
the absolute error bound 2−u−logn. Therefore, the evaluation of p(γi) and p′(γi) can
be kept within the set of integers in the following way.

Consider Q(y) =
∑n

i=−1 αi2
(u+logn)(n−i)yi, where p(x) =

∑n
i=0 αix

i. The poly-
nomial Q(y) has integer coefficients, each represented with at most n(m+u+2 log n)
bits, and satisfies the following relation: Q(y) = 2(u+log n)np(x), y = 2u+lognx. More-
over, the size of the integers Q(yi) is bounded as follows:

|Q(yi)| ≤ 2n(2m+2u+3 log n+2) = 2nk/2, k = O(m+ u+ log n).(7.1)

Now, we apply the known algorithm for multipoint polynomial evaluation [AHU],
[BM], where we use integer arithmetic modulo p = 2nk/2 + 1 in the following way.

Recursively compute the coefficients of the monic polynomials S
(j)
i of degrees 2j ,

S
(0)
k = y − yk, k = 1, . . . , n,

S
(j)
i = S

(j−1)
2i−1 S

(j−1)
2i , i = 1, . . . ,

n

2j
, j = 1, . . . , log n− 1.

Recursively compute the coefficients of the polynomials r
(j)
k of degrees at most

n/2j ,

r
(0)
1 = Q(y),

1112 DARIO BINI AND VICTOR Y. PAN

r
(j)
2i−1 = r

(j−l)
i mod S

(log n−j)
2i−1 ,

r
(j)
2i = r

(j−l)
i mod S

(log n−j)
2i ,

i = 1, . . . , 2j−1, j = 1, . . . , log n, such that r
(log n)
k = Q(yk), k = 1, . . . , n. Combining

the relations (7.1) and Theorem 7.1 and recalling that b = m + µ, we deduce that
such a multipoint polynomial evaluation can be performed at the overall cost

OA(log2 n log log n, n/ log log n)

and, consequently,

OB(log2 n log log n log(nb) log log(nb), n2b/ log log n).

Therefore, Algorithm 6.1 can be carried out at the cost

OB(log2 n log(nb)(log2 b+ log n) log logn log log(nb), n2b/ log log n),

performing a total of

O(n2b log2 n log(nb)(log2 b+ log n) log log(nb))

bit-operations.

8. Discussion. We keep our results and proofs in their original form (cf. also
[BP91]) assuming the PRAM models, though this assumption is not pertinent to
the efficiency of our algorithms. Since the time of the submission of the present pa-
per, some related results have appeared. The recent divide-and-conquer algorithms of
[P95], [P96] approximate within 2−b all the n complex zeros of any nth-degree polyno-
mial, with its zeros in the unit disc, by using O(n log2 b log2 n) arithmetic operations
or O((b + n)n2 log2 n log(bn) log log(bn)) bit-operations; moreover, these algorithms
have NC- and processor-efficient parallelization. The latter complexity bounds apply
to any polynomial and are only slightly inferior to the current record bounds of the
[BOT] and the present paper, which are restricted to the case where all the zeros of
p(x) are real. Combining the results of [P95], [P96] with the known algorithms for
computing the coefficients of the characteristic polynomial of a general n × n ma-
trix A gives an NC- and processor-efficient algorithm for the unsymmetric eigenvalue
problem for A. On the other hand, the algorithms of [P95], [P96] do not extend
directly to approximating the eigenvalues of unsymmetric matrices; extension of the
divide-and-conquer techniques to the latter problem is a challenging open problem of
practical importance.

Some minor improvements of the parallel complexity estimates of the present pa-
per are possible, for instance, due to the recent improvement of parallel polynomial
division achieved in [BP93] or via replacement of some integer divisions by multipli-
cations.

The algorithm of this paper has several attractive features for its practical ap-
plication; in particular, its computational cost is low, and its rapid convergence is
guaranteed even where the input rst-matrix has clustered eigenvalues. The only ma-
jor obstacle for the practical implementation is the stage of fast multipoint polynomial
evaluation, which is known to be numerically unstable. There are two ways out of this
difficulty, not counting recent progress in improving multipoint polynomial evaluation

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1113

(cf. [P95a], [PSLT], [PZHY]). One way, elaborated upon in [BP92], [B], and [BG1],
proceeds by replacing the latter stage by slower but numerically stable computation.
Another way, proposed and elaborated in [GE], relies on replacing the stage of mul-
tipoint polynomial evaluation by solving the associated secular equation by means of
the multipole algorithm of [Ro85]. Unfortunately, [GE] deceptively claims its con-
tribution to decreasing the known estimates for the computational complexity of the
symmetric tridiagonal eigenproblem. In fact, the paper [GE] contains neither compu-
tational complexity estimates nor proper analysis of the case of clustered eigenvalues
(effectively treated by the techniques of [BOT], [BP91], and [BP92]). Furthermore,
[GE] fails to inform its readers about the existence of the much earlier papers [BOT],
[BP91], and [BP92], with faster algorithms for the rst-eigenvalues, whereas compari-
son and, perhaps, combination of the techniques and the results of these papers with
ones of [GE] could be informative and useful for the study of the symmetric tridiago-
nal eigenproblem. We also recall the papers [R93] (as the rediscovery of [BOT]) and
[R97], whose main result (on multipoint polynomial evaluation) repeats one of [PSLT]
and [PZHY].

Appendix A.

A.1. Reduction of approximating polynomial zeros to approximating
matrix eigenvalues. Let p(x) be a polynomial of a degree n having integer coef-
ficients in the range from 2m to 2m and having only real zeros. There exist many
n×n rst-matrices Tn whose characteristic polynomials are proportional to p(x), that
is, equal to p(x) = pn(x) after their appropriate normalization. We may specify Tn
much better if, in addition to pn(x), we will fix the characteristic polynomials pn−1(x)
of Tn−1, the (n − 1) × (n − 1) leading principal submatrix of Tn, and apply the ex-
tended Euclidean algorithm to pn(x) and pn−1(x). Suppose that we have chosen
pn−1(x) such that this algorithm performs all its n− 1 recursive steps, producing the
(n − 1 − i)th-degree polynomial in the ith step, for i = 1, . . . , n − 1. (This holds, in
particular, if p(x) has only real zeros and if pn−1(x) = −p′(x).) Then, due to (5.1),
p(x) = pn(x) is the characteristic polynomial of an rst-matrix Tn whose entries ai, bi
satisfy (5.1) for all i, and such a matrix Tn is defined uniquely, except that we may
vary the signs of bi as we like.

Let us analyze the complexity and errors of these computations assuming that
pn−1(x) = −p′(x). Then the computation by the extended Euclidean algorithm can
be performed at the cost bounded by OA(n log2 n, 1) [AHU] or OA(log3 n, n2/ log n)
[BP94]. Combining these bounds with the cost bounds of Algorithm 6.1 implies the
estimates OA(n log2 n(log2 b+log n), 1) and OA(log2 n(log2 b+log n), (n/ log b)2/ log n)
for the sequential and parallel arithmetic complexity of approximating the zeros of
a polynomial having only real zeros (compare [BOT]), and similarly, the sequential
and parallel Boolean complexity estimates for approximating the zeros of p(x) can
be reduced to the estimates for Boolean complexity of the extended Euclidean com-
putations and approximating the eigenvalues of Tn. The estimates for the sequential
Boolean complexity and for the parallel Boolean time of the latter stage dominate
the respective estimates for the overall complexity of approximating the zeros of p(x),
whereas the opposite is true for the bit-serial processor bound.

We will conclude this part of the appendix with two theorems that will enable us
to bound the precision of the entries of Tn remaining within a prescribed tolerance
to the errors of approximating the eigenvalues of Tn. As before, let ai, i = 1, . . . , n,
and bj , j = 1, . . . , n − 1, denote the diagonal and the subdiagonal entries of Tn,
respectively. We do not assume any bounds on ai and bj but will deduce them.

1114 DARIO BINI AND VICTOR Y. PAN

Theorem A.1. The entries of Tn have absolute values at most 2m+1.5.
Proof. Due to the Cauchy well-known bounds on the magnitudes of polynomial

zeros, the zeros of p(x) have absolute values at most 1+2m < 2m+1. Due to Theorem
2.1, for r = 1, the diagonal entries of Tn, that is, a1, . . . , an, have absolute values at
most 2m+1. By applying Theorem 2.1 with r = 2, we deduce that the eigenvalues of
all the 2× 2 submatrices

(
ai bi
bi ai+1

)

have absolute values at most 2m+1, that is, |aiai+1 − b2i | ≤ 22m+2; whence |bi| ≤
2m+1.5.

On the other hand, the eigenvalues of Tn are not very sensitive to the pertubation
of the entries.

Theorem A.2. Let T̂n be an rst-matrix having diagonal and subdiagonal entries
ãi, i = 1, . . . , n, and b̃j, j = 1, . . . , n−1, respectively, such that |ãi−ai|, |b̃j−bj | ≤ 2−ν ,
i = 1, . . . , n; j = 1, . . . , n − 1. Then for any eigenvalue λi of Tn, there exists an
eigenvalue λ̃i of T̃n such that |λ̃i − λi| ≤ 3(2−ν).

Proof. Theorem A.2 follows from the Bauer–Fike theorem (see [GL, p. 342])
applied for the Euclidean norm, since ‖T̃ − T‖2 ≤ 3(2−ν).

From the above theorems, we deduce that the rst-matrix T̃n obtained by setting
ãi = d2νaie, b̃j = d2νbje has integer entries with absolute values at most 2ν+m+1.5;

furthermore, its eigenvalues, divided by 2−ν , yield approximations λ̃i to the eigenval-
ues of Tn such that |λ̃i− λi| ≤ 3(2−ν). Thus, to insure the latter bound, it suffices to
compute the entries of Tn with the precision of dν +m+ 1.5e bits.

A.2. Reduction of a Hermitian or real symmetric matrix to the tridi-
agonal form. Various randomized techniques are well known [GL] for the reduction
of an n × n Hermitian or real symmetric matrix A to an rst-matrix Tn via simi-
larity transformations (which leave invariant the eigenvalues and the characteristic
polynomial of A). In [P87] and [BP94, Proposition 5.4, p. 325], a parallel implemen-
tation of such a tridiagonal reduction is shown and is analyzed. In particular, in the
implementation of [BP94], tridiagonal reduction is essentially reduced

(a) to computation of the 2n + 1 scalars hi = ~pTAi~q, i = 0, 1, . . . , 2n, for two
random column vectors ~p and ~q, and

(b) to the LDLT (triangular) factorization of the associated Hankel matrix H =
(hi,j), hi,j = hi+j , i, j = 0, 1, . . . , n− 1.

The overall computational cost of such a reduction can be bounded by OA(log2 n,
n3/ log n) or, alternatively, by OA(log3 n, P (n)/ log n), provided that a pair of n × n
matrices can be multiplied at the cost bounded by OA(log n, P (n)/ log n), P (n) =
O(n2.38).

Acknowledgments. The authors thank Prasoon Tiwari for kindly supplying a
copy of [BOT] and the referee for helpful comments.

REFERENCES

[AHU] A. V. Aho, J. E. Hopcroft, and J. D. Ullman, The design and analysis of computer
algorithms, Addison-Wesley, Reading, MA, 1976.

[B] D. Bini, Divide and conquer techniques for the polynomial root-finding problem, in Proc.
1st World Congress of Nonlinear Analysts, Tampa, FL, 1992, V. Lakshmikantham,
ed., Walter de Gruyter, Berlin, 1996, pp. 3885–3896.

COMPUTING MATRIX EIGENVALUES AND POLYNOMIAL ZEROS 1115

[BFKT] M. Ben-Or, E. Feig, D. Kozen, and P. Tiwari, A fast parallel algorithm for determining
all roots of a polynomial with real roots, SIAM J. Comput., 17 (1988), pp. 1081–1092.

[BG1] D. Bini and L. Gemigniani, Iteration schemes for the divide-and-conquer eigenvalue
solver, Numer. Math., 67 (1994), pp. 403–425.

[BM] A. Borodin and I. Munro, The Computational Complexity of Algebraic and Numeric
Problems, American Elsevier, New York, 1975.

[BNS] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, Rank-one modification of the sym-
metric eigenproblem, Numer. Math., 31 (1978), pp. 31–48.

[BOT] M. Ben-Or and P. Tiwari, Simple algorithm for approximating all roots of a polynomial
with real roots, J. Complexity, 6 (1990), pp. 417–442.

[BP91] D. Bini and V. Y. Pan, Parallel complexity of tridiagonal symmetric eigenvalue problem,
in Proc. 2nd Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New
York, and SIAM, Philadelphia, 1991, pp. 384–393.

[BP92] D. Bini and V. Y. Pan, Practical improvement of the divide-and-conquer eigenvalue
algorithms, Computing, 48 (1992), pp. 109–123.

[BP93] D. Bini and V. Y. Pan, Improved parallel polynomial division, SIAM J. Comput., 22
(1993), pp. 617–627.

[BP94] D. Bini and V. Y. Pan, Matrix and Polynomial Computations, Volume 1: Fundamental
Algorithms, Birkhauser, Boston, 1994.

[Br] R. P. Brent, The parallel evaluation of general arithmetic expressions, J. Assoc. Comput.
Mach., 21 (1974), pp. 201–208.

[Cu] J. J. M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenprob-
lem, Numer. Math., 36 (1981), pp. 177–195.

[GE] M. Gu and S. C. Eisenstat, A divide-and-conquer algorithm for the symmetric tridiag-
onal eigenproblem, SIAM J. Matrix Anal. Appl., 16 (1995), pp. 172–191.

[GL] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins Univ.
Press, Baltimore, MD, 1989.

[Pan 87] V. Y. Pan, Complexity of parallel matrix computations, Theoret. Comput. Sci., 54 (1987),
pp. 65–85.

[P87] V. Y. Pan, Sequential and parallel complexity of approximate evaluation of polynomial
zeros, Comput. Math. Appl., 14 (1987), pp. 591–622.

[P95] V. Y. Pan, Optimal (up to polylog factors) sequential and parallel algorithms for approxi-
mating complex polynomial zeros, in Proc. 27th Annual ACM Symposium on Theory
of Computing, ACM, New York, 1995, pp. 741–750.

[P95a] V. Y. Pan, An algebraic approach on approximate evaluation of a polynomial on a set of
real points, Adv. Comput. Math., 3 (1995), pp. 41–58.

[P96] V. Y. Pan, Optimal and nearly optimal algorithm for approximating complex polynomial
zeros, Comput. Math. Appl., 31 (1996), pp. 97–138.

[Par] B. N. Parlett, The Symmetric Eigenvalue Problem, Prentice-Hall, Englewood Cliffs,
NJ, 1980.

[PSLT] V. Y. Pan, A. Sadikou, E. Landowne, and O. Tiga, A new approach to fast polynomial
interpolation and multipoint evaluation, Comput. Math. Appl., 25 (1993), pp. 25–30.

[PZHY] V. Y. Pan, A. Zheng, X. Huang, and Y. Yu, Fast multipoint polynomial evaluation
and interpolation via computations with structured matrices, Ann. Numer. Math., 4
(1997), pp. 483–510.

[Ro85] V. Rokhlin, Rapid solution of integral equations of classical potential theory, J. Comput.
Phys., 60 (1985), pp. 187–207.

[RT] J. H. Reif and S. H. Tate, Optimal size integer division circuits, in Proc. 21st ACM
Symposium on Theory of Computing, ACM Press, New York, 1989, pp. 264–270.

[R] J. Renegar, On the worst-case arithmetic complexity of approximating zeros of polyno-
mials, J. Complexity, 3 (1987). pp. 90–113.

[R93] J. H. Reif, An O(n log3 n) algorithm for the real root problem, in Proc. 34th Annual
IEEE Symposium on Foundations on Computer Science, IEEE, Piscataway, NJ, 1993,
pp. 626–635.

[R97] J. H. Reif, Approximate complex polynomial evaluation in near constant work per point,
in Proc. 29th Annual ACM Symposium on Theory of Computing, ACM, New York,
1997, pp. 30–39.

