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A b s t r a c t - - W e  review, modify, and combine together several numerical and algebraic techniques 
in order to compute the determinant  of a matrix or the  sign of such a determinant.  The resulting 
algorithms enable us to obtain the solution by using a lower precision of computat ions and relatively 
few ari thmetic  operations. The problem has important  applications to computat ional  geometry. 

K e y w o r d s - - E v a l u a t i o n  of the determinant,  Sign of the determinant,  Matrix singularity test, 
Modular (residue) arithmetic,  Rounding error analysis. 

1. I N T R O D U C T I O N  

1.1.  T h e  S u b j e c t  a n d  S o m e  B a c k g r o u n d  

We s tudy the classical problems of the computat ion of the determinant  of a matr ix  or testing 
if the determinant  vanishes, tha t  is, if the matr ix  is singular. These problems have a long 

history (see, for instance, [1-11]) and have recently received a new major  motivation, due to their 
impor tant  applications to geometric computations,  such as computat ion of convex hulls and 
Voronoi diagrams, and testing if the line intervals of a given family have a nonempty  common 
intersection. In such applications, one needs sign or singularity tests, tha t  is, one needs either to 
test  if det A > 0, det A = 0, or det A < 0, for an n × n matr ix  A, or just to test  whether det A = 0 
or not. In one group of these applications, n is relatively small [12,13], ranging from 2 to 10, but 
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mostly staying below 5, and the entries of A represent high precision approximations to real data. 
In this class of applications, computations are usually performed with the 64-bit double precision 
(where either floating point arithmetic with about 50 bits allocated to the mantissas is used or 
fixed point representation with the double precision of 64 bits is used), though [13] also proposes 
a single precision approach. In another major group of geometrie applieations [14-20], one needs 
to know orientation of a high-dimensional polyhedron or of a high-dimensional algebraic variety 
(say, for the problems of convex optimization in statistical physics and chemistry). Then the 
range for n is on a much higher level, say, from 100 to 500, whereas the entries of the input 
matrix A can be represented with a lower precision of 5 to 10 bits. In both of these groups of 
applications, the matrix A can be either fixed or updated dynamically, so that  every time only 
one of its columns (or one of its rows) is changing. 

In this paper, we study some effective approaches to the sign and singularity testing and to 
the determinant computation. We view this classical and modern topic as a good occasion for 
demonstrating the power of combining algebraic and numerical computational techniques. 

Let us first recall some previous work. If n = 2 or n = 3, one may try to compute det A (so 
as to output  its sign) by using no division and based on its decomposition det A -- Y]~=0 a0,j 
( -1)J- lA0, j ,  where Ao,j is the minor of A = (ai,j) complementing the entry ao,j. In this ease, 
however, one either risks losing the correct answer due to rounding errors or one generally needs to 
double or triple the input precision, which can be prohibitive for some computer implementations. 
In this and other eases, one may avoid involving higher precision values by performing elementary 
transformations of A (that is, by interchanging its rows and/or  columns and by replacing a row 
or a column by its linear combination with other rows or columns of A). Successful work in 
this direction can be traced back to [6-8], where the computations were performed in rational 
arithmetic, with no roundoff errors. The recent paper [13] shows how to bound the precision 
of computations more effectively in the case where n _< 3 (the method remains fairly effective 
for n = 4) and where the objective is not the computation of det A but only of its sign. The 
algorithm of Clarkson [12] competes with one of [13] for n _< 4 and supersedes it for larger n. 
It relies on the application of the modified Gram-Sehmidt algorithm for the QR (orthogonal) 
faetorization of A, which is known to lead to quite effective approximate solution and whieh 
Clarkson has extended to the provably correct computation of the sign of the determinant. As 
an example of distinct approaches, we will cite the algorithms that  test some classes of geometric 
degeneracies by relying on small (linear) perturbations of the input parameters (ef. [21]), and we 
refer the reader to [22], for further information and bibliography. 

A simple sketchy argument [23] suggests that,  under some restricted model of computing, 
even the singularity test (verifying whether det A = 0) has the same asymptotic arithmetic 
complexity as the evaluation of det A. Furthermore, under the straight-line program model 
(with no branchings), the evaluation of de tA and A -1 has the same asymptotic arithmetic 
complexity. (The proof of the latter property relies on the partial derivative theorem [24,25].) 
These considerations suggest that  decreasing the arithmetic cost of computing the sign of det A 
is quite a hard problem. 

1.2. O u r  S tudy .  N u m e r i c a l  a n d  Algebra ic  A p p r o a c h e s  

Our main goal in the present paper is the easier task of decreasing the bit-precision required 
in algorithms for computing det A or its sign (without blowing up the arithmetic complexity 
bounds), and such a decrease is highly important for practical applications to computational 
geometry. 

We do not confine our study to a single algorithm but consider a broad range of various 
techniques of numerical linear algebra and rational aigebraie computations (with no errors). 

In particular, numerical algorithms for computing various factorizations of the input matrix A 
(that is, its orthogonal (QR) and its triangular (PLUP1, PLU, and LU) faetorizations) seem to 
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be the most effective basis for computing the sign of det A provided that  I det A[ is large enough, 
relatively to computer precision. Indeed, the sign of det A can be immediately read off from the 
signs of the diagonal entries of the computed triangular matrices, that  is, either R or L and U, 
respectively. To verify if this output is correct, we estimate the output error caused by the 
accumulation of the rounding errors of our floating point computation with finite precision. This 
enables us to obtain both the product d of the diagonal entries of R or L and U, and a positive e 
such that  det A is bracketed in the interval d - e _< det A _< d + e. Generally, for numerical 
computations, such goals can be achieved by means of interval analysis (see, e.g., [26]), but in 
our case, Wilkinson's techniques of backward error analysis and their extensions give us smaller 
bounds e; moreover, we analyze various algorithms for factorization of A, so as to be able to 
decrease e. 

If e < [d I, then d and det A have the same sign, and our main problem of the sign computation 
is solved. It remains to compute the sign of de tA in the case where e _> [d[, that  is, where 

IdetAI < Id] + e  < 2e. (1.1) 

According to the known estimates, based on the backward error analysis and recalled in our 
Sections 4 and 6, e is proportional to the upper bound e = 2 -~ on the magnitudes of the relative 
rounding errors, where f~ denotes the computer precision. Thus, if the inequalities (1.1) hold, 
I det A I tends to be substantially smaller than its a priori upper bound NAIl n. (The numerical al- 
gorithms for computing det A or its sign, the analysis of these algorithms, and the error estimates 
are the subjects of Part I, Sections 3-6.) 

Now, if I det A I is not large, then our problem of obtaining the sign of det A by using computa- 
tions with a lower precision is more easily treated by means of algebraic methods, which we study 
in Part  II, Sections 7-15. In principle, the latter methods can be applied based on any upper 
bound on I det A I but become more effective in the cases where I det A I is smaller, thus comple- 
menting the numerical approach. (The algebraic methods are applied to integer matrices; a real 
matrix can be turned into an integer matrix via its scaling after rounding-off its entries.) Indeed, 
if the computed value d, approximating det A numerically, within an absolute error bound e, 
turns out to have a relatively small magnitude Idl, then it suffices to compute (det A) mod M, 
for any integer M exceeding 2(e + Idl) (see Section 7, Fact 7.1). This only requires computations 
with a precision of [log 2 M] or fewer bits. 

Furthermore, assuming that  an upper bound M on 21 det A I + 1 is available, we study two 
customary algebraic approaches to computing (det A) mod M; both of them are performed with 
a much lower precision than [log 2 M],  except for their final stages, involving fewer arithmetic 
operations. Actually, our approach based on the Chinese remainder theorem and presented 
in Sections 7-11, requires lower precision computations even at the final stage, provided that  
our task is restricted either to testing matrix singularity (see Section 8) or, more generally, to 
determining whether [ det A I is bounded from above by a fixed moderately large number, and if 
so, to computing det A (see Section 9). Moreover, even in the general case of any input matrix A, 
we decrease the precision of computing at the final stage, at the price of a respective moderate 
increase of the arithmetic cost (see Section 11, Theorem 11.1). This is achieved by means of 
replacing arithmetic operations with "long" integers by the same operations with associated 
polynomials having "short" integer coefficients; such a process reverses the known method of 
binary segmentation (see, e.g., [11, pp. 277-279; 27]). In Section 11, we show how to make all 
operations with associated polynomials "linear"; the class of such operations, besides additions 
and subtractions, only includes multiplications and divisions by "short" integers, rather than by 
polynomials. By avoiding more complicated codes and subroutines for dealing with nonlinear 
multiprecision arithmetic, we keep our algorithms for the sign of det A more readily accessible for 
practical implementation. In Sections 12-15, we specify algorithms that  compute (det A) mod M 
by using a low precision of computing and by relying on p-adic (Newton-Hensel's) lifting, rather 
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than on the Chinese remainder theorem. For matrices A having larger norms, this approach 
generally involves multiplications of pairs of "longer" integers or of their associated nonconstant 
polynomials, besides linear operations. Among the possible alternative algorithms, we briefly 
examine (in Section 16) the straightforward algorithms ameliorated by means of our approach of 
Section 11; then again only linear operations with the associated polynomials are involved in this 
case. The resulting amelioration may make the algorithms practically competitive for small n. 

1.3. ~ a r t h e r  C o m m e n t s  

Our techniques of Sections 11, 13, and 14 for decreasing the precision required in the Chi- 
nese remainder and p-adic computations, and also our refinement of the estimates of [28,29] for 
the probability that (det A)mod p vanishes for a random prime p provided that det A ~ 0 (cf. 
Appendix A) may be of some independent interest for the designers of algebraic algorithms. 

The power of the proposed techniques can be accentuated in their combination with other 
known ones. In particular, the techniques of [12] can be easily adjusted to the task of numer- 
ical factorization, which we face in Sections 3-6, though we prefer to use Gaussian elimination 
with pivoting, the Householder and/or Givens algorithms to using the modified Gram-Schmidt 
algorithm (see Remark 4.2 of Section 4, and Remark 6.4 of Section 6); the techniques of [13] nat- 
urally complement ours (in the case of smaller n) as an additional means of filtering off the case 
of absolutely large determinants, and a substantial acceleration of numerical factorization of A 
and of algebraic computation of (det A) mod M can be achieved by means of parallel process- 
ing. (See Remark 10.1 in Section 10 on parallel acceleration of algebraic algorithms for matrix 
factorizations, see [30,31] on parallelization of numerical factorization algorithms, and observe 
that at least the first two stages of each of our Algorithms 7.1, 8.1, and 9.1 can be performed 
concurrently in i, for i = 1 , . . . ,  k, by using k processors.) 

Presenting the estimates for the complexity of matrix factorization and of performing our other 
algorithms, we show these estimates either exactly or in the form cn3+ O(n 2) or cn3-[ - O ( n  2 log n), 
where we specify the constant c. (This is more precise than, for instance, in [12,13], where such 
bounds have been given in the form O(na).)  The form cn 3 +O(n2), with a specified c is customary 
in the field of matrix computations [30], and we have ignored the possible theoretical improvement 
of these estimates based on fast matrix multiplication (cf. [11,30]). We have estimated the 
sequential arithmetic cost of the presented tests and algorithms, but for several of them, effective 
parallel implementations are well known [11,30,31]. For those applications to computational 
geometry where n is small, the asymptotic computational complexity bounds are only partially 
informative, however, and the decisive comparison of the proposed algorithms with each other 
should rely on experimental tests. 

For convenience, we will formally study the evaluation of det A, even though we actually care 
most about computing its sign, due to the major applications to computational geometry. 

1.4. Organiza t ion  of the  P a p e r  

After some preliminaries of Section 2, we present and analyze numerical algorithms for ap- 
proximating det A based on numerical factorizations of A (see Sections 3-6). In Sections 7-9, we 
describe the algebraic approach based on the Chinese remainder theorem, and in Sections 12-15, 
we rely on p-adic (Newton-Hensel's) lifting. In Section 10, we describe the auxiliary computation 
of det A modulo a fixed prime, required in Sections 7-9, 12, and 15. We show our techniques 
for decreasing the precision of the Chinese remainder computations in Section 11 and of p-adic 
computations in Sections 13 and 14. In Section 16, we examine the lower precision modifica- 
tions of the straightforward algorithms (for smaller n). Appendix A contains some estimates for 
the probability that reduction modulo a prime chosen at random in a fixed interval makes the 
determinant of a nonsingular integer matrix vanish. Parts I and II and Appendix A are due to 
the first author and represent his 1996 revision of his unpublished report of 1994 "Combining 
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Algebraic, Numerical and Randomization Techniques for the Determinant Computation." In Ap- 
pendix B, the three authors present their numerical experiments for Part  I. Improveda;gebraic 
and numerical solution algorithms can be found in [32] and in the authors '  paper with D. Bini 
(in preparation). 

P A R T  I. N U M E R I C A L  C O M P U T A T I O N  A P P R O A C H  

2. B A S I C  M A T R I X  F A C T O R I Z A T I O N S  

det A and its sign for an n × n integer, rational or real input matrix A can be immediately 
obtained from the factorizations: 

A = LU, (2.1) 

A = P L U ,  (2.2) 

A = P L U P i ,  (2.3) 

A = Q R ,  (2.4) 

where Q is a real n x n orthogonal (unitary) matrix, such that  

QT Q = I ,  (2.5) 

L T, U, and R are n x n upper triangular matrices, and P and P1 are permutation matrices, 
whose application to any vector v amounts to some fixed permutations of its coordinates. Here 
and hereafter, W T denotes the transpose of a matrix or a vector W, and I and O denote the 
identity matrices, I v  = v for any vector v, and the null matrices of appropriate sizes. The 
computat ion of det A based on (2.2)-(2.5) relies on the following well-known facts. 

FACT 2.1. det (SV) = (det S) det V, for any pair o f  n x n matrices S and V. 

n- -1  FACT 2.2. d e t T  = I-L=o ti,~, for any  n x n triangular matrix T = (ti,j, i , j  = 0 , . . . ,  n - 1). 

FACT 2.3. d e t P  = 1 or d e t P  = - 1 ,  for any  permuta t ion  matrix P; d e t I  = 1. 

FACT 2.4. d e t W  = d e t W  T, for any square matr ix W. 

COROLLARY 2.1. det Q = 1 or det Q = - 1 ,  for any  real square matr ix Q satisfying (2.5). 

3. S O L U T I O N  B A S E D  O N  G A U S S I A N  E L I M I N A T I O N  

Based on the equation (2.3) and Facts 2.1-2.3, we devise the following algorithm for computing 
det A and /or  its sign. 

ALGORITHM 3.1. 

I n p u t :  an n x n matrix A. 
O u t p u t :  det A. 
C o m p u t a t i o n s .  

1. Compute the matrices P ,  L, U, and Pi satisfying (2.3). 
2. Compute det P,  det L, det U, and det P1. 
3. Compute and output  

det A = (det P) (de t  L)(det  U)(det Pi) .  

Correctness of the algorithm immediately follows from Facts 2.1-2.3. 
If we only need to output  the sign of det A, then we only need to compute the signs of det P,  

det L, det U, and det Pi  at Stage 2 and to multiply these signs at Stage 3. 
The computation of the matrices P,  L, U, and P1 at Stage 1 goes by means of routine ap- 

plication of Gaussian el imination with complete pivoting, which, as a by-product,  records the 
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permutations defined by the matrices P and P1. The values (1 or -1 )  of det P and det/91 can be 
immediately recovered from these records. Furthermore, the matrix L is a unit lower triangular 
matrix, whose diagonal is filled with ones, so that  det L = 1. The computation of det U only 
requires n - 1 multiplications, due to Fact 2.2. The overall computational cost of performing 

n - - I  i2 Algorithm 3.1 is dominated by the cost of performing its Stage 1: ~--]i=I = (2n - l ) (n  - 1)n/6 
7'.--I multiplications, as many additions/subtractions, as many comparisons, and Y~-i=1 i = ( n - 1)n/2 

divisions. 
Gaussian elimination with partial pivoting computes the factorization (2.2) (that is, (2.3) for 

P1 -- I)  and uses ( n - 1)n/2 comparisons, rather than (2n - 1)(n - 1)n/6 (compare Remark 4.2 
in the next section). 

4. N U M E R I C A L  I M P L E M E N T A T I O N  OF T H E  
S O L U T I O N  B A S E D  O N  G A U S S I A N  E L I M I N A T I O N  

I n  its numerical implementation with a finite precision Algorithm 3.1 computes the triangular 
matrices L = L + EL and ~J = U + Eu, as well as the permutation matrices/5 and/51, where EL 
and Eu denote the matrices of the perturbations of L and U, due to accumulation of rounding 
errors. (Since rounding errors are usually small, we usually have/5 = P and/51 = PI, but we do 
not need to assume this.) 

DEFINITION 4.1. Write 

A' =/5- tA/51-1,  A' = A' + EA, = LU, (4.1) 

and let e', a, ~, and fi denote the maximum absolute values of the entries of the matrices EA,, A, 
L, and U, respectively. 

Our next goal is to estimate e' from above, assuming floating point binary arithmetic with 
rounding to fl bits. This means the upper bound 

= 2 -a ,  (4.2) 

on the magnitudes of the relative rounding errors (so that  e is an upper bound on the unit 
roundoff , also called the machine epsilon ). 

THEOREM 4.1. (c[., e.g., [33, p. 181], and [34, pp. 191-196], for derivation and minor relffnements.) 
For a matrix W = (wij) ,  let [W[ denote the matrix (IwijI) obtained by replacing each entry wi j  
with its absolute vaiue [w~j[. Then, under (4.1), we have 

]EA,[< ( ]A' ]+ L O ) e .  

COROLLARY 4.1. 
e ' <  e + =  (a + n ~ ) e .  (4.3) 

In this paper, we will also express some estimates in terms of matrix norms HW[[q, q = 1, 2, oo, 
satisfying the following basic relations, where W = (wi,j): 

IIWH1 = max E IwijI, IIWIIoo = max E Iwi,jl, (4.4) 
i • j 

( I ~ H w [ I  q <_m.ax[wijl<_llwHq, q = 1,2,oo, (4.5, 
k n /  t,J 

IIWIl~ _< IIWIlillWlloo, IIWII2 _< v~llWllq, q = 1,oo (a.6) 

(see [29, pp. 56-58]). The norm IlWl12 is actually needed only in Section 6. 
We obtain from (4.5) that  e' < IIE~II~¢ and recall the following result, in whose statement we 

use an upper bound e of (4.2). 
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THEOREM 4.2. (See [35, Chapter 21].) 

e' ~_ e+ = IIEIAIIoo <_ n2a+e, (4.7) 

where a + denotes the max/mum absolute value of  all the entries of  the matrices A (i) overwrit ing A I 
and computed  in the process of  Gaussian elimination, which reduces A ~ to the upper triangular 

form. 

REMARK 4.1. Ignoring the terms proportional to e k, k _~ 2, we may improve (4.7) as follows: 
e' < 3(n - 1)ca + + O(e 2) (see [36, p. 178]). The latter bound, as well as both (4.3) and (4.7), 
axe a posteriori bounds: besides the input data, they depend on the values ~, ~ or a +, which 
are available as by-products of our computations. In the context of our task, a priori bounds, 
depending only on the input data  may only be needed for theoretical analysis. Such bounds can 

be obtained based on Wilkinson's estimate (cf. [37]) 

n - - 1  

a+ < an1/2 1-[ (k + 1) 1/(2k) < 1.8n(en~)/4a, a = max  lai,jl. 

k=l 

Combining this estimate with Theorem 4.2 implies that  

n--1 
e ~ < e+ = can 2"5 H ( k  ÷ 1) 1/(2k) < 1.Scan 2+(~n)/4,  a = maxla~,jl.  

k=l 

The above a priori bounds, however, are overly pessimistic according to the extensive practical 
experience with Gaussian elimination, and this has even motivated the conjecture that ,  actually, 

for all matrices A, we have 
a + = O(an) ,  e' = 0 (can3) , (4.8) 

in the case of complete pivoting. 

Now, we wish to estimate the magnitude of the perturbation of det A and det A ~ caused by the 
perturbat ion of A t. To simplify the notation, we will assume that  P = P1 = I,  A ~ = A and will 

write 
e : e', ed = det(A + E A )  -- det A (4.9) 

(cf. Definition 4.1). We will need the following simple and/or  well-known estimates. 

FACT 4.1. IdetAI <_ IIAII~, q = 1,2, oc. 

FACT 4.2. HB[[q <_ [[WHq , q = 1, oc, if[B[ <_ IW[; [[BII q <_ I[W[[q, q = 1,2, c~, i f  B i s a s u b m a t r i x  

of  W .  

FACT 4.3. [IA + EA[Iq <_ IlAiJq + ne, f o r q =  1,2, cc, IIA + EAII22 <_ JlA[[~ + ne. 

By using these results, we estimate ed of (4.9). 

PROPOSITION 4.1. led[ <_ (llAllq + He) n - ln2e ,  for q = 1,2, oo. 

PROOF. Represent det(A -t- EA) as the sum of monomials ±5io,05i1,1 .. • 5i,_1,,,-1, where 5i,,g = 
ai:j,g + eA,i.q,g, g -- 0, 1 , . . .  ,n  - 1. Rewrite such a monomial as a telescopic sum 

± [(aio,0 --  aio,O) a l l , 1 . . .  5 i~_l ,n-1  + aio,O ( a i l , 1  --  aQ,1) a i2 ,2 . . ,  ai , ,_l ,n-1 

+ . . .  ÷ a¢o,0ail,1.., ai~_2,n_ 2 (5~,_1,n_ 1 - a i ._ l ,n_ l  ) q- aio,0ai , ,1 . . .a i ._ , ,n-1]  • 

Summation of the respective terms of this sum over all the subscripts of the monomials of de t (A+ 

EA))  gives us the following equation: 

det(A + EA)  = ~ (Si,j -- ai,j) bi , j  + detA,  
i,j 

]4:1-C 
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where /)i,j denotes the determinant of the (n - 1) × (n - 1) matrix obtained by replacing the 
first j - 1 columns of A with the first j - 1 columns of ,4 = A + EA,  and by deleting the ith row 
and the jth column of the resulting matrix. Therefore, 

led] ---- ]det(A + EA) -- detA I -- ~ (5~,j - ai , j ) /) , , j  _< Z leA,i,J ] /~i,j 
i,j ~,j 

< e ~  Di,jl  <- n2emaf f  [9~,j . 
i , j  

By combining Facts 4.1-4.3, we obtain that  IDi,j] < (]IAHq + He) n-1 for q = 1, 2, oo. Substitute 
the latter estimates into the above bound o n  ]edI and yield Proposition 4.1. | 

Combining Proposition 4.1 with the bound (4.7) enables us to extend Algorithm 3.1 as follows 
(cf. Remark 4.2 of this section). 

ALGORITHM 4.1. 

I n p u t :  an n x n real matrix A and a positive e. 
O u t p u t :  a pair of real numbers d_ and d+ such that  d_ < det A < d+. 
C o m p u t a t i o n s .  

1. Apply Algorithm 3.1 in floating point arithmetic with unit roundoff bounded by e. Let 
~] = U + E u  denote the computed upper triangular matrix, approximating the factor U 
of A (from (2.2) or (2.3)). 

2. Compute the upper bound e+ of (4.7) on e = e t of Definition 4.1. 
3. Substitute e+ for e and min(iiAi]l , IIAH~, (llAllliiAiloo) 1/2) for IIAllq in Proposition 4.1, 

and obtain an upper bound e + on led[. 
4. Output  the values det U - e + and det U + e +. 

Correctness of the algorithm follows from Theorem 4.2 and Proposition 4.1. 
Due to (4.3), Algorithm 4.1 can be modified with e + replacing e+ at its Stages 2 and 3. In both 

versions, the computations at Stages 2-4 involve O(n 2) arithmetic operations (hereafter, referred 
to as 'ops') and comparisons (cf. (4.3), (4.4), (4.7)), which is dominated by the arithmetic cost 
of performing Stage 1. 

We may obtain the sign of det A as the sign of det 0 provided that  

< det ~'l" (4.10) ed + 

Otherwise, some additional computations are needed. They can be simplified (see Section 7) by 
using the bound 

]detA I < e  + +  d e t 0  , 

which turns into 
I det A I _< 2e +, (4.11) 

unless (4.10) holds (compare (1.1)). For smaller e, the bound (4.11) is substantially stronger than 
the bounds of Fact 4.1 (compare Proposition 4.1). 

REMARK 4.2. Algorithm 4.1 performed with partial (rather than complete) pivoting, numerically 
computes the factorization (2.2). The advantage is in saving ~ - - : ( i 2  _ i) = (n - 2)(n - 1)n/3 
comparisons. The disadvantage is a plausible substantial growth of the upper bounds on e -- e ~ 
and ed. Namely, Wilkinson's a priori upper bound on a + of Remark 4.1 does not hold anymore, 
and is replaced by a much weaker a priori upper bound a + < 2n-la ,  a = max~,j ]ai,jl. The latter 
bound has been reached for some specially concocted matrices A, but extensive experience of 
performing Gaussian elimination in worldwide computational practice suggests that,  as a rule, 
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the value a + remains bounded from above by the value cna, for some moderate constant c, even 
in the variant with partial pivoting [30]. This suggests that  Algorithm 4.1 should be actually 
applied with using partial pivoting. In the unlikely case of excessively large a +, we still may repeat 
the computations with complete pivoting or we may shift to Algorithms 5.1 and/or  6.1 of the 
next sections, which compute QR factorization of A. For the latter algorithms, the output  error 
bounds that  are very close to (4.8) have been formally proven and not only conjectured (see (6.4) 
in Section 6). Furthermore, a modification of these algorithms (based on using Givens rotations) 
is highly effective for computing (the sign of) det A for a dynamically updated matr ix A, which is 
unmatched if we rely on Algorithms 3.1 and 4.1 (see the end of the next section). Those readers 
for who these advantages, however, are not important may skip the next two sections and go 
directly to Section 7. 

5. S O L U T I O N S  B A S E D  ON QR F A C T O R I Z A T I O N  

Next, based on the equations (2.4) and (2.5), Facts 2.1, 2.2, and Corollary 2.1, we devise the 
following algorithm, as an alternative to Algorithm 3.1. 

ALGORITHM 5.1. 

I n p u t :  an n x n matrix A. 
O u t p u t :  det A. 
C o m p u t a t i o n s .  

1. Compute a matrix Q satisfying (2.4) and (2.5), and represented either by its entries or by 
a sequence of its orthogonal factors. 

2. Compute det Q. 
3. Compute the matrix R = Q-CA = (rid). 
4. Compute det A = (det Q) 1-Ii r~,i. 

Correctness of the algorithm immediately follows from Facts 2.1 and 2.2. 
We will consider two effective customary algorithms for computing the QR factorization at 

Stage 1, tha t  is, the Householder and the Givens algorithms (see [30,37] and compare Remark 6.4 
in the next section). The Givens algorithm applied at Stage 1, always produces a matr ix Q 
with de tQ  = 1 since it computes Q as the product of the matrices of Givens rotations, each 
having determinant 1 (see the matrices G in the beginning of the next section or see [30, p. 201]). 
Therefore, Stage 2 is a by-product of Stage 1 in this case. Let us deduce a similar property in 
the case where we perform Stage 1 by means of the Householder algorithm, which computes Q 
as a product  of n - 1 matrices of Householder transformations. 

FACT 5.1. For a matr ix  Q of (2.4),(2.5) computed by means of the Householder algorithm, we 
have 

de tQ  = ( -1 )  '~-1. (5.1) 

PROOF. Recall tha t  the latter algorithm defines Q as the product of n - 1 Householder matrices, 
n-1 - 2viv~ /v~  vi for some vectors vi, i ., n - Q = 1-Ii=l Hi, Hi = I = 1, . .  1. Now, (5.1) follows since 

det Hi = - 1 ,  for all i. (5.2) 

To prove (5.2), recall that  H [ H i  = I, so that  (det Hi) 2 = 1. On the other hand, D(0) = de t ( I  - 
2e0e0 T) = - 1 ,  where e0 m = (1,0 . . . . .  0), e0Te0 = 1. Consider the homotopic transformation v(t) = 
eo + t(vi - e0), for t ranging from 0 to 1 and observe that  D(t) = det ( I  - v(t)vm(t) /(vm(t)v( t)))  
is a function continuous in t, D2(t) = 1 for all t, and D(0) = -1 .  Therefore, D(1) = det I - 
v iv~ /v~v i  = D(0) = - 1 ,  and (5.2) follows. | 

Stage 3 of Algorithm 5.1 uses only n - 1 multiplications. Stage 1 is by far, the hardest. 
It involves (4/3)n 3 + O(n 2) multiplications, about as many additions/subtractions, and O(n) 
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evaluations of the square roots of positive numbers if the Householder algorithm is applied. With 
the Givens algorithm, these bounds turn into 2n 3 + O(n2) ,  n 3 + O(n2), and O(n2), respectively. 
This shows some minor advantage of the Householder algorithm (see however, [30, p. 216]), and 
similarly does the comparison of the associated bounds on the output perturbation caused by 
rounding errors (compare (6.4) and (6.5) in the next section). 

Using Givens rotations, however, is highly effective in the cases where the matrix A is dy- 
namically updated, that  is, where some of its rows and/or  columns are dynamically replaced 
by new ones. Givens rotations enable us to update the Q R  factorization of A successively, by 
using O ( k n  2) ops and square root evaluations, if O(k )  rows and/or  columns of A are successively 
replaced by new ones (see [30, Sections 12.6.1-12.6.3, pp. 593-597]). 

This is a special feature of Givens rotations, not shared by other Q R  factorization algorithms. 
Furthermore, dynamic updatings of the P L U  factorization of (2.2) and of the P L U P 1  factoriza- 
tion of (2.3) are more complicated and more involved, due to the problem of pivoting [38]. 

On the other hand, the efficacy of the fast updating of the Q R  factorization by means of 
Givens rotations is limited because, after s successive fast updatings, the implicitly computed 
matrix Q is represented as a product of r = s + n ( n  - 1)/2 Givens matrices, which means 
recursive accumulation of many rounding errors (see the bound (6.3) in the next section for 
larger r). Therefore, one needs to recompute the Q R  factorization of the current input matrix 
from the scratch, after sufficiently many updatings of A, when s and r grow too large. 

6. NUMERICAL COMPUTATION OF T H E  
ORTHOGONAL FACTOR Q (IN A FACTORIZED FORM) 

It is convenient to keep Q in the factorized form as a product of the matrices of Householder 
transformations or Givens rotations [30,37]. Keeping also the Householder matrices in the form 
H = I - 2vv  -r, for the associated vectors v, we preserve the equation de tQ = ( -1)  n - l ,  even in 
the case of numerical implementation of Stage 1, with a finite precision and rounding errors. 

Let us examine the perturbation of Q caused by rounding errors in the case of finite precision 
implementation of the Givens algorithm. The matrices of Givens rotations are of the form 
G = I + R i , k ( c ,  s) ,  where the matrix R~,k(C, s) has exactly four nonzeros entries, that  is, Ri, i (c ,  s) = 

Rk,k(C, S) = C -- 1, Ri ,k  = - R k , i  = s, for two fixed integers i and k, and for a pair of nonzero 
real c and s, satisfying c 2 + s 2 = 1, so that  G-rG = I .  In a finite precision implementation, 
c and s appear as c + ec and s + es, respectively, where ec and es denote the rounding errors 

levi < [cl~, le, I < Isle, (6.1) 

and e = 2 -~  bounds the magnitudes of relative rounding errors (cf. (4.2)). Then, det(GTG) = 
(det G) 2 = ( c +  ec) 2 + i s + es) 2 = (c 2 + s2)(1 + A) = 1 + A, where, due to the bounds (6.1), we 
have 

IA] < (1 +e )  ~ -  1 = 2e + e 2. (6.2) 

Thus, for small e, IAI is small, and det G is close to 1. We will assume that,  at Stage 1 of 
Algorithm 3.1, we represent Q as the product of r Givens matrices for r < (n - 1)n/2, and use a 
finite precision with the bound e on the relative rounding errors. Then, the matrix Q is actually 
replaced by the matrix Q + EQ, EQ denoting the perturbation caused by the rounding errors, 
and due to (6.2), we have 

(1 - 2e - e2) r < det(Q + EQ) < (1 + 2e + e2) r , r < ( n - 1)2. (6.3) 

Let us next estimate the perturbation of the matrix R caused by rounding errors. According 
to Wilkinson's backward error analysis,  the rounding errors of floating point computation cause 
the same perturbation ER of the matrix R, as would have followed if the input matrix A had 
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been perturbed by a certain matrix E = EA, and if the subsequent computation of Q and R had 
been performed exactly, with no errors [37]. Furthermore, Wilkinson has proved the following 
upper bounds on lIE[J2, assuming an upper bound e on the unit roundoff: 

[JEll2 ___ h[[Al[2, h < h + = 3.35(n - 1)(1 + 9.01e)n-2e, (6.4) 

[IEiJ2 < g[[A[12, g < g+ = 3n5/2 1 - 4.3e] e; (6.5) 

the bounds (6.4) or (6.5) hold, where the Householder or, respectively, Givens algorithms have 
been applied at Stage 1 of Algorithm 5.1 (cf. [37, pp. 236, 240], respectively). 

REMARK 6.1. The reader is referred to [39] on further refinements of the error bounds for finite 
precision computation of the QR factorization of a matrix. 

REMARK 6.2. The bound (6.5) incorporates the effect of the perturbation of the matrix Q caused 
by rounding and estimated in (6.3). 

By combining the bounds (4.5), (6.4), and (6.5) with Proposition 4.1, we obtain the following 
result. 

PROPOSITION 6.1. Let Algorithm 5.1 be performed by using the floating point arithmetic with 
relative rounding errors (unit roundoff) within e. Let at Stage 1 of this algorithm, the Householder 
or Givens algorithms compute numerically the Householder or Givens factors of Q, respectively. 
Then Algorithm 5.1 outputs the values d = ( -1)  n-1 det R or d = det R, respectively, satisfying 
the following relations: 

d -- det A ÷ ed, 

led] < n2sllAII2 (IIAIIq ÷ nsllAII2) n-1 , q = 1,2, ~ ,  (6.6) 

where s stands either for h of (6.4) or for g of (6.5), respectively. 

Now, we may specify a floating point implementation of Algorithm 5.1 as follows. 

ALGORITHM 6.1. 

I n p u t  and O u t p u t :  as in Algorithm 4.1. 
C o m p u t a t i o n s .  

1. Apply Algorithm 5.1 by using the Householder algorithm at its Stage 1, and by performing 
all the computations in floating point arithmetic with the unit roundoff bounded by e. Let 
/~ -- R ÷ En  denote the computed upper triangular matrix approximating the factor R 
of A in (2.4). 

2. Set s = h and specify the two upper bounds of (6.6), on legl, for q = 1 and q = c~, by 
substituting for IIAII2 its upper bound min{llAIIlv~, IIAIIoov~, (llAIIlllAIIoo)l/2}, (com- 
pare (4.6)). Of the two computed upper bounds on ledl, choose the smaller one and denote 
it ed +. 

3. Compute and output  the values det/~ - e + and det/~ + e +. 

Correctness of the algorithm follows from (4.6) and Propositions 4.1 and 6.1. By replacing the 
Householder algorithm by the Givens algorithm and by substituting s = g into equation (6.6), we 
arrive at an alternative extension of Algorithm 5.1. In both cases, the computation at Stages 2 
and 3 of these extensions only requires O(n 2) ops and comparisons (see (4.4)). 

REMARK 6.3. Generally, computing the entries of the matrix Q explicitly gives us no advantage 
in the context of our topic of computing det A. Indeed, such a computation of Q roughly doubles 
the computational cost of performing Algorithms 5.1 and 6.1, but does not affect the computed 
matr ix/~.  
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REMARK 6.4. At Stage 1 of Algorithm 5.1, we could have alternatively applied the modified 
Gram-Schmidt (MGS) algorithm, which is one of the customary tools for computing the Q R  

factorization. The MGS algorithm requires 4n 3 + O ( n  2) ops in order to compute the factor R, 
and also needs some additional computation in order to find out if det Q equals 1 or - 1. In the 
case of implementation of the MGS algorithm in floating point arithmetic, the extra factor of 
cond2A (versus the Householder and Givens algorithms) appears in the upper estimate for the 
2-norm of the perturbation of the matrix Q caused by rounding to a fixed finite precision (see [30, 
p. 219, or 40], and note that  cond2A is very large for nearly singular matrices A), which is the 
main deficiency of the MGS algorithm. 

PART II. A L G E B R A I C  C O M P U T A T I O N  A P P R O A C H  

7. R E C O V E R Y  OF det A F R O M  det A M O D U L O  A N  I N T E G E R  M 
B A S E D  ON THE CHINESE R E M A I N D E R  T H E O R E M  

Hereafter, a mod M (for two integers a and M > 1) denotes an integer b satisfying the relations 
0 < b < M, M divides b - a. In this and the next sections, we will rely on the following 
observation. 

FACT 7.1. For any pair o f  integers d and M > 2[d], we have 

M 
d = (dmod M), i f d m o d M  < -~-, d = - M  + (dmodM) ,  otherwise. (7.1) 

Suppose that  the input matrix A is filled with integers. If we know an upper bound d + _> 
[detA[, we may choose any integer M exceeding 2d + and then compute ( d e t A ) m o d M  and 
recover de tA by applying (7.1). 

In Section 10, we will review the computation of (det A)mod M for a fixed integer M > 1. 
Computations modulo M, by these algorithms can be performed with the precision of [log 2 M] 
bits, but we wish to perform most of them with a lower precision. In this and the next two 
sections, we will rely on the following celebrated theorem [41,42]. 

THEOREM 7.1. (Chinese remainder  theorem.)  Le t  m l ,  . .. , mk  denote  k pairwise relatively pr ime  

integers (say, k dist inct  primes),  

m l  > m2 > . . .  > m k  > 1. (7.2) 

Le t  D denote  an integer satisfying 

0 <_ D < M = m l m 2 . . . m k .  (7.3) 

Le t  

ri - D mod mi, (7.4) 

M 
- - ,  vi = Mi modm~, wivi = 1 modrni,  i = 1 , . . .  ,k. (7.5) Mi = ms 

T h e n  D is a unique integer satisfying (7.3) and (7.4); furthermore,  

D = Mir iwi  mod M. (7.6) 
k i = l  / 

ALGORITHM 7. I. Computation of (det A) rood M based on the Chinese remainder theorem. 

Input: an integer matrix A, a black box algorithm that computes (detA)modm for any 
fixed integer m > i, k integers ml,..., mk satisfying (7.2) and pairwise relatively prime, 
and M = m l m 2 . . ,  ink. 
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O u t p u t :  (det A) mod M. 
C o m p u t a t i o n s .  

1. Compute ri = (det A)rood mi, i = 1 . . . .  , k. 
2. Compute the integers Mi, vi, and wk of (7.5), for i = 1 , . . . ,  k. 
3. Compute and output  D of (7.6). 

Correctness of the algorithm immediately follows from Theorem 7.1. 
We compute the values Mi, vi by using (7.5). The values wi are obtained by means of applying 

the Euclidean algorithm to the pair of vi and mi, i = 1 . . . .  , k (cf. [41,42]). 
We need O(kn 3) arithmetic operations (ops) at Stage 1, O((k log m l) log log m l) ops at Stage 2, 

and O(k log 2 k) ops at Stage 3. The computations are performed with the precision of at most 
flog 2 ml~ bits at Stage 1, and of at most flog 2 M 1 bits at Stages 2 and 3. Furthermore, in 
Section 11, we will show how to decrease the latter precision (at Stages 2 and 3) by using a little 
more ops. 

8. M A T R I X  S I N G U L A R I T Y  T E S T  

Next, we will show a modification of Algorithm 7.1, for testing matr ix singularity, where 
Stages 2 and 3 are replaced by much simpler computations. 

ALGORITHM 8.1. Matrix singularity test. 

I n p u t :  as in Algorithm 7.1, where 

M > IdetAI. (8.1) 

O u t p u t :  SINGULAR if det A = 0 mod M, NONSINGULAR otherwise. 
C o m p u t a t i o n s .  

1. As in Algorithm 7.1. 
2. Output  SINGULAR if r~ -- 0 for i -- 1 , . . . ,  k; output  NONSINGULAR otherwise. 

If ri = (det A) mod m~ ~ 0 for some i, then, clearly, det A ~ 0, and the output  of the algorithm 
is correct. If ri = 0 rood mi for all i, then D = 0 due to (7.6), where D = (det A) rood M, by 
the virtue of Theorem 7.1. Due to (8.1), the latter equations imply that  de tA -- 0, and this 
completes correctness proof for Algorithm 8.1. | 

REMARK 8.1. Suppose that  we have only computed rl  -- (det A ) m o d m l .  If r l  ~ 0, then 
det A ~ 0, so that  we arrive at a one-sided singularity test. On the other hand, our estimates 
of Appendix A effectively bounded from above the probability that  det A ~ 0, provided that  
de tA  -- 0 m o d m l  for a random prime ml  in a fixed interval. These observations turn the 
computat ion of r l  into a randomized singularity test for the matrix A. 

9. C O M P U T I N G  A B S O L U T E L Y  S M A L L E R  D E T E R M I N A N T S  

The next. algorithm extends Algorithm 8.1. Under the assumption that  

Ide tA I < M - i n k ,  (9.1) 

it tests if 
- i nk  _< det A < ink, (9.2) 

and if so, computes detA.  The new algorithm shares its Stage 1 with Algorithms 7.1 and 8.1; 
in addition, it only performs subtractions of k pairs of nonnegative integers bounded from above 
by m,,  for i = 1 , . . . ,  k, and 2k - 2 integer distinctness tests (each of which tests whether two 
given integers are distinct or not) for pairs of integers ranging from - m l  to ml  - 1 (cf. (7.2)). 
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ALGORITHM 9.1. Testing a range for I det A h and computation (modulo an integer) of absolutely 
smaller determinants. 

Input: as for Algorithm 7.1, assuming (9.1). 
Output: det A if (9.2) holds, the word OVERSIZED otherwise. 
Computations. 

1. As in Algorithm 7.1. 
2. If 

r i  = r, i = 1 , . . . , k ,  (9.3) 

for some integer r,  then output  r. 
3. Otherwise, compute r i  - m i ,  i = 1 , . . . ,  k .  

4. If 
r i  - m i  = r _ ,  i = 1 , . . . , k ,  (9.4) 

for some integer r_ ,  then output  r_ .  Otherwise, output  OVERSIZED. 

Let us show correctness of the algorithm. 
If 0 < det A < i n k ,  then we have 

de tA  = (detA) modmi  = ri  = r, i = 1 , . . . , k  

(cf. (7.2)), so tha t  the value det A is correctly computed at Stage 2. 
If - - i n k  ~_ det A < 0, then 

det A = ((det A) mod m i )  - m i  = r i  - m i  = r _ ,  i = 1 , . . . ,  k ,  

so that  the value det A is correctly computed at Stage 4. 
Let us next show that  neither (9.3) nor (9.4) hold under (9.1) if 

det A _> mk. (9.5) 

Let  us write 
d e t A = r i + s i m i ,  i =  l , . . . , k ,  (9.6) 

where 0 < r i  = ( d e t A ) m o d m i  < m i ,  0 < s i  < M i ,  i = 1 , . . . , k ,  

0 < Sk < M k  -- 1, (9.7) 

and all s i  are  integers (cf. (7.5), (9.1), and (9.5)). Then we have 

r i  -}- s i m i  -~ rk  -}- 8 k m k ,  i = 1 , . . . ,  k - 1. (9.8) 

If (9.3) holds, then r~ = rk  = r, i = 1 , . . . ,  k - 1, and (9.8) implies tha t  

s i m i  = S k m k ,  for all i. (9.9) 

Since m i  and mk are relatively prime, (9.9) implies that  m i  divides Sk,  for all i < k. Therefore, 
the integer M k  = m l . . .  m k - 1  ---- 1 cm (m 1 , . . . ,  mk) divides Sk,  since all m i  are pairwise relatively 
prime. This contradicts (9.7). Therefore, (9.3) cannot hold under (9.5). 

If (9.4) holds, we similarly deduce from (9.8) that  

( s i  + 1 ) m i  = ( s k  + 1 ) m k ,  i -- 1 . . . .  , k - 1, (9.10) 

which implies that  m i  divides sk  + 1 for i = 1 , . . . ,  k -  1. Therefore, Mk divides sk  + 1, since all m i  

are pairwise relatively prime. Then again, we arrive at a contradiction to (9.7). Therefore, (9.4) 
cannot hold under (9.5), which implies correctness of Algorithm 9.1 under (9.5). 
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To complete the correctness proof, it remains to show that  neither (9.3) nor (9.4) hold un- 
der (9.1) if 

det A < --ink. (9.11) 

In this case, the integers si of (9.6), (9.8)-(9.10) satisfy the bounds - M i  <_ si < O, i = 1 , . . . ,  k -  1, 

--Mk < s~ < --1. (9.12) 

(cf. (7.5), (9.1), and (9.5)). Now, if (9.3) holds, then we deduce from (9.9) that  mi divides --Sk 

for i = 1 , . . . ,  k - 1, and consequently, Mk divides --Sk. This contradicts (9.12). Therefore, (9.3) 
cannot hold under (9.11). 

If (9.4) holds, then we deduce from (9.10) that  Mk divides - 1  - sk. Then again, we arrive at a 
contradiction to (9.12). Therefore, (9.4) cannot hold under (9.11). This completes the correctness 
proof. | 

10. C O M P U T A T I O N  M O D U L O  A F I X E D  P R I M E  
OF T H E  D E T E R M I N A N T  OF A M A T R I X  

Let p denote a fixed prime. Then (det A) mod p can be immediately computed as soon as we 
compute modulo p the P L U  factorization of A (see (2.2)). This can be achieved by means of 
Gaussian elimination with partial pivoting, which involves at most (2/3)n 3 + O(n 2) arithmetic 
operations (ops) modulo p and at most (n - 1)n/2 comparisons of integers modulo p with 0. (The 
latter comparisons are needed in order to ensure that  only nonzero entries are used as pivots, so 
as to avoid divisions by 0.) If, at some elimination step, all the candidate entries of the pivot 
column equal 0 modp,  then we immediately output  det A = 0 modp.  

If we need to compute (det A) mod p for a recursively updated matr ix A, we may rely on a 
modified (unnormalized) QR-factorization of A, such that  

A = ( Q R ) m o d p ,  QTQ = D m o d p ,  (10.1) 

D is a diagonal matrix, R is a unit upper triangular matrix (compare [12]). Such a factorization 
can be computed (modulo a prime p) by means of the Givens algorithm modified [30, p. 216]. 

REMARK 10.1. Under the models of parallel computing, the cited algorithms are relatively slow: 
they use order of at least n parallel steps. Faster parallel algorithms (using polylogarithmic 
parallel t ime and order of n 3 ops performed modulo p) can be found in [11,27-29,43-46] (cf. also 

[47,481). 

REMARK 10.2. If the entries of the matrix A are much smaller than p, then we do not need to 
reduce modulo p the results of the computations at the initial steps of Gaussian elimination, so 
that  they can be performed in exact rational arithmetic with using lower precision. To keep the 
precision lower, one may apply the algorithms of [7,8] at these steps. If we compute det A modulo 
several primes, this will be a common stage for all the primes. 

11. D E C R E A S I N G  T H E  P R E C I S I O N  OF T H E  
C H I N E S E  R E M A I N D E R  C O M P U T A T I O N S  

Let us recall Algorithm 7.1 of Section 7, where we will assume that  ml  is relatively small 
compared to M but large compared to k. The computation of r~ at Stage 1, and vi and wi at 
Stage 2, can be performed modulo mi with the precision of [log 2 mi] bits, i -- 1 , . . . ,  k, which is 
small relative to the precision required in order to represent M, M 1 , . . . ,  Mk, and D. Next, we 
are going to examine the computation of M 1 , . . . ,  Mk at Stage 2 and D at Stage 3, which requires 
us to perform relatively fewer arithmetic operations (ops) but  with a higher precision (cf. (7.6)). 
We will modify the computations so as to perform them by using a little more ops but  a lower 
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precision. Towards this goal, let us fix an integer base b such that log 2 b exceeds the computer 
precision. Then the integers lying in the range from 0 to b -  1 will fit the computer precision and 
will be called "short" integers and b-integers. The integers that exceed b - 1 and their negations 
- q  will be called "long" and will be associated with the b-polynomials 

q(x) Z xi = qi , 0 _< q~ < b, for all i, (11.1) 
i 

and with ( -b  )-polynomials -q(x), respectively, such that 

q(b) = q, -q(b) = -q. (11.2) 

The polynomials q(x) and -q(x) satisfying (11.1),(11.2) will be called the b-associates of the 
integers q and -q,  respectively, as well as of any pair of polynomials Q(x) and -Q(x) with 
integer coefficients satisfying 

Q(b) = q. (11.3) 

The transition from a polynomial Q(x) with nonnegative coefficients to its b-associate, which we 
call the b-reduction of Q(x), can be performed by means of first substituting the b-associate for ev- 
ery coefficient of Q(x), then replacing each term of Q(x) by its b-associate, and finally, summing 
all the resulting b-polynomials together, by means of the known algorithms for multiprecision 
summation of nonnegative integers (in the base b arithmetic) (see [49, pp. 251,252], and [50,51]). 
Furthermore, any polynomial Q(x) with integer coefficients can be immediately represented as 
the difference Q+(x) - Q - ( x )  of two polynomials Q+(x) and Q-(x) with nonnegative integer 
coefficients. We may b-reduce Q(x) by b-reducing these two polynomials Q+(x) and Q-(x) and 
subtracting their b-associates from each other by means of a known algorithm for multiprecision 
integers (in the base b arithmetic) (see [49, pp. 252,253]). We will define the class of linear opera- 
tions, consisting of additions, subtractions, multiplications by ("short") b-integers, and divisions 
by ("short") b-integers (the latter division operation will only be used in our Algorithms 11.2 
and 11.3, which can both be replaced by Algorithm 11.1 at the expense of using by factor of 
O(log k) more ops with b-integers). 

We will need the following simple fact. 

FACT 11.1. For an integer b > 1 and a pair orb-reduced polynomials U(x) and V(x), the sign 
of U(b) - V(b) coincides with the sign of the leading coe~cient of the polynomial U(x) - V(x). 

Let us assume that 
m 2 < b, (11.4) 

which holds, say, for 
b = 2 [l°g2('n~+l)l . 

Then, clearly, mi, ri, and wi of (7.2)-(7.6) are b-integers for all i, and the following algorithm 
computes M, M1, . . . ,  Mk by using only linear operations of multiplication by b-integers as follows. 

ALGORITHM 11.1. 

Inpu t :  integers m b . . . ,  mk satisfying (7.2). 
O u t p u t :  the integers M of (7.3), M1,.. .  ,Mk of (7.5). 
Ini t ial izat ion.  Define the binary tree with the root 1 (at level 0), the leaves M1, . . . ,  Mk and 

other nodes filled with the products of some consecutive moduli m l , . . . ,  mk such that mi 
is missing from the parent node if and only if it is missing from at least one of its children 
nodes. 

C o m p u t a t i o n s .  Recursively in l, compute the products of the moduli mi, associated with 
all the nodes of Level I of the tree, for I = d, d -  1 . . . .  ,1. Output the products M1, . . . ,  Mk 
associated with Level 1. Then compute and output M = Mlml.  
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The transition from Level l to Level 1 - 1 requires k multiplications by the moduli mi,  for 
l -- d - 1 , . . . ,  2, and k - 2 multiplications for l -- d. In the entire algorithm, we use a total of 
dk - 1 = k rlog 2 k~ - 1 multiplications, each by a b-integer mi. All other operands are in the 
range from 0 to Mk, tha t  is, their b-associates are polynomials of degrees at most L(k - 1)/2J. 
The entire computation by Algorithm 11.1 costs O(k 2 log k) multiplications of pairs of b-integers. 

The next algorithm uses only k - 1 similar multiplications by b-integers mi for i = 2 , . . . ,  k, 
and k -  1 divisions of M by m~, for i -- 1 , 2 , . . . , k -  1, which have a total cost of O(k 2) ring 
operations and divisions with pairs of b2-integers as operands. 

ALGORITHM 11.2. 

I n p u t  and o u t p u t :  as in Algorithm 11.1. 
C o m p u t a t i o n s .  

1. Set m (1) = mi, and recursively compute m (i) = m(i-1)mi,  i = 2 , . . . ,  k. Output  M = m (k), 
Mk = m (k-l). 

2. For i = 2 , . . . , k ,  compute and output  Mi = M / m i ,  i = 1 , . . . , k -  1. 

At Stage 2, we apply the following simple algorithm. 

ALGORITHM 11.3. 

I n p u t :  a b-polynomial P(x )  h = ~-~=0 Pi xi and a b-integer d > 0. 
O u t p u t :  an integer 0 <_ p < d and a b-polynomial Q(x) of a degree at most h such that  

P ( b )  - d Q ( b )  = p.  

C o m p u t a t i o n s .  

1. Compute the quotient q0 and the remainder P0 of the division of Ph by d. 
2. Recursively compute the quotients qi and the remainders Pi of the division of p~_ 1 ÷ bPh- 1 

by d, for i =- l , . . . , h .  
h 3. Output  the integer p = Ph and the b-polynomial Q(x)  = )-'~=o qi xh-~. 

Correctness of the algorithm and its cost bound of O(k) arithmetic operations with b2-integers 
axe immediately verified. 

Now, we recall tha t  ri and wi are b-integers under (11.4), whereas the b-associates of Mi axe 
b-polynomials of degrees less than (k - 1)/2 for all i. It follows that,  based on Algorithms 11.2 
and 11.3, we may evaluate the b-associates of Miriw~ for all i, and D* k - ~ i=1  Miriwi ,  which 
only involves O(k 2) operations with b-integers. 

Let us consider the remaining stage of the reduction modulo M of the integer 

k k 
D* = Z M~riwi, 0 < D* < U ~-~(mi - 1) = aM, (11.5) 

i=1  i = l  

k k - 1  
where t~ = )"~i=l(mi - 1) < k m i  - k - ~ i = l  i = (mi  - (k + 1)/2)k. 

The latter bound, (7.2) and (11.4) together immediately imply that  a is a b-integer. Now, we 
may restate our remaining task as follows: given a pair of b-polynomials M ( x )  and D*(x) ,  which 
are b-associates of the two integers M of (7.3) and D* of (11.5), compute a b-associate D(x)  of 
the integer D* - M Q  -- D* mod M such that  

0 <_ D* - Q M  < M,  (11.6) 

for an integer Q. Equations (11.5) and (11.6) together imply that  

0 <_ (~ < ~ < b, (11.7) 

so tha t  ~) is a b-integer, which can be found by means of binary search in the interval from 0 to 
- 1. Having Q of (11.6) computed, we immediately compute the polynomial D*(x)  - M ( x ) Q  

and then compute and output  its b-associate D(x) .  The binary search will be simplified due to 
the following observation. 
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FACT 11.2. For a pair orb-polynomials U(x) and V(x), the sign of the value U(b) - V(b) of the 
polynomial U(x) - V(x) at x = b coincides with the sign of the leading coeftlcient of the latter 
polynomial. 

ALGORITHM 11.4. Reduction modulo an integer by means of binary search. 

Inpu t :  two integers ,~ and b, b > ~ > 1, and a pair of b-polynomials D*(x) and M(x)  such 
that D* = D*(b) and M = M(b) satisfy (11.5) and (7.3). 

Ou tpu t :  the integer D = D* modM (cf. (7.6)) represented by the associated b-poly- 
nomial. 

Ini t ia l izat ion:  write Q- = 0 and compute Q+ -- 2rlog~(n-,)]. 
Compu ta t ions .  

1. Compute the integer Q = [(Q+ + Q-)/2J.  
2. Compute and b-reduce the polynomial M(x)Q, so as to arrive at the b-polynomial DQ(X), 

such that DQ (b) = MQ. 
3. (a) If the leading coefficient of the polynomial D*(x) -DQ(X) is negative, then note that 

D* = D*(b) < DQ(b) = MQ, (11.8) 

write Q+ -- Q, and repeat the computations starting with Stage 1. 
(b) Otherwise, check if the leading coefficient of the polynomial D*(x) - DQ(X) - M(x)  

is nonnegative, and if so, then note that 

D* = D*(b) > DQ(b) + M(b) = (Q + 1)M, (11.9) 

write Q- -- Q, and repeat the computations starting with Stage 1. 
(c) Otherwise, deduce from Fact 11.1 that neither (11.8) nor (11.9) hold, note that, 

consequently, (11.6) holds, write Q = Q, and go to Stage 4. 
4. Compute the polynomial D(x) = D*(x) - M ( x ) Q .  (Since (11.6) holds, / ) (b )  = D* 

mod M -- D.) Then compute and output its b-associate polynomial D(x). 

Correctness of Algorithm 11.4 immediately follows from (11.5) and Fact 11.1. 
The algorithm requires at most [log~.(~ - 1)] _< [log2((ml - (k + 1)/2)k - 1)] steps of the 

binary search and a single pass through Stage 4. Each step of the binary search involves O(k) 
ring operations with b-integers, and so is Stage 4. 

REMARK 11.1. The number of ops involved in each step of binary search, in Stage 4 and, 
consequently, in the entire algorithm, can be substantially decreased if, by means of a special 
choice of b and M > 2] det A I + 1, we arrive at a sparse polynomial M(x), say, at M(x) = x" + 1, 
for an appropriate integer u. 

Having computed the b-polynomial D(x), we may easily compute the b-associate Db.2(x) 
of 2D(x) and then determine the sign of the leading coefficient of the polynomial Db,2(X ) - -M(X) .  
Due to Fact 11.1, this will give us the sign of 2D(b) - M(b) = 2D - M, which will enable us to 
define the sign of det A, based on (7.1). 

REMARK 11.2. For many input instances, we may decrease the arithmetic cost of performing 
Stages 2 and 3 of Algorithm 11.4 by skipping or not completing some of the b-reductions, as 
long as our computations still enable us to test if the inequalities (11.7) and (11.8) hold. Similar 
comments apply to Stage 4 and to the computation of Db,2(x). 

Based on combining Algorithms 7.1, 11.2-11.4, we obtain the following result. 

THEOREM 11.1. Suppose that 2k + 1 given integers b, m l , . . .  ,ink, r l , . . .  ,rk, satisfy (7.2) and 
k the following relations: b > ~i=l(mi  - 1) and ri = Dmodmk, i = 1, . . .  ,k, for some unknown 

integer D satisfying 
k 

[D[ < YI  m i -  mk. 
i= l  
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Then it suffices to use O(klogb) arithmetic operations and comparisons with b2-integers as 
operands in order to compute M = ml  . . .  mk and the b-associate D(x) of D mod M. 

12 .  p - A D I C  ( N E W T O N - H E N S E L ' S )  L I F T I N G  

F O R  T H E  C O M P U T A T I O N  O F  M A T R I X  

I N V E R S E S  A N D  D E T E R M I N A N T S  

In this section, we will recall another customary approach (alternative to one of Sections 7-9) to 
decreasing the precision of algebraic computations with no rounding errors. The approach relies 
on p-adic (Newton-Hensel's) lifting. We will first show how to apply this approach to computing 
det A by using order of n 4 log ops, so that  the algorithm is apparently inferior to one of Section 7 
for larger n but  may be competitive for small n. In Section 15, we wilt show how to modify this 
approach so as to use order of n a ops. The approach will still have a disadvantage of generally 
involving multiplications of pairs of nonconstant b-polynomials rather than only multiplications 
by b-integers, as in Section 11. 

ALGORITHM 12.1. p-adic lifting of matrix inverses. 

I n p u t :  an n x n integer matrix A, an integer p > 1, the matrix So = A -1 modp,  and a 
natural h. 

Output: the matrix A -1 modp  H, H = 2 h. 

C o m p u t a t i o n s .  Recursively compute 

Sj = S j _ l ( 2 I -  A S j _ l ) m o d p  J, J = 2 j,  j = l , . . . , h .  (12.1) 

Output  Sh. 

Correctness of the algorithm immediately follows from the next simple fact. 

FACT 12.1. (See [52].) Sj = A - l m o d p  J, J = 2J forall j .  

PROOF. Fact 12.1 follows from the matrix equation I - ASj  = (I  - ASj_I)  2 m o d p  J, implied 
by (12.1). | 

At the jth stage, the algorithm uses O(n 3) ops performed modulo pg (with a precision of at 
most [ J log2p  ] bits), that  is, a total of O(hn 3) ops. 

To extend p-adic lifting of matrix inverses to p-adic lifting of (det A) modp,  we next recall the 
equation 

1 
de tA = I-Ik=l ( k )k,k n A-1 (12.2) 

(cf., e.g., [11, p. 327], and Section 15). Here and hereafter, Ak denotes the k x k leading principal 
submatrix of A, k = 1 , . . . , n ,  so that  An = A, and (W)k,k denotes the (k,k) th entry of a 
matr ix W. To apply (12.2), we need to have the inverses modulo p of Ak available for all k, and 
for a fixed (prime) integer p. The existence of such inverses for all k is called strong nonsingularity 
of A modulo p. We will assume that,  for a given matrix A and for our choice of p, the matrix A 
is strongly nonsingular modulo p. (With a random choice of a prime p in a fixed interval, we 
have a convenient estimate for the probability that  A is strongly nonsingular modulo p (see 
Appendix A)). Then we extend Algorithm 12.1 to lifting de tA as follows. 

ALGORITHM 12.2. p-adic lifting to matrix determinants. 

I n p u t :  an integer p > 1, an n x n matrix A, the matrices S0,k = A~ -1 m o d p  (so that  the 
matr ix A is strongly nonsingular modulo p), and a natural h. 

Output: d e t A m o d p  2H, H = 2 h. 
Computations. 

1. Apply Algorithm 12.1 to all pairs of matrices Ak and S0,k (replacing A and So in the 
input),  so as to compute the matrices Sh,k = A-k 1 modp  g for k = 1 , . . .  ,n.  
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2. Compute the value 

d - ~  m°dp2H = H [Sh,k (2I - AkSh,k)]k,k modp 2H. (12.3) 
k = l  

3. Compute and output the value (detA)modp 2H, as the reciprocal of (1/detA) mod- 
ulo p2H. 

Correctness of Algorithm 12.2 immediately follows from (12.2) and from correctness of Al- 
gorithm 12.1. The overall computational cost is dominated by order of hn 4 ops performed at 
Stage 1 with the precision of at most [Hlog2p ] bits. At Stage 2, we only need O(rt 3) ops (in 
order to premultiply Ak by the last row of Sh,k, to postmultiply the resulting vector by the last 
column of Sh,k, to subtract the resulting value from 2(Sh,k)k,k, for k = 1 , . . . ,  n, and to multiply 
together the results for all k). These operations, as well as the single operation of Stage 3, are 
performed modulo p2g, that is, with the precision of 2Hlog2p bits. In the next section, we will 
show how to perform the latter computations with a lower precision. 

To complete the computation of (det A) modp 2H, we will complement Algorithm 12.2 by Gauss- 
inn elimination modulo p applied in order to compute So,k = A k 1 rood p for all k. In the special 
case, where the computations require no pivoting and no row interchange, we compute and out- 
put the LkUk factorizations modulo p of Ak, simultaneously for all k, where Lk and Uk are the 
k × k leading principal submatrices of the computed factors of A, that is, L and U, respectively, 
(cf. (2.1)). Then Ak 1 = UklLk 1, and Gaussian elimination outputs Ak 1 modp for all k, at the 
cost of performing O(n 3) ops modulo p. 

In the general case, Gaussian elimination with partial pivoting either determines that det A = 
0modp or outputs a PLU factorization of A modulo p, where L and U T denote two lower 
triangular matrices and P is a permutation matrix, whose determinant (1 or -1) is available. 
Then we have LU factorizations of the matrix B = Bn = p -1A  and of all its leading prin- 
cipal submatrices, B1 . . . .  , Bn-1. By applying Algorithm 12.2 to the matrix B replacing A 
in the input, we compute (detB)modp 2g and then immediately recover (detA)modp 2H = 
((det B)modp  2g det P )modp  2H. To conclude, we will estimate H and p sufficient in order to 
satisfy the bound p2~ > 2[ det A[. Due to Hadamard's bound, 

[detA[ < (av/n) n , a = max[a~jI, (12.4) 
9,3 

which holds for any matrix A = (aij),  it suffices to choose p and H satisfying 

2 (av/-n) ~ < p2H, 2H > n logp (av~) + logp 2. (12.5) 

13. D E C R E A S I N G  T H E  P R E C I S I O N  O F  

T H E  C O M P U T A T I O N  O F  p - A D I C  L I F T I N G  

At the jth stage of Algorithm 12.1, we generally compute with the precision of [j log 2 Pl bits. 
For larger j ,  this value may exceed the computer precision ~. Let us next extend the techniques 
of Section 11 in order to decrease the precision of computing so as to keep it below the fixed 
level ~, denoting the computer precision. We will choose the base b = pC, where G is a power of 
2, G </-//2,  so that G divides H/2, and 

<_ log2 ( ( b -  ~ 2n i l )  < ~ ,  (13.1) G 

denoting the computer precision. We associate the entries of the matrices Ak modp J and 
Sj_l ,kmodp J for J = 2J, and for all j and k, with the b-polynomials in x (see the definition 
of b-polynomials in Section 11); such polynomials take on the values of these entries for x = b 
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and have degrees at most (J/G) - 1. Let Aj,k(x) and Sj- l ,k(x)  denote the resulting matrix 
polynomials such that 

Aj,k(b) --- Ak modp J, Sj,k(b) = Sj,k modp J. 

Then, for J _> G, we associate the p-adic lifting step (12.1) with the computation of the matrix 
polynomial 

Sj,n(X) = Sj- l ,n(x)  (21 - Aj,,~(x)Sj-l,n(x) ) mod x g/c, (13.2) 

where the matrix polynomials Aj,n(x) and Sj- l ,n(x)  are given as input and where j = 1,2 . . . .  , h. 
We will perform arithmetic operations modulo x J/G with the matrix polynomials of (13.2). Hav- 
ing completed such an operation, we will apply b-reduction to all the entries of the output matrix 
polynomial, followed by a new reduction modulo x g/C. Due to the recursive application of b- 
reductions and modular reductions, the entries of all the operands are polynomials with integer 
coefficients in the range from 1 - b to b - 1. Therefore, the output entries, even before their 
b-reductions, are the polynomials with coefficients in the range from - B  to B with B _< 2 ~, so 
that the fl-bit precision suffices in all these computations, due to (3.1). Similar analysis applies 
to the computation of the matrix polynomials associated with the matrices Sj,k for all j and 
k < n .  

14.  D E C R E A S I N G  T H E  P R E C I S I O N  O F  C O M P U T I N G  

det  A W H E N  T H E  I N V E R S E S  O F  A k A R E  A V A I L A B L E  

Having computed the matrix polynomials Ah+l,k(x) and Sh,k(x) associated with the matrices 
Ak modp 2H and Sh,k, we next compute the polynomial 

D-(x )  = ~-I [Sh,k(X) (21 - Ah+l ,k (X)S  h k(Z))]k,k mod X 2H/G, 
k=l 

associated with (1/det A)modp 2H. Then again, we assume that reduction modulo X 2H/G and 
the extension of the b-reduction described at Stages 5-7 of Algorithm 11.1, have been repeatedly 
applied after each arithmetic operation with polynomials in the process of computing D-(x).  
Finally, we apply a known algorithm for computing the reciprocal of a polynomial (see, e.g., 
[11, p. 24]) in order to compute the polynomial D(x) = (1 /D- (x ) )mod  x 2g/a. Then [9(b) = 
(det A) modp 2H, due to (12.3). 

15. F A S T E R  p - A D I C  L I F T I N G  O F  T H E  D E T E R M I N A N T S  

Some deficiency of Algorithm 12.2 is due to its excessive work for inverting all the k x k leading 
principal submatrices Ak of A, which requires order of n 4 ops. Let us show how to avoid this 
stage, so as to u s e  O(n 3) ops. Due to our argument of the end of Section 12, we may assume that 
the matrix A is strongly nonsingular modulo p. Then block Gauss-Jourdan elimination applied 
to the 2 x 2 block matrix 

A =  E ' 

defines the following well-known block factorization of A: 

I B I I C  ) (15.2) 

where 
S = G - EB-1C.  (15.3) 
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Moreover, strong nonsingularity of A modulo p implies strong nonsingularity modulo p of the 
matrices B and S. Now, we arrive at the following divide-and-conquer algorithm. 

ALGORITHM 15.1. Computing the determinant of a strongly nonsingular matrix. 

Inpu t :  an n x n strongly nonsingular matrix A. 
O u t p u t :  det A. 
C o m p u t a t i o n .  

1. Partition the input matrix A according to (15.1), where B is an In/2] x [n/2J matrix. 
Compute B -1 and S of (15.3). 

2. Compute det B and det S. 
3. Compute and output 

det A = (det B) det S. (15.4) 

Correctness of the algorithm immediately follows from (15.2). Letting Co (k) and C1(k) denote 
the arithmetic cost of computing the determinant and the inverse of any k × k strongly nonsingular 
matrix, respectively, we obtain from (15.3) and (15.4) that 

CD(n) <_ CD ( [ ~ J ) - ~ C D  ( [ 2 ] ) - [ - C I  ( [ 2 J )  " (15.5) 

The latter bounds also hold for solving the same computational problems modulo p2H for a 
fixed prime p and a positive integer H, assuming strong nonsingularity of A modulo p. We 
may compute modulo pH the inverse of a k x k matrix by using Cx(k) = O(k31ogH) ops, 
by means of Algorithm 12.1. Substitute this bound into (15.5), and obtain recursively that 
Co(n) = O(n31ogH), that is, we deduce the latter bound based on recursive application of 
the factorization (15.2) to the matrices B and S and on computing the inverses modulo p2g 
by means of Algorithm 12.1 (see the bound (12.5) on H). Our techniques of Section 13 for 
decreasing the precision of the computation of (det A) mod p2H are immediately extended to the 
case of Algorithm 15.1. 

16 .  D I S C U S S I O N .  D E C R E A S I N G  T H E  P R E C I S I O N  
O F  T H E  S T R A I G H T F O R W A R D  A L G O R I T H M S  

Further theoretical and experimental study may reveal other competitive approaches to deter- 
mining the sign of det A. In particular, we may extend the approach of Sections 11, 12, and 14 
to any algorithm that outputs det A or its sign in the result of a sequence of ring operations +, 
- ,  and *. For instance, we may do this for the algorithms of [7,8] (though their b-associates 
generally involve multiplications of nonconstant b-polynomials) as well as for the straightforward 
algorithms based on the decompositions 

n 
det A = Z ( - 1 ) i - l a ~ , l  det A~,I, (16.1) 

i=l 
or 

n 
det A = Z ( - 1 ) ~ - l a l , j  det AI,j, (16.2) 

i=1 

and on similar recursive decompositions ofdet AI,j and/or det Ai,1. Here, Ai,j denotes an ( n -  1) x 
(n - 1) submatrix of A obtained by deleting the ith row and the jth columns of A. Every 
multiplication in the latter algorithms has an operand ai,j for some pair (i,j). By choosing 
b > maxi,j la~,j], we may ensure that the b-associates of these operands are b-integers, so that 
the b-associates of the algorithms only involve linear operations. Hadamard's bound (12.4), 
which holds for any n x n matrix A, enables us to bound similarly the absolute values of all 
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operands of these straightforward algorithms, so that the b-associates of these operands are 
polynomials of degrees less than (n+ 1) lOgb(ax/~ ). These observations suggest that the algorithms 
are competitive for small n. 

For large n, however, the algorithms use prohibitively many ops. Indeed, denoting the number 
of ops by Cn, we have Cn = (2n ÷ 1) ÷ nC~_l. By extending this relation recursively, to 

n Cn-1, Cn-2,. • •, we obtain the expression 1 + C,~ = n! ~ i = l  l/i[, which converges to 1 ÷ C~ = en!, 
e = 2.7182..., as n ~ ec. 

A P P E N D I X  A 

E S T I M A T I N G  T H E  P R O B A B I L I T Y  O F  S I N G U L A R I T Y  

We will estimate the probability that det A ~ 0 provided that (det A) mod p = 0 for a random 
prime p and for a fixed integer matrix A. 

FACT A. 1. (See [53].) Let f(n) > 0 for all natural n, limn-~o~ f(n) = oo. Then there exist two 
positive constants C and no such that the interval 

{p:  f(n)n < P < f ( n ) }  (A.1) 

contains at /east  f (n ) / (C  log 2 f(n)) distinct primes provided that n > no. 

COROLLARY A.1. (See [28,29].) For a fixed nonsingular n x n matrix A filled with integers, for 
f(n) ~ n d+l, d > O, and for a random prime p chosen in the interval (A.1), under the uniform 
probability distribution, we have 

q = Probability{detA = 0modp} < (1 + d)(Cl°g2 [ detA[) (A.2) 
- ( f ( n ) d )  

PROOF. Let k distinct primes from the interval (A.1) divide IdetAI. Then their product P also 
divides IdetAI. Therefore, this product P satisfies the bounds ( f (n)/n)  k <: P <_ IdetAI. 

It follows that (detA)modp = 0 for at most k < (log 2 IdetAI) / log2(f(n)/n ) primes in (A.1), 
among at least f (n) / (Clog 2 f(n)). Hence, 

q < C (l°g2 [detAI) l°g2 f(n) 
f(n) log 2 ( f (n)/n)  ' 

and the bound (A.2) follows for f(n) >_ n l+d. | 

In particular, we may ensure that 

q = Probability {det A = 0modp} <_ A, 

for a fixed A, by choosing p in the interval (A.1) where, say, 

f(n) > max {n2, (2Cl°g~detAI)  } .  

A P P E N D I X  B 

N U M E R I C A L  E X P E R I M E N T S  F O R  P A R T  I 

A set of experiments has been performed for numerical computation of the determinants of 
n × n matrices for 2 < n < 10, based on computing the LU, PLU, P L U P  ~, and QR (Householder) 
factorizations of A. 
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Table 1. Average estimated relative error on 10,000 random matrices. 

Matrix Size LU P L U  P L U P '  QR 

2 1.112e-011 1.836e-010 2.312e-014 6.877e-014 

3 3.215e-005 9.644e-010 4.510e-013 7.702e-013 

4 1.138e-003 3.007e-004 2.812e-010 1.827e-009 

5 9.501e-003 2.677e-004 6.277e-012 3.729e-012 

6 4.001e-002 8.723e-004 4.683e-011 1.049e-011 

7 1.220e-001 3.056e-003 1.087e-010 1.256e-011 

8 2.624e-001 5.316e-003 3.001e-010 1.438e-011 

9 4.369e-001 8.361e-003 5.955e-010 1.733e-011 

10 6.158e-001 1.210e-002 1.716e-009 1.904e-011 

Table 2. "Estimated failure" count on 10,000 random matrices. 

Matrix Size LU P L U  P L U P  I QR 

2 0 0 0 0 

3 0 0 0 0 

4 8 3 0 0 

5 73 2 0 0 

6 332 7 0 0 

7 1046 26 0 0 

8 2353 45 0 0 

9 3999 71 0 0 

I0 5819 105 0 0 

Table 3. Average estimated relative error on random matrices having 4-1 determi- 
nants. 

Matrix Size LU P L U  P L U P '  QR 

2 1.841e-010 1.154e-012 1.154e-012 3.138e-010 

3 3.563e-004 1.440e-006 2.318e-007 1.129e-006 

4 6.155e-002 3.287e-003 3.194e-004 1.528e-003 

5 6.633e-001 3.270e-001 2.213e-001 6.315e-001 

6-10 > 9.5e-001 > 9.5e-001 > 9.5e-001 > 9.5e-001 

Table 4. "Estimated failure" count on 10,000 random matrices having 4-1 determi- 
nants. 

Matrix Size LU P L U  P L U P  ~ QR 

2 0 0 0 0 

3 1 0 0 0 

4 431 16 0 0 

5 5572 1840 816 3986 

6-10 > 9500 > 9500 > 9500 > 9500 

The  a lgor i thms have been implemented  with C + +  and  bui l t  as a console appl ica t ion  wi th  
Microsoft Visual C-t-+ 4.0 compiler and linker. All numerica l  opera t ions  have been performed 
wi th  double  precision floating point  ar i thmetic .  The  double precision representa t ion  of a n u m b e r  
uses 64 bits: 1 for the  sign, 11 for the exponent ,  and  52 for the mantissa .  I ts  range is +1.7  x 103°s 
wi th  a t  least 15 decimal  digits of precision. The  test  results have been collected on a Pent iumo 
100MHz PC,  r u n n i n g  under  Windows 95's DOS session. The  sys tem pseudo- random n u m b e r  
genera tor  funct ions  s r a n d  0 and  r a n d  0 have been used to generate  i npu t  matrices.  

All the  o u t p u t  values represent ing the de t e rminan t s  have been compared wi th  the  error bounds  
e + and  ed es t imated  according to (4.10) and  (6.6), respectively. We considered three classes of 

i npu t  matr ices  A. In  the  cases where le+l > Ide tAI  or ledl > Ide tAI  for the computed  values 
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Figure 5. Actual failure count in 10,000 tests on random matrices having 4-1 deter- 
minants. 

Matrix Size LU P L U  P L U P '  QR 

<:4 0 0 0 0 

5 10 0 0 0 

6 25 0 0 0 

7 46 0 0 0 

8 78 0 0 0 

9 76 1 5 5 

10 141 56 114 144 

Table 6. Average estimated relative error on random matrices having small determi- 
nants. 

Matrix Size LU P LU P LU P' Q R 

2 7.207e-012 1.389e-012 1.645e-012 7.705e-012 

3 6.776e-007 2.132e-007 2.261e-009 9.055e-009 

4 5.100e-003 5.500e-004 9.923e-007 3.878e-006 

5 1.005e-001 3.859e-003 3.315e-004 1.444e-003 

6 4.015e-001 1.229e-001 5.013e-002 1.668e-001 

7 6.864e-001 5.414e-001 4.761e-001 5.965e-001 

8 8.367e-001 6.601e-001 6.566e-001 6.593e-001 

9 9.381e-001 7.607e-001 7.510e-001 7.582e-001 

10 9.844e-001 8.243e-001 8.010e-001 8.203e-001 

Table 7. "Estimated failure" count on 10,000 random matrices having small deter- 
minants. 

Matrix Size LU PLU P L U P '  QR 

2 0 0 0 0 

3 0 0 0 0 

4 43 6 0 0 

5 918 24 0 0 

6 3839 937 235 1252 

7 6709 5360 4640 5974 

8 8218 6584 6561 6577 

9 9295 7553 7491 7530 

10 9802 8111 7935 8076 

Table 8. Actual failure count in 10,000 tests on random matrices having small de- 
terminants.  

Matrix Size LU PLU P L U P '  QR 

<.5 0 0 0 0 

6 18 0 0 0 

7 49 0 0 0 

8 53 0 0 0 

9 55 0 0 0 

10 71 0 0 0 

of  d e t A ,  e + ,  a n d / o r  ed, " f a i lu re"  h a s  b e e n  r e c o r d e d .  O t h e r w i s e ,  " c o r r e c t  s o l u t i o n "  h a s  b e e n  

r e c o r d e d .  F o r  e a c h  o f  t h e  t h r e e  c l a s ses  o f  n x n i n p u t  m a t r i c e s  a n d  for  e a c h  n t h e  a v e r a g e  o f  t h e  

e s t i m a t e d  r e l a t i v e  e r r o r  ( m i n ( 1 ,  [e+l)  if  d e t  A --- 0, m i n ( 1 ,  [ ( e d + ) / d e t A [ )  o t h e r w i s e )  is p r e s e n t e d .  

T a b l e  5 a n d  T a b l e  8 a l so  i n c l u d e  a c t u a l  f a i l u r e  c o u n t  in  a d d i t i o n  t o  " e s t i m a t e d  f a i l u re"  c o u n t  

s i n c e  t h e  i n p u t  m a t r i c e s  a r e  g e n e r a t e d  w i t h  t h e i r  d e t e r m i n a n t s  k n o w n  b e f o r e h a n d .  I t  c a n  b e  s e e n  

t h a t  t h e  " a c t u a l  f a i l u r e s "  o c c u r  s u b s t a n t i a l l y  less f r e q u e n t l y  t h a n  t h e  " e s t i m a t e d  f a i l u r e s . "  
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T e s t  1: R a n d o m  M a t r i c e s  

Determinants of 10000 random matrices have been evaluated. The entries of the input matrices 
are random integers in the interval (-32768, 32768). The estimated relative errors are presented 
in Table 1, "estimated failure" count is presented in Table 2. 

T e s t  2: M a t r i x  H a v i n g  ~=1 D e t e r m i n a n t s  

The input matrices are composed by using the following steps. 

1. Compute a pair of lower and upper triangular matrices M and N, respectively, where 
the nondiagonal entries of M and N are random integers in the interval ( - p , p ) ,  for 
p =  ~ / n .  

2. Set Mi, i  and Ni,i to 1, where i = 1 , . . . ,  n. 
3. Compute A = M N .  

4. Swap a random pair of rows in matrix A. 
5. Repeat Step 4 (the previous step) m times, where m is a random integer in [0, n). 

The average estimated relative errors are presented in Table 3. The "estimated failure" count 
recorded in 10,000 tests is presented in Table 4. The exact values of the determinants are known 
to equal ( - 1 )  m in this case. 

If an algorithm outputs  det A satisfying [det A -  ( -1)ml  _> 1, an "actual failure" is recorded 
for the test and the count is presented in Table 5. 

T e s t  3: M a t r i x  H a v i n g  Smal l  D e t e r m i n a n t s  

The input matrices are composed by using the following steps. 

1. Compute a pair of lower and upper triangular matrices M and N, respectively, where the 
nonzero entries of M and N are random integers in the interval ( - p ,  p), for p = X / f ~ / n .  

2. Compute A M N  and D n , , -~ = Vii=l M i  iN i  i. 
3. Swap a random pair of rows in matrix A. 
4. Repeat Step 3 (the previous step) m times, where m is a random integer in [0, n). 

The  average estimated relative errors are presented in Table 6. The "estimated failure" count 
recorded in 10,000 tests is presented in Table 7. The exact values of the determinants are known 
to equal ( - 1 ) m D  in this case. If an algorithm outputs det A satisfying I(det A ) / D -  ( -1)ml  >_ 1, 
an "actual failure" is recorded for the test and the count is presented in Table 8. 
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