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A b s t r a c t - - W e  substantially improve the known algorithms for approximating all the  complex 
zeros of an n th degree polynomial p(x). Our new algorithms save both  Boolean and ari thmetic 
sequential time, versus the previous best algorithms of SchSnhage [1], Pan [2], and Neff and Reif [3]. 
In parallel (NC) implementation, we dramatically decrease the number of processors, versus the  
parallel algorithm of Neff [4], which was the only NC algorithm known for this problem so far. 
Specifically, under the simple normalization assumption tha t  the variable x has been scaled so as 
to confine the  zeros of p(x) to the unit disc {x : Ix[ < 1}, our algorithms (which promise to be 
practically effective) approximate all the zeros of p(x) within the absolute error bound 2 -b ,  by using 
order of n ari thmetic operations and order of (b + n)n 2 Boolean (bitwise) operations (in bo th  cases 
up to within polylogarithmic factors). The algorithms allow their optimal (work preserving) NC 
parallelization, so tha t  they can be implemented by using polylogarithmic t ime and the orders of n 
ari thmetic processors or (b + n)n 2 Boolean processors. All the cited bounds on the computat ional  
complexity are within polylogarithmic factors from the optimum (in terms of n and b) under both  
ari thmetic and Boolean models of computation (in the Boolean case, under the additional (realistic) 
assumption tha t  n = O(b)). 

K e y w o r d s - - C o m p l e x  polynomial zeros, Approximation, Polynomial factorization, Parallel algo- 
rithms, Computational  complexity, Sequential algorithms. 

1. I N T R O D U C T I O N  

1.1. T h e  Subject ,  Some  History,  and a S u m m a r y  of  Our Resul ts  

The problem of solving a polynomial equation p ( x )  = 0 substantially motivated the develop- 
ment of mathematics throughout the centuries. As particular examples of this influence, one may 
recall the origin of complex numbers from the solution formulae for quadratic equations (these 
formulae have been known already in ancient Greece), the fundamental theorem of algebra, which 
states the existence of a complex solution to p ( x )  = 0 (the first celebrated proof of this theorem, 
given by Gauss in 1799, contained a substantial flaw, corrected by Ostrowski in 1920), and the 
Galois theory of 1832, which extended the earlier theorem of Ruffini 1813 and Abel 1826 on 
nonexistence of solution formulae in radicals for a polynomial equation of a degree n if n > 5 
(such formulae have been known, since the 16 th century, for n -- 3 [del Ferro, Tartaglia, Cardano] 
and n = 4 [Ferrari]). In the absence of explicit solution formulae, numerous algorithms for ap- 
proximating polynomial zeros have been proposed, and they are still appearing in great number, 

The author  is grateful to D. Bini, P. Kirrinnis, and A. Neff, for (p)reprints of [3-7], and to A. Sadikou, for helpful 
comments. 
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1995 (see [8]); the author is grateful to the ACM for the permission to reuse them. 
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motivated by the importance of approximating polynomial zeros to many areas of algebraic and 
numerical computing. The designers of these algorithms have introduced various techniques of 
independent interest. As a single major example, we recall Weyl's paper [9]. Together with [10], 
this paper presented one of the two historically first algorithms, both of 1924, that converged 
to the zeros of any input polynomial p(x), thus giving the two first algorithmic proofs of the 
fundamental theorem of algebra. Weyl's remarkable ideas are still practically important for ap- 
proximating polynomial zeros; moreover, historically his algorithm was the first application of 
his quadtree technique, now widely used in various areas of computing (see, for instance, [11] 
on some older applications and [12,13] on more recent ones, to template matching and to the 
unsymmetric eigenvalue problem). On some further historical and technical background, we refer 
the reader to [1,9,10,14-20]. 

In the present paper, we consider algorithms that solve the problem in the general case, by 
approximating all the n zeros of any input polynomial p(x) of degree n, with no restriction on 
the disposition of the zeros on the complex plane (in particular, these zeros may form various 
clusters, which occurs, for instance, in numerical treatment of polynomials with multiple zeros), 
and we will estimate the worst case computational complexity of performing these algorithms, 
assuming no initial approximations to the zeros of p(x) available (compare [1; 19, pp. 497-499]). 
(Here and hereafter, we count every polynomial zero of multiplicity m as m zeros.) 

In some sense, our present paper completes this line of study. Namely, our algorithms not 
only substantially improve the previous ones but are also asymptotically optimal (up to within 
polylogarithmic factors), both in their sequential and parallel implementations and under both 
Boolean and arithmetic models of measurement. Furthermore, the presented new algorithms are 
machine independent, can be implemented on various real computers, and promise to be practically 
effective. 

1.2. M o d e l s  of  C o m p u t a t i o n  

We will estimate the computational cost of the solution algorithms under the customary arith- 
metic and Boolean computational models of (sequential) RAM [22] and EREW PRAM [23]. In 
the latter (parallel) case, each arithmetic or Boolean processor is allowed to perform at most one 
arithmetic or Boolean operation, respectively, in each time-step, and we will assume a variant 
of Brent's scheduling principle, according to which a single processor may simulate the work of 
s processors in O(s) time. (We only need to use this principle in order to decrease some of our 
processor bounds by the factor log n.) We will express the computational complexity (computa- 
tional cost) estimates as OA(t, p), under the arithmetic computational models, and as OB(t, p), 
under the Boolean computational models. This way will unify the bound O(tp) on the sequential 
time, under the RAM models, and the simultaneous bounds O(t) on parallel time and O(p) on the 
number of processors, under the EREW PRAM models. We will state the complexity estimates 
in terms of n and b, assuming, for convenience, that all the zeros of p(x) have magnitudes at 
most 1 and are sought within the absolute error bound 2 -5. 

1.3. Prev ious  Resul t s  

Among several effective algorithms that at the time of their publication supported record esti- 
mates for the worst case computational complexity of approximating the n complex polynomial 
zeros [1-4,9,10,24-26], the latest achievements are due to [3,4]. In [4], the only known NC-solution 
has been presented, for which the computational cost bound Os ((log n) 2 log(bn), (b + n)nSb 2) has 
been proved. In [3] the record sequential computational cost bounds have been claimed, that 
is, OA(nl+~logb, 1) and Os((b + n)n2+~(logb)21oglogb, 1), for any fixed positive ~. The latter 
bounds are substantially superior to the previous records, Os(n3b, 1) of [1] and OA(n 2, 1) of [2], 
both of which we recall up to polylogarithmic factors. 
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Technically, the elegant algorithm of [3] relies on 

(a) some correlations between the zeros of p(x) and one of its higher order derivatives [27], 
(b) the algorithms of [1,28] for splitting a polynomial into factors over a complex disc D provided 

that  this disc is sufficiently well isolated from the zeros of p(x) that  lie outside D (the 
isolation is quantitatively measured by an isolation ratio; see our Definition 2.2, taken 

from [2]), and 
(c) an algorithm for simultaneous approximation of the distances from the origin to all the 

zeros of p(x) [1,2; 19, pp. 458-462; 29]. 

More specifically, the latter algorithm and the results of [27] were used in [3] in order to compute 
a disc D, with no zeros of p(x) on or near its boundary circle and with comparable numbers of 
the zeros of p(x) ( that  is, with the same number of them up to within a fixed constant factor) 
in its interior and in its exterior. Then the results of [1,28] were applied in order to split p(x) 
numerically into two factors (of comparable degrees) having all their zeros in or, respectively, all 
outside the disc D, and the same process was recursively applied to each of the factors. This 
solved the problem in O(log n) recursive steps, since every splitting was balanced so as to decrease 
the degree of its input polynomial by a fixed constant factor. The result was a new surprising 
extension of the earlier pioneering versions of balanced splitting techniques of [30,31], applied 
in [30,31] to a simpler (real) case. (Compare [4,28,32,33] on the other known techniques for 
achieving balanced splitting.) 

1.4. S o m e  Prob lems  Left Open by the  Prev ious  Research 

The algorithm of [3] was a major step towards optimizing polynomial rootfinding, but it has 
also raised some new questions. In particular, approximating the zeros of p(x) according to this 
algorithm involved approximations of all the zeros of some higher order derivative of p(x) and, 
recursively, of the factors of this derivative and of the higher order derivatives of the factors. 
This complication has not allowed one to run the algorithm in NC (that is, by using parallel time 
(log(bn)) °(1) and (bn) °(1) arithmetic or Boolean processors). Avoiding this computation should 
have enabled us to decrease the overall asymptotic (both arithmetic and Boolean) cost bounds 
by the factor c(~)n ~, where c(~) --* oc as ~ --* 0. 

On the other hand, the algorithm of [3] computes a disc for splitting p(x), which is isolated 
from the zeros of p(x) lying outside this disc, but this isolation is not as strong as necessary 
in order to support  the desired upper estimates for the arithmetic and Boolean time involved. 
Either the algorithm has to be improved or the claimed upper estimates must be increased by at 
least the factor n 1/3 (compare our Remarks 4.1, 4.2, 5.1, 6.1, and 9.2). 

Besides, the algorithm of [3] required some further nontrivial elaboration in order to avoid a 
dramatic blow-up of its computational cost in its application to some special but important  class 
of input polynomials p(x). Namely, in the form in which this algorithm was presented, it runs 

x-~n- 1 x i  into problems for the input polynomials (such as p(x) = x ~ + 2_,~=o Pi , where all the IPil are 
very small) all of or most of whose zeros form a massive cluster having a small diameter a. In 
order to compute a balanced splitting of such a polynomial p(x), one has to separate some of its 
zeros in the cluster from each other. This is a numerically hard problem whose solution requires 
computations with a bit-precision exceeding log2(1/a), so that  the Boolean cost of the solution 
is unbounded as a --* 0. In this case, approximation of the zeros must be worked out without 
computation of a balanced splitting of p(x), in order to ensure any reasonable bound on the 
overall computational complexity. (As we have already mentioned, various clusters of polynomial 
zeros frequently arise in numerical treatment of polynomials with multiple zeros.) 

1.5. Our Techniques  and the  Main Theorem 

In the present paper, we address all the three problems cited above and, as a result, substan- 
tially improve the construction and the main result of [3], with a respective impact on various 
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computational tasks, whose solution requires approximating polynomial zeros. Our progress relies 
on introducing new geometric, analytic, and algebraic techniques for 

(a) recursive screening and discarding the zeros of the higher order derivatives (without ap- 
proximating these zeros), 

(b) recursive contraction of an area of search for a splitting disc, 

(c) computing an unbalanced splitting into factors of a polynomial that has a massive set of 
clustered zeros, 

(d) descending from Graeffe's iteration, and 

(e) perturbation of Pad~ approximations. 

Our resulting algorithms run in polylogarithmic parallel time and support new record bounds 
of the orders n (arithmetic) and (b + n)n 2 (Boolean) on both sequential time and the number of 
processors (ignoring polylogarithmic factors). (As we will show in Section 1.7, these bounds are 
asymptotically optimum Cup to within polylogarithmic factors) unless b = o(n).) Specifically, we 
arrive at the following estimates (to be deduced in Section 8 and improved slightly in Appendix C). 

THEOREM 1.1. Let all the n unknown zeros, Zl,. . . ,Zn, of a given monic polynomial p(x) of 
degree n have magnitudes at most 1, that is, [zi[ _ 1, for a11 i. For a fixed positive b, write 

---- (b + 2)n + logn + 2. (1.1) 

Then, approximations z~ satisfying 

[zi - z*[ < 2 -5, for i - 1 , . . . ,  n, (1.2) 

can be computed at a cost bounded by any of the following four expressions: 

(a) PBCz(b,  n) = OB ((log n)3(log b)2, (M(n 3 + bn log b))/((log b)2(log n)2)), 

(b) PACz(b,  n) = OA ((log n) 3 log b, n2/((log b)(log n)2)), 

(c) PRACz(b,  n) = OA ((log n)at3A (b, n), n~ log n), 

(d) SACz(b, n) = OA((logn)2t2,1(b, n)n, 1). 

Here and hereafter, A, B, C, P, R, S and Z of P B C z ,  PACz ,  P R A C z  and S A C z  abbreviate 
the words "arithmetic," "Boolean," "complexity," "parallel," "randomized," "sequential," and 
"zeros," respectively, and we write 

M(d) = (d log d) log log d, 

ti,j (b, r 0 = (log n) i + (log b)J, 

(1.3) 

i = 2 , 3 , 4 ;  j = l , 2 .  (1.4) 

The estimates of part (c) are randomized (of the Las Vegas type, that is, the estimates include 
the cost of verification if  the computed solution is correct); the estimates of parts (a), (b) and ((t) 
are deterministic. 

1.6. C o m m e n t s  to the  Main  Theorem 

REMARK 1.1. The estimates of Theorem 1.1 show efficacy of our algorithms (supporting these 
estimates) in the case where b and n are large, as this occurs, for instance, in the major application 
to approximate solution of systems of polynomial equations, via the elimination techniques. 
Actually, our algorithms are effective already for moderate b and n. 
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REMARK 1.2. The normalization assumption is that  Izil <_ 1 for all i can be ensured by means of 
estimating rmax = maxi Izil, within the factor 2n, at a cost OA(1,n) [19,34], or within the factor 
1.01 (say), at a cost OA(logn, n) (see Fact 2.2(b)), followed by scaling the variable x, at a cost 
OA(lOg n, n~ log n); furthermore, we may then make p(x) monic by dividing all its coefficients by 
the leading coefficient. Bringing the zeros of a polynomial inside the unit disc can be facilitated 
by other means such as shifts of the variable x (see Fact 2.1) (so as to bring the origin into 
the readily available center of gravity of the zeros, Y~=I zi/n, before estimating rma~) and the 
transition to the reverse polynomial xnp(1/x) = y[i(1 - xzi). Moreover, Theorem 1.1 can be 
restated assuming other normalizations of the input. 

Parts (a) and (b) of Theorem 1.1 are supported by the same algorithm. More specifically (but 
ignoring polylogarithmic factors), one of the stages of this algorithm uses O(n 2) arithmetic oper- 
ations and O(n)-bit precision of computing, versus O(n) operations and O(bn + n)-bit precision 
used at all other stages. These arithmetic estimates immediately lead to part (b). Part Ca) follows 
when we combine the cited arithmetic and bit-precision bounds, for each stage of the algorithm, 
with the known estimates 

#B (d) = OB (log d, d log log d), (1.5) 

for the Boolean complexity of an arithmetic operation with bounded d-bit numbers. (The sequen- 
tial Boolean complexity represents the number of Boolean operations, also called bit-operations, 
involved.) Each arithmetic operation is ultimately reduced to adding and/or multiplying two inte- 
gers modulo 2 d -  1 at a cost bounded by Os(log d, d~ log d) and/or  by (1.5), respectively, by means 
of Ofman's and/or SchSnhage-Strassen's algorithms, respectively (see [22,35-39]). Furthermore, 
one may improve the Boolean complexity bound slightly, by means of the techniques of binary 
segmentation, when one implements the algorithm that  supports part (a) (see Remark 8.1 in Sec- 
tion 8). If the algorithms of this paper rely on using #~(d) Boolean operations (bit-operations) 
per an arithmetic operation over two integers modulo 24 - 1 (recall that  #~ (d) has a bound of the 
order d 2 based on the straightforward algorithms and the order d l°g2 3, log 2 3 = 1.5849.. . ,  based 
on the algorithms of [40]), then the resulting estimate for the sequential Boolean complexity of 
approximating the n zeros of p(x) turns into O(n#*B(bn)) , up to a polylogarithmic factor, and 
the parallel Boolean complexity estimates of Theorem 1.1 change similarly. 

The arithmetic sequential time and processor bounds of part (b) are deceptively large: we 
decrease them roughly by the factor n and turn them into the bounds of parts (c) and (d), by 
modifying one of the stages of the algorithm supporting part (b) so as to use fewer arithmetic 
operations but a higher precision of computation at this stage. In Sections 12 and 13, we show 
how to control the precision of computing by this modified algorithm so as to arrive at essentially 
the same Boolean cost bounds as we obtain in part (a). In Appendix C we review some techniques 
for a further decrease of the arithmetic cost bounds, though these techniques abandon control 
over the precision and Boolean cost of the computations, allowing their potential blow-up. This, 
of course, makes such techniques unrealistic and limits their value. 

Since the Boolean cost bounds (reflecting the precision required in the computations) are more 
informative for the users, it is important that  our Boolean sequential time bound of part (a) 
(that is, O(n 3 + bn), within polylogarithmic factors) substantially improves the previous (long 
standing) record, O(n 3 + bn2), of [1, Section 19], as well as the cited Boolean cost bound claimed 
in [3]. (Note that  in practical computation of polynomial zeros it is common to have b and 
of the order at least n and n 2, respectively, and the terms bn and bn 2 dominate the above cost 
estimates.) 

1.7. Compar i son  of  Upper  and Lower Bounds  

According to the customary definition of [23], parallelization of our algorithms is optimal 
since they run in polylogarithmic time and support the Boolean and arithmetic work bounds tp 
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(that is, t ime* processors bounds) that  match the record sequential time bounds for the same 
computational problem. 

Let us show that  we also reach (up to within polylogarithmic factors) the optimum bounds on 
the sequential time and work. Indeed, the upper bound of part (d) of Theorem 1.1 is quite close to 
the known lower bounds of the orders n (obvious) and log(b/n) (see [26]), both lower bounds ap- 
plied already to the complexity of approximating a single zero of p(x). Furthermore, the involve- 
ment of the precision of the order of bn bits is required already in the case of polynomials such as 
p(x) = ( x -  5/7) n +Po for small positive P0, whose zeros jump from (5/7) + ]pol 1/n exp(2~r ~ h/n) 
to 5/7, for h = 0, 1 , . . . ,  n - 1, in the result of the shift from (x - 5/7) n +P0 to (x - 5/7) n. Similar 
jumps of the zeros are caused by a small perturbation of any of, say, n/4 trailing coefficients of 
p(x) = (x - 5/7) n, that  is, by transition to p(x) = (x - 5/7) n + pkx k for small positive Pk and 
for 0 < k < n/4. This implies that  the input values of the n/4 trailing coefficients of p(x) must 
involve the order of bn 2 bits, to ensure the worst case output approximation of even a single zero 
of p(x) within the absolute error bound 2 -5, and we arrive at the following lower bounds. 

FACT 1.1. Let OB(t,p) denote the Boolean complexity Of approximating (within 2 -5) a zero z~ 
of a monic polynomial p(x) of degree n, all of whose zeros lie in the unit disc {x : [x[ _< 1}. Then 
tp = fl(bn2); that  is, asymptotically in n and b, the product tp of the time and processors bounds 
has an order of at least bn 2. 

Fact 1.1 implies that  the upper bounds of part (a) of Theorem 1.1 are also tight (up to within 
polylogarithmic factors) provided that  n = O(b). 

The presented argument that  supports Fact 1.1 also implies the lower bound ~(n#*B(nb)) 
on the Boolean complexity of approximating the polynomial zeros by any algorithm that  con- 
sists of arithmetic operations, each involving #~(d) bit-operations, where the two operands are 
represented by a pair of d-bit strings. The upper bounds based on our algorithms supporting 
Theorem 1.1 meet this bound up to polylogarithmic factors. 

1.8. Numer ica l  Factorizat ion of  a Po lynomia l  in the  C o m p l e x  Field 

Our algorithms (like ones of [1,3,4,28,30,31,33]) proceed by numerically splitting p(x) into a 
pair of factors and, then, by recursively splitting each factor. The recursive process stops when 
it computes a factorization of p(x) into linear factors satisfying the bound 

p ( x )  - H ( x  - < IIp(x)ll, = 2 (1 .6)  
i=1 

Here and hereafter, we write 

[lu(x)[[ = ~ [ui[, for u(x) = y ~ u i x ' .  (1.7) 
i i 

Computation of z~' , . . . ,  z* satisfying (1.6) can be called numerical factorization of a polynomial 
in the complex field. The bound (1.6), for b of the order bn, guarantees the bound (1.2) on the 
errors of all approximations by z* to the zeros zi of p(x) (see Fact 2.6). 

Corollary 2.3 implies the converse implication, of (1.6) by (1.2), for b = b + n + logn, which 
enables us to extend the estimates of Theorem 1.1 (for b replaced by b) to the problem of 
computing a numerical factorization (1.6) for p(x). On the other hand, the argument supporting 
Fact 1.1 does not apply to the problem of computing a numerical factorization (1.6), so that  one 
may hope to solve this problem at a smaller computational cost. 

1.9. On Some Alternat ive  Techniques  and Extens ions  

Although our algorithms are optimal (up to within polylogarithmic factors), further work may 
substantially improve their practical performance (in particular, see our Remark 8.1, on binary 
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segmentation, and see [7], on the techniques of splitting). Furthermore, it is quite plausible that  
some techniques used in our algorithms may turn out to be practically most effective in their 
combination with some heuristic approaches to approximating polynomial zeros. For instance, 
one may utilize Facts 2.1 and 2.2 of Section 2 in order to devise some heuristic algorithms for 
computing a basic disc D for splitting polynomial p(x). Then, one may apply Graeffe's iteration 
and our techniques of recursive descending in order to strengthen the isolation of the zeros of 
p(x) lying in the disc D from the other zeros of p(x) and thus to facilitate splitting p(x) over this 
disc. 

On the other hand, some alternative algorithms that  lead to substantially inferior upper esti- 
mates for the computational complexity of approximating polynomial zeros and even heuristic 
algorithms should not be discounted. In particular, for practical approximation of complex poly- 
nomial zeros, the most promising alternative to the approach of this paper probably comes from 
the Durand-Kerner algorithm [41,42] and its various modifications (such as Aberth's [43] and 
its implementation in [44]), which rely on Newton's iteration for Vi~te's system of polynomial 
equations for the zeros of p(x). The absence of global convergence proofs and of any reasonably 
good computational complexity estimates for these iterative algorithms is partly compensated by 
their very good record in numerical experiments. On the other hand, these algorithms require 
us to use either the order of n 2 arithmetic operations per iteration (which is roughly n times as 
many as we use in our entire algorithms) or a much higher precision of computing (to support 
application of fast multipoint polynomial evaluation, which is a basic step of these algorithms). 

Some other techniques known to be effective for approximating polynomial zeros may also be 
highly successful in their extensions and applications to other major computational tasks. In 
this regard, we have already cited Weyl's (quadtree) technique for approximating polynomial 
zeros [9] (also compare its extensions in [2; 19, pp. 517-522; 26,29,45,46]). In another example, 
the zerofinding techniques of [31] only apply to the special case of polynomials, all of whose 
zeros are real, but these techniques have effective extensions to the symmetric eigenvalue com- 
putation [32,47]. Yet another example is given by Newton's iteration. Already in its classical 
or slightly modified form, it rapidly approximates a single zero of p(x) [20,48]. Its more ad- 
vanced variation, known as the path lifting method [48,49], has an excellent univariate version 
of [50], according to which all the zeros of a univariate polynomial are approximated at a cost 
OA((n --[-/~)(logn)2,n), for /~ >_ bn + n + 2 (compare Fact 2.6 in our Section 2), but this method 
shows its greater power in its application to solve a system of polynomial equations [51-55]. 

Finally, due to increased effectiveness of the algorithms available for approximating polynomial 
zeros, one may reexamine their various possible extensions, including extensions to such problems 
as solving a system of polynomial equations and the matrix eigenvalue computation. 

1.10. O r g a n i z a t i o n  of  t h e  P a p e r  

In the next sections and appendices, we will describe our algorithms in some detail but will omit 
some tedious techniques of the error and precision analysis, already available at length in [1,2,4], 
and will refer the reader to [1] and to [28, Appendices A and B] on several details of splitting a 
polynomial into two factors over a fixed disc. The reader may find a less formal exposition of the 
entire subject in [21]. 

We will present the results in the following order. After some preliminaries in Section 2, we 
revisit and modify the algorithm of [3] in Sections 3 and 4. In Sections 5 and 6, we describe 
our techniques for recursive contraction of a disc and for recursive screening and discarding of 
the zeros of a higher order derivative without computing their approximations. We summarize 
our basic algorithm for computing an isolated disc for splitting p(x) and estimate its cost in 
Section 7. Based on this algorithm, we prove Theorem 1.1 in Section 8. The proof uses an 
algorithm for splitting p(x) over an isolated disc, which we briefly recall in Section 9, in the 
case of the unit disc, referring the reader to [1,28] for detailed presentations. We improve this 
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algorithm in Section 10 (by applying Graeffe's iteration for lifting the isolation ratio of the input 
disc and our new descending techniques) and extend it to the case of splitting over any disc in 
Section 11. In Sections 12 and 13, we show how to control the precision of computations required 
in the algorithms of Sections 9 and 10 (by means of perturbation of Padd approximation). In 
Appendices A and B, for the sake of completeness, we reproduce two auxiliary results from [3,27], 
so that  our paper can be read independently of [3,27]. In Appendix C, we review some algorithms 
that  slightly improve the arithmetic (but not Boolean!) complexity estimates for splitting p(x) 
and, consequently, for approximating its zeros. 

2. D E F I N I T I O N S ,  A U X I L I A R Y  R E S U L T S  A N D  T E C H N I C A L  
B A C K G R O U N D  O N  R E C U R S I V E  S P L I T T I N G  

Hereafter, log denotes log 2. 

DEFINITION 2.1. D(X,R)  denotes the disc {x : Ix - X[ <_ R}, with a center X and a radius R. 

DEFINITION 2.2. Consider a monic polynomial (with zeros Z l , . . . ,  Z n ) ,  

n n - 1  

p(x) = I I ( x  - z,) = x ~ + ~ p , x  ~, (2.1) 
i=1 '=0 

Izll _< Iz21 < . . .  < Iz~l _< 1. (2.2) 

Then for an integer k, 0 < k < n, and for a positive r satisfying the bound 

Izkl < r < Izk+xl, (2.3) 

the pair of polynomiaLs Fk(x) = H k = l ( X  - z i )  and Gn_k(x) = p(x)/Fk(x) is called the splitting of 
the polynomial p(x) over the disc D(O, r), and the disc D(O, r) is called a splitting disc for p(x). 
Any pair of monic polynomiaLs F~(x) (of degree k) and G~_k(x ) (of degree n - k) satisfying 

lip(x) - F;(x)G*-k(x)lt <_ etlp(x)ll, (2.4) 

for the norm of (1.7) and for any fixed positive e, is called an e-splitting of a polynomial p(x) 
over the disc D(0, r ) . Assuming (2.1)-(2.3), the disc D( O, r) and the splitting of p( x ) over it are 
called (a, 13)-balanced ff an < k < 13n, and the disc D(O, r) is called f-isolated (or equivalently, 
in terms of [2], having an isolation ratio of a t / e a s t  f )  if 1 < f <_ [Zk+l/Zk[. For every pa/r  a 
and f satisfying 0 < a < 1 < f ,  a disc is called an (a, f)-splitting disc for a given polynomial if 
this disc is both ((1 - a ) /2, (1 + a ) /2 )-balanced and f-isolated. Ali these definitions also apply to 
p(x) and any disc D(X, r) (with any center X replacing O) if they hold for the disc D(O, r) and 
for the polynomial q(y) = p(y + X),  replacing the p(x). 

The following known fact (see [39]) bounds the arithmetic complexity of shifting from p(x) 
to q(y). 

FACT 2.1. For a given pair of complex t # 0 and X and for a polynomial p(x) of (2.1), the 
coefficients of the monic polynomial ~(y) n ^ i = ~'~i=o qiY = t-np(ty + X)  can be computed at a cost 
bounded by OA (log n, n). 

There are various ways of utilizing Fact 2.1. For instance, we may choose X -- -Pn-1 /n  so as 
to cancel the term On_ly n-1 of ~(y); this would shift the origin into the center of gravity of the 
n zeros of 4(y). In Sections 6 and 11, we apply Fact 2.1 in order to reduce the study of various 
splitting discs to the case where such a disc has its center in the origin. Otherwise, in this paper, 
we will usually apply Fact 2.1, for t = 1, in order to approximate the distances from a fixed 
complex point X to all the zeros of a fixed polynomial. To achieve this goal, we first shift the 
origin into X and then apply the algorithm that  supports the following fact. 
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FACT 2.2. (Compare [1,2; 19, pp. 458-462; 29,46,56,57].) 

(a) For a pair of fixed c > 0 and d _> 0, one may, at a cost bounded by OA((logn)2,n), compute 
the values r1,~1, . . .  ,rn,  fn such that  _r k _< Izk[ _< ~k = (1 +c/nd)r_k, k = 1,. . .  ,n. 

(b) The cost bound decreases to OA(logn, n) if d = 0 and if ~k and r k are sought only for k -- 1 
and/or  k = n. 

The next theorem gives us upper bounds on the complexity of computing an e-splitting of p(x) 
over a sufficiently well-isolated disc that  lies inside the unit disc D(0, 1), the latter restriction 

being motivated by (2.2). 

THEOREM 2.1. Let B*, b, c, k, n, R, and X denote seven given values, where X is complex, B*, 
b, c, and R are positive, k and n are integers, 0 < k < n, and 

2 -B*  R I-IXI. (2.5) 

Let B = B*+/~+n, let a polynomial p(x) satisfy (2.1), (2.2), and let the disc D(X, R) be f-isolated 
for f = 1 + c/n. Then, a 2-b-splitting of polynomial p(x) into two factors, F;(x) and G*_k(x ) 

(defined according to Definition 2.2 and satisfying (2.4) for e = 2-b), can be computed at a cost 
bounded as follows: 

(a) PBCs([~, n) : OB((log n)(log/~)2, (M(n 3 + / ~ n  log/~))/(log/~)2), 

(b) PACs  (/~, n) = OA ((log n)log/~, u2/log/~), 

(c) PRACs([~, n) = OA((log n)t3,1(/~, n), n), allowing randomization (of the Las Vegas type), 

(d) SACs([~,n) = OA((logn)t2,1([~,n)n, 1). 

Here, t i j  (B, n) and M(d) are defined by (1.3) and (1.4), and the subscript S abbreviates the 
word "splitting." 

The proof is given in Sections 9-11. 
Clearly, the disc D(O,~k) is f-isolated if 1 <_ f <_ rk+l/~k. (Here, we use the notation of 

Fact 2.2.) Therefore, i f rk+l/~k > 1 +c/n, we may apply Theorem 2.1 and reduce the problem of 
factorization of p(x) to the similar problem for F~(x) and G~_k(X ). Our goal is in continuation 
of this recursive process until we approximate the linear factors x -  zi and, therefore, the zeros zi, 
for all i. The desired upper bounds on the output errors follow from the bounds on the errors of 
the auxiliary approximations to the factors, due, in particular, to the following estimate from [1, 
Section 5]. 

FACT 2.3. Let 

eh lip(x)II lip(x) - f l ( x ) . . ,  fh(X)[[ ~ 
n 

IIfl(x) - f(x)g(x)ll < eh Ilfl(X)ll, 
(2.6) 

for the norm defined by (1.7), for some polynomials f l ( x ) , . . . ,  fh(X), f (x)  and g(x), and for 

e IIp(x)ll (2.7) 
eh ~ h 

- -  n l - I i = l  IIf~(x)ll  

Then 

lip(x) - f (x)g(x)f2(x) . . .  A(x)ll _< (h + 1) e [IP(X)[t 
n 

(2.8) 
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Suppose that  the assumptions of Fact 2.3 hold and arrive at (2.8). Then write fl(X) = f ( x ) ,  
fh+a(x) = g(x), which turns (2.8) into (2.6) for h replaced by h + 1. Suppose that, furthermore, 
the assumptions of Fact 2.3 are satisfied for h + 1 replacing h and for some f~(x) interchanging 
its roles with f l (x ) .  Then we may repeat the same splitting process. Let us assume that  this 
process has been recursively continued until we finally arrived at a product n I-l~=l(Z - z~) and 
stopped. Then, by the virtue of Fact 2.3, the error norm of approximating p(x) by this product 
was bounded by eHp(x)l I. Furthermore, we have the following useful estimate. 

FACT 2.4. (Compare [1, Section 4].) If n > 0, p(x) h = l-L=1 £ ( z )  has degree n, and all f~(x) are 
polynomials, then 

h 

IIp(x)ll < 1-I II£(x)ll < 2"-111p( )11. 
i=1  

By using Facts 2.3 and 2.4 in the above reeursive splitting process, we easily deduce the 
following. 

FACT 2.5. The inequality (2.7) holds for all h if eh < e/(n2 n) for all h. 

REMARK 2.1. Since Izil _< 1 for all i, the magnitudes of the coefficients of p(x) are maximized 
for p(x) = (x + 1) n, so that  1 _< I[p(x)ll < 2 n. It is well known [58, III, Ch. 1, No. 31] that  
all the zeros of the k th order derivative of p(x), for any k, lie in the disc D(0, Iznl) _C D(0, 1) 
(compare (2.2)), and therefore, Pn-k,k <-- liP(k)(x) II <-- 2n-kPn-k,k, where Pn-k,k = ( n ! ) / ( ( n -  k)!) 
is the leading coefficient of p(k)(x). 

By combining the above estimates, we obtain the following. 

COROLLARY 2.1. It is sufficient to compute at first e*-splitting of  p(x) into two factors F~(x) 
and G*_k(x),  for e* _< e/(n2n), that is, for e* satisfying 

l o g (  1 ) > b + n + l o g n ,  (2.9) 

f f  e = 2 -~ (see (1.6)), and then, recursively, e*-splittings of the factors, in order to compute an 
approximate factorization of p(x ) into finear factors f i (x ) = x -  z*, i = 1, 2 , . . . ,  n, satisfying (2.6) 
t'or h = n, which amotmts to (1.6). 

Ostrowski's well-known perturbation theorem [18] has the following extensions, which allow 
some further refinements (compare [59] and the simple bound IIp(x)ll < 2 n of our Remark 2.1). 

FACT 2.6. [1, Section 19] For a polynomial p(x) of (2.1),(2.2), the bound (1.6) implies the 
bound (1.2) if/~ > bn + n + 2. 

FACT 2.7. [60, Theorem 2.7] For a polynomial p(x) of (2.1), let p*(x) be a monic polynomial of 
degree at most n satisfying IIp*(x) - p(x)l I < ~l'~llp(x)H, ~? < 1/128. Then one may enumerate 
the zeros of p*(x) so that  p*(x) = l-I~n__l(x - z*), Iz7 - zil < 9~7 if Izil _< 1, I1/z7 - 1/z~l < 97/if 
Izd > 1. 

Combining Fact 2.6 and Corollary 2.1 yields the following. 

COROLLARY 2.2. Under the assumptions of  Corollary 2.1, the choice of  e* = 2 -~, for b sat- 
isfying (1.1), suffices in order to compute approximations z~, . . .  ,z~ to the zeros of  p(x) that 
satisfy (1.2). 
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By recursively applying Fact 2.3 for h = n, k = 1 , . . . , n ,  f i (x)  = x - z*, i = 1 , . . . , k  - 1, 
f i (x )  = x - z~, i = k , . . .  ,n, we obtain the following. 

COROLLARY 2.3. For a polynomial p(x) of (2.1),(2.2), we have [[p(x) - l-Ln__l (x - z~)l[ <_ clip(x)[ I 
i f  lzi - z*[ <_ e/(n2 n) for ali i. 

Due to Theorem 2.1 and Corollary 2.2, we may recursively factorize p(x) and thus solve the 
problem of approximating polynomial zeros provided that we have an algorithm that  computes 
well-isolated discs for splitting p(x) into two factors, as well as for splitting every nonlinear factor 
computed in each step of the subsequent recursive splitting of these two factors. According to [1], 
we obtain the desired splitting disc for p(x) (and similarly for its factors) by applying Facts 2.1 
and 2.2. At first, we apply Fact 2.2 for the origin shifted to the center of gravity of the zeros, 

n Z - p , ~ - l / n  = ~ = 1  ~/n. If maxi Izil >_ Lminj  Izjl for L > 1, we immediately find a desired f-  
isolated splitting disc for f = 1 + c/n  for a positive c. Otherwise, we will twice apply Fact 2.1 in 
order to shift the origin into X = 2r-n and X = 2r-nvfi-i, and after each shift we will apply the 
algorithm supporting Fact 2.2. It can be shown [1] that  at least one of these two applications gives 
us a desired splitting disc. Recursive extension of the same process to the approximate factors 
of p(x) (produced by splitting p(x) over such a disc) finally outputs the desired approximations 
to all the zeros of p(x) within the errors bounded according to (1.6) and, consequently, (1.2). 
The overall cost of these computations is bounded by OA((n log n)log(b log n), n), in the general 
(worst) case (compare [2,29,46]). Furthermore, the latter cost bound decreases by the factor 
n / log  n in the case where in all the recursive steps the splitting discs are (~, f~)-balanced for a 
fixed pair ((~, ~), 0 < ~ < f~ < 1. This has been achieved in [30,31,39] under the additional 
(strong) assumption that  all the zeros of p(x) are real. A similar decrease of the cost bound has 
been achieved in [2] for approximating a single complex polynomial zero. 

Next, we will recall and improve the approach of [3] to ensure (~, ~)-balanced recursive splitting 
for approximating all the zeros of any input polynomial. 

3. C E N T E R E D  POINTS A N D  SPLITTING DISCS 

DEFINITION 3.1. (See Figure 1 and compare [3].) Given real s and t, 0 < t < 1 < s, a set on the 
complex plane is called t-fuU for a polynomial p(x) of (2.1) or simply t-full f l i t  covers more than 
tn zeros of p(x); a set on the complex plane is caned (t, s)-centered for p(x) f l i t  has a nonempty  
intersection with the dilation D(X ,  sr) of any t-full disc D(X ,  r); a complex point Y is caJ1ed a 
(t, s)-center for p(z)  or simply a (t, s)-center if D(X ,  sr) ~ Y for every t-fuN disc D(X ,  r); a set 
on the complex plane is called a ( t, s )-cover (for p( x ) ) if  it contains a ( t, s )-center (for p( x ) ) ; such 
a set is called a full (t, s)-cover (for p(x))  if it contains all the existent (t, s)-centers (for p(x)).  

We immediately observe the following. 

FACT 3.1. The disc D(X ,  sr) is a full (t, s)-cover for p(x) if the disc D(X,  r) is t-full. 

DEFINITION 3.2. (Compare [3].) The ratio r/IX[, for a complex X and a positive r, is called the 
relative radius of a disc D(X ,  r). The ratio R / r  > 1 of the radii, R and r, of the two boundary 
circles of an annulus is caned its relative width. 

FACT 3.2. A disc covers the origin if and only if its relative radius is not less than 1. 

FACT 3.3. [3] If t >_ 1/2 and if a set S is (t, s - 2)-centered for p(x), then this set contains a 
(t, s)-center for p(x). 
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Figure 1. p(x) has eight zeros marked by asterisks. All the (3/4, 1)-centered points for p(x) lie in 
the smaller disc circumscribing the intersection of three larger discs. 

PROOF. [3] Let D(X,  r) be a t-full disc for p(x) of the minimum radius and let Z be a point of S 
lying in the disc D = D(X, (s - 2)r). Let D(Y, R) be any other t-full disc for p(x). Then, R _> r, 
and since t > 1/2, this disc intersects D(X, r). Therefore, the disc D(Y, sR) covers the disc D 
and, consequently, the point Z, which is, therefore, a (t, s)-center for p(x). | 

To relate the above concepts to balanced splitting, write 

c 
f = 1 q- - ,  (3.1) 

n 

g(a) = " [(1 ~ a ) n ]  " , h(a) = g(a) + [an] + 1, (3.2) 

fix a, c, and s such that  f > 1 > a and both a and f are close enough to 1 (we will specify 
this assumption about a and f later on; in particular, one may set a = 5/6, f = 1 + 1/(100n), 
according to (5.2) and (6.9)), and apply the algorithm supporting Fact 2.2. Then shift the origin 
into 2~h(a) and 2~h(a)~/-ZT (see Fact 2.1 for t = 1) and after each shift apply the same algorithm 
again. Consider these three applications as three stages of an algorithm to be referred to as 
Algorithm 3.1 (see Figure 1). The computational cost of performing this algorithm is bounded 
by OA((logn) 2, n), due to Facts 2.1 and 2.2. Now, we deduce the following result. 

PROPOSITION 3.1. Let Algorithm 3.1 be applied for a > 2/3. Let c > 0 and s > 1 be two fixed 
values, and let f be defined by (3.1). Then, at a cost bounded by OA(1,n), in addition to the 
cost of performing Algorithm 3.1, bounded by OA((log n) 2, n), one can compute either 

(a) an (a, f)-splitting disc SD for p(x) (that is, a disc that is both ((1 - a)/2, (1 +a)/2)-balanced 
and f-isolated), or otherwise 

(b) a complex X and a positive r such that the disc D(X, r) is (3a - 2)-full for p(x) and has a 
relative radius of at most 86; moreover, 

rh(~)  (3.3) 
IX] __~ r_g(a ) ~_ ( 1 + 6 ) '  

r _< 8,~rg(~) < 861xi,  (3.4) 

for £g(a) and rh(a) computed in Stage 1 of Algorithm 3.1 and for 

5 = 5 ( a , f , n ) = f  3[anj+3 - 1. (3.5) 
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PROOF. (Compare the proof of Theorem 2.1 of [3].) Consider the discs D(0, ~k) = {x :lxl _< ~k} 
for g(a) <_ k < h(a). Due to (3.2), all these discs are ((1 - a)/2, (1 + a)/2)-balanced. First 
suppose that  f3(h(a)-g(a))_r..g(a ) : f3[anJ+3r_g(a ) (rh(a) (see Figure 2). Then, clearly, there exists 
an integer k such that  g(a) <_ k < h(a), f3r_ k • rk+l. Due to Fact 2.2, we may assume that  
fr~ > ri, for i = k and i = k + 1, and obtain that  flzkl < frk < rk+l --< IZk+ll, so that  the disc 
D(0, rk) is f-isolated, and we may set SD = D(0, rk). 

0 

r .  

Figure 2. Case (a) of Proposi t ion 3. f ---- 1.02, a -- 3/4, n = 8, g(a) -- 1, h(a) = 7, 3 ( h ( a ) - g ( a ) )  -- 
18, fT/r_ 1 > f l a .  The  disc D(0, re) is f - isolated.  

Now assume the opposite case (see Figure 3), where 

f3 (h (a) -g (a) )  = f3 lanJ+3  ~ rh(a). (3.6) 
rg(a) 

Equation (3.6) bounds the relative width, rh(a)/r-g(a), of the a-full annulus 

By repeating the same argument for Stages 2 and 3 of Algorithm 3.1, we either arrive at a 
desired (a, f)-splitting disc SD or else at three annuli of relative widths of at m o s t  f3h(a)-39(a) 
(compare (3.6),(3.7)), each annulus being a-full for p(x). Geometric considerations show that  the 
intersection I of these three annuli can be included into a readily computable disc D(X, r) = (x : 
Ix - X I _< r} with X and r satisfying (3.3)-(3.5) (see Figure 3). On the other hand, a simple 
argument (see Appendix A) shows that  the intersection I of these three annuli and, therefore, 
also the disc D(X, r) 2 I are (3a - 2)-full for p(x). | 

Hereafter, we will cite the extension of Algorithm 3.1 supporting Proposition 3.1 as Algo- 
rithm 3.2. According to Proposition 3.1, Algorithm 3.2 is performed at a cost of OA((logn) 2, n) 
and outputs either an (a, f)-splitting disc for p(x) or a disc D(X, r) that  is (3a - 2)-full for 
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A(0, 

Figure 3. Case (b) of Proposition 3.1. 

p(x), has a small relative radius r/IXI, and, moreover, has a center X and a radius r satisfying 
(3.3)-(3.5). 

REMARK 3.1. The proof of Proposition 3.1 can be modified so as to decrease the value 6 of (3.5), 
to a level close to f[anJ+l _ 1. 

REMARK 3.2. Equations (3.4) and (3.5) relate the bounds on the relative radius r/[X] of the disc 
D(X, r) and on the isolation ratio f of the disc SD (one of these two discs being output  by Algo- 
rithm 3.2). Namely, (3.4) and (3.5) imply that  S[X[/r >_ 1/6 = 1/(f3lanJ+3-1) and, consequently, 
fatanJ+3 >_ 1 + r/(8[X[). Therefore, (3 [anJ + 3) In f > In(1 + r/(8[X[)) = - ~-~=1 (-r/(8[XD)~/i" 
Hence, assuming that  8[X[ > r, we obtain that  

r r 2 ( r )  r 
(3[anJ+3)lnf>_81X--- ] 2(81XI)2= 1 16]-XI 8FXI, 

f > e x p ( 1 - r / ( i 6 ] X [ )  r ) 1-r/(16[XD r 
- ~[~]nJ ¥ 3  SlXI > 1 + 3[anJ + 3 81Xl" 

Consequently, 

as  n - *  oo ,  I X I / r  - *  ~ .  

1 ( _ ~ )  
( f  - 1------~ - O , (3.8) 

4. T O  T H E  Z E R O S  O F  A P O L Y N O M I A L  V I A  T H E  Z E R O S  O F  ITS  
H I G H E R  O R D E R  D E R I V A T I V E  A N D  H O W  T O  H A N D L E  

M A S S I V E  C L U S T E R S  O F  T H E  Z E R O S  

The next result from [27] extends Rolle's well-known theorem to the complex case. 
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T H E O R E M  4 . 1 .  [27] The set  of the n - l + 1 zeros of  the (l - 1)st order  derivative p(t_ 1) (x) o fp(x)  

is an ((l - 1)/n, s - 2)-centered set for p(z)  if 

(a) s > 2 + 1 / s i n ( ~ / ( n  - 1 + 1)) and  I < n - 1 (which holds if s > 2 + (n - l + 1)/~r for larger  

n - l) and, moreover, even if 
(b) 2 < l < n - 1 and s > 2 + c m a x { ( n  - 1 + 1)1/2l -1/4, (n - 1 + 1)/-2/3} for some constant c 

(which already holds where s = O(n 1/3) as n ~ co, provided t ha t  l /n  > ¢ > 0 for some 

~xed constant ¢ < 1). 

Combin ing  Fact  3.3 and Theo rem 4.1 gives us the  following corollary. 

COROLLARY 4.1. / f  l > n/2  and if s satis~es the assumptions of pa r t s  (a) and~or (b) of The- 
orem 4.1, then at bas t  one of the n - l + 1 zeros of the (1 - 1)  st  derivative of  p(x) is an 

((l - 1)In, s)-center for p(z) .  

Hereaf ter ,  we will wri te 

l =  [ ( 3 a - 2 ) n ] + l ,  n - l =  [ ( 3 - 3 a ) n ] - I  (4.1) 

and will fix a in the  semiopen interval 

5 
- < a < l ,  (4.2) 
6 -  

which means  t h a t  l > n/2. In par t icular ,  one may  choose 

a = ~, 1 = + 1, n -  l = - 1. (4.3) 

We will also assume t h a t  s satisfies the  assumpt ions  of par ts  (a) a n d / o r  (b) of T h e o r e m  4.1. 

(I t  suffices for us to  use pa r t  (a) of this theorem; a simple proof  of this pa r t  is recalled f rom [27] 

in our  Append ix  B. In  fact, even weaker upper  bounds  on s, such as log s = O(log n),  would have 
sufficed for us in this paper . )  

Next ,  examine  the  case where Algor i thm 3.2 ou tpu t s  no (a, f ) - sp l i t t ing  disc for p(x) and where  

1 
s < )[o'8 c-----7" (4.4) 

In  this case, (3.4) and Fact  3.2 imply  t ha t  the origin lies outside the  disc D(X ,  sr)  (and therefore,  

canno t  be  a (3a - 2, s) -center  for p(x)). 
Now suppose  t ha t  the set Z = Zl-1  of  all the zeros of p¢l-1)(x),  for l = 1 + [(3a - 2)n] > n/2  

of (4.1) and for a > 5 /6  of  (4.2), is available. (According to Theo rem 4.1, this  set is a (3a - 2, s)- 

cover for p(x).) Choose f such t ha t  5 of  (3.5) satisfies (4.4) and then  app ly  Algor i thm 3.2 
IZI t imes  (successively or concurrently);  namely, apply  it af ter  shift ing the  origin into each of the  
IZI < n -  l + 1 points  of Z. Since the set Z is a (3a - 2, s)-cover for p(x) (due to  T h e o r e m  4.1), in 

a t  least  one of these IZI appl icat ions of  Algor i thm 3.2, an (a, f ) - sp l i t t ing  disc for p(x) is ou tpu t ,  

where  1 / ( f  - 1) : O(sn),  f = 1 + c/(sn),  for a constant  c. 
In  [3] a policy of recursive shifts of  the  origin is proposed t ha t  enables us to app ly  the  divide- 

and-conquer  me thod  to the  given set Z of all the zeros of  pq-1)(x) ,  thus  reducing the  number  
of  required appl icat ions of Algor i thm 3.2 to at  most  /log IZI]. Specifically, observe t h a t  the  disc 
D(X ,  st) ,  for X and r of  pa r t  (b) of Proposi t ion 3.2, has a relative radius  less t h a n  1. Due to 
Fact  3.2, such a disc does not  contain the origin. Consequently,  it lies ent i rely in a t  least  one 
of the  four half-planes,  each bounded  by the  real or imaginary  axis, t h a t  is, (x  : R e x  > 0}, 
{x : R e x  < 0}, {x : I m x  > 0}, {z : I m x  < 0}. Since the disc D ( Z , r )  of Propos i t ion  3.1 
is (3a - 2)-full for p(x), the disc D(X,  sr) is a full (3a - 2, s)-cover for p(x),  due to  Fact  3.1. 



112 v .Y.  PAN 

Therefore, any zero of p(l-1)(x) lying in the complementary half-plane cannot be a (3a - 2, s)- 
center for p(x) and should be discarded. In [3], a shift of the origin is defined for which at least 
]ZI/2 zeros of p(l-1)(x) lie in such a half-plane. Specifically, according to the recipe of [3], one 

should first compute (at a cost OA(log IZI, IZI/log IZI), IZ] < n - / + l )  a quasi-median point it(Z) 
(not necessarily lying in Z), whose real and imaginary coordinates are given by the two medians 
of the two sets or multisets formed by all the real and all the imaginary coordinates of all points 
of Z, respectively. (When we define the medians, we count m times each common coordinate of 
exactly m points of Z.) Then one should shift the origin into It(Z) and apply Algorithm 3.2, 
which will either output  an (a, f)-split t ing disc, where 1/( f  - 1) = O(sn) due to (3.4) and (3.S), 
or will enable us to discard at least IZI/2 zeros of p(l-1)(x). Proceeding recursively, one will 
compute a desired (a, f)-split t ing disc in at most [log ]ZI] < [log(n - l + 1)] applications of 
Algorithm 3.2, at an overall cost OA((logn) 3, n). 

In the next sections, we will extend the above construction of [3] so as to increase the isolation 
ratio f of the computed (a, f)-splitting disc from the level 1 + c/(sn) to or above the level 
f = 1 + c/n. Now suppose that  an (a, f)-splitting disc with such an isolation ratio f has been 
computed, with no increase of the asymptotic complexity bounds. Then we may apply part  (d) 
of Theorem 2.1, for appropriate B* and b, and split p(x) over this disc, at a cost bounded by 
OA ((log n)t2,1(/~, n)n, 1). The splitting reduces the original problem for p(x) to ones for its two 
factors. Taking into account the computational cost of this reduction, which includes the cost of 
approximating the zeros of p(l-1)ix), we arrive at the inequality 

A(n) <_ A(n - l + 1) + A(nl) + A(n2) + O (nt2,1 (B,n) logn) , 

where t2,1(/),n) = ( logn)2+log/~,  nl+n2 = n, max(nl ,n2)  = (l+a)n/2,  n - l + l  = [ (3 -3a ) ]  < 
n/2 + 1, and A(k) denotes the number of arithmetic operations required for approximating the 
zeros of a k th  degree polynomial, within an appropriate error bound (compare Corollaries 2.1 
and 2.2), provided that  all these zeros lie in the disc D(0, 1). (According to Remark 2.1, the 
zeros of p(l-1)(x) lie in the disc D(0, Iznl).) Recursive application of similar bounds on A(h), for 
h = n - 1 + 1, h = nl ,  and h = n2, implies (see [3]) approximating polynomial zeros in arithmetic 
time O(n 1+~ log b) for any fixed positive ~. 

REMARK 4.1. For f of the order 1 + c/(sn), the above inequality for A(n) changes into the bound 

A(n) < A(n - r(3a- 2)n] + 1) + A(nl) + A(n2) + 0 (nst2,1 ([~,n) logn) 

(compare Remarks 4.2 and 9.2), whose recursive extension using a respective extension of Theo- 
rem 2.1 only gives us a larger bound, A(n) = O(nl+es log b) for a positive ~. 

In fact, we need to modify both of the above algorithms for the computation of a splitting disc 
since we actually only approximate the zeros of p(l-1)(x) but do not compute them. What  is 
more serious, we also need to avoid the severe numerical problems that  arise if we t ry  to compute 
a balanced splitting of p(x) in the case where all or almost all of the zeros of p(x) form a massive 
cluster lying in a very small disc, D(X, a). In this case, in order to determine an (a, f)-split t ing 
disc for p(x), one has to separate some zeros of the clusters from each other, which requires 
computations with a very high precision, of the order log( l /a) .  For smaller a, this precision can 
be too high to be compatible with the complexity bounds of Theorem 2.1. To avoid such problems 
(not addressed in [3]), we will not seek balanced splitting whenever we can compute a sufficiently 
small disc containing sufficiently many zeros of p(x). More specifically, we will complement the 
algorithms for the computation of ( a, f)-splitting discs by a block that  identifies and removes 

k all the factors of p(x) of the form l-Ii=l(x - z~), where k > I(3a - 2)n] and Iz~ - X I < 2 - s ,  
i = 1 , . . . ,  k, for some complex X and a fixed positive B. We will use the following definition. 
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DEFINITION 4.1. A disc D(X, p) is called an (a, B, f)-splitting disc for p(x) if it is both f-isolated 
and (3a - 2)-full for p(x) (compare Definition 3.1) and if p satisfies the relations 

2-B 
2-B* f2[(3-3a)n]-2 <- P ~- 2-B" (4.5) 

A disc D(X, r) is called an (a, B*)-disc if it is (34 - 2)-full and if 

r _< 2 - B ' .  (4.6) 

FACT 4.1. If we are given B and B* satisfying the equation of (4.5) and if a given disc D(X, r) is 
an (a, B*)-disc, then there exists p satisfying (4.5) such that  the disc D(X,p) is an (a, B, f ) -  
splitting disc for p(x). Moreover, such a value p can be computed at a cost bounded by 
OA ((log n) 2, n). 

PROOF. By assumption, the disc D(X, r) is (3a - 2)-full for p(x). Therefore (due to (4.6)), the 
exterior of the disc D(X,2 -B*) contains at most n -  [ ( 3 a -  2)nJ - 1 = [ ( 3 -  3a)n] - 1 zeros 
of p(x). Consequently, there exist values p satisfying (4.5) and such that  the disc D(X, p) is 
f2-isolated. We only need to compute p satisfying (4.5) for which the disc D(X, p) is f-isolated. 
We obtain such a value p by applying the algorithm that  supports Fact 2.2, where we require 
sufficiently small relative error bound; for instance, the bound 0.5(f  - 1) will suffice. This gives 
us a desired f-isolated disc D(X, p), at a cost bounded by OA((logn) 2, n). | 

As soon as we obtain an (a, B, f)-split t ing disc D(X, p), for f > 1 + c/n and for a fixed 
positive c, we may recall Theorem 2.1 and compute an e-splitting of p(x) over this disc, for a 
fixed small e (see (2.4)). If 

B > b, p < 2 -B _ 2 -5 , (4.7) 

then the center X of the disc D(X, p) approximates (within the error bound 2 -5 of (1.2)) all the 
k zeros of p(x) lying in this disc. The remaining n - k zeros of p(x) are approximated by the 
zeros of Gn_k(X). If n - k = o(n), that is, if the zeros form a massive cluster, then the splitting 
is unbalanced, but the entire computation is only simplified. 

We may satisfy the assumption (4.7), without choosing an extremely large B. Then, for p 
bounded from below according to (4.5), we may keep the precision of the computation reasonably 
well bounded from above, as required in order to prove Theorem 1.1. 

The above analysis suggests a simple extension of Algorithm 3.2, hereafter referred to as Al- 
gorithm 4.1. Namely, one should always apply the algorithm supporting Fact 4.1 and output  
an (a, B, f)-split t ing disc D(X, p) as soon as (in the process of performing Algorithm 3.2) one 
arrives at a.n (a, B*)-disc D(X, r) for a, B, B*, and r satisfying (4.6) and the equation of (4.5). 

Moreover, we will also modify the algorithms of [3] for computing an (a, f)-spli t t ing disc, 
recalled earlier in this section. Now, we will aim either at an (a, f)-split t ing disc for p(x) or (in 
the case where the zeros of p(x) form a massive cluster) at an (a, B, f)-split t ing disc for p(x), for 
a fixed B. We will achieve our goal based on the following lemma. 

LEMMA 4.1. Suppose that  a (3a - 2 ,  s)-center for p(x) lies in a disc D(O,p*). Suppose that 
application of Algorithm 4.1 does not give us an ( a, f )-splitting disc S D but yields a disc D( X, r) 
of part (b) of Proposition 3.1, which is (34 - 2)-full for p(x). Then 

5*p* 
r <__ (1 - 5 * s ) '  ( 4 . s )  

where 
5" = 85 (4.9) 

and 5 satisfies (3.5) and (4.4). 
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PROOF. A (3a - 2, s)-center for p(x) lies in both discs D(X, sr) and D(0, p*). Therefore , these 
two discs have a nonempty intersection, and hence IXI < sr + p*. Combining the latter bound, 
(4.9), and (3.4) yields (4.8). | 

Now, we are prepared to devise a desired algorithm for the computation of a splitting disc for 
p(x). 

ALGORITHM 4 . 2 .  

INPUT: Polynomial p(x) of (2.1), a complex Y, real B* and B, and positive a, f ,  and p*, satisfying 
the relations (4.2), (4.5), f > 1, and 

p. _< 2_S. (1 -- 6*S) 6. (4.10) 

(for 6" of (4.9), 6 of (3.5), and s of Theorem 4.1) and such that  the disc D = D(Y,p*) is a 
(3a - 2, s)-cover for p(x), that  is, covers at least one (3a - 2, s)-center for p(x). (For instance, an 
approximation within p* to at least one of the zeros of p(l-1)(x), for l = [(3a - 2)nJ + 1, may 
serve as the point Y, due to Theorem 4.1.) 

OUTPUT: An (a, f)-splitting disc D for p(x) or an (a, B, f)-splitting disc D(X, p) for p(x). 
COMPUTATIONS. Shift the origin into the point Y and apply Algorithm 4.1. If the algorithm 
computes an (a, f)-splitting disc D for p(x) or an (a, B, f)-splitting disc D(X, p), output this disc 
and stop. Otherwise, as we will show in the correctness proof below, Algorithm 4.1 outputs X 
and r satisfying (3.4) and such that  the disc D(X, r) is (34 - 2)-full for p(x), that  is, contains at 
least [(34 - 2 ) n J  + 1 zeros ofp(x). Then shift the origin into X. Apply the algorithm supporting 
Fact 2.2 so as to compute p such that  the disc D(X, p) is f-isolated and its radius p satisfies (4.5). 
Output  this disc and stop. 

CORRECTNESS PROOF. Due to Lemma 4.1, we have (4.8). The bounds (4.8) and (4.10) together 
imply (4.6). Now, correctness of the algorithm follows as in the proof of Fact 4.1. | 

If we have approximations Yi, within the error bound p* of (4.10), to all the n - l  + 1 zeros of 
p(t-1)(x), for l = [(3a - 2)nJ + 1, of (4.1), i = 1 , . . .  ,n  - l  + 1, then we may compute an (a,f)- 
splitting disc or an (a, B, f)-splitting disc for p(x) by applying Algorithm 4.2 at every point Y~, 
until a desired splitting disc is output. This computation will be called Algorithm 4.3. One may 
improve it by incorporating the divide-and-conquer approach from [3], which we recalled earlier, 
so that  at most flog IS H calls for Algorithm 4.1 will be needed. We will cite this modification as 
Algorithm 4.4. 

REMARK 4.2. The relative radius r/IX [ of the disc D(X, r) of Proposition 3.1 must satisfy the 
bound r/[X t < 1/s in order to ensure that  the disc D(X, sr) does not cover the origin (compare 
Fact 3.2 and the relations (3.4) and (4.4)). On the other hand, Algorithms 4.3 and 4.4 define 
(a, f)-splitting or (a, B, f)-splitting discs for f - 1 of the order r/([XIn ) (compare (3.8)); that  is, 
we should deal with the case where 

c 
f = 1 + - -  (4.11) (ns) 

for a positive constant c (compare the relations (3.4), (3.8), and (4.4)). In the next section, 
we will modify this construction so as to proceed with larger relative radii ri/[Xi[, satisfying 
]Xi[/ri = O(1). According to the equation (3.8) applied for X = Xi, r = ri, this will enable us 
to increase f so as to satisfy the bound 

1 
(1 - f )  = O ( n ) .  (4.12) 

Under (4.12) we may invoke Theorem 2.1 in order to estimate the cost of splitting p(x) over the 
computed f-isolated discs (compare (6.1), (6.4)-(6.9), Remarks 5.1, 6.1, and 9.2). 
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5. R E C U R S I V E  C O N T R A C T I O N  O F  A R E G I O N  C O V E R I N G  A L L  
T H E  (3a - 2, s ) - C E N T E R S  F O R  p(x) 

The next recursive extension of Algorithm 4.1 will enable us to ensure a stronger isolation 
of the output  splitting disc, so as to raise its isolation ratio f to the level (4.12), from (4.11) 
(compare Remarks 4.2 and 5.1). 

ALGORITHM 5.1. (See Figure 4.) Fix a real a, in the interval (4.2), and a positive integer H and 
recursively apply Algorithm 4.1; for every i, i = 1 , . . . ,  H, after the i t h  application, shift the origin 
into the center X -- Xi  of the output disc D(X,  r) = D(Xi ,  ri), for r and X satisfying (3.4). If 
some application of Algorithm 4.1 defines an (a, f)-splitting disc SD for p(x), then output  this 
disc and stop the computations. Otherwise, stop in H recursive applications of Algorithm 4.1 
and output  H,  the center XH, and the radius rH of the disc D(XH, rH) computed in the last 
application of Algorithm 4.1 (such a disc must be (3a - 2)-full for p(x)). Represent the output  
point XH in the original coordinates (used before the first shift of the origin at the first of the 
recursive applications of Algorithm 4.1) or output )-~H=I Xi if each Xi is defined relative to the 
latest shift of the origin. 

PROPOSITION 5.1. Suppose that Algorithm 5.1 has output H, X H ,  and rH (with XH defined in 
the original coordinates), rather than an (a, f)-splitting disc for p(x), so that the disc D(XH,  rH ) 
is (3a -- 2)-full for p(x). Then the following relations hold: 

(a) IXHI > IXll(x - ~/(1 - ~)) = [Xll(1 - 2~)/(1 - ~), 

(b) rH <_ 8~f~H-1lX,[ = ~H[Xll/(1 -b ~), 

and, consequently, the relative radius rH /[XH[ o[ the disc D(XH,  rH ) is bounded as follows: 

(c) rH <_ SIXHI~f~H-I(1 -- ~)/(1 -- 2~) = IXHI$H(1 - ~)/((1 +/f)(1 - 25)), 

where 6 = 6(a, f ,  n) = f 3 [ a n J + 3  _ 1, according to (3.5), and 

= 8(1 +/f)& (5.1) 

PROOF. Proposition 5.1 follows since the radii ri and, consequently, the relative radii ri/[Xi[ of 
the discs D(Xi ,  ri) rapidly decrease as i grows (see Figure 4). It remains to specify the related 

=(i) estimates. Let r~ i) denote the distance from Xi to a jth closest zero of p(x) and let r~ i) and rj 

denote the lower and upper bounds of r~ i), respectively, obtained by means of applying Facts 2.1 
and 2.2. We first recall that  

r(~) > "h(a_______~) i = 1 , . . . , H ,  (5.2) 
-~(-) - (1 + ~)' 

since otherwise the ith application of Algorithm 4.1 would have output of a disc SD. Furthermore, 
we have the bounds 

r_(i) < r(i) <_ i 1 , . . , H ,  (5.3) g(a)-  9(a) ri, = • 

since the disc D(Xi ,  ri) is [(3a - 2)J-full for p(x) and since g(a) = [(1 - a)n/2J < (3a - 2)n for 
a > 5/6. Moreover, 

=(i) IX~+l - Xil _< rh(,), i = 1 , . . . ,  H - 1, (5.4) 

since Xi+l lies in the annulus that  is output in the first stage of the (i + 1) st application of 
Algorithm 4.1 (within Algorithm 5.1). By combining (5.2)-(5.4), we deduce that  

IXi+l - Xil g (1 + 5)ri, i = 1 , . . . , H -  1. (5.5) 

On the other hand, we extend (3.4) to the ith application of Algorithm 4.1 and obtain that  

ri <_ 85[X~ - X i - l l ,  i = 1 , . . . ,  H, (5.6) 
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where Xo = 0. By combining (5.5) and (5.6), we obtain that  

ri<_6ri-1, IX +I-X I<_ IXi-X -ll, i = 1 , . . . , H -  1, 

for ~ = 8(1 + ~i)~ of (5.1). Then, by combining the latter bounds for i = 1 , . . .  , j  and recalling 
that  X0 = 0, we deduce that  

rj <_ ~Jrl, [Xj+I - XjI <_ IX1-  XoI~J = IXll6 j, j = l , . . . , S - 1 ,  (5.7) 

H-1 H-1 

[XH-XI] _~ Z [ X j + I - X j [  ~_ [XI[ Z ~j < [ X l l / 1 - ~ "  
j=l j=l ) 

Therefore, [XH[ > [X1[(1-~/(1-6)),  which proves part (a) of Proposition 5.1. On the other hand, 
substitution of (5.7) (for j = H - 1) into (5.6) (for i = H) proves part (b) of Proposition 5.1. | 

* Or igine (0) 
Figure 4. The discs D(XI,rl) and D(X2,r2) of Algorithm 5.1 are represented by the two discs 
(larger and smaller ones) in this figure. 

Due to Proposition 5.1, Algorithm 5.1 outputs either an (a, f)-splitting disc SD for p(x) or 
a disc D(XH,rH) that  is (3a - 2)-full for p(x) and has a relative radius rH/]Zl satisfying the 
upper bound of part (c) of Proposition 5.1. Due to Fact 3.1, the disc D(XH,rHS) is a full 
(3a - 2, s)-cover for p(x). 

REMARK 5.1. Due to part (c) of Proposition 5.1, we may ensure the bound rH/[XH[ < 1/s 
on the relative radius of the output disc D(XH, rH) of Algorithm 5.1 already for 1/~ = O(1), 
H = O(logs). This will enable us to achieve (4.12) by using Algorithm 5.1, instead of relying 
just on Algorithm 4.1 and arriving at (4.11) (compare (6.1), (6.4)-(6.9) and Remark 6.1). 
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6. W E  D O  N O T  N E E D  TO A P P R O X I M A T E  T H E  Z E R O S  OF 
H I G H E R  O R D E R  D E R I V A T I V E S  

Seeking a (3a - 2, s)-center for p(x) by means of applying Algorithms 4.3 or 4.4, we recursively 
split, at  first the (l - 1) st order derivative p(l-1)(x), for I = [(3a - 2)nJ + 1, of (4.1), and then 
both  its factors, over some available splitting discs. 

We will next show how to avoid splitting one of the two factors. Let v(x) denote the polynomial 
p(Z-1)(x) or its factor and suppose that  v(x) has been split over some disc D(0,~),  which is 

f , - isolated for v(x). (Letting the origin be the center of this disc is no loss of generality, due 
to Fact 2.1.) Apply Algorithm 5.1. We only need to consider the case where the output  disc 

D(XH, rH) is (3a -- 2)-full for p(x). Then the disc D(XH, SrH) is a full (3a - 2, s)-cover for p(x), 
due to Fact 3.1. Therefore, in our search for a (3a - 2, s)-center for p(x), we may discard all the 
zeros of v(x) lying outside the latter disc. Suppose that  2srH < (f~ -- 1)~, tha t  is, the diameter  

of the disc D(XH, srH) is less than the width of the annulus {x : ~ < Ixl < fv~} surrounding the 

disc D(0, ~) and free of the zeros of v(x) (compare Figure 5). Then the disc D(XH, srH) cannot 
simultaneously intersect both of the disc D(0, ~) and the exterior of the disc D(0, fur), so we may 

determine which one of the two computed factors of v(x) has no zeros in D(XH, 8rH) and can 

be discarded. 

G 
R 

Q 
Figure 5. Five positions of a smaller disc D(X,r) of Lemma 6.1 relative to the annulus (x : ~ < 

We will next formalize our argument as an algorithm and then will show tha t  the value 2srH 
can be decreased below ( f ,  - 1)~, for a fixed ÷, for fv = 1 + c/n, for a fixed positive c, and for H 
of the order logn (but not for H = 1 or even H = O(1), compare Remark 6.1). 

ALGORITHM 6 .1 .  

INPUT:  Polynomials p(x) and v(x) and five real values, that  is, a of (4.2), s of part  (a) or part  (b) 

of Theorem 4.1, f~ > 1, f > 1, ~ > 0, such that  the disc D(0,~) is an f . - isolated disc for v(x), 
and B. 

OUTPUT: Either an (a, f)-spl i t t ing disc for p(x), or an (a, B, f)-spl i t t ing disc for p(x), or, oth- 
erwise, a disc D(XH, rH) and an integer, 0 or 1; 1 is output  if the disc D(0,~) contains no 
(3a - 2, s)-centers for p(x); 0 is output  if the exterior of the disc D(0, f .~)  contains no (3a - 2, s)- 
centers for p(x). 
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COMPUTATIONS. Apply Algorithm 5.1 with H chosen sufficiently large so that  

(fv + 1)rHS < ( f ,  -- 1)IXH[. (6.1) 

Stop if an (a, f)-splitting disc for p(x) is output by Algorithm 5.1. Otherwise, output  the disc 
D(XH, rH) and check if 

2IXHI _> (.f~ + 1)~. (6.2) 
I f  (6.2) holds, output 1 and stop; otherwise, output 0 and stop. 

Correctness of Algorithm 6.1 will be proved by using the following geometric lemma. 

LEMMA 6.1. Let a complex X and positive r, ~, and R satisfy the inequality 

Then the disc D(X, r) does not intersect the disc D(O, ~) if 2IX[ >_/~ + ~ and does not intersect 
the exterior of the disc D(O, [~) if 2[X[ <_ [~ + ~. 

PROOF. (See Figure 5.) The inequality (6.3) implies that  the disc D(X, r) has no overlap with 
D(0, ~) if 2[Z[ _>/~ + ~. Indeed, due to (6.3), ]Z[ - r > ]XI(1 - (/~ - f) /( /~ + ~)). Substitute 
]XI _> (/~ + ÷)/2 on the right-hand side and obtain that  IX[ - r > ~. Similarly, deduce that  the 
disc D(X,r )  has no overlap with the exterior of D(0,/~) if 2IX[ _</~ + ÷. | 

PROOF OF CORRECTNESS OF ALGORITHM 6.1. It suffices to consider the case where Algo- 
rithm 6.1 does not output  a desired (a, f)-splitting disc for p(x). Write [~ = fvr, X = XH, 
r = SrH. Then (6.1) implies (6.3), and we may apply Lemma 6.1. Recall that  the disc D(XH, rH) 
is (3a -- 2)-full for p(x). Therefore, by Fact 3.1, the disc D(XH, SrH) is a full (3a - 2, s)-cover for 
p(x), that is, this disc contains all the existent (3a - 2, s)-centers for p(x), and we may discard 
all the zeros of v(x) lying outside this disc. By the virtue of Lemma 6.1, this implies discarding 
all the zeros of v(x) lying in D(0, ~), if (6.2) holds, and discarding all the other zeros (which lie 
in the exterior of D(0, fvr)) otherwise. Now, correctness of Algorithm 6.1 follows. | 

Let us next choose f ,  fv, and H so as to satisfy (6.1). Due to (3.5) and part (c) of Proposi- 
tion 5.1, the inequality (6.1) follows if 

(1 -- ~) ~H (fv -- 1)f 3[anj+3 
< 

(1-  2~) ((fv + 1)s) ' (6.4) 

for ~ of (5.1) and for/5 of (3.5). It is easy to verify that  the latter inequality and, therefore, also 
(6.1) hold if, simultaneously, 

8 < ~, (6.5) 
~H < 2(fv -- 1)f 3[anj+3 

(3s(f~ + 1)) (6.6) 

LEMMA 6.2. The bounds (6.5) and (6.6) hold if f ,  fv, and H satisfy the relations 

1 
f - 1 = _ _ _  ( 3 0 a n t  fv > f ,  (6.7) 

~? >_ 4, ~? >_ (90ans) ]~(H-l), H > 1. (6.8) 
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PROOF. Equation (6.7) implies that 

( 3~an~]l ~3an e x p ( 3 a n l n ( l + 3 ~ _ ~ n ~ ) )  " = \ 1  + = 

Substitute the expansion ln(1 + u) -- u - u2/2 + u3/3 . . . .  , for u = 1~(30anT) and obtain that 

( (  )) f3a ,__exp 3an u - - ~ + - ~  . . . .  

[ ( w -  w2 + . . . )  + ~ ( 1  1 ) ( -w) i+l ]  
exp --f  --~=1 ( 3an)i -~ -~ ~) j ,  

where w = 1 / (107) <_ 1/40. Now, substitute in(1 + w) for the power series w - w 2/2 + . . . ,  observe 
oo 1 that  ~ i = i (  - 1 / (3an)i) ( -w)i+l / (  i + 1) < (1 - 1/(3an))w2/2 < w2/2, and deduce the bound 

( _ ~ )  ( 1 ) ( 1 ) 
f 3 a n < ( l + w )  exp < 1 + ~  exp (20~72) . 

Since 7 >- 4 and since 3an > 3 [anJ, it follows that 

f3lanJ+3 = (f3an)([ anj+l)/an (_ (1_}_ 1 ~ )  (l+l/an) 1 
exp l + ~ n  n < 1 4- ~-~, 

6 = faLanJ+3 _ 1 < 1/(97), ~ -- 8(1 + 6)6 < 1/7, which implies (6.5), since 7 ~ 4, due to (6.8). 
Furthermore, from (6.7) we have 2f3LanJ+3/(fv + 1) > 1 and (fv - 1)/3 > 1~(90an7). Multiply 

these two inequalities together and obtain that 2(fv - 1)f3lanl+3/(3(f, + 1)s) > 1/(90ans7). 
Deduce from (6.8) that 1/(90ansT) >_ 1/7 H. Combine the two latter bounds with the bound 
~H < 1/7] H and obtain (6.6). 1 

In particular, the relations (6.7),(6.8), and, therefore, also (6.5), (6.6), and (6.1) are satisfied 
for any f ,  > f and for any of the following three choices of H, 7, and f: 

1 
H = 2, 7 = 90ans, f - 1 - 

2700(an)2s ' 

H = 3, 7 = (90ans) 1/2, f - 1 = 1 (6.9) 
90(10s) 1/2 (an)3~2' 

1 
H = [0.5 log(9Oans)] + 1, 7 = 4, f - 1 = 

120an 

Hereafter, we will stay with H, 7, and f defined by (6.9). This will enable us to maximize f 
and thus to decrease the necessary precision of the computations and their Boolean complexity. 

REMARK 6.1. Since we apply Algorithm 5.1, with H recursive calls for Algorithm 4.1, we shall 
bound [XHI/rH according to part (c) of Proposition 5.1, instead of bounding IXI/r according 
to (3.4). In order to simplify the expression for the bound on the relative radius [Xgl/rH, w e  

recall (5.1) and (3.5) and redefine 6* of (4.9) as follows: 

~/'/(1 - ~) 
6" = (6.10) 

We will use this expression for 6* throughout, including applications of Lemma 4.1 and Algo- 
rithm 4.2; in particular, we will rewrite part (c) of Proposition 5.1 as follows: 

rH < 6*lX l. (6.11) 
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Combine (6.4) and (6.10), assume that fv < 3, and obtain the following substitution for (4.4): 

. f v - 1  f v - 1  1 
5" < < < - .  (6.12) 

( f .  + 1)s 2s s 

For H of (6.9), the bounds (6.6) and (6.12) hold under a mild restriction on ~, compatible with 
the bounds 1/~ = O(1) and (4.12). The choice of H = 1 would, on the contrary, have brought us 
back to the bounds (4.4) and (4.11). Moreover, Algorithm 6.1 is recursively applied in the next 
section as a block of Algorithm 7.1; if we had set H = 1 or even H = O(1) in these applications, 
then we would have arrived at an (a, f)-splitting disc or at an (a, B, f)-splitting disc where f - 1 
can be very small, say, of the order 1/n -on for a positive constant c; consequently, the cost of 
splitting p(x) over such a disc can be very large (see Remark 9.2). 

7. I M P R O V E D  C O M P U T A T I O N  OF A SPLITTING DISC: 
A N  A L G O R I T H M  A N D  C O M P L E X I T Y  ESTIMATES 

Next, we will summarize the algorithms of the previous sections in order to improve the com- 
putation of a splitting disc. 

ALGORITHM 7.1. DISC(p(x), B). 

INPUT: Polynomial p(x) of (2.1), natural H and no, real a, B, f and s (provided that no is a fixed 
constant, a satisfies (4.2), f and H satisfy (6.9), and s is defined according to parts (a) or (b) 
of Theorem 4.1), and two black-box subroutines, specified below and denoted DISC(v(x), By) 
and FACTOR(v(x),  D) (for a real B. ,  for a polynomial v(x) of degree less than n, and for its 

(a, f)-splitting disc D). 

OUTPUT: 

(a) Either an (a, f)-splitting disc SD for p(x) or 

(b) an (a, B, f)-splitting disc SDB for p(z). 

T w o  SUBROUTINES. The subroutine DISC(v(x), By) solves, for a polynomial v(x) and scalars a, 
no, By, fv, Hv, and sv, the same problem as Algorithm 7.1 solves for p(x), a, no, B, f ,  H,  and s. 
The input values fv, Hv, and s, are defined (like the values f ,  H,  and s used before) so as to 
satisfy the assumptions of Theorem 4.1 and the equations (6.9), except that,  now, in all cases, 
we replace f by f . ,  H by Hv, s by sv, and n by dv = degv(x).  (Algorithm 7.1 would correctly 
work also for f .  = f ,  H .  = H, and s ,  = s invariant in deg v(x), but then the computational cost 
would increase, slightly.) For By one may choose any value that  satisfies the following bound, 
extending (4.10) and the equation of (4.5): 

[ r(3<,-3)d,,1-2.] 
By>_ B + l o g  L ' (7.1) 

where 6" is defined by the equations (6.10), (5.1), and (3.5) in which f is replaced by fv, 6 by 6., 
and s by sv. (In particular, one may define B .  by setting equality in (7.1).) The subroutine 
FACTOR(v(x),  D) numerically splits v(x) over the disc D, that  is, computes two polynomials, 
F*(x) (monic and approximating the highest degree monic factor F(x) of v(x) that  has all its 
zeros lying in D) and G*(x) (approximating the factor G(z) = v(z)/F(x) of v(x), which has no 
zeros lying in D), that  satisfy the next bound (compare (1.1) with n replaced by n - l + 1, b by ~, 
and b by f~) 

Hv(x) - F*(x)G*(x)I I < 2 -~, B = (f~÷ 3 ) ( n -  1 ÷ 1) + l o g ( n -  l + 1) + 2, (7.2) 
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where the norm is defined by (1.7) and where f~ satisfies the bound 

2 -~ = A <_ 2 -B ' .  

121 

(7.3) 

COMPUTATIONS BY ALGORITHM 7.1. 

STAGE 0. INITIALIZATION. Set v(x) = p(l-t)(x) for I = [(3a - 2)nJ + 1, of (4.1). 

STAGE 1. If deg v(x) <_ no, first approximate the zeros of v(x), then invoke one of Algorithms 4.3 
or 4.4, in order to compute and to output an (a, f)-splitting disc or an (a, B, f)-splitting disc for 
p(x); then stop. Otherwise, fix B ,  according to (7.1) and apply the subroutine DISC(v(x), By), 
which outputs an (a, fv)-splitting disc or an (a, B~, fv)-splitting disc for v(x); in both cases, such 
an output  splitting disc is denoted D(Cv,R,). Shift the origin into C, and go to Stage 2. 

STAGE 2. Write ~ = Rv and D = D(Cv, R,) and apply Algorithm 6.1 for H replaced by H + 1. 
If this algorithm outputs an (a, f)-splitting disc or an (a, B, f)-splitting disc for p(x), then stop. 
Otherwise, Algorithm 6.1 outputs a disc D(XH+I, rH+l) and an integer, 0 or 1; in this case go 
to Stage 3. 

STAGE 3. If Algorithm 6.1 outputs 0 and if D is an (a, By, fv)-splitting disc for v(x), then shift 
the origin into XH+I, apply the algorithm supporting Fact 2.2, output an Ca, B, f)-splitting disc 
for p(x), denote this disc SDB, and stop. Otherwise (that is, unless simultaneously Algorithm 6.1 
outputs 0 and the disc D turns out to be an (a, B,,  f.)-splitting disc for v(x)), apply the subrou- 
tine FACTOR(v(x), D) and set either v(x) = F*(x), if Algorithm 6.1 outputs 0, or v(x) = G*(x), 
if Algorithm 6.1 outputs 1. Then go to Stage 1. 

PROOF OF CORRECTNESS OF ALGORITHM 7.1. Let J(x) denote the factor of v(x) approx- 
imated by the output polynomial of the subroutine FACTOR(v(x), D) applied at Stage 3 of 
Algorithm 7.1 (so that  J(x) = F(x) or J(x) = G(x)). At Stage 0 of Algorithm 7.1, some zero of 
v(x) is a (3a - 2, s)-center for p(x), due to Corollary 4.1. Due to correctness of Algorithm 6.1, the 
latter property of v(x) is extended to J(x) and, therefore, is maintained throughout the computa- 
tion by Algorithm 7.1 if we ignore the errors of the factorization of p(x) approximately computed 
by Algorithm 7.1. Due to (4.2), deg J(x) is bounded by a fixed fraction of degv(x); therefore, 
Algorithm 7.1 must terminate in O(log(degv(x)/no)) passes through Stage 3 and, at the termi- 
nation, must output either an Ca, f)-splitting disc for p(x) at Stages 1 or 2 or an Ca, B, f)-splitting 
disc for p(x) at Stages 1, 2, or 3. It remains 

(a) to examine the influence of the approximation errors on correctness of application of Algo- 
rithm 6.1 as a block of Algorithm 7.1, and 

(b) to show correctness of Algorithm 7.1 in the case where Algorithm 6.1 outputs 0 and where 
the disc D -- D(C~, Rv) is an C a, B~, f~)-splitting disc for v(x). 

Towards the first goal, we recall that,  on the one hand, rH+l >_ 2 -B* unless some application 
of Algorithm 4.1 gives us an (a, B, f)-splitting disc for p(x) and that,  on the other hand, due 
to (7.2) and Corollary 2.2, the zeros of all the computed approximations to the factors of p (~- 1)(x) 
may deviate from the respective zeros of p(t-1)(x) by at most A = 2-Z. Therefore, in order to 
preserve correctness of Algorithm 6.1, performed as a block of Algorithm 7.1, we only need to 
extend the bound (6.1) as follows: 

(fv + 1)(rH+l + 2A)s < (fv -- 1)iXH+ll. 

Proposition 5.1 (for ~ < 1/4 of (6.5) and for H > 2) implies that  rH/IXHI < 6/4 H÷I _< 3/32, 
SO that  IXH+ll >_ ]XHI -- rH >_ 291XHI/32, and therefore, it is sufficient for us to ensure that  
(fv + 1)(rH+1-4-2A)s < 29(fv -- 1)IXHI/32. The desired extension of (6.1) to the latter inequality 
immediately follows from (6.1) and from the following bounds: 4rH+ 1 _< rH (see (5.7),(6.5)), 

CAJ'~A 31-12-[ 
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2 -B* ~ rH+l, and 2A < 2 -B* < 2rH+l (see (7.2), (7.3)). Thus, the errors of approximation of 
the factors of p(t-x)(x) do not influence correctness of Algorithm 6.1. 

Now, we shift to our second goal. Since D is assumed to denote an (a, By, fv)-splitting disc 
for v(x), we obtain from Definition 4.1 that P~ < p~, where p~ = 2 -B~. Furthermore, due 
to correctness of Algorithm 6.1, both discs, D = D(Cv, Rv) and, therefore, also D(Cv, p*), are 
(3a - 2, s)-covers for p(x); that is, both of them contain a (3a - 2, s)-center for p(x). Now, we 
apply Lemma 4.1, for r = rH+l, p* = p*, 6" ---- ~v, S ---- Sv, and the origin shifted into Cv, and 
deduce that rH+l _< 6~Pv/(1--~f~,sv). Then (7.1) implies that rH+l _< 2 -B* • Now, Fact 4.1 implies 
correctness of obtaining an (a, B, f)-splitting disc for p(x) at Stage 3 of Algorithm 7.1. | 

Next, we will estimate (sequential and parallel) Boolean and arithmetic cost PBCD(B,n), 
PACD(B, n), PRACD(B, n) and SACD(B, n) of performing Algorithm 7.1, DISC(p(x), B), for 
n > 2, a of (4.2) and l = [(3a - 2)nJ + 1 of (4.1); in particular, we may define a and l by (4.3). 
(Here, the subscript D abbreviates "DISC.") 

As we have already observed, there can be at most O(log(dv/no)) = O(logn) transitions to 
a new v(x) at Stage 1 of Algorithm 7.1, for dv = degv(x),  and there can be as many passes 
through Stages 1-3 of Algorithm 7.1. It remains to estimate the computational cost of each pass. 
This cost is dominated by the complexity of application of the subroutine FACTOR(v(x),  D), for 
splitting the polynomial v(x). 

Let us assume that equalities are set in (7.1) and (7.3). Then, application of Theorem 2.1 for n 
replaced by dv = deg v(x), for 

/3 = B~ +/3 + d.,  (7.4) 

~ r B g s ~ i s ~ i n g  
2 -- B y  2-B: = 

f~F(3-3a)d~1-2 (7.5) 

(compare (4.5) and (7.1)), and for/3 defined by (7.2) and (7.3), gives us the following bounds 
on the computational complexity of each pass through Stages 1-3 of Algorithm 7.1 (where dv = 
deg v(x) decreases in every pass): 

o .  + PBCs(B,d,,) 
(log ): _ ' k  

PACs(B,d,) = Oa (logdv) log/3, l o g B ]  ' 

PRACs(B, dr) = OA ((log dr)t3,1 (JB, dr), dr), allowing Las Vegas randomization, 

SACs(B, dr) = OA ((logdv)t2,1 (/3, dr) dr, 1), 

for M(d) of (1.3) and tij(B, dv) = (logdv) i + (log/3) j of (1.4). 
We summarize the above bounds, where/3 is defined by (7.4) and where initially dv takes on 

the value n + 1 - l, l = [(3a - 2)n], and then, in each of the O(log n) recursive steps, decreases by 
at least a fixed constant factor exceeding 1. This gives us the following estimates for the overall 
arithmetic and Boolean cost of performing Algorithm 7.1: 

PBCD(B,n) = OB ((logn)2 (logB)2, (M (n3 + ~nl°g[~)) ) , 

PACD(B,n) = O A  (logn) 21og/3, ((log/3) logn) ' (7.7) 

randomization, (7.8) 

SACD(B,n) = OA ((logn)t2,1 (/3, n) n, 1), (7.9) 

where M(d) and tij(JB, n) are defined by (1.3) and (1.4). 
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8. S U M M A R Y  OF THE ENTIRE R E C U R S I V E  PROCESS A N D  
THE OVERALL C O M P L E X I T Y  ESTIMATES 

As soon as we compute an (a, f)-splitting disc for p(x), we apply Theorem 2.1 and split p(x) over 
this disc, into two factors having degrees k and n - k ,  respectively, for (1-a)n/2 < k < (l+a)n/2; 
in particular, n < 12k <:_ l l n  if we choose a = 5/6, according to (4.3). Then Algorithm 7.1 and 
Theorem 2.1 are recursively applied to the factors. O(logn) such recursive steps reduce the 
original problem of approximating the zeros of p(x) to O(n) such problems for polynomials of 
degrees at most no = O(1), which we then solve at the overall arithmetic cost Om(log(bn),n), 
by applying the algorithms of [2] or [29], say. If at some recursive step we compute an (a, B, f)-  
splitting disc D(X, p) for p(x) (rather than an (a, f)-splitting disc), then the recursive process is 
only simplified. Indeed, to handle this case we write B - b, which satisfies (4.7), and then let 
X approximate all the k > [(3a - 2)nJ zeros of p(x) lying in D(X, p). It remains to deal with a 
single factor of p(x), of degree at most n - [(3a - 2)nJ - 1 <_ [(3 - 3a)n~ - 1 (that is, at most 
[n/2~ - 1 for a of (4.3)), rather than with two factors. 

The complexity bounds of Theorem 2.1 are given in terms of /~ = B* +/~ + n, where B* is 
defined by (4.5) and (4.7). Due to (4.5), it suffices if B* > B+(2[(3-3a)n~ - 2 ) l o g f .  Under (4.3) 
and (6.9), we satisfy this bound already for B* = B + 0.15, which implies that  

/~ = B + ~)+n + 0.15. 

For B = b and, more generally, for B = O(b), we have /~ = O(b + b + n). For splitting the 
polynomial p(l-1)(x) or its factors (denoted v(x)) over an (a, Bv,f,)-splitting disc, we apply 
Theorem 2.1 for/~ -- B~ +/~ + dv of (7.4), where we define B~ and ~ by (7.1)-(7.3) and (7.5), 
replacing the two inequalities by equalities in (7.1) and (7.3). We have dv < n, /3 = O(/3n) 
(compare (7.2), (7.3)), and B* = O(B) (compare (6.12) and (7.1)). Consequently, assuming, as 
before, that  B = O(b), we obtain that /3  = O(b) and t~ = O(bn). 

By taking into account the latter bounds on/~ and/~ ,  and by recursively applying the bounds 
(7.6)-(7.9), Theorem 2.1, and the variant of Brent's principle, cited in the Introduction, we arrive 
at the estimates of Theorem 1.1, for approximating the n zeros of p(x). | 

REMARK 8.1. By applying some special techniques of binary segmentation (due to [61] and re- 
discovered and extended at first in [62] and then in [1], in [63, Section 40], and in [64]), one 
may further decrease the Boolean sequential time bound and the Boolean processor bound (by 
roughly a logarithmic factor) [1,7]. 

9. A N  A L G O R I T H M  A N D  C O M P L E X I T Y  ESTIMATES 
FOR SPLITTING A NORMALIZED POLYNOMIAL 

OVER THE UNIT ISOLATED DISC 

In this section, we will briefly recall a known splitting algorithm developed, in particular, by 
Delves and Lyness [65], by Schrhder [17, pp. 295-320; 66], and, so far probably most extensively, 
by Schhnhage [1] and Kirrinnis [7] (compare also [28, Appendices A and B]). The algorithm 
splits a normalized polynomial over the unit disc D(0, 1). In Section 11, we will extend this 
algorithm to splitting polynomial p(x) of (2.1),(2.2) over any fixed disc D(X, R), where X and R 
satisfy (2.5). Together with our technique of recursive descending, to be introduced in Section 10, 
this extension supports Theorem 2.1. The variant of Brent's principle (cited in the Introduction) 
will be routinely applied in the following sections in order to improve processor bounds (by a 
logarithmic factor) (compare, for instance, [39, Proposition 4.1.1]). 

We will keep defining the norm by (1.7). 

ALGORITHM 9.1. Splitting a normalized polynomial over the unit disc. 
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INPUT: The values a and f satisfying (5.1) and (6.9), two integers k and n, 0 < k < n; positive 
5, ~, c*, and B (see Remark 9.1 on the choice of g, ~, and c*), and a polynomial ~(y) satisfying 
the following relations: 

n n 

P(Y) = ~-]~P~Y~ = P-  r I ( y  - ~J), I I . ~ ( y ) l l  = 1, i~n ~ 0, (9.1) 
i = 0  j = ,  

12jl <_ 1, j = 1, . . . ,k ,  (9.2) 

f ~_12jl, j = k + l , . . . , n .  (9.3) 

OUTPUT: Approximations F~(y)-* and G,~_k(y ) - *  to the two factors, /~k(Y) = k ~i=l(Y 2i) and 
Gn-k(Y) = P(Y)/~'k(Y) (compare Definition 2.2, where p(y), Fk(Y) and Gn-k(Y) replace p(x), 
Fk(x) and Gn-k(X), respectively), satisfying the following bound: 

IIZ, m)ll _< 2 -'~, z,m) = yz(y)va_~(y) -~(y) .  (9.4) 

C O M P U T A T I O N S .  

1. Compute approximations s* to the power sums 

k 

si = E 2 ~ ,  i = 1 ,2 , . . .  ,K,  K = 2 r~°*k] < 2k, 
j = l  

of all the zeros of/~(y) lying in the disc D(0, 1), so as to satisfy the bounds 

1 
Is* - ~1 -< 2 ~ '  i = 1 , 2 , . . .  ,K.  (9.5) 

2. Use the values s i* computed at Stage i in order to approximate the factor Fk(y) = ~j=lk (y_ 
~ )  of I0(Y) within the error norm bound 1/2 c-n, that  is, to compute a monic polynomial 
Fk (y) satisfying 

Fk(Y) -- Fk(Y) --< 2 -c 'n.  (9.6) 

3. Approximate the factor Gn-k(Y) = P(Y)/Fk(Y) by a polynomial Gn-k(Y) so as to satisfy 
the inequality 

P(Y) - Fk(y)Gn-k(Y) _< 2 -en. (9.7) 

4. Improve the approximations -~k(Y) and Gn-k(Y), computed at Stages 2 and 3, so as to 
compute and to output  -~ (y)  and G*-k(Y) satisfying (9.4). 

Stage 1 is performed by means of numerical integration (see [1, Section 12], or [28, Appen- 
dix A]); that  is, the values 

1 
8 i t , - - ~  ) <sy 

are approximated by the sums 

, 1 ~=,' .( ,+l)qp'(~q).  
si = ~/_. . , -~ ~(wq) " 

"~ q=0  --" " 

where i = 1 , . . . ,  K; w = exp(21rvFL--1/Q) is a primitive Q t h  r o o t  of 1, and a natural Q = Q(f) is 
specified later on, as a function in f .  
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Stage 2 is the transition from the computed approximations s~ of the power sums s~ k) to the 
initial approximations of the coefficients of -~k(Y). This stage is performed by means of a variant 
of Newton-Hensel's lifting algorithm from [1, Section 13] (compare [39, pp. 34-35]). 

Stage 3 is reduced to the division of i6(y) by the computed approximation Fk(x) to F'k(x) 
(compare [64,67]). 

Stage 4 relies on a sophisticated iteration algorithm of [1, Sections 10, 11, and 13] (also compare 
[7; 17, pp. 295-320; 28, Appendices A and B; 66]). 

REMARK 9.1. The choice of sufficiently large constants c*,~, and 5 (all of them independent of 
and n) is specified in [1]. The constant 5 is chosen so as to ensure that the iteration algorithm 
applied at Stage 4 converges sufficiently fast (so that ei+l <: Q1.5, where ~h denotes the error norm 
bound in h iteration steps) provided that the initial approximations Fk(y) and Gn-k(Y) to ~'k(Y) 
and G~-k(Y) satisfy (9.6) and (9.7). The constant c* is chosen so as to ensure the bound (9.7) 
provided that (9.6) holds. The constant 5 is chosen so as to ensure (9.6) as long as the values s* 
computed at Stage 1, satisfy (9.5). 

According to the estimates of [28, Appendices A and B] and of [39, pp. 34-35], the arithmetic 
cost of performing the four stages of Algorithm 9.1 is bounded as follows: 

at Stage 1, by OA(lOgQ, Q), 
at Stage 2, by OA((logn) 2, n~ log n), 
at Stage 3, by OA(logn, n), 
at Stage 4, by OA((logn)log(Bn),n). 
Moreover, the analysis presented in [1, Sections 9-13,16; 2,4,7] shows that the precision of O(n) 

bits suffices at Stages 1, 2, and 3, whereas the precision of O(/~ + n) bits suffices at Stage 4 (com- 
pare Remark 9.1). Based on this analysis and on the known bounds (1.5) and OB (log d, d~ log d) 
on the complexity of a multiplication and an addition/subtraction of two integers modulo 2 d - 1, 
respectively, we extend the above arithmetic complexity bounds to the Boolean complexity esti- 
mates. (The known asymptotic bounds on the Boolean cost of an integer division are either the 
same (in the sequential case) or only slightly higher (in the parallel case) than ones for a multi- 
plication [39,68], whereas the divisions required in Algorithm 9.1 are much less numerous than 
multiplications, so the overall cost of performing all the multiplications involved in Algorithm 9.1 
dominates the overall Boolean cost of performing the algorithm.) 

The overall arithmetic and Boolean cost of performing Algorithm 9.1 depends on the choice 
of Q = Q(f) at Stage 1. According to the estimates of [1,28], we need to choose Q of the order 
n/ ( f  - 1). Since f is defined by (6.9), the latter bound on Q implies the choice of Q = O(n2), 
and then, summarizing the above analysis gives us a splitting of/~(y) over the unit disc D(0, 1) 
satisfying (9.4). The computational cost of this splitting is bounded according to parts (a) and (b) 
of Theorem 2.1. In Section 11, we will show how to extend the cost bounds for splitting l~(y) 
over D(0, 1) to ones for splitting over a subdisc of D(0, 1). Now, we observe that the arithmetic 
cost bounds of part (b) of Theorem 2.1 are far from the optimum because the order of n 2 log n 
arithmetic operations are involved in Stage 1 of Algorithm 9.1 (if Q is of the order n2). This does 
not contradict our final arrival at nearly optimum Boolean cost bounds of part (a) of Theorem 1.1 
because the latter arithmetic operations are performed with a lower precision, of O(n) bits (versus 
O(/~ + n)-bit precision, generally required at Stage 4). Consequently, the Boolean cost bounds 
(which more realistically measure the complexity of approximating polynomial zeros than the 
arithmetic cost bounds do) are lower at Stage 1 than at Stage 4, at least in the case of our major 
interest, where/~ is of the order bn and n = O(b) (compare (1.1) and Fact 2.6). 

For theoretical purposes, however, we also wish to have an optimal or nearly optimal algorithm 
in terms of arithmetic complexity, and in the next section we will decrease the overall arithmetic 
cost of splitting given by part (b) of Theorem 2.1. We will achieve this goal by means of devising 
an algorithm that lifts an isolation ratio of the input (splitting) disc D(0, 1) of Algorithm 9.1. 
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Specifically, we will lift the ratio from f of (6.9) to f > 4 (say), which will decrease Q to the 
level O(n). Furthermore, in Sections 12 and 13, we will show how to bound the precision of 
computing by the resulting algorithm so as to make this algorithm supports the same (record and 
nearly optimal) Boolean complexity bounds as ones obtained in parts (a) of Theorems 2.1 and 1.1 
(provided that n = O(b) ). 

REMARK 9.2. Q has the order n / ( f  - 1) = cn2s under (4.11). (In particular, this is the order 
of Q achieved by the algorithm of [3].) In comparison to the case of Q of the order O(n 2) 
under (4.12), this implies an increase, by the factor s, of both arithmetic and Boolean cost 
bounds of Theorems 2.1 and 1.1 on sequential time and number of processors, and we ought to 
choose s of an order of at least n 1/3, to satisfy the assumptions of Theorem 4.1. Furthermore, 
the arithmetic cost bounds have an order of at least Q log Q, which means, in particular, that 
they stay above the level n2s for the algorithm of [3]. 

10. D E C R E A S I N G  THE A R I T H M E T I C  C O M P L E X I T Y  
OF T H E  S P L I T T I N G  A L G O R I T H M  

In this section, we will combine the known techniques (for Graeffe's recursive lifting and for 
splitting a polynomial into two factors) with our new techniques (for recursive descending) in 
order to increase the isolation ratio of a splitting disc for ~(y), from the value f of (6.9) to at 
least 4. This will enable us to decrease the upper bound on the parameter Q (used at Stage 1 of 
Algorithm 9.1) to the level O(n) and, thus, to decrease the upper bound on the overall arithmetic 
computational cost of splitting. 

ALGORITHM 10.1. Recursive lifting, splitting, and recursive descending. 

INPUT: As in Algorithm 9.1. 

OUTPUT: h monic polynomial F~(y), of degree k, satisfying (9.6) for Fk(Y) = F~(y). 

COMPUTATIONS. 

1. (recursive lifting). Set qo(Y) = P(Y)/Pn, for polynomial i~(y) of (9.1), set 

u = l +  log =O(logn) ,  

and apply u iteration steps, 

(10.1) 

qj-FI(Y) = ( -1) '~qj( -v~)qj (v fY) ,  j = O, 1,. . .  ,u - 1. (10.2) 

. 

. 

(The iteration (10.2) has been successively discovered and rediscovered at first by Dandelin, 
n 2J then by Lobachevsky, and then by Graeffe [18].) Note that qj(y) = Hi=I(Y - 5~ ), j = 

0 ,1 , . . . ,  u, so that D(0, 1) is an f2~-isolated disc, for the polynomial qj(y). 

(splitting qu(y)). Deduce from (10.1) that f 2~ > 4 and apply Algorithm 9.1 for Q = O(n) 
in order to split the polynomial ~ ( y )  = q~(y)/nq~(y)[[ numerically, over the disc D(0, r2~), 
into two factors, F~,u(y) and G~-k,u(Y) (compare [1,28]); obtain numerical factorization of 
qu(y) as the product F~,~(y)Gn_k,u(y), where we write Gn_k,~(y ) = ][qu(Y)[[ n-k,u(Y)" 

(recursive descending). Recursively recover approximations to the factors Fk,u-j (y) (monic) 
and Gn-k,u-j(y)  in the splittings q~_j(y) = Fk,u-j(y)Gn-k,~-j(y)  of the polynomials 
q~_j(y) of (10.2) over the disc D(0, 1), for j = 1, 2 , . . . ,  u. Output the computed approxima- 
tion to the factors Fk(y) = Fk,o(y) and G,~-k(y) = Gn-k,o(y) of the polynomials qo(Y) and 
P(Y) = Pnqo(Y). Before the jth step of this recursive recovery (which we also call recursive 
descending), we have the polynomial qu_j(y), computed at Stage 1, and an approximation 
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to the factor Gn-k,u-j+l(Y) of qu-j+l(Y) computed at the (j - 1 )  s t  step (or at Stage 2 if 
j = 1). At the jth step, first compute approximations Fk,u-j(Y) and Gn-k,u-j(-Y) to the 
pair of the polynomials Fk,u-j(Y) and Gn-k,~-j(-y) ,  by observing that the latter pair of 
polynomials fills up the (k, n - k)-entry of the Pad~ approximation table for the analytic 

function Fk, -j(y) 
= (10.3) 

an-k,u-j+l (y2) Gn-k,~-j(-y)" 

(We refer the reader to [39,69] on the definition and some basic properties of Padd tables. 
To substantiate (10.3), observe the following equations: 

q~,_j(y) = Fk,~,-j(y)Gn-k,~,-j(y), 

and gcd(Fk,u-i(y), Gn-k,u-j(--Y)) = 1.) Ensure that 

1 (10.4) qu-j(Y) - [~k,=-j(y)On-k,=-j(y) <_ 2e n {{q=_j(y)}{ 

(compare (9.7), where [[~5(y)[I = 1). Improve the computed approximations to Fk,u-j (y) and 
Gn-k,=-j (y) by performing Stage 4 of Algorithm 9.1, where/~(y) is replaced by qu_j (y), 
Fk(Y) by Fk,u-j(Y), and Gn-k(Y) by Gn-k,u-j(Y). Then go to the (j + 1) st step of the 
recursive recovery if j < u or stop if j = u. 

REMARK 10.1. The reader may examine two alternative versions of Stage 3 (see [8]), where 
one either approximates the factors Fk,u-j(y) = gcd(q=_j(y), Fk,~_j+l(y2)) and G~-k,=-j(y) = 
gcd(q=_j (y), Gn-k,=-j+l (y2)) or approximates only Fk,u-j (y) as the gcd and then applies Stages 3 
and 4 of Algorithm 9.1 to compute some refined approximations to both factors. (Here, gcd(u(x), 
v(x)) denotes the monic greatest common divisor of two polynomials u(x) and v(x).) The known 
algorithms for computing the gcds [39] lead to the same arithmetic complexity estimates as for 
computing the Pad6 approximations. 

Next, let us estimate the arithmetic complexity of Algorithm 10.1 and of our solution of the 
entire splitting problem. 

By using the FFT based algorithms for polynomial computations [39, Chapter 1], we perform 
Stage 1 of Algorithm 10.1 at the cost bounded by OA ((log n) 2, n). According to [28, Appendices A 
and B], the cost of performing Stage 2 is OA((log n) 2, n) too. 

At each of the u steps of Stage 3 of Algorithm 10.1, we may compute the Pad6 approximation 
of the analytic function of (10.3) at the cost OA((logn)2n, 1) [39], which gives us the bound 
OA((logn)3n, 1) for all the u steps (compare (10.1)). 

To compute the Pad6 approximation of (10.3) in parallel, we reduce the problem to the so- 
lution of a nonsingular Toeplitz linear system of n - k equations (see [39, equation (2.5.6)]), 
associated with the entry (k, n - k) of the Pad~ approximation table for the analytic function 
q~(y)/Gn-k#+l(y 2) = Fk,i(y)/Gn-k#(-Y); this entry is to be filled up with the nondegenerating 
pair of polynomials (Fk#(y), Gn-k#(-y)) ,  i = u -  j. (Nonsingularity and nondegeneration follow 
since the degrees of the polynomials Fk#(x) and Gn-k,i(x) are known to be exactly k and n - k, 
respectively.) At this point we apply the following theorem. 

THEOREM 10.1. The exact solution of a nonsingular Toeplitz linear system of m equations with 
an integer coefficient matrix T or with a matrix T filled with Gaussian integers (of the form a + 
bx/-~, for integers a and b) can be computed at a cost O A ((log m) 2, m s / log m ), by deterministic 
Mgorithms, and at a cost OA((logm) 2 log L, m), by a randomized Las Vegas algorithm (using 
only a single random parameter), provided that L = m log [ITII and that IITII m is an upper bound 
on [det T[. Furthermore, both of these algorithms can be performed with the precision of O(L) 
bits if  the right-hand-side vector of the linear system is filled up by integers or Gaussian integers 
whose absolute values are less than 2 L. 
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REMARK 10.2. The estimates of Theorem 10.1 have been deduced in the case of a more general 
class of nonsingular Toeplitz-like linear systems (see [39,70]). 

The deterministic bound of Theorem 10.1 has been obtained in [70], by means of the techniques 
of parametrized Newton's iteration (introduced in [70] and also applicable to the solution of 
nonsingular Toeplitz-like linear systems of m equations over any field of constants having a 
characteristic 0 or greater than m). The randomized bound of Theorem 10.1 has been obtained 
in [39, p. 356], by means of straightforward combination of the results and techniques of [71-74]. 
(Specifically, the iterative algorithms of [71,72] have been originally proposed for parallel inversion 
of a general nonsingular matrix and relied on the combination of the variable diagonal techniques 
of [71,72] with the customary techniques of p-adic lifting. In the case of Toeplitz or (more 
generally) Toeplitz-like input matrices T, these algorithms have been made more effective in [39] 
(so as to support Theorem 10.1). This has been achieved by means of incorporation of the 
techniques of [73,74], which, in particular, include a nontrivial algorithm for cutting the length 
of displacement generators of the computed approximations to T-1.)  

Since the output  error bounds of (10.4) suffice for our purpose at the recursive descending 
stage of Algorithm 10.4, it follows that we only need to apply Theorem 10.1 in the case where 
log L = O(logm),  m = n, and this application will give us the bounds OA((logn) 3, n2/logn) 
(deterministic) and OA((log n) 4, n) (Las Vegas randomized) on the parallel cost of the solution of 
the u = O(log n) Toeplitz or Sylvester linear systems at Stage 3 of Algorithm 10.1. (In Sections 12 
and 13, we will show that, furthermore, we only need to deal with the case where L = n °(n).) 

By summarizing the above complexity estimates for Algorithm 10.1 and by combining them 
with ones of Section 9, for Q = O(n), we deduce the following result. 

PROPOSITION 10.1. At a cost bounded according to parts (c) and (d) of Theorem 2.1, a normal- 
ized polynoraial ~(y) of (9.1)-(9.3) can be split numerically, over the unit disc D(O, 1), so that 
the two computed factors F~(y) and G*-k(Y) satisfy (9.4). 

11. E X T E N S I O N  TO S P L I T T I N G  A P O L Y N O M I A L  
O V E R  A N Y  DISC 

In this section, we will extend the splitting Algorithms 9.1 and 10.1 from the case of a poly- 
nomial/3(y), which satisfies (9.1)-(9.3), to the case of splitting any polynomial p(x) over any 
f-isolated disc D(X, R), assuming that (2.1), (2.2) and (2.5) hold. To obtain such an extension, 
for splitting over an f-isolated disc, we write 

x = X + yR, (11.1) 
(x - x )  

Y - R ' (11.2) 

q(Y) (11.3) 
= II (y)ll' 

~(y) = p(x) = p(X + yR). (11.4) 

Equations (11.1) and (11.2) transform the discs D(X, R) = {x : I x - X I _< R} and D(0, 1) = {y : 
lYl -< 1} into each other. Equations (11.3) and (11.4) transform io(Y) into p(x) (and vice versa). 
We will also use the hounds IX] + R  < 1, R _> 2 -B" of (2.5). Now, if D(X, R) is an (a, f)-splitting 
disc for p(x) or an (a, B, f)-splitting disc for p(x), then we will apply the following algorithm. 

ALGORITHM 11.1. 

INPUT: Two integers, k and n, 0 _4 k _< n; a positive e, a polynomial p(x) of (2.1), and an 
f-isolated disc D(X, R) containing exactly k unknown zeros of p(x), enumerated as z l , . . . ,  zk, so 
that  D(X, R) ~ zi; p(zi) = O, i = 1, . . . ,  k. 
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OUTPUT: Approximations F~(x) and G~_k(x ) to the factors Fk(x) = l-I~=l(X-Zi) and Gn-k(x) = 
p(x)/Fk(x), respectively, satisfying (2.4). 

COMPUTATIONS. 

(a) Compute the polynomial p(y) of (11.3). 

(b) Recall Algorithms 9.1 and 10.1 in order to compute a pair of approximate factors ~'~(y) 
(monic) and G[-k(Y) of p(y) satisfying (9.4), for an appropriate /~. 

(c) Compute and output monic approximate factors of p(x) satisfying (2.4): 

F~(x) = P~(y)Rk = F~ ( (X R-X) ) R k, 

an-k(Y)llq(y)ll -* C._k ( (z - X) / R) II (y)ll 
G~_k(x) = Rk = Rk 

(11.5) 

(11.6) 

The arithmetic cost of performing Stages (a) and (c) is bounded by 0 A (log n, n), due to Fact 2.1, 
and is clearly dominated by the bounds (given in Theorem 9.1 and Proposition 10.1) on the arith- 
metic cost of performing Stage (b). Furthermore, shifting and scaling the variable does not require 
the use of precision of computations any higher than the precision of the approximation to the co- 
efficients of the input and/or output polynomials in the splitting algorithms (compare [1]). Thus, 
the Boolean complexity of Algorithm 11.1 is also dominated by the Boolean cost of performing 
its Stage (b). 

To complete the proof of Theorem 2.1, we will next show that the bound (9.4) for P > 
B* + n + log(l/e) implies the bound (2.4). 

PROPOSITION 11.1. Equations (9.1) and (9.4) imply (2.4)/or e -- 2 B*+n-/]. 

PROOF. Recall from (9.4) that/~(y) /X((x X) /R)  -* -* = = - = F~ (y)Gn_k(y) -~(y )  and write A(x) 
F~(x)G*_k(X ) -p (x ) .  Obtain from (11.1)-(11.6) that A(x) = £(y)ll~l(y)ll. Therefore, 

Ila(x)ll= £ ( (XRX))  Ilq(u)ll. (11.7) 

The equation A(y) = £((x  - X) /R) ,  together with (2.5), implies that [[/~((x - X)/R)I  [ <_ 
I[£(y)H(2/R) n < [[/X(y)[[2 B*+n. 

On the other hand, by applying (11.4), we obtain []~(y)[[ = [[p(X+yR)H = ]] ~ i  pi (X+yR) '  [[ _< 
~-~i [pi[([X[ + R) i. Now, recall (2.5) and deduce that the right-hand side of the latter inequality 
and, therefore, also I]q(Y)H cannot exceed ~ i  [Pil = [[p(x)]l. Substitute the latter upper bounds 
on [[A((x - X)/R)[[ and ]I4(Y)[[ into (11.7) and obtain Proposition 11.1. | 

Due to Algorithm 11.1 and Proposition 11.1, the proof of Theorem 2.1 has been completed. ] 

12.  R E D U C T I O N  O F  T H E  C O N T R O L  O V E R  T H E  P R E C I S I O N  O F  
T H E  C O M P U T A T I O N  O F  R E C U R S I V E  D E S C E N D I N G  T O  T H E  

S T U D Y  O F  P E R T U R B A T I O N  O F  P A D I ~  A P P R O X I M A T I O N  

Analysis along the lines of [1] shows that O(/~ + n)-bit precision of computing suffices at all 
stages of Algorithms 9.1 and 10.1, except for the stages of solving the auxiliary Toeplitz linear 
systems of equations, at which we seek polynomials -~k,~-j(Y) and Gn-k,u-j(Y) satisfying the 
bound (10.4). Our next objective is to prove that O(n 2 logn)-bit precision suffices at the latter 
stages. By combining such a precision estimate with the arithmetic cost bounds of Sections 9 
and 10, we arrive at the same Boolean cost bounds as ones obtained in parts (a) of Theorems 1.1 
and 2.1 (provided that bn = O(b) and n = O(b)). 
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We will achieve our goal by analyzing the effect of perturbing the input polynomials, Pu_j (y), 
of the Pad~ approximation problems, where 

qu-j(Y) Fk,u-j(y) (12.1) 
P~'-J(Y) = Gn-k,u-j+l(y) mod yn+l = Gn-k,~,-j(-y) mod yn+l 

(compare (10.3)). Let Pu-j(Y) + Pu-j(Y) denote the perturbed polynomials, where we assume 
that 

liPs-3 (Y)II < IIP~-J (Y)ll n C  n , (12.2) 

for some fixed positive constant C. For our purpose, it suffices to show that such a perturbation 
of Pu-j(Y) changes the norm of the polynomial Fk,~,-j(Y)Gn-k,~,-j(Y) of (10.4) by at most 2 -~n,  
where C = C(C) ~ c~ as C ~ c~. Indeed, in this case, we may truncate the value of each 
coefficient of P~_j (y) so as to represent it with O(n log n) bits, without violating the bound (10.4) 
on the error of the output approximation to q~,_j(y). Then, by scaling the polynomial Pu-j(Y), 
we may make all its coefficients Gaussian integers, of the form a ÷ bv/'ZT, where a and b are 
integers, and [a I + [b[ _ n °(n). Then Theorem 10.1 will imply that  O(n 2 log n)-bit precision of 
computing will suffice at the stages of solving the auxiliary Toeplitz linear systems. 

Next, let us show that the perturbation of Pu-j(Y) satisfying (12.2) does not affect the 
bound (10.4). For convenience, we will scale the variable y and the polynomials Pu-j(Y), pu-j(Y), 
Fk,u-j (y), and Gn-k,u-j (Y), so as to shift from these variables and polynomials to a new variable 
x = y/~, for some 

> 1, (12.3) 

and to polynomials Q(z) = aP~,_j(y), q(x) = apu-j(y), F(x) = j3Fk,~,_j(y), and G(x) = 
~Gn-k,u-j(Y), where the scalars ~ = ~ _ j ,  a = a~_j ,  ~ = 13~_j, and "r = "r~-j have been 
chosen such that 

F(z) = Q(z)G(x) mod z n+l, (12.4) 

k 

f ( x )  = I I ( x  - 2i), [2i[ _< -,1 i = 1,. . . ,  k, (12.5) 
i =1  

G(x) = U x -  , ]~i]->qo, i = k + l , . . . , n .  (12.6) 
i=k-b  l 

In particular, the relations (12.3)-(12.6) imply that  the pair (F(x), G(x)) fills up the (k, n)-entry 
of the Pad~ approximation table (also called Padd table) for Q(x) and that the disc D(0, 1/~) 
is ~2-isolated, with respect to the polynomial F(x)G(x). (The scaling x = y/~ implies the 
latter property if f = ~2 and if the disc D(0, 1) is f-isolated with respect to the polynomial 
q~,_j(y).) Hereafter, let (F(x) + f(x), G(x) + g(x)) denote the pair of polynomials that  fill up the 
(k,n - k)-entry of the Pad~ table for Q(x) ÷ q(x); that  is, 

Fix ) ÷ f i  x) = (Q(x) + q(x) )(G(x) q- g(x) ) mod x n+l, (12.7) 

degf (x )  < k, degg(x) < n - k. (12.8) 

Here and hereafter, deg u(x) denotes the degree of a polynomial u(x). By the virtue of Frobenius 
theorem (see [69, Theorem 3.1]), the equations (12.4) and (12.7), together with the bounds on 
the degrees of F(x), f ix),  G(x), and g(x) implied by (12.5), (12.6), and (12.8), uniquely define 
the rational functions F(x)/G(x) and (F(x) ÷ f(x))/(G(x) + g(x)), for fixed Q(x) and q(x). It 
follows that  the relations (12.4)-(12.6) uniquely define the polynomials F(x) and G(x) too, for a 
fixed Q(x). 

Now, we may state our remaining goal as the proof of the following fact, which specifies that  the 
Padd approximation of Q(x) is well conditioned in the classical sense (compare [39, Chapter 3]). 
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FACT 12.1. There exist two positive constants Co and C1 such that  if the relations ( 1 2 . 3 ) - ( 1 2 . 8 )  

hold and if IIq(x)H < (2 + 1A0) -°°n,  then 

1 ) C~n 
IIf(x)ll + Hg(x)ll <_ Hq(x)H 2 + (qo 1------~ 

We will prove Fact 12.1 in the next section. In this section, we will use this fact in order 
to obtain its extension to the case where the bound deg f (x)  < k, of the assumption (12.8), is 
replaced by the weaker bound, degf (x)  _< k, provided that  all other assumptions of Fact 12.1 
hold and that  

IIq(x)H <r lnn  -Gin, ~ < m i n ~  1 ( 1 - 1 Ao )  (12.9) 
- 1. 1 2 8 '  9 J " 

First consider a pair of polynomials (u(x), v(x)) filling up the (k, n - k)-entry of the Pad6 table 
for a fixed polynomial P(x). Unless P(x) is identically 0, we can make the choice of such a 
pair unique by requiring that  u(x) be monic and have only constant common factors with v(x). 
(Uniqueness of u(x) and v(x) follows for this normalization since u(x)/v(x) is unique, by the 
virtue of Frobenius theorem.) 

Clearly, the pair (F(x), G(x)) of (12.5) and (12.6) has been normalized in the above way. Let 
us assume that  the pair (F(x) + f(x),  G(x) + g(x)) has also been normalized in the same way. 
Then, deg f (x)  < k if and only if 

deg(F(x) + f(x)) = k. 

It remains to prove the following fact. 

FACT 12.2. The bound (12.9) implies (12.10). 

(12.10) 

PROOF. Consider the (n + 1)-dimensional linear space, SPACE(n + 1), of the coefficient vectors 
of polynomials A(x) having degrees at most n. Let (Fzx(x), GA(X)) denote the normalized pair of 
polynomials filling up the (k, n - k ) - e n t r y  of the Pad~ table for the input polynomial Q(x)+q(x)+ 
A(x). Then, clearly, the coefficient vectors of the polynomials A(x) for which degF~(x)  < k 
form an algebraic variety of a lower dimension in SPACE(n + 1), and therefore, there exists a 
sequence of polynomials {Ah(x), h = 1, 2 , . . .}  such that  deg FAh(X) = k, for h = 1, 2 , . . . ,  and 
[[Ah(x)[[ --* 0 as h --* ~ .  Since degFzxh(x) = k, we may apply Fact 12.1 to the polynomial 
Q(z) + q(x) + Ah(x) replacing the polynomial Q(z) + q(z) and obtain that  

IIF~(x) - F(x)ll + ]lG~.(x) - G(x)ll _< nC'~llq(x) +/Xh(X)ll. (12.11) 

The inequality (12.11) bounds the norms of the (m + 2)-dimensional row vectors (fzxh, Gzxh). 
(Here and hereafter, we use the notation /3 for the coefficient vector of a polynomial P(x).) 
Therefore, the sequence of vectors (-~h,  G ~ ) ,  h = 1, 2 , . . . ,  has a subsequence, (ffah(,), G~h(,)), 

i ---- 1, 2 , . . . ,  converging to some (m + 2)-dimensional vector, (F*, G*). 
Let F*(x) and G*(x) be two polynomials having the coefficient vectors F v* and G*, respectively. 

By considering (12.11) for h --* oo, we obtain that  

IIF*(x) - F(x)I I + HG*(x) - G(x)H <_ nClnllq(x)l I. 

We will next show that  

F*(x) = (Q(x) + q(x) )G*(x) mod x n+', (12.12) 

that  is, that  the pair (F*(x), G*(x)) fills up the (k, n - k)-entry of the Pad~ table for the input 
polynomial Q(x) + q(x). For this purpose, we recall that  any fixed entry of the Pad~ table for 
any fixed input polynomial P(x) can be obtained from a singular homogeneous linear system of 
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equations, Lp, whose coefficients (except for some zeros and ones at some fixed places) are the 
coefficients of P(x) (compare [39, equation (2.5.5)]). We observe that  such systems Lp defined 
by input polynomials P(x) = Q(x) + q(x) + Ah(o(x ) have coefficients that  converge (as i --* oo) 
to the coefficients of the linear system LQ+q defined by the input polynomial Q(x) ÷ q(x). (The 
convergence follows since Ah(i)(x ) --+ 0 as i ~ co.) On the other hand, the system Lp for 

P(x) = Q(x) ÷ q(x) ÷ Ah(~)(x) defines the vector (FAh(,~,G~h(,)) that  converges to the vector 

(F*,G*) as i ~ co. It follows that  the latter vector must satisfy the linear system Lp for 
P(x) = Q(x) + q(x) + Ah(i)(x) ,  and therefore, (12.12) holds. 

Thus, we may identify F*(x) with F(x) ÷ f(x) and G*(x) with G(x) ÷ g(x) and rewrite our 
previous bound as IIf(x)II + IIg(z)ll <- nClnl]q(x)ll" By combining the latter inequality with (12.5), 
(12.6), (12.9), and Fact 2.7 applied to p(x) = Q(x) and p*(x) = Q(x) ÷ q(x), we obtain that  all 
the k zeros of F(x) ÷ f(x) and no zeros of G(x) + g(x) lie in the unit disc D(0, 1). Therefore, 
(12.10) holds, and the two polynomials, F(x) ÷ f(x)  of degree k and G(x) + g(x) of degree n - k, 
have only constant common divisors, so that  Fact 12.2 follows. | 

Facts 12.1 and 12.2 give us estimates sufficient for our purpose. Indeed, we have the f-isolated 
splitting disc for qo(Y) and for f of (6.9), and since each Graeffe's step (10.2) squares the isolation 
ratio of the disc D(0, 1), we may choose ~ = (1 + 1/(120an)) 2'-' for a of (4.2),(4.3), when 
we set Q(y) = P~(y) (compare (12.1)). Even for i = 0, where ~ is minimum, we have ~ > 
1 ÷ 1/(250an). Now, application of Facts 12.1 and 12.2 immediately implies that  the bound (10.4) 
will be preserved under any perturbation of the polynomial Pu-j (Y) of (12.1) that  satisfies (12.2) 
for a sufficiently large C. 

13. ANALYSIS OF THE P E R T U R B A T I O N  
OF PAD]~ APPROXIMATION 

We will start our proof of Fact 12.1 with some auxiliary results. 

LEMMA 13.1. Let D be a disc on the complex plane, let F denote its boundary circle, let f(x)  
and F(x) be two polynomials such that  degf (x)  < degF(x)  and F(x) has all its zeros strictly 
inside the disc D, so that F(x) ~ 0 for x E F, and let R(x) be a rational function having no poles 
in the disc D. Then, for any x, we have 

1 ~r f(t) F(t) - F(x) dE, 
f(x)  = 21rx/-~ F(t) t x 

~rR(t) F(t~ - F(x) dt = O. 
x 

(13.1) 

(13.2) 

PROOF. (Compare [1, Proof of Lemma 10.1; 58, III, Ch. 4, No. 163; 75, Proof of Lemma 4.6].) 
Cauchy's integral theorem [76] immediately implies (13.2). Furthermore, Cauchy's integral for- 
mula [76] implies equation (13.1) for x being any zero of F(x). Since deg f (x)  < degF(x)  = N, 
the equation (13.1) holds for all x if F(x) has N distinct zeros. Generally, for any positive e, 
there exists a such that  0 < a < e and F(x)+c~ has N distinct zeros, so (13.1) holds for F(x)+c~ 
replacing F(x). For ~ --* 0, we arrive at (13.1). | 

REMARK 13.1. Lemma 13.1 can be immediately extended to the case where D is any open set 
on the complex plane whose boundary F consists of a finite number of piecewise regular Jordan 
curves. One may also relax some of the assumptions of Lemmas 13.2 and 13.4. 

LEMMA 13.2. Let F(x), f(x), G(x), g(x), Q(z), and q(x) be polynomials satisfying (12.3)-(12.8). 
Let 

w(x) = (G(x) + g(x))G(x)q(x) mod X n+l,  deg w(x) < n. (13.3) 
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Then 

where 

IIf(x)ll <- MIIF'(x)II <_ MnllF(x)ll, 

M - - m a x  
Ixl=l F(x)G(x) 

PROOF. Subtract (12.4) from (12.5) and obtain f(x) = (Q(x) + q(x))g(x) + q(x)G(x) rood x ~+1. 
Multiply both sides of this equation by G(x), substitute G(z)Q(z) = F(x) (from (12.4)), and 
obtain that  G(x)f(x) = F(x)g(x)+(G(x)+g(x))G(x)q(z) mod x ~+1. Deduce from (12.5), (12.6), 
and (12.8) that  deg(G(x)f(x) - F(x)g(x)) <_ n and rewrite the latter equation as follows: 

G(x)f(x) =F(x)g(x) +w(x),  (13.4) 

where w(x) is defined by (13.3). Divide both sides of (13.4) by F(x)G(x) and obtain that  

f(x) g(x) w(x) 
F(x) C(x) F(x)G(z) 

Substitute this equation into (13.1), then apply (13.2) for R(t) -- g(t)/G(t), and obtain that  

1 / w(t) F ( t ) - F ( X ) d t .  
f(~) - 2.J-:-i  F(t)C(t--------) t -  

Apply this identity coefficientwise and deduce Lemma 13.2. 

The estimate of the next lemma is immediate. 

LEMMA 13.3. Let two polynomials F(x) and G(x) satisfy (12.5) and (12.6) for some ~ > 1. Then 

rain ]F(x)G(x)l > ~_, 
Ixl=l 

where 
1 

~_ -- 1 - - .  (13.5) 

Next, we will deduce the following result. 

LEMMA 13.4. Suppose that the relations (12.3)-(12.8), (13.3), and (13.4) hold. Then 

where 

IIg(x)ll < 2 ~ - 1 ~  -k (llf(x)tl ÷ ~-kl lq(x)l l )  
- (1 - 2"- l~-k l lq(x)H)  ' 

~+ = 1 + ! < 2. (13.6) 

PROOF. Recall that deg(F(x)g(x)) <_ n, and deduce from Fact 2.4 that llF(x)ll llg(x)l I <_ 2 n-I x 
llF(x)g(x)}l. We have llF(x)ll _> 1, due to (12.5), and consequently, llg(x)l I <_ IIF(x)H llg(x)ll <_ 
2n-'llF(x)g(x) H. Substitute the bound ]] F(x)g(x)]] <_ ItG(x)II ]] f(x)II + IIw(x)II, implied by (13.4), 
and obtain that  IIg(x)ll < 2n-l(llG(z)ll IIf(z)ll + Itw(x)lt). From (13.3), we have the inequality 
IIw(x)ll < (llG(x)ll + IIg(x)ll)IIG(x)ll IIq(x)ll. Combine the two latter inequalities and the bound 
iiG(x)ll < ~_-k, implied by (12.6) and (13.6), and obtain that  

IIw(x)ll < ~o~ -k ( ~ - k  + IIg(x)ll)IIq(x)ll, (13.7) 

Ilg(x)ll < 2n-l(~o~-kllf(x)ll + ~ _ - k ( ~ - k  + IIg(x)ll)IIq(x)ll) = 2n- l~ -k ( l [ f ( x ) l l  + ~--kl lq(x)l l  + 
n l  n k  IIg(x)ll Hq(x)ll). It follows that  IIg(x)ll (1 - 2n-l~_-kllq(x)ll) _< 2 - ~+- (llf(x)ll + ~-kllq(x)ll), 

and we arrive at Lemma 13.4. | 
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COROLLARY 13.1. Assume the relations (12.3)-(12.8), (13.5), and (13.6) and let 2"llq(x)ll _< 
1/¢p~_ -k,  n2'~+l~-k(~+/~_)"Hq(x)[ [ <_ 1. Then 

(a) U(x)ll < 4n~-k(~+/~-)"llq(x)ll, 
(b) IIg(x)ll _< 2"~-"-=k(1 + 4n(~+/~-)")llq(x)ll. 

PROOF. Combining the first of the two assumed upper bounds on ][q(x)][ with Lemma 13.4 implies 
that 

Ilg(x)l[ _< 2"~_ -j` (l[.f(x)ll + ~-kl lq(x) l l ) .  (13.8) 
On the other hand. from Lemmas 13.2 and 13.3. we have 

U(~)II < nllF(x)llV: n max Iw(x)l. 
I=1=1 

Now. we deduce that IIF(x)ll <_ epk (see (12.5) and (13.6)) and maxl=l= 1 Iw(x)l <_ IIw(x)l I < 
n - k ~  n - k  ~+ (~+ + Hg(x)ll)IIq(x)l] (compare (13.7)). It follows that 

IIf(x)ll _< n ( ~ - k  + IIg(x)ll)IIq(x)ll. 

Combine this bound with (13.8) and obtain that 

I l f(x)] l  <_ n (~_-k ÷ 2n~_-k ( l l f (x)[ I  + ~_-'~l[q(x)l [)) ]lq(x)tl 

-- n ~  -k -2-+ (1 + 2" (ll,f(x)ll + ~-kl lq(x)l l ) )  Ilq(x)ll. 

Therefore, 

(1-n2n~p~.-k(~--2-+) '~ , ,q(x),[),,f(x),,< n ~ - k  (~--2-+ ) n (1+ 2"~o~_-k,,q(x),,) [,q(x),,. 

Recall the second upper bound on [[q(x)l I assumed in Corollary 13.1 and deduce that IIf(x)JJ < 
2n~_-k(~+/~_)n(1 + 2n~_-k[[q(x)[[)[[q(x)[[. Simplify this expression by using the first upper 
bound on Hq(x)[[ assumed in Corollary 13.1 and arrive at part (a) of Corollary 13.1. Combine 
the bounds of part (a) and (13.8) and obtain part (b) of Corollary 13.1. | 

Fact 12.1 immediately follows from Corollary 13.1. 

A P P E N D I X  A 
A C O R R E L A T I O N  B E T W E E N  T H E  C A R D I N A L I T I E S  O F  

I N T E R S E C T I O N  A N D  U N I O N  

PROPOSITION A.1. Let $1, $2, . . . ,  Sn denote R finite sets, let U denote their union and I their 
intersection. Let IS[ denote the cardinality of a set S. Then 

h 

I/I -> ~ IS, I - (h - 1)IUl. 
i = 1  

PROOF. We only need this result for h = 3 and will prove it for this h by following [3]. 
Let sl and slj denote the set cardinalities, si -- [Si - (Sj U Sk)[, sij = ](Sin Sj) - I[, where 

i, j ,  k are distinct integers chosen among 1, 2, and 3 (in any order), Then, clearly, 

[S l l  ~-- 81 -~- 812 n u 813 + [I[ ,  

IS2L = s2 + s12 + s23 + III, 

IS3[ ~--- 83 -[- 813 Jr- 823 Jr- I l l ,  

81 "[- 82 "~- 83 -Jr- 812 -[- 813 "~- 823 Jr- I l l  = ]U].  
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By subtracting twice the latter equation from the sum of the preceding three equations, we obtain 
that  

3 

IZl - Sl - -  82  - -  83  = E I&1 - 2 1 u i ,  

i = 1  

which implies Proposition A.1 for h = 3, since si _> 0, i = 1,2,3. | 

In Section 3, we use Proposition A.1, in the case where S1, $2, and $3 denote the three sets of 
the zeros of p(x) lying in three fixed annuli. 

A P P E N D I X  B 
E X T E N D I N G  ROLLE'S T H E O R E M  TO THE C O M P L E X  CASE 

We will follow [27] and will prove part (a) of Theorem 4.1. We will start with recalling a little 
known but simple lemma. 

LEMMA B.1. [27] Let vl, . . . , vk denote the vertices of a simplex a in the ( k -  1)-dimensional real 
space R k-1. Let c l , . . .  ,ck be k complex points in C and let a : R k - 1  ~ C be the real aftJne 

map taking vi to ci. Let f be an analytic function on the image of a. Let [c1, c2 , . . . ,  ck] f denote 
the divided difference operator applied to f and let v ( t  ) be the standard volume form on R k-1 . 
Then 

[c ,c2, .,ck]S = s dv (B.I) 

PROOF OF THEOREM 4.1, PART (a). Apply Lemma B.1 where k = l, f ( x )  = p(x), and e l , . . . ,  ck 

are the zeros ofp(x). Then the left-hand side of (B.1) vanishes. Therefore, so does the right-hand 
side too. This means that  its integrand must vary by at least 7r, and this implies the condition 
on the zeros ofp(k-1)(x)  of part (a) of Theorem 4.1 for k = I. | 

A P P E N D I X  C 
I M P R O V I N G  AN A R I T H M E T I C  TIME B O U N D  

Let us decrease the arithmetic time bounds of Theorems 1.1, 1.2, and 2.1, by performing Stage 3 
of Algorithm 10.1 as follows. 

SUBALGORITHM C.1. (Compare Remark 10.1.) Denote ru(y) = Fk,u(y), then recursively com- 
pute 

r~-i(y)  = r~-i+l(y 2) mod q~_~(y), for i = 1, 2 , . . . ,  u - 1, (C.1) 

and finally compute and output 

Fk(x) = gcd (qo(x), r,  (x2)). (C.2) 

To prove correctness of this algorithm, first obtain from (10.2) the following extension of (10.3): 

(C.3) 

On the other hand, (10.2) implies that  qi(x) divides q~+l(x 2) for every i, so that  

g c d ( q i ( x ) , F k , ~ ( x 2 ~ ) ) = g c d ( q i ( x ) , q ~ + l ( x 2 ) , F k , u ( x 2 ~ ) ) ,  f o r i = O ,  1 , . . . , u - 1 .  

Therefore, recursive modular reduction of Fk,~(x2~), performed according to (C.1) and (C.2), 
defines the desired gcd of (C.3). | 
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REMARK C.1. Subalgorithm C.1 can be modified if we redefine ru(y) as Gn-k,u(y). Then 
application of (C.1) will enable us to output Gn-k(x) = gcd(qo(x),rl(x2)), since Gn-k(x) = 

2 - gcd(qo(z), G,~-k,u(x )). 

Performing Stage 3 of Algorithm 10.1 by means of Subalgorithm C.1, we replace u - 1 (out 
of u) computations of the gcds by polynomial divisions, which enables us to improve the bounds 
of parts (d) of Theorems 1.1 and 2.1 as follows: 

SACz (b, n) = OA ((log n) 2 (log b) n, 1), 

SAC~ (b,n) : OA ((logn)2 (logb) n, 1) , 

SACs (B, n) = OA ((n log n) log/3, 1). 

Similar minor improvements follow for parts (b) and (c) of Theorems 1.1 and 2.1. 
Alternatively, exactly the same minor asymptotic improvements of the estimates of parts 

(b)-(d) of Theorems 1.1 and 2.1 can be obtained by replacing Algorithm 10.1 and Subalgo- 
rithm C.1 by Algorithm 1 of [5], by Algorithm 3.1 of [6] (adjusted to the problem of splitting 
p(x) into two factors, rather than to approximating all the zeros of p(x)), or by the algorithm 
of [77]. | 

REMARK C.2. Subalgorithm C. 1 involves recursive polynomial divisions, which requires us to in- 
crease the precision of the computations and their overall Boolean cost. The algorithms of [5,6,77] 
have the same feature. As a result, application of all these algorithms would only support Boolean 
complexity bounds that are much inferior to ones of parts (a) of Theorems 1.1 and 2.1. 
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