
P e r g a m o n
Computers Math. Applic. Vol. 31, No. 12, pp. 97-138, 1996

Copyright©1996 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0898-1221/96 $15.00 + 0.00
S0898-1221(96)00080-6

Optimal and Nearly Optimal Algorithms for
Approximating Polynomial Zeros

V. Y. PAN
D e p a r t m e n t of M a t h e m a t i c s and C o m p u t e r Science

L e h m a n College, Ci ty Univers i ty of New York, Bronx, NY 10468, U.S.A.
VPAN©LCVAX. BITNET

(Received November 1994; accepted January 1995)

A b s t r a c t - - W e substantially improve the known algorithms for approximating all the complex
zeros of an n th degree polynomial p(x). Our new algorithms save both Boolean and ari thmetic
sequential time, versus the previous best algorithms of SchSnhage [1], Pan [2], and Neff and Reif [3].
In parallel (NC) implementation, we dramatically decrease the number of processors, versus the
parallel algorithm of Neff [4], which was the only NC algorithm known for this problem so far.
Specifically, under the simple normalization assumption tha t the variable x has been scaled so as
to confine the zeros of p(x) to the unit disc {x : Ix[< 1}, our algorithms (which promise to be
practically effective) approximate all the zeros of p(x) within the absolute error bound 2 -b , by using
order of n ari thmetic operations and order of (b + n)n 2 Boolean (bitwise) operations (in bo th cases
up to within polylogarithmic factors). The algorithms allow their optimal (work preserving) NC
parallelization, so tha t they can be implemented by using polylogarithmic t ime and the orders of n
ari thmetic processors or (b + n)n 2 Boolean processors. All the cited bounds on the computat ional
complexity are within polylogarithmic factors from the optimum (in terms of n and b) under both
ari thmetic and Boolean models of computation (in the Boolean case, under the additional (realistic)
assumption tha t n = O(b)).

K e y w o r d s - - C o m p l e x polynomial zeros, Approximation, Polynomial factorization, Parallel algo-
rithms, Computational complexity, Sequential algorithms.

1. I N T R O D U C T I O N

1.1. T h e Subject , Some History, and a S u m m a r y of Our Resul ts

The problem of solving a polynomial equation p (x) = 0 substantially motivated the develop-
ment of mathematics throughout the centuries. As particular examples of this influence, one may
recall the origin of complex numbers from the solution formulae for quadratic equations (these
formulae have been known already in ancient Greece), the fundamental theorem of algebra, which
states the existence of a complex solution to p (x) = 0 (the first celebrated proof of this theorem,
given by Gauss in 1799, contained a substantial flaw, corrected by Ostrowski in 1920), and the
Galois theory of 1832, which extended the earlier theorem of Ruffini 1813 and Abel 1826 on
nonexistence of solution formulae in radicals for a polynomial equation of a degree n if n > 5
(such formulae have been known, since the 16 th century, for n -- 3 [del Ferro, Tartaglia, Cardano]
and n = 4 [Ferrari]). In the absence of explicit solution formulae, numerous algorithms for ap-
proximating polynomial zeros have been proposed, and they are still appearing in great number,

The author is grateful to D. Bini, P. Kirrinnis, and A. Neff, for (p)reprints of [3-7], and to A. Sadikou, for helpful
comments.
The results of this paper are to be presented at the 27 th Annual ACM Symposium on the Theory of Computing,
1995 (see [8]); the author is grateful to the ACM for the permission to reuse them.
Supported by NSF Grant CCR. 9020690 and PSC CUNY Awards Nos. 664334 and 665301.

97

98 V.Y. PAN

motivated by the importance of approximating polynomial zeros to many areas of algebraic and
numerical computing. The designers of these algorithms have introduced various techniques of
independent interest. As a single major example, we recall Weyl's paper [9]. Together with [10],
this paper presented one of the two historically first algorithms, both of 1924, that converged
to the zeros of any input polynomial p(x), thus giving the two first algorithmic proofs of the
fundamental theorem of algebra. Weyl's remarkable ideas are still practically important for ap-
proximating polynomial zeros; moreover, historically his algorithm was the first application of
his quadtree technique, now widely used in various areas of computing (see, for instance, [11]
on some older applications and [12,13] on more recent ones, to template matching and to the
unsymmetric eigenvalue problem). On some further historical and technical background, we refer
the reader to [1,9,10,14-20].

In the present paper, we consider algorithms that solve the problem in the general case, by
approximating all the n zeros of any input polynomial p(x) of degree n, with no restriction on
the disposition of the zeros on the complex plane (in particular, these zeros may form various
clusters, which occurs, for instance, in numerical treatment of polynomials with multiple zeros),
and we will estimate the worst case computational complexity of performing these algorithms,
assuming no initial approximations to the zeros of p(x) available (compare [1; 19, pp. 497-499]).
(Here and hereafter, we count every polynomial zero of multiplicity m as m zeros.)

In some sense, our present paper completes this line of study. Namely, our algorithms not
only substantially improve the previous ones but are also asymptotically optimal (up to within
polylogarithmic factors), both in their sequential and parallel implementations and under both
Boolean and arithmetic models of measurement. Furthermore, the presented new algorithms are
machine independent, can be implemented on various real computers, and promise to be practically
effective.

1.2. M o d e l s of C o m p u t a t i o n

We will estimate the computational cost of the solution algorithms under the customary arith-
metic and Boolean computational models of (sequential) RAM [22] and EREW PRAM [23]. In
the latter (parallel) case, each arithmetic or Boolean processor is allowed to perform at most one
arithmetic or Boolean operation, respectively, in each time-step, and we will assume a variant
of Brent's scheduling principle, according to which a single processor may simulate the work of
s processors in O(s) time. (We only need to use this principle in order to decrease some of our
processor bounds by the factor log n.) We will express the computational complexity (computa-
tional cost) estimates as OA(t, p), under the arithmetic computational models, and as OB(t, p),
under the Boolean computational models. This way will unify the bound O(tp) on the sequential
time, under the RAM models, and the simultaneous bounds O(t) on parallel time and O(p) on the
number of processors, under the EREW PRAM models. We will state the complexity estimates
in terms of n and b, assuming, for convenience, that all the zeros of p(x) have magnitudes at
most 1 and are sought within the absolute error bound 2 -5.

1.3. Prev ious Resul t s

Among several effective algorithms that at the time of their publication supported record esti-
mates for the worst case computational complexity of approximating the n complex polynomial
zeros [1-4,9,10,24-26], the latest achievements are due to [3,4]. In [4], the only known NC-solution
has been presented, for which the computational cost bound Os ((log n) 2 log(bn), (b + n)nSb 2) has
been proved. In [3] the record sequential computational cost bounds have been claimed, that
is, OA(nl+~logb, 1) and Os((b + n)n2+~(logb)21oglogb, 1), for any fixed positive ~. The latter
bounds are substantially superior to the previous records, Os(n3b, 1) of [1] and OA(n 2, 1) of [2],
both of which we recall up to polylogarithmic factors.

Algorithms for Approximating Polynomial Zeros 99

Technically, the elegant algorithm of [3] relies on

(a) some correlations between the zeros of p(x) and one of its higher order derivatives [27],
(b) the algorithms of [1,28] for splitting a polynomial into factors over a complex disc D provided

that this disc is sufficiently well isolated from the zeros of p(x) that lie outside D (the
isolation is quantitatively measured by an isolation ratio; see our Definition 2.2, taken

from [2]), and
(c) an algorithm for simultaneous approximation of the distances from the origin to all the

zeros of p(x) [1,2; 19, pp. 458-462; 29].

More specifically, the latter algorithm and the results of [27] were used in [3] in order to compute
a disc D, with no zeros of p(x) on or near its boundary circle and with comparable numbers of
the zeros of p(x) (that is, with the same number of them up to within a fixed constant factor)
in its interior and in its exterior. Then the results of [1,28] were applied in order to split p(x)
numerically into two factors (of comparable degrees) having all their zeros in or, respectively, all
outside the disc D, and the same process was recursively applied to each of the factors. This
solved the problem in O(log n) recursive steps, since every splitting was balanced so as to decrease
the degree of its input polynomial by a fixed constant factor. The result was a new surprising
extension of the earlier pioneering versions of balanced splitting techniques of [30,31], applied
in [30,31] to a simpler (real) case. (Compare [4,28,32,33] on the other known techniques for
achieving balanced splitting.)

1.4. S o m e Prob lems Left Open by the Prev ious Research

The algorithm of [3] was a major step towards optimizing polynomial rootfinding, but it has
also raised some new questions. In particular, approximating the zeros of p(x) according to this
algorithm involved approximations of all the zeros of some higher order derivative of p(x) and,
recursively, of the factors of this derivative and of the higher order derivatives of the factors.
This complication has not allowed one to run the algorithm in NC (that is, by using parallel time
(log(bn)) °(1) and (bn) °(1) arithmetic or Boolean processors). Avoiding this computation should
have enabled us to decrease the overall asymptotic (both arithmetic and Boolean) cost bounds
by the factor c(~)n ~, where c(~) --* oc as ~ --* 0.

On the other hand, the algorithm of [3] computes a disc for splitting p(x), which is isolated
from the zeros of p(x) lying outside this disc, but this isolation is not as strong as necessary
in order to support the desired upper estimates for the arithmetic and Boolean time involved.
Either the algorithm has to be improved or the claimed upper estimates must be increased by at
least the factor n 1/3 (compare our Remarks 4.1, 4.2, 5.1, 6.1, and 9.2).

Besides, the algorithm of [3] required some further nontrivial elaboration in order to avoid a
dramatic blow-up of its computational cost in its application to some special but important class
of input polynomials p(x). Namely, in the form in which this algorithm was presented, it runs

x-~n- 1 x i into problems for the input polynomials (such as p(x) = x ~ + 2_,~=o Pi , where all the IPil are
very small) all of or most of whose zeros form a massive cluster having a small diameter a. In
order to compute a balanced splitting of such a polynomial p(x), one has to separate some of its
zeros in the cluster from each other. This is a numerically hard problem whose solution requires
computations with a bit-precision exceeding log2(1/a), so that the Boolean cost of the solution
is unbounded as a --* 0. In this case, approximation of the zeros must be worked out without
computation of a balanced splitting of p(x), in order to ensure any reasonable bound on the
overall computational complexity. (As we have already mentioned, various clusters of polynomial
zeros frequently arise in numerical treatment of polynomials with multiple zeros.)

1.5. Our Techniques and the Main Theorem

In the present paper, we address all the three problems cited above and, as a result, substan-
tially improve the construction and the main result of [3], with a respective impact on various

100 V.Y. PAN

computational tasks, whose solution requires approximating polynomial zeros. Our progress relies
on introducing new geometric, analytic, and algebraic techniques for

(a) recursive screening and discarding the zeros of the higher order derivatives (without ap-
proximating these zeros),

(b) recursive contraction of an area of search for a splitting disc,

(c) computing an unbalanced splitting into factors of a polynomial that has a massive set of
clustered zeros,

(d) descending from Graeffe's iteration, and

(e) perturbation of Pad~ approximations.

Our resulting algorithms run in polylogarithmic parallel time and support new record bounds
of the orders n (arithmetic) and (b + n)n 2 (Boolean) on both sequential time and the number of
processors (ignoring polylogarithmic factors). (As we will show in Section 1.7, these bounds are
asymptotically optimum Cup to within polylogarithmic factors) unless b = o(n).) Specifically, we
arrive at the following estimates (to be deduced in Section 8 and improved slightly in Appendix C).

THEOREM 1.1. Let all the n unknown zeros, Zl,. . . ,Zn, of a given monic polynomial p(x) of
degree n have magnitudes at most 1, that is, [zi[_ 1, for a11 i. For a fixed positive b, write

---- (b + 2)n + logn + 2. (1.1)

Then, approximations z~ satisfying

[zi - z*[< 2 -5, for i - 1 , . . . , n, (1.2)

can be computed at a cost bounded by any of the following four expressions:

(a) PBCz(b, n) = OB ((log n)3(log b)2, (M(n 3 + bn log b))/((log b)2(log n)2)),

(b) PACz(b, n) = OA ((log n) 3 log b, n2/((log b)(log n)2)),

(c) PRACz(b, n) = OA ((log n)at3A (b, n), n~ log n),

(d) SACz(b, n) = OA((logn)2t2,1(b, n)n, 1).

Here and hereafter, A, B, C, P, R, S and Z of P B C z , PACz , P R A C z and S A C z abbreviate
the words "arithmetic," "Boolean," "complexity," "parallel," "randomized," "sequential," and
"zeros," respectively, and we write

M(d) = (d log d) log log d,

ti,j (b, r 0 = (log n) i + (log b)J,

(1.3)

i = 2 , 3 , 4 ; j = l , 2 . (1.4)

The estimates of part (c) are randomized (of the Las Vegas type, that is, the estimates include
the cost of verification if the computed solution is correct); the estimates of parts (a), (b) and ((t)
are deterministic.

1.6. C o m m e n t s to the Main Theorem

REMARK 1.1. The estimates of Theorem 1.1 show efficacy of our algorithms (supporting these
estimates) in the case where b and n are large, as this occurs, for instance, in the major application
to approximate solution of systems of polynomial equations, via the elimination techniques.
Actually, our algorithms are effective already for moderate b and n.

Algorithms for Approximating Polynomial Zeros 101

REMARK 1.2. The normalization assumption is that Izil <_ 1 for all i can be ensured by means of
estimating rmax = maxi Izil, within the factor 2n, at a cost OA(1,n) [19,34], or within the factor
1.01 (say), at a cost OA(logn, n) (see Fact 2.2(b)), followed by scaling the variable x, at a cost
OA(lOg n, n~ log n); furthermore, we may then make p(x) monic by dividing all its coefficients by
the leading coefficient. Bringing the zeros of a polynomial inside the unit disc can be facilitated
by other means such as shifts of the variable x (see Fact 2.1) (so as to bring the origin into
the readily available center of gravity of the zeros, Y~=I zi/n, before estimating rma~) and the
transition to the reverse polynomial xnp(1/x) = y[i(1 - xzi). Moreover, Theorem 1.1 can be
restated assuming other normalizations of the input.

Parts (a) and (b) of Theorem 1.1 are supported by the same algorithm. More specifically (but
ignoring polylogarithmic factors), one of the stages of this algorithm uses O(n 2) arithmetic oper-
ations and O(n)-bit precision of computing, versus O(n) operations and O(bn + n)-bit precision
used at all other stages. These arithmetic estimates immediately lead to part (b). Part Ca) follows
when we combine the cited arithmetic and bit-precision bounds, for each stage of the algorithm,
with the known estimates

#B (d) = OB (log d, d log log d), (1.5)

for the Boolean complexity of an arithmetic operation with bounded d-bit numbers. (The sequen-
tial Boolean complexity represents the number of Boolean operations, also called bit-operations,
involved.) Each arithmetic operation is ultimately reduced to adding and/or multiplying two inte-
gers modulo 2 d - 1 at a cost bounded by Os(log d, d~ log d) and/or by (1.5), respectively, by means
of Ofman's and/or SchSnhage-Strassen's algorithms, respectively (see [22,35-39]). Furthermore,
one may improve the Boolean complexity bound slightly, by means of the techniques of binary
segmentation, when one implements the algorithm that supports part (a) (see Remark 8.1 in Sec-
tion 8). If the algorithms of this paper rely on using #~(d) Boolean operations (bit-operations)
per an arithmetic operation over two integers modulo 24 - 1 (recall that #~ (d) has a bound of the
order d 2 based on the straightforward algorithms and the order d l°g2 3, log 2 3 = 1.5849.. . , based
on the algorithms of [40]), then the resulting estimate for the sequential Boolean complexity of
approximating the n zeros of p(x) turns into O(n#*B(bn)) , up to a polylogarithmic factor, and
the parallel Boolean complexity estimates of Theorem 1.1 change similarly.

The arithmetic sequential time and processor bounds of part (b) are deceptively large: we
decrease them roughly by the factor n and turn them into the bounds of parts (c) and (d), by
modifying one of the stages of the algorithm supporting part (b) so as to use fewer arithmetic
operations but a higher precision of computation at this stage. In Sections 12 and 13, we show
how to control the precision of computing by this modified algorithm so as to arrive at essentially
the same Boolean cost bounds as we obtain in part (a). In Appendix C we review some techniques
for a further decrease of the arithmetic cost bounds, though these techniques abandon control
over the precision and Boolean cost of the computations, allowing their potential blow-up. This,
of course, makes such techniques unrealistic and limits their value.

Since the Boolean cost bounds (reflecting the precision required in the computations) are more
informative for the users, it is important that our Boolean sequential time bound of part (a)
(that is, O(n 3 + bn), within polylogarithmic factors) substantially improves the previous (long
standing) record, O(n 3 + bn2), of [1, Section 19], as well as the cited Boolean cost bound claimed
in [3]. (Note that in practical computation of polynomial zeros it is common to have b and
of the order at least n and n 2, respectively, and the terms bn and bn 2 dominate the above cost
estimates.)

1.7. Compar i son of Upper and Lower Bounds

According to the customary definition of [23], parallelization of our algorithms is optimal
since they run in polylogarithmic time and support the Boolean and arithmetic work bounds tp

102 V . Y . PAN

(that is, t ime* processors bounds) that match the record sequential time bounds for the same
computational problem.

Let us show that we also reach (up to within polylogarithmic factors) the optimum bounds on
the sequential time and work. Indeed, the upper bound of part (d) of Theorem 1.1 is quite close to
the known lower bounds of the orders n (obvious) and log(b/n) (see [26]), both lower bounds ap-
plied already to the complexity of approximating a single zero of p(x). Furthermore, the involve-
ment of the precision of the order of bn bits is required already in the case of polynomials such as
p(x) = (x - 5/7) n +Po for small positive P0, whose zeros jump from (5/7) +]pol 1/n exp(2~r ~ h/n)
to 5/7, for h = 0, 1 , . . . , n - 1, in the result of the shift from (x - 5/7) n +P0 to (x - 5/7) n. Similar
jumps of the zeros are caused by a small perturbation of any of, say, n/4 trailing coefficients of
p(x) = (x - 5/7) n, that is, by transition to p(x) = (x - 5/7) n + pkx k for small positive Pk and
for 0 < k < n/4. This implies that the input values of the n/4 trailing coefficients of p(x) must
involve the order of bn 2 bits, to ensure the worst case output approximation of even a single zero
of p(x) within the absolute error bound 2 -5, and we arrive at the following lower bounds.

FACT 1.1. Let OB(t,p) denote the Boolean complexity Of approximating (within 2 -5) a zero z~
of a monic polynomial p(x) of degree n, all of whose zeros lie in the unit disc {x : [x[_< 1}. Then
tp = fl(bn2); that is, asymptotically in n and b, the product tp of the time and processors bounds
has an order of at least bn 2.

Fact 1.1 implies that the upper bounds of part (a) of Theorem 1.1 are also tight (up to within
polylogarithmic factors) provided that n = O(b).

The presented argument that supports Fact 1.1 also implies the lower bound ~(n#*B(nb))
on the Boolean complexity of approximating the polynomial zeros by any algorithm that con-
sists of arithmetic operations, each involving #~(d) bit-operations, where the two operands are
represented by a pair of d-bit strings. The upper bounds based on our algorithms supporting
Theorem 1.1 meet this bound up to polylogarithmic factors.

1.8. Numer ica l Factorizat ion of a Po lynomia l in the C o m p l e x Field

Our algorithms (like ones of [1,3,4,28,30,31,33]) proceed by numerically splitting p(x) into a
pair of factors and, then, by recursively splitting each factor. The recursive process stops when
it computes a factorization of p(x) into linear factors satisfying the bound

p (x) - H (x - < IIp(x)ll, = 2 (1 .6)
i=1

Here and hereafter, we write

[lu(x)[[= ~ [ui[, for u(x) = y ~ u i x ' . (1.7)
i i

Computation of z~' , . . . , z* satisfying (1.6) can be called numerical factorization of a polynomial
in the complex field. The bound (1.6), for b of the order bn, guarantees the bound (1.2) on the
errors of all approximations by z* to the zeros zi of p(x) (see Fact 2.6).

Corollary 2.3 implies the converse implication, of (1.6) by (1.2), for b = b + n + logn, which
enables us to extend the estimates of Theorem 1.1 (for b replaced by b) to the problem of
computing a numerical factorization (1.6) for p(x). On the other hand, the argument supporting
Fact 1.1 does not apply to the problem of computing a numerical factorization (1.6), so that one
may hope to solve this problem at a smaller computational cost.

1.9. On Some Alternat ive Techniques and Extens ions

Although our algorithms are optimal (up to within polylogarithmic factors), further work may
substantially improve their practical performance (in particular, see our Remark 8.1, on binary

Algorithms for Approximating Polynomial Zeros 103

segmentation, and see [7], on the techniques of splitting). Furthermore, it is quite plausible that
some techniques used in our algorithms may turn out to be practically most effective in their
combination with some heuristic approaches to approximating polynomial zeros. For instance,
one may utilize Facts 2.1 and 2.2 of Section 2 in order to devise some heuristic algorithms for
computing a basic disc D for splitting polynomial p(x). Then, one may apply Graeffe's iteration
and our techniques of recursive descending in order to strengthen the isolation of the zeros of
p(x) lying in the disc D from the other zeros of p(x) and thus to facilitate splitting p(x) over this
disc.

On the other hand, some alternative algorithms that lead to substantially inferior upper esti-
mates for the computational complexity of approximating polynomial zeros and even heuristic
algorithms should not be discounted. In particular, for practical approximation of complex poly-
nomial zeros, the most promising alternative to the approach of this paper probably comes from
the Durand-Kerner algorithm [41,42] and its various modifications (such as Aberth's [43] and
its implementation in [44]), which rely on Newton's iteration for Vi~te's system of polynomial
equations for the zeros of p(x). The absence of global convergence proofs and of any reasonably
good computational complexity estimates for these iterative algorithms is partly compensated by
their very good record in numerical experiments. On the other hand, these algorithms require
us to use either the order of n 2 arithmetic operations per iteration (which is roughly n times as
many as we use in our entire algorithms) or a much higher precision of computing (to support
application of fast multipoint polynomial evaluation, which is a basic step of these algorithms).

Some other techniques known to be effective for approximating polynomial zeros may also be
highly successful in their extensions and applications to other major computational tasks. In
this regard, we have already cited Weyl's (quadtree) technique for approximating polynomial
zeros [9] (also compare its extensions in [2; 19, pp. 517-522; 26,29,45,46]). In another example,
the zerofinding techniques of [31] only apply to the special case of polynomials, all of whose
zeros are real, but these techniques have effective extensions to the symmetric eigenvalue com-
putation [32,47]. Yet another example is given by Newton's iteration. Already in its classical
or slightly modified form, it rapidly approximates a single zero of p(x) [20,48]. Its more ad-
vanced variation, known as the path lifting method [48,49], has an excellent univariate version
of [50], according to which all the zeros of a univariate polynomial are approximated at a cost
OA((n --[-/~)(logn)2,n), for /~ >_ bn + n + 2 (compare Fact 2.6 in our Section 2), but this method
shows its greater power in its application to solve a system of polynomial equations [51-55].

Finally, due to increased effectiveness of the algorithms available for approximating polynomial
zeros, one may reexamine their various possible extensions, including extensions to such problems
as solving a system of polynomial equations and the matrix eigenvalue computation.

1.10. O r g a n i z a t i o n of t h e P a p e r

In the next sections and appendices, we will describe our algorithms in some detail but will omit
some tedious techniques of the error and precision analysis, already available at length in [1,2,4],
and will refer the reader to [1] and to [28, Appendices A and B] on several details of splitting a
polynomial into two factors over a fixed disc. The reader may find a less formal exposition of the
entire subject in [21].

We will present the results in the following order. After some preliminaries in Section 2, we
revisit and modify the algorithm of [3] in Sections 3 and 4. In Sections 5 and 6, we describe
our techniques for recursive contraction of a disc and for recursive screening and discarding of
the zeros of a higher order derivative without computing their approximations. We summarize
our basic algorithm for computing an isolated disc for splitting p(x) and estimate its cost in
Section 7. Based on this algorithm, we prove Theorem 1.1 in Section 8. The proof uses an
algorithm for splitting p(x) over an isolated disc, which we briefly recall in Section 9, in the
case of the unit disc, referring the reader to [1,28] for detailed presentations. We improve this

104 V.Y. PAN

algorithm in Section 10 (by applying Graeffe's iteration for lifting the isolation ratio of the input
disc and our new descending techniques) and extend it to the case of splitting over any disc in
Section 11. In Sections 12 and 13, we show how to control the precision of computations required
in the algorithms of Sections 9 and 10 (by means of perturbation of Padd approximation). In
Appendices A and B, for the sake of completeness, we reproduce two auxiliary results from [3,27],
so that our paper can be read independently of [3,27]. In Appendix C, we review some algorithms
that slightly improve the arithmetic (but not Boolean!) complexity estimates for splitting p(x)
and, consequently, for approximating its zeros.

2. D E F I N I T I O N S , A U X I L I A R Y R E S U L T S A N D T E C H N I C A L
B A C K G R O U N D O N R E C U R S I V E S P L I T T I N G

Hereafter, log denotes log 2.

DEFINITION 2.1. D(X,R) denotes the disc {x : Ix - X[<_ R}, with a center X and a radius R.

DEFINITION 2.2. Consider a monic polynomial (with zeros Z l , . . . , Z n) ,

n n - 1

p(x) = I I (x - z,) = x ~ + ~ p , x ~, (2.1)
i=1 '=0

Izll _< Iz21 < . . . < Iz~l _< 1. (2.2)

Then for an integer k, 0 < k < n, and for a positive r satisfying the bound

Izkl < r < Izk+xl, (2.3)

the pair of polynomiaLs Fk(x) = H k = l (X - z i) and Gn_k(x) = p(x)/Fk(x) is called the splitting of
the polynomial p(x) over the disc D(O, r), and the disc D(O, r) is called a splitting disc for p(x).
Any pair of monic polynomiaLs F~(x) (of degree k) and G~_k(x) (of degree n - k) satisfying

lip(x) - F;(x)G*-k(x)lt <_ etlp(x)ll, (2.4)

for the norm of (1.7) and for any fixed positive e, is called an e-splitting of a polynomial p(x)
over the disc D(0, r) . Assuming (2.1)-(2.3), the disc D(O, r) and the splitting of p(x) over it are
called (a, 13)-balanced ff an < k < 13n, and the disc D(O, r) is called f-isolated (or equivalently,
in terms of [2], having an isolation ratio of a t / e a s t f) if 1 < f <_ [Zk+l/Zk[. For every pa/r a
and f satisfying 0 < a < 1 < f , a disc is called an (a, f)-splitting disc for a given polynomial if
this disc is both ((1 - a) /2, (1 + a) /2)-balanced and f-isolated. Ali these definitions also apply to
p(x) and any disc D(X, r) (with any center X replacing O) if they hold for the disc D(O, r) and
for the polynomial q(y) = p(y + X), replacing the p(x).

The following known fact (see [39]) bounds the arithmetic complexity of shifting from p(x)
to q(y).

FACT 2.1. For a given pair of complex t # 0 and X and for a polynomial p(x) of (2.1), the
coefficients of the monic polynomial ~(y) n ^ i = ~'~i=o qiY = t-np(ty + X) can be computed at a cost
bounded by OA (log n, n).

There are various ways of utilizing Fact 2.1. For instance, we may choose X -- -Pn-1 /n so as
to cancel the term On_ly n-1 of ~(y); this would shift the origin into the center of gravity of the
n zeros of 4(y). In Sections 6 and 11, we apply Fact 2.1 in order to reduce the study of various
splitting discs to the case where such a disc has its center in the origin. Otherwise, in this paper,
we will usually apply Fact 2.1, for t = 1, in order to approximate the distances from a fixed
complex point X to all the zeros of a fixed polynomial. To achieve this goal, we first shift the
origin into X and then apply the algorithm that supports the following fact.

Algor i thms for Approx imat ing Polynomial Zeros 105

FACT 2.2. (Compare [1,2; 19, pp. 458-462; 29,46,56,57].)

(a) For a pair of fixed c > 0 and d _> 0, one may, at a cost bounded by OA((logn)2,n), compute
the values r1,~1, . . . ,rn, fn such that _r k _< Izk[_< ~k = (1 +c/nd)r_k, k = 1,. . . ,n.

(b) The cost bound decreases to OA(logn, n) if d = 0 and if ~k and r k are sought only for k -- 1
and/or k = n.

The next theorem gives us upper bounds on the complexity of computing an e-splitting of p(x)
over a sufficiently well-isolated disc that lies inside the unit disc D(0, 1), the latter restriction

being motivated by (2.2).

THEOREM 2.1. Let B*, b, c, k, n, R, and X denote seven given values, where X is complex, B*,
b, c, and R are positive, k and n are integers, 0 < k < n, and

2 -B* R I-IXI. (2.5)

Let B = B*+/~+n, let a polynomial p(x) satisfy (2.1), (2.2), and let the disc D(X, R) be f-isolated
for f = 1 + c/n. Then, a 2-b-splitting of polynomial p(x) into two factors, F;(x) and G*_k(x)

(defined according to Definition 2.2 and satisfying (2.4) for e = 2-b), can be computed at a cost
bounded as follows:

(a) PBCs([~, n) : OB((log n)(log/~)2, (M(n 3 + / ~ n log/~))/(log/~)2),

(b) PACs (/~, n) = OA ((log n)log/~, u2/log/~),

(c) PRACs([~, n) = OA((log n)t3,1(/~, n), n), allowing randomization (of the Las Vegas type),

(d) SACs([~,n) = OA((logn)t2,1([~,n)n, 1).

Here, t i j (B, n) and M(d) are defined by (1.3) and (1.4), and the subscript S abbreviates the
word "splitting."

The proof is given in Sections 9-11.
Clearly, the disc D(O,~k) is f-isolated if 1 <_ f <_ rk+l/~k. (Here, we use the notation of

Fact 2.2.) Therefore, i f rk+l/~k > 1 +c/n, we may apply Theorem 2.1 and reduce the problem of
factorization of p(x) to the similar problem for F~(x) and G~_k(X). Our goal is in continuation
of this recursive process until we approximate the linear factors x - zi and, therefore, the zeros zi,
for all i. The desired upper bounds on the output errors follow from the bounds on the errors of
the auxiliary approximations to the factors, due, in particular, to the following estimate from [1,
Section 5].

FACT 2.3. Let

eh lip(x)II lip(x) - f l (x) . . , fh(X)[[~
n

IIfl(x) - f(x)g(x)ll < eh Ilfl(X)ll,
(2.6)

for the norm defined by (1.7), for some polynomials f l (x) , . . . , fh(X), f (x) and g(x), and for

e IIp(x)ll (2.7)
eh ~ h

- - n l - I i = l IIf~(x)ll

Then

lip(x) - f (x)g(x)f2(x) . . . A(x)ll _< (h + 1) e [IP(X)[t
n

(2.8)

106 V . Y . PAN

Suppose that the assumptions of Fact 2.3 hold and arrive at (2.8). Then write fl(X) = f (x) ,
fh+a(x) = g(x), which turns (2.8) into (2.6) for h replaced by h + 1. Suppose that, furthermore,
the assumptions of Fact 2.3 are satisfied for h + 1 replacing h and for some f~(x) interchanging
its roles with f l (x) . Then we may repeat the same splitting process. Let us assume that this
process has been recursively continued until we finally arrived at a product n I-l~=l(Z - z~) and
stopped. Then, by the virtue of Fact 2.3, the error norm of approximating p(x) by this product
was bounded by eHp(x)l I. Furthermore, we have the following useful estimate.

FACT 2.4. (Compare [1, Section 4].) If n > 0, p(x) h = l-L=1 £ (z) has degree n, and all f~(x) are
polynomials, then

h

IIp(x)ll < 1-I II£(x)ll < 2"-111p()11.
i=1

By using Facts 2.3 and 2.4 in the above reeursive splitting process, we easily deduce the
following.

FACT 2.5. The inequality (2.7) holds for all h if eh < e/(n2 n) for all h.

REMARK 2.1. Since Izil _< 1 for all i, the magnitudes of the coefficients of p(x) are maximized
for p(x) = (x + 1) n, so that 1 _< I[p(x)ll < 2 n. It is well known [58, III, Ch. 1, No. 31] that
all the zeros of the k th order derivative of p(x), for any k, lie in the disc D(0, Iznl) _C D(0, 1)
(compare (2.2)), and therefore, Pn-k,k <-- liP(k)(x) II <-- 2n-kPn-k,k, where Pn-k,k = (n !) / ((n - k)!)
is the leading coefficient of p(k)(x).

By combining the above estimates, we obtain the following.

COROLLARY 2.1. It is sufficient to compute at first e*-splitting of p(x) into two factors F~(x)
and G*_k(x), for e* _< e/(n2n), that is, for e* satisfying

l o g (1) > b + n + l o g n , (2.9)

f f e = 2 -~ (see (1.6)), and then, recursively, e*-splittings of the factors, in order to compute an
approximate factorization of p(x) into finear factors f i (x) = x - z*, i = 1, 2 , . . . , n, satisfying (2.6)
t'or h = n, which amotmts to (1.6).

Ostrowski's well-known perturbation theorem [18] has the following extensions, which allow
some further refinements (compare [59] and the simple bound IIp(x)ll < 2 n of our Remark 2.1).

FACT 2.6. [1, Section 19] For a polynomial p(x) of (2.1),(2.2), the bound (1.6) implies the
bound (1.2) if/~ > bn + n + 2.

FACT 2.7. [60, Theorem 2.7] For a polynomial p(x) of (2.1), let p*(x) be a monic polynomial of
degree at most n satisfying IIp*(x) - p(x)l I < ~l'~llp(x)H, ~? < 1/128. Then one may enumerate
the zeros of p*(x) so that p*(x) = l-I~n__l(x - z*), Iz7 - zil < 9~7 if Izil _< 1, I1/z7 - 1/z~l < 97/if
Izd > 1.

Combining Fact 2.6 and Corollary 2.1 yields the following.

COROLLARY 2.2. Under the assumptions of Corollary 2.1, the choice of e* = 2 -~, for b sat-
isfying (1.1), suffices in order to compute approximations z~, . . . ,z~ to the zeros of p(x) that
satisfy (1.2).

Algorithms for Approximating Polynomial Zeros 107

By recursively applying Fact 2.3 for h = n, k = 1 , . . . , n , f i (x) = x - z*, i = 1 , . . . , k - 1,
f i (x) = x - z~, i = k , . . . ,n, we obtain the following.

COROLLARY 2.3. For a polynomial p(x) of (2.1),(2.2), we have [[p(x) - l-Ln__l (x - z~)l[<_ clip(x)[I
i f lzi - z*[<_ e/(n2 n) for ali i.

Due to Theorem 2.1 and Corollary 2.2, we may recursively factorize p(x) and thus solve the
problem of approximating polynomial zeros provided that we have an algorithm that computes
well-isolated discs for splitting p(x) into two factors, as well as for splitting every nonlinear factor
computed in each step of the subsequent recursive splitting of these two factors. According to [1],
we obtain the desired splitting disc for p(x) (and similarly for its factors) by applying Facts 2.1
and 2.2. At first, we apply Fact 2.2 for the origin shifted to the center of gravity of the zeros,

n Z - p , ~ - l / n = ~ = 1 ~/n. If maxi Izil >_ Lminj Izjl for L > 1, we immediately find a desired f-
isolated splitting disc for f = 1 + c/n for a positive c. Otherwise, we will twice apply Fact 2.1 in
order to shift the origin into X = 2r-n and X = 2r-nvfi-i, and after each shift we will apply the
algorithm supporting Fact 2.2. It can be shown [1] that at least one of these two applications gives
us a desired splitting disc. Recursive extension of the same process to the approximate factors
of p(x) (produced by splitting p(x) over such a disc) finally outputs the desired approximations
to all the zeros of p(x) within the errors bounded according to (1.6) and, consequently, (1.2).
The overall cost of these computations is bounded by OA((n log n)log(b log n), n), in the general
(worst) case (compare [2,29,46]). Furthermore, the latter cost bound decreases by the factor
n / log n in the case where in all the recursive steps the splitting discs are (~, f~)-balanced for a
fixed pair ((~, ~), 0 < ~ < f~ < 1. This has been achieved in [30,31,39] under the additional
(strong) assumption that all the zeros of p(x) are real. A similar decrease of the cost bound has
been achieved in [2] for approximating a single complex polynomial zero.

Next, we will recall and improve the approach of [3] to ensure (~, ~)-balanced recursive splitting
for approximating all the zeros of any input polynomial.

3. C E N T E R E D POINTS A N D SPLITTING DISCS

DEFINITION 3.1. (See Figure 1 and compare [3].) Given real s and t, 0 < t < 1 < s, a set on the
complex plane is called t-fuU for a polynomial p(x) of (2.1) or simply t-full f l i t covers more than
tn zeros of p(x); a set on the complex plane is caned (t, s)-centered for p(x) f l i t has a nonempty
intersection with the dilation D(X , sr) of any t-full disc D(X , r); a complex point Y is caJ1ed a
(t, s)-center for p(z) or simply a (t, s)-center if D(X , sr) ~ Y for every t-fuN disc D(X , r); a set
on the complex plane is called a (t, s)-cover (for p(x)) if it contains a (t, s)-center (for p(x)) ; such
a set is called a full (t, s)-cover (for p(x)) if it contains all the existent (t, s)-centers (for p(x)).

We immediately observe the following.

FACT 3.1. The disc D(X , sr) is a full (t, s)-cover for p(x) if the disc D(X, r) is t-full.

DEFINITION 3.2. (Compare [3].) The ratio r/IX[, for a complex X and a positive r, is called the
relative radius of a disc D(X , r). The ratio R / r > 1 of the radii, R and r, of the two boundary
circles of an annulus is caned its relative width.

FACT 3.2. A disc covers the origin if and only if its relative radius is not less than 1.

FACT 3.3. [3] If t >_ 1/2 and if a set S is (t, s - 2)-centered for p(x), then this set contains a
(t, s)-center for p(x).

108 V .Y. PAN

Figure 1. p(x) has eight zeros marked by asterisks. All the (3/4, 1)-centered points for p(x) lie in
the smaller disc circumscribing the intersection of three larger discs.

PROOF. [3] Let D(X, r) be a t-full disc for p(x) of the minimum radius and let Z be a point of S
lying in the disc D = D(X, (s - 2)r). Let D(Y, R) be any other t-full disc for p(x). Then, R _> r,
and since t > 1/2, this disc intersects D(X, r). Therefore, the disc D(Y, sR) covers the disc D
and, consequently, the point Z, which is, therefore, a (t, s)-center for p(x). |

To relate the above concepts to balanced splitting, write

c
f = 1 q- - , (3.1)

n

g(a) = " [(1 ~ a) n] " , h(a) = g(a) + [an] + 1, (3.2)

fix a, c, and s such that f > 1 > a and both a and f are close enough to 1 (we will specify
this assumption about a and f later on; in particular, one may set a = 5/6, f = 1 + 1/(100n),
according to (5.2) and (6.9)), and apply the algorithm supporting Fact 2.2. Then shift the origin
into 2~h(a) and 2~h(a)~/-ZT (see Fact 2.1 for t = 1) and after each shift apply the same algorithm
again. Consider these three applications as three stages of an algorithm to be referred to as
Algorithm 3.1 (see Figure 1). The computational cost of performing this algorithm is bounded
by OA((logn) 2, n), due to Facts 2.1 and 2.2. Now, we deduce the following result.

PROPOSITION 3.1. Let Algorithm 3.1 be applied for a > 2/3. Let c > 0 and s > 1 be two fixed
values, and let f be defined by (3.1). Then, at a cost bounded by OA(1,n), in addition to the
cost of performing Algorithm 3.1, bounded by OA((log n) 2, n), one can compute either

(a) an (a, f)-splitting disc SD for p(x) (that is, a disc that is both ((1 - a)/2, (1 +a)/2)-balanced
and f-isolated), or otherwise

(b) a complex X and a positive r such that the disc D(X, r) is (3a - 2)-full for p(x) and has a
relative radius of at most 86; moreover,

rh(~) (3.3)
IX] __~ r_g(a) ~_ (1 + 6) '

r _< 8,~rg(~) < 861xi, (3.4)

for £g(a) and rh(a) computed in Stage 1 of Algorithm 3.1 and for

5 = 5 (a , f , n) = f 3[anj+3 - 1. (3.5)

Algori thms for Approximat ing Polynomial Zeros 109

PROOF. (Compare the proof of Theorem 2.1 of [3].) Consider the discs D(0, ~k) = {x :lxl _< ~k}
for g(a) <_ k < h(a). Due to (3.2), all these discs are ((1 - a)/2, (1 + a)/2)-balanced. First
suppose that f3(h(a)-g(a))_r..g(a) : f3[anJ+3r_g(a) (rh(a) (see Figure 2). Then, clearly, there exists
an integer k such that g(a) <_ k < h(a), f3r_ k • rk+l. Due to Fact 2.2, we may assume that
fr~ > ri, for i = k and i = k + 1, and obtain that flzkl < frk < rk+l --< IZk+ll, so that the disc
D(0, rk) is f-isolated, and we may set SD = D(0, rk).

0

r .

Figure 2. Case (a) of Proposi t ion 3. f ---- 1.02, a -- 3/4, n = 8, g(a) -- 1, h(a) = 7, 3 (h (a) - g (a)) --
18, fT/r_ 1 > f l a . The disc D(0, re) is f - isolated.

Now assume the opposite case (see Figure 3), where

f3 (h (a) -g (a)) = f3 lanJ+3 ~ rh(a). (3.6)
rg(a)

Equation (3.6) bounds the relative width, rh(a)/r-g(a), of the a-full annulus

By repeating the same argument for Stages 2 and 3 of Algorithm 3.1, we either arrive at a
desired (a, f)-splitting disc SD or else at three annuli of relative widths of at m o s t f3h(a)-39(a)
(compare (3.6),(3.7)), each annulus being a-full for p(x). Geometric considerations show that the
intersection I of these three annuli can be included into a readily computable disc D(X, r) = (x :
Ix - X I _< r} with X and r satisfying (3.3)-(3.5) (see Figure 3). On the other hand, a simple
argument (see Appendix A) shows that the intersection I of these three annuli and, therefore,
also the disc D(X, r) 2 I are (3a - 2)-full for p(x). |

Hereafter, we will cite the extension of Algorithm 3.1 supporting Proposition 3.1 as Algo-
rithm 3.2. According to Proposition 3.1, Algorithm 3.2 is performed at a cost of OA((logn) 2, n)
and outputs either an (a, f)-splitting disc for p(x) or a disc D(X, r) that is (3a - 2)-full for

110 V.Y. PAN

A(0,

Figure 3. Case (b) of Proposition 3.1.

p(x), has a small relative radius r/IXI, and, moreover, has a center X and a radius r satisfying
(3.3)-(3.5).

REMARK 3.1. The proof of Proposition 3.1 can be modified so as to decrease the value 6 of (3.5),
to a level close to f[anJ+l _ 1.

REMARK 3.2. Equations (3.4) and (3.5) relate the bounds on the relative radius r/[X] of the disc
D(X, r) and on the isolation ratio f of the disc SD (one of these two discs being output by Algo-
rithm 3.2). Namely, (3.4) and (3.5) imply that S[X[/r >_ 1/6 = 1/(f3lanJ+3-1) and, consequently,
fatanJ+3 >_ 1 + r/(8[X[). Therefore, (3 [anJ + 3) In f > In(1 + r/(8[X[)) = - ~-~=1 (-r/(8[XD)~/i"
Hence, assuming that 8[X[> r, we obtain that

r r 2 (r) r
(3[anJ+3)lnf>_81X---] 2(81XI)2= 1 16]-XI 8FXI,

f > e x p (1 - r / (i 6] X [) r) 1-r/(16[XD r
- ~[~]nJ ¥ 3 SlXI > 1 + 3[anJ + 3 81Xl"

Consequently,

as n - * oo , I X I / r - * ~ .

1 (_ ~)
(f - 1------~ - O , (3.8)

4. T O T H E Z E R O S O F A P O L Y N O M I A L V I A T H E Z E R O S O F ITS
H I G H E R O R D E R D E R I V A T I V E A N D H O W T O H A N D L E

M A S S I V E C L U S T E R S O F T H E Z E R O S

The next result from [27] extends Rolle's well-known theorem to the complex case.

Algorithms for Approximating Polynomial Zeros 111

T H E O R E M 4 . 1 . [27] The set of the n - l + 1 zeros of the (l - 1)st order derivative p(t_ 1) (x) o fp(x)

is an ((l - 1)/n, s - 2)-centered set for p(z) if

(a) s > 2 + 1 / s i n (~ / (n - 1 + 1)) and I < n - 1 (which holds if s > 2 + (n - l + 1)/~r for larger

n - l) and, moreover, even if
(b) 2 < l < n - 1 and s > 2 + c m a x { (n - 1 + 1)1/2l -1/4, (n - 1 + 1)/-2/3} for some constant c

(which already holds where s = O(n 1/3) as n ~ co, provided t ha t l /n > ¢ > 0 for some

~xed constant ¢ < 1).

Combin ing Fact 3.3 and Theo rem 4.1 gives us the following corollary.

COROLLARY 4.1. / f l > n/2 and if s satis~es the assumptions of pa r t s (a) and~or (b) of The-
orem 4.1, then at bas t one of the n - l + 1 zeros of the (1 - 1) st derivative of p(x) is an

((l - 1)In, s)-center for p(z) .

Hereaf ter , we will wri te

l = [(3 a - 2) n] + l , n - l = [(3 - 3 a) n] - I (4.1)

and will fix a in the semiopen interval

5
- < a < l , (4.2)
6 -

which means t h a t l > n/2. In par t icular , one may choose

a = ~, 1 = + 1, n - l = - 1. (4.3)

We will also assume t h a t s satisfies the assumpt ions of par ts (a) a n d / o r (b) of T h e o r e m 4.1.

(I t suffices for us to use pa r t (a) of this theorem; a simple proof of this pa r t is recalled f rom [27]

in our Append ix B. In fact, even weaker upper bounds on s, such as log s = O(log n), would have
sufficed for us in this paper .)

Next , examine the case where Algor i thm 3.2 ou tpu t s no (a, f) - sp l i t t ing disc for p(x) and where

1
s <)[o'8 c-----7" (4.4)

In this case, (3.4) and Fact 3.2 imply t ha t the origin lies outside the disc D(X , sr) (and therefore,

canno t be a (3a - 2, s) -center for p(x)).
Now suppose t ha t the set Z = Zl-1 of all the zeros of p¢l-1)(x), for l = 1 + [(3a - 2)n] > n/2

of (4.1) and for a > 5 /6 of (4.2), is available. (According to Theo rem 4.1, this set is a (3a - 2, s)-

cover for p(x).) Choose f such t ha t 5 of (3.5) satisfies (4.4) and then app ly Algor i thm 3.2
IZI t imes (successively or concurrently); namely, apply it af ter shift ing the origin into each of the
IZI < n - l + 1 points of Z. Since the set Z is a (3a - 2, s)-cover for p(x) (due to T h e o r e m 4.1), in

a t least one of these IZI appl icat ions of Algor i thm 3.2, an (a, f) - sp l i t t ing disc for p(x) is ou tpu t ,

where 1 / (f - 1) : O(sn), f = 1 + c/(sn), for a constant c.
In [3] a policy of recursive shifts of the origin is proposed t ha t enables us to app ly the divide-

and-conquer me thod to the given set Z of all the zeros of pq-1)(x) , thus reducing the number
of required appl icat ions of Algor i thm 3.2 to at most /log IZI]. Specifically, observe t h a t the disc
D(X , st) , for X and r of pa r t (b) of Proposi t ion 3.2, has a relative radius less t h a n 1. Due to
Fact 3.2, such a disc does not contain the origin. Consequently, it lies ent i rely in a t least one
of the four half-planes, each bounded by the real or imaginary axis, t h a t is, (x : R e x > 0},
{x : R e x < 0}, {x : I m x > 0}, {z : I m x < 0}. Since the disc D (Z , r) of Propos i t ion 3.1
is (3a - 2)-full for p(x), the disc D(X, sr) is a full (3a - 2, s)-cover for p(x), due to Fact 3.1.

112 v .Y. PAN

Therefore, any zero of p(l-1)(x) lying in the complementary half-plane cannot be a (3a - 2, s)-
center for p(x) and should be discarded. In [3], a shift of the origin is defined for which at least
]ZI/2 zeros of p(l-1)(x) lie in such a half-plane. Specifically, according to the recipe of [3], one

should first compute (at a cost OA(log IZI, IZI/log IZI), IZ] < n - / + l) a quasi-median point it(Z)
(not necessarily lying in Z), whose real and imaginary coordinates are given by the two medians
of the two sets or multisets formed by all the real and all the imaginary coordinates of all points
of Z, respectively. (When we define the medians, we count m times each common coordinate of
exactly m points of Z.) Then one should shift the origin into It(Z) and apply Algorithm 3.2,
which will either output an (a, f)-split t ing disc, where 1/(f - 1) = O(sn) due to (3.4) and (3.S),
or will enable us to discard at least IZI/2 zeros of p(l-1)(x). Proceeding recursively, one will
compute a desired (a, f)-split t ing disc in at most [log]ZI] < [log(n - l + 1)] applications of
Algorithm 3.2, at an overall cost OA((logn) 3, n).

In the next sections, we will extend the above construction of [3] so as to increase the isolation
ratio f of the computed (a, f)-splitting disc from the level 1 + c/(sn) to or above the level
f = 1 + c/n. Now suppose that an (a, f)-splitting disc with such an isolation ratio f has been
computed, with no increase of the asymptotic complexity bounds. Then we may apply part (d)
of Theorem 2.1, for appropriate B* and b, and split p(x) over this disc, at a cost bounded by
OA ((log n)t2,1(/~, n)n, 1). The splitting reduces the original problem for p(x) to ones for its two
factors. Taking into account the computational cost of this reduction, which includes the cost of
approximating the zeros of p(l-1)ix), we arrive at the inequality

A(n) <_ A(n - l + 1) + A(nl) + A(n2) + O (nt2,1 (B,n) logn) ,

where t2,1(/),n) = (logn)2+log/~, nl+n2 = n, max(nl ,n2) = (l+a)n/2, n - l + l = [(3 -3a)] <
n/2 + 1, and A(k) denotes the number of arithmetic operations required for approximating the
zeros of a k th degree polynomial, within an appropriate error bound (compare Corollaries 2.1
and 2.2), provided that all these zeros lie in the disc D(0, 1). (According to Remark 2.1, the
zeros of p(l-1)(x) lie in the disc D(0, Iznl).) Recursive application of similar bounds on A(h), for
h = n - 1 + 1, h = nl , and h = n2, implies (see [3]) approximating polynomial zeros in arithmetic
time O(n 1+~ log b) for any fixed positive ~.

REMARK 4.1. For f of the order 1 + c/(sn), the above inequality for A(n) changes into the bound

A(n) < A(n - r(3a- 2)n] + 1) + A(nl) + A(n2) + 0 (nst2,1 ([~,n) logn)

(compare Remarks 4.2 and 9.2), whose recursive extension using a respective extension of Theo-
rem 2.1 only gives us a larger bound, A(n) = O(nl+es log b) for a positive ~.

In fact, we need to modify both of the above algorithms for the computation of a splitting disc
since we actually only approximate the zeros of p(l-1)(x) but do not compute them. What is
more serious, we also need to avoid the severe numerical problems that arise if we t ry to compute
a balanced splitting of p(x) in the case where all or almost all of the zeros of p(x) form a massive
cluster lying in a very small disc, D(X, a). In this case, in order to determine an (a, f)-split t ing
disc for p(x), one has to separate some zeros of the clusters from each other, which requires
computations with a very high precision, of the order log(l /a) . For smaller a, this precision can
be too high to be compatible with the complexity bounds of Theorem 2.1. To avoid such problems
(not addressed in [3]), we will not seek balanced splitting whenever we can compute a sufficiently
small disc containing sufficiently many zeros of p(x). More specifically, we will complement the
algorithms for the computation of (a, f)-splitting discs by a block that identifies and removes

k all the factors of p(x) of the form l-Ii=l(x - z~), where k > I(3a - 2)n] and Iz~ - X I < 2 - s ,
i = 1 , . . . , k, for some complex X and a fixed positive B. We will use the following definition.

Algorithms for Approximating Polynomial Zeros 113

DEFINITION 4.1. A disc D(X, p) is called an (a, B, f)-splitting disc for p(x) if it is both f-isolated
and (3a - 2)-full for p(x) (compare Definition 3.1) and if p satisfies the relations

2-B
2-B* f2[(3-3a)n]-2 <- P ~- 2-B" (4.5)

A disc D(X, r) is called an (a, B*)-disc if it is (34 - 2)-full and if

r _< 2 - B ' . (4.6)

FACT 4.1. If we are given B and B* satisfying the equation of (4.5) and if a given disc D(X, r) is
an (a, B*)-disc, then there exists p satisfying (4.5) such that the disc D(X,p) is an (a, B, f) -
splitting disc for p(x). Moreover, such a value p can be computed at a cost bounded by
OA ((log n) 2, n).

PROOF. By assumption, the disc D(X, r) is (3a - 2)-full for p(x). Therefore (due to (4.6)), the
exterior of the disc D(X,2 -B*) contains at most n - [(3 a - 2)nJ - 1 = [(3 - 3a)n] - 1 zeros
of p(x). Consequently, there exist values p satisfying (4.5) and such that the disc D(X, p) is
f2-isolated. We only need to compute p satisfying (4.5) for which the disc D(X, p) is f-isolated.
We obtain such a value p by applying the algorithm that supports Fact 2.2, where we require
sufficiently small relative error bound; for instance, the bound 0.5(f - 1) will suffice. This gives
us a desired f-isolated disc D(X, p), at a cost bounded by OA((logn) 2, n). |

As soon as we obtain an (a, B, f)-split t ing disc D(X, p), for f > 1 + c/n and for a fixed
positive c, we may recall Theorem 2.1 and compute an e-splitting of p(x) over this disc, for a
fixed small e (see (2.4)). If

B > b, p < 2 -B _ 2 -5 , (4.7)

then the center X of the disc D(X, p) approximates (within the error bound 2 -5 of (1.2)) all the
k zeros of p(x) lying in this disc. The remaining n - k zeros of p(x) are approximated by the
zeros of Gn_k(X). If n - k = o(n), that is, if the zeros form a massive cluster, then the splitting
is unbalanced, but the entire computation is only simplified.

We may satisfy the assumption (4.7), without choosing an extremely large B. Then, for p
bounded from below according to (4.5), we may keep the precision of the computation reasonably
well bounded from above, as required in order to prove Theorem 1.1.

The above analysis suggests a simple extension of Algorithm 3.2, hereafter referred to as Al-
gorithm 4.1. Namely, one should always apply the algorithm supporting Fact 4.1 and output
an (a, B, f)-split t ing disc D(X, p) as soon as (in the process of performing Algorithm 3.2) one
arrives at a.n (a, B*)-disc D(X, r) for a, B, B*, and r satisfying (4.6) and the equation of (4.5).

Moreover, we will also modify the algorithms of [3] for computing an (a, f)-spli t t ing disc,
recalled earlier in this section. Now, we will aim either at an (a, f)-split t ing disc for p(x) or (in
the case where the zeros of p(x) form a massive cluster) at an (a, B, f)-split t ing disc for p(x), for
a fixed B. We will achieve our goal based on the following lemma.

LEMMA 4.1. Suppose that a (3a - 2 , s)-center for p(x) lies in a disc D(O,p*). Suppose that
application of Algorithm 4.1 does not give us an (a, f)-splitting disc S D but yields a disc D(X, r)
of part (b) of Proposition 3.1, which is (34 - 2)-full for p(x). Then

5*p*
r <__ (1 - 5 * s) ' (4 . s)

where
5" = 85 (4.9)

and 5 satisfies (3.5) and (4.4).

114 V . Y . PAN

PROOF. A (3a - 2, s)-center for p(x) lies in both discs D(X, sr) and D(0, p*). Therefore , these
two discs have a nonempty intersection, and hence IXI < sr + p*. Combining the latter bound,
(4.9), and (3.4) yields (4.8). |

Now, we are prepared to devise a desired algorithm for the computation of a splitting disc for
p(x).

ALGORITHM 4 . 2 .

INPUT: Polynomial p(x) of (2.1), a complex Y, real B* and B, and positive a, f , and p*, satisfying
the relations (4.2), (4.5), f > 1, and

p. _< 2_S. (1 -- 6*S) 6. (4.10)

(for 6" of (4.9), 6 of (3.5), and s of Theorem 4.1) and such that the disc D = D(Y,p*) is a
(3a - 2, s)-cover for p(x), that is, covers at least one (3a - 2, s)-center for p(x). (For instance, an
approximation within p* to at least one of the zeros of p(l-1)(x), for l = [(3a - 2)nJ + 1, may
serve as the point Y, due to Theorem 4.1.)

OUTPUT: An (a, f)-splitting disc D for p(x) or an (a, B, f)-splitting disc D(X, p) for p(x).
COMPUTATIONS. Shift the origin into the point Y and apply Algorithm 4.1. If the algorithm
computes an (a, f)-splitting disc D for p(x) or an (a, B, f)-splitting disc D(X, p), output this disc
and stop. Otherwise, as we will show in the correctness proof below, Algorithm 4.1 outputs X
and r satisfying (3.4) and such that the disc D(X, r) is (34 - 2)-full for p(x), that is, contains at
least [(34 - 2) n J + 1 zeros ofp(x). Then shift the origin into X. Apply the algorithm supporting
Fact 2.2 so as to compute p such that the disc D(X, p) is f-isolated and its radius p satisfies (4.5).
Output this disc and stop.

CORRECTNESS PROOF. Due to Lemma 4.1, we have (4.8). The bounds (4.8) and (4.10) together
imply (4.6). Now, correctness of the algorithm follows as in the proof of Fact 4.1. |

If we have approximations Yi, within the error bound p* of (4.10), to all the n - l + 1 zeros of
p(t-1)(x), for l = [(3a - 2)nJ + 1, of (4.1), i = 1 , . . . ,n - l + 1, then we may compute an (a,f)-
splitting disc or an (a, B, f)-splitting disc for p(x) by applying Algorithm 4.2 at every point Y~,
until a desired splitting disc is output. This computation will be called Algorithm 4.3. One may
improve it by incorporating the divide-and-conquer approach from [3], which we recalled earlier,
so that at most flog IS H calls for Algorithm 4.1 will be needed. We will cite this modification as
Algorithm 4.4.

REMARK 4.2. The relative radius r/IX [of the disc D(X, r) of Proposition 3.1 must satisfy the
bound r/[X t < 1/s in order to ensure that the disc D(X, sr) does not cover the origin (compare
Fact 3.2 and the relations (3.4) and (4.4)). On the other hand, Algorithms 4.3 and 4.4 define
(a, f)-splitting or (a, B, f)-splitting discs for f - 1 of the order r/([XIn) (compare (3.8)); that is,
we should deal with the case where

c
f = 1 + - - (4.11) (ns)

for a positive constant c (compare the relations (3.4), (3.8), and (4.4)). In the next section,
we will modify this construction so as to proceed with larger relative radii ri/[Xi[, satisfying
]Xi[/ri = O(1). According to the equation (3.8) applied for X = Xi, r = ri, this will enable us
to increase f so as to satisfy the bound

1
(1 - f) = O (n) . (4.12)

Under (4.12) we may invoke Theorem 2.1 in order to estimate the cost of splitting p(x) over the
computed f-isolated discs (compare (6.1), (6.4)-(6.9), Remarks 5.1, 6.1, and 9.2).

Algorithms for Approximating Polynomial Zeros 115

5. R E C U R S I V E C O N T R A C T I O N O F A R E G I O N C O V E R I N G A L L
T H E (3a - 2, s) - C E N T E R S F O R p(x)

The next recursive extension of Algorithm 4.1 will enable us to ensure a stronger isolation
of the output splitting disc, so as to raise its isolation ratio f to the level (4.12), from (4.11)
(compare Remarks 4.2 and 5.1).

ALGORITHM 5.1. (See Figure 4.) Fix a real a, in the interval (4.2), and a positive integer H and
recursively apply Algorithm 4.1; for every i, i = 1 , . . . , H, after the i t h application, shift the origin
into the center X -- Xi of the output disc D(X, r) = D(Xi , ri), for r and X satisfying (3.4). If
some application of Algorithm 4.1 defines an (a, f)-splitting disc SD for p(x), then output this
disc and stop the computations. Otherwise, stop in H recursive applications of Algorithm 4.1
and output H, the center XH, and the radius rH of the disc D(XH, rH) computed in the last
application of Algorithm 4.1 (such a disc must be (3a - 2)-full for p(x)). Represent the output
point XH in the original coordinates (used before the first shift of the origin at the first of the
recursive applications of Algorithm 4.1) or output)-~H=I Xi if each Xi is defined relative to the
latest shift of the origin.

PROPOSITION 5.1. Suppose that Algorithm 5.1 has output H, X H , and rH (with XH defined in
the original coordinates), rather than an (a, f)-splitting disc for p(x), so that the disc D(XH, rH)
is (3a -- 2)-full for p(x). Then the following relations hold:

(a) IXHI > IXll(x - ~/(1 - ~)) = [Xll(1 - 2~)/(1 - ~),

(b) rH <_ 8~f~H-1lX,[= ~H[Xll/(1 -b ~),

and, consequently, the relative radius rH /[XH[o[the disc D(XH, rH) is bounded as follows:

(c) rH <_ SIXHI~f~H-I(1 -- ~)/(1 -- 2~) = IXHI$H(1 - ~)/((1 +/f)(1 - 25)),

where 6 = 6(a, f , n) = f 3 [a n J + 3 _ 1, according to (3.5), and

= 8(1 +/f)& (5.1)

PROOF. Proposition 5.1 follows since the radii ri and, consequently, the relative radii ri/[Xi[of
the discs D(Xi , ri) rapidly decrease as i grows (see Figure 4). It remains to specify the related

=(i) estimates. Let r~ i) denote the distance from Xi to a jth closest zero of p(x) and let r~ i) and rj

denote the lower and upper bounds of r~ i), respectively, obtained by means of applying Facts 2.1
and 2.2. We first recall that

r(~) > "h(a_______~) i = 1 , . . . , H , (5.2)
-~(-) - (1 + ~)'

since otherwise the ith application of Algorithm 4.1 would have output of a disc SD. Furthermore,
we have the bounds

r_(i) < r(i) <_ i 1 , . . , H , (5.3) g(a)- 9(a) ri, = •

since the disc D(Xi , ri) is [(3a - 2)J-full for p(x) and since g(a) = [(1 - a)n/2J < (3a - 2)n for
a > 5/6. Moreover,

=(i) IX~+l - Xil _< rh(,), i = 1 , . . . , H - 1, (5.4)

since Xi+l lies in the annulus that is output in the first stage of the (i + 1) st application of
Algorithm 4.1 (within Algorithm 5.1). By combining (5.2)-(5.4), we deduce that

IXi+l - Xil g (1 + 5)ri, i = 1 , . . . , H - 1. (5.5)

On the other hand, we extend (3.4) to the ith application of Algorithm 4.1 and obtain that

ri <_ 85[X~ - X i - l l , i = 1 , . . . , H, (5.6)

116 V.Y. PAN

where Xo = 0. By combining (5.5) and (5.6), we obtain that

ri<_6ri-1, IX +I-X I<_ IXi-X -ll, i = 1 , . . . , H - 1,

for ~ = 8(1 + ~i)~ of (5.1). Then, by combining the latter bounds for i = 1 , . . . , j and recalling
that X0 = 0, we deduce that

rj <_ ~Jrl, [Xj+I - XjI <_ IX1- XoI~J = IXll6 j, j = l , . . . , S - 1 , (5.7)

H-1 H-1

[XH-XI] _~ Z [X j + I - X j [~_ [XI[Z ~j < [X l l / 1 - ~ "
j=l j=l)

Therefore, [XH[> [X1[(1-~/(1-6)), which proves part (a) of Proposition 5.1. On the other hand,
substitution of (5.7) (for j = H - 1) into (5.6) (for i = H) proves part (b) of Proposition 5.1. |

* Or igine (0)
Figure 4. The discs D(XI,rl) and D(X2,r2) of Algorithm 5.1 are represented by the two discs
(larger and smaller ones) in this figure.

Due to Proposition 5.1, Algorithm 5.1 outputs either an (a, f)-splitting disc SD for p(x) or
a disc D(XH,rH) that is (3a - 2)-full for p(x) and has a relative radius rH/]Zl satisfying the
upper bound of part (c) of Proposition 5.1. Due to Fact 3.1, the disc D(XH,rHS) is a full
(3a - 2, s)-cover for p(x).

REMARK 5.1. Due to part (c) of Proposition 5.1, we may ensure the bound rH/[XH[< 1/s
on the relative radius of the output disc D(XH, rH) of Algorithm 5.1 already for 1/~ = O(1),
H = O(logs). This will enable us to achieve (4.12) by using Algorithm 5.1, instead of relying
just on Algorithm 4.1 and arriving at (4.11) (compare (6.1), (6.4)-(6.9) and Remark 6.1).

Algorithms for Approximating Polynomial Zeros 117

6. W E D O N O T N E E D TO A P P R O X I M A T E T H E Z E R O S OF
H I G H E R O R D E R D E R I V A T I V E S

Seeking a (3a - 2, s)-center for p(x) by means of applying Algorithms 4.3 or 4.4, we recursively
split, at first the (l - 1) st order derivative p(l-1)(x), for I = [(3a - 2)nJ + 1, of (4.1), and then
both its factors, over some available splitting discs.

We will next show how to avoid splitting one of the two factors. Let v(x) denote the polynomial
p(Z-1)(x) or its factor and suppose that v(x) has been split over some disc D(0,~), which is

f , - isolated for v(x). (Letting the origin be the center of this disc is no loss of generality, due
to Fact 2.1.) Apply Algorithm 5.1. We only need to consider the case where the output disc

D(XH, rH) is (3a -- 2)-full for p(x). Then the disc D(XH, SrH) is a full (3a - 2, s)-cover for p(x),
due to Fact 3.1. Therefore, in our search for a (3a - 2, s)-center for p(x), we may discard all the
zeros of v(x) lying outside the latter disc. Suppose that 2srH < (f~ -- 1)~, tha t is, the diameter

of the disc D(XH, srH) is less than the width of the annulus {x : ~ < Ixl < fv~} surrounding the

disc D(0, ~) and free of the zeros of v(x) (compare Figure 5). Then the disc D(XH, srH) cannot
simultaneously intersect both of the disc D(0, ~) and the exterior of the disc D(0, fur), so we may

determine which one of the two computed factors of v(x) has no zeros in D(XH, 8rH) and can

be discarded.

G
R

Q
Figure 5. Five positions of a smaller disc D(X,r) of Lemma 6.1 relative to the annulus (x : ~ <

We will next formalize our argument as an algorithm and then will show tha t the value 2srH
can be decreased below (f , - 1)~, for a fixed ÷, for fv = 1 + c/n, for a fixed positive c, and for H
of the order logn (but not for H = 1 or even H = O(1), compare Remark 6.1).

ALGORITHM 6 .1 .

INPUT: Polynomials p(x) and v(x) and five real values, that is, a of (4.2), s of part (a) or part (b)

of Theorem 4.1, f~ > 1, f > 1, ~ > 0, such that the disc D(0,~) is an f . - isolated disc for v(x),
and B.

OUTPUT: Either an (a, f)-spl i t t ing disc for p(x), or an (a, B, f)-spl i t t ing disc for p(x), or, oth-
erwise, a disc D(XH, rH) and an integer, 0 or 1; 1 is output if the disc D(0,~) contains no
(3a - 2, s)-centers for p(x); 0 is output if the exterior of the disc D(0, f .~) contains no (3a - 2, s)-
centers for p(x).

118 v .Y. PAN

COMPUTATIONS. Apply Algorithm 5.1 with H chosen sufficiently large so that

(fv + 1)rHS < (f , -- 1)IXH[. (6.1)

Stop if an (a, f)-splitting disc for p(x) is output by Algorithm 5.1. Otherwise, output the disc
D(XH, rH) and check if

2IXHI _> (.f~ + 1)~. (6.2)
I f (6.2) holds, output 1 and stop; otherwise, output 0 and stop.

Correctness of Algorithm 6.1 will be proved by using the following geometric lemma.

LEMMA 6.1. Let a complex X and positive r, ~, and R satisfy the inequality

Then the disc D(X, r) does not intersect the disc D(O, ~) if 2IX[>_/~ + ~ and does not intersect
the exterior of the disc D(O, [~) if 2[X[<_ [~ + ~.

PROOF. (See Figure 5.) The inequality (6.3) implies that the disc D(X, r) has no overlap with
D(0, ~) if 2[Z[_>/~ + ~. Indeed, due to (6.3),]Z[- r >]XI(1 - (/~ - f) /(/~ + ~)). Substitute
]XI _> (/~ + ÷)/2 on the right-hand side and obtain that IX[- r > ~. Similarly, deduce that the
disc D(X,r) has no overlap with the exterior of D(0,/~) if 2IX[_</~ + ÷. |

PROOF OF CORRECTNESS OF ALGORITHM 6.1. It suffices to consider the case where Algo-
rithm 6.1 does not output a desired (a, f)-splitting disc for p(x). Write [~ = fvr, X = XH,
r = SrH. Then (6.1) implies (6.3), and we may apply Lemma 6.1. Recall that the disc D(XH, rH)
is (3a -- 2)-full for p(x). Therefore, by Fact 3.1, the disc D(XH, SrH) is a full (3a - 2, s)-cover for
p(x), that is, this disc contains all the existent (3a - 2, s)-centers for p(x), and we may discard
all the zeros of v(x) lying outside this disc. By the virtue of Lemma 6.1, this implies discarding
all the zeros of v(x) lying in D(0, ~), if (6.2) holds, and discarding all the other zeros (which lie
in the exterior of D(0, fvr)) otherwise. Now, correctness of Algorithm 6.1 follows. |

Let us next choose f , fv, and H so as to satisfy (6.1). Due to (3.5) and part (c) of Proposi-
tion 5.1, the inequality (6.1) follows if

(1 -- ~) ~H (fv -- 1)f 3[anj+3
<

(1- 2~) ((fv + 1)s) ' (6.4)

for ~ of (5.1) and for/5 of (3.5). It is easy to verify that the latter inequality and, therefore, also
(6.1) hold if, simultaneously,

8 < ~, (6.5)
~H < 2(fv -- 1)f 3[anj+3

(3s(f~ + 1)) (6.6)

LEMMA 6.2. The bounds (6.5) and (6.6) hold if f , fv, and H satisfy the relations

1
f - 1 = _ _ _ (3 0 a n t fv > f , (6.7)

~? >_ 4, ~? >_ (90ans)]~(H-l), H > 1. (6.8)

Algorithms for Approximating Polynomial Zeros 119

PROOF. Equation (6.7) implies that

(3~an~]l ~3an e x p (3 a n l n (l + 3 ~ _ ~ n ~)) " = \ 1 + =

Substitute the expansion ln(1 + u) -- u - u2/2 + u3/3 , for u = 1~(30anT) and obtain that

(()) f3a ,__exp 3an u - - ~ + - ~

[(w - w2 + . . .) + ~ (1 1) (-w) i+l]
exp --f --~=1 (3an)i -~ -~ ~) j ,

where w = 1 / (107) <_ 1/40. Now, substitute in(1 + w) for the power series w - w 2/2 + . . . , observe
oo 1 that ~ i = i (- 1 / (3an)i) (-w)i+l / (i + 1) < (1 - 1/(3an))w2/2 < w2/2, and deduce the bound

(_ ~) (1) (1)
f 3 a n < (l + w) exp < 1 + ~ exp (20~72) .

Since 7 >- 4 and since 3an > 3 [anJ, it follows that

f3lanJ+3 = (f3an)([anj+l)/an (_ (1_}_ 1 ~) (l+l/an) 1
exp l + ~ n n < 1 4- ~-~,

6 = faLanJ+3 _ 1 < 1/(97), ~ -- 8(1 + 6)6 < 1/7, which implies (6.5), since 7 ~ 4, due to (6.8).
Furthermore, from (6.7) we have 2f3LanJ+3/(fv + 1) > 1 and (fv - 1)/3 > 1~(90an7). Multiply

these two inequalities together and obtain that 2(fv - 1)f3lanl+3/(3(f, + 1)s) > 1/(90ans7).
Deduce from (6.8) that 1/(90ansT) >_ 1/7 H. Combine the two latter bounds with the bound
~H < 1/7] H and obtain (6.6). 1

In particular, the relations (6.7),(6.8), and, therefore, also (6.5), (6.6), and (6.1) are satisfied
for any f , > f and for any of the following three choices of H, 7, and f:

1
H = 2, 7 = 90ans, f - 1 -

2700(an)2s '

H = 3, 7 = (90ans) 1/2, f - 1 = 1 (6.9)
90(10s) 1/2 (an)3~2'

1
H = [0.5 log(9Oans)] + 1, 7 = 4, f - 1 =

120an

Hereafter, we will stay with H, 7, and f defined by (6.9). This will enable us to maximize f
and thus to decrease the necessary precision of the computations and their Boolean complexity.

REMARK 6.1. Since we apply Algorithm 5.1, with H recursive calls for Algorithm 4.1, we shall
bound [XHI/rH according to part (c) of Proposition 5.1, instead of bounding IXI/r according
to (3.4). In order to simplify the expression for the bound on the relative radius [Xgl/rH, w e

recall (5.1) and (3.5) and redefine 6* of (4.9) as follows:

~/'/(1 - ~)
6" = (6.10)

We will use this expression for 6* throughout, including applications of Lemma 4.1 and Algo-
rithm 4.2; in particular, we will rewrite part (c) of Proposition 5.1 as follows:

rH < 6*lX l. (6.11)

120 V.Y. PAN

Combine (6.4) and (6.10), assume that fv < 3, and obtain the following substitution for (4.4):

. f v - 1 f v - 1 1
5" < < < - . (6.12)

(f . + 1)s 2s s

For H of (6.9), the bounds (6.6) and (6.12) hold under a mild restriction on ~, compatible with
the bounds 1/~ = O(1) and (4.12). The choice of H = 1 would, on the contrary, have brought us
back to the bounds (4.4) and (4.11). Moreover, Algorithm 6.1 is recursively applied in the next
section as a block of Algorithm 7.1; if we had set H = 1 or even H = O(1) in these applications,
then we would have arrived at an (a, f)-splitting disc or at an (a, B, f)-splitting disc where f - 1
can be very small, say, of the order 1/n -on for a positive constant c; consequently, the cost of
splitting p(x) over such a disc can be very large (see Remark 9.2).

7. I M P R O V E D C O M P U T A T I O N OF A SPLITTING DISC:
A N A L G O R I T H M A N D C O M P L E X I T Y ESTIMATES

Next, we will summarize the algorithms of the previous sections in order to improve the com-
putation of a splitting disc.

ALGORITHM 7.1. DISC(p(x), B).

INPUT: Polynomial p(x) of (2.1), natural H and no, real a, B, f and s (provided that no is a fixed
constant, a satisfies (4.2), f and H satisfy (6.9), and s is defined according to parts (a) or (b)
of Theorem 4.1), and two black-box subroutines, specified below and denoted DISC(v(x), By)
and FACTOR(v(x), D) (for a real B. , for a polynomial v(x) of degree less than n, and for its

(a, f)-splitting disc D).

OUTPUT:

(a) Either an (a, f)-splitting disc SD for p(x) or

(b) an (a, B, f)-splitting disc SDB for p(z).

T w o SUBROUTINES. The subroutine DISC(v(x), By) solves, for a polynomial v(x) and scalars a,
no, By, fv, Hv, and sv, the same problem as Algorithm 7.1 solves for p(x), a, no, B, f , H, and s.
The input values fv, Hv, and s, are defined (like the values f , H, and s used before) so as to
satisfy the assumptions of Theorem 4.1 and the equations (6.9), except that, now, in all cases,
we replace f by f . , H by Hv, s by sv, and n by dv = degv(x). (Algorithm 7.1 would correctly
work also for f . = f , H . = H, and s , = s invariant in deg v(x), but then the computational cost
would increase, slightly.) For By one may choose any value that satisfies the following bound,
extending (4.10) and the equation of (4.5):

[r(3<,-3)d,,1-2.]
By>_ B + l o g L ' (7.1)

where 6" is defined by the equations (6.10), (5.1), and (3.5) in which f is replaced by fv, 6 by 6.,
and s by sv. (In particular, one may define B . by setting equality in (7.1).) The subroutine
FACTOR(v(x), D) numerically splits v(x) over the disc D, that is, computes two polynomials,
F*(x) (monic and approximating the highest degree monic factor F(x) of v(x) that has all its
zeros lying in D) and G*(x) (approximating the factor G(z) = v(z)/F(x) of v(x), which has no
zeros lying in D), that satisfy the next bound (compare (1.1) with n replaced by n - l + 1, b by ~,
and b by f~)

Hv(x) - F*(x)G*(x)I I < 2 -~, B = (f~÷ 3) (n - 1 ÷ 1) + l o g (n - l + 1) + 2, (7.2)

Algorithms for Approximating Polynomial Zeros

where the norm is defined by (1.7) and where f~ satisfies the bound

2 -~ = A <_ 2 -B ' .

121

(7.3)

COMPUTATIONS BY ALGORITHM 7.1.

STAGE 0. INITIALIZATION. Set v(x) = p(l-t)(x) for I = [(3a - 2)nJ + 1, of (4.1).

STAGE 1. If deg v(x) <_ no, first approximate the zeros of v(x), then invoke one of Algorithms 4.3
or 4.4, in order to compute and to output an (a, f)-splitting disc or an (a, B, f)-splitting disc for
p(x); then stop. Otherwise, fix B , according to (7.1) and apply the subroutine DISC(v(x), By),
which outputs an (a, fv)-splitting disc or an (a, B~, fv)-splitting disc for v(x); in both cases, such
an output splitting disc is denoted D(Cv,R,). Shift the origin into C, and go to Stage 2.

STAGE 2. Write ~ = Rv and D = D(Cv, R,) and apply Algorithm 6.1 for H replaced by H + 1.
If this algorithm outputs an (a, f)-splitting disc or an (a, B, f)-splitting disc for p(x), then stop.
Otherwise, Algorithm 6.1 outputs a disc D(XH+I, rH+l) and an integer, 0 or 1; in this case go
to Stage 3.

STAGE 3. If Algorithm 6.1 outputs 0 and if D is an (a, By, fv)-splitting disc for v(x), then shift
the origin into XH+I, apply the algorithm supporting Fact 2.2, output an Ca, B, f)-splitting disc
for p(x), denote this disc SDB, and stop. Otherwise (that is, unless simultaneously Algorithm 6.1
outputs 0 and the disc D turns out to be an (a, B,, f.)-splitting disc for v(x)), apply the subrou-
tine FACTOR(v(x), D) and set either v(x) = F*(x), if Algorithm 6.1 outputs 0, or v(x) = G*(x),
if Algorithm 6.1 outputs 1. Then go to Stage 1.

PROOF OF CORRECTNESS OF ALGORITHM 7.1. Let J(x) denote the factor of v(x) approx-
imated by the output polynomial of the subroutine FACTOR(v(x), D) applied at Stage 3 of
Algorithm 7.1 (so that J(x) = F(x) or J(x) = G(x)). At Stage 0 of Algorithm 7.1, some zero of
v(x) is a (3a - 2, s)-center for p(x), due to Corollary 4.1. Due to correctness of Algorithm 6.1, the
latter property of v(x) is extended to J(x) and, therefore, is maintained throughout the computa-
tion by Algorithm 7.1 if we ignore the errors of the factorization of p(x) approximately computed
by Algorithm 7.1. Due to (4.2), deg J(x) is bounded by a fixed fraction of degv(x); therefore,
Algorithm 7.1 must terminate in O(log(degv(x)/no)) passes through Stage 3 and, at the termi-
nation, must output either an Ca, f)-splitting disc for p(x) at Stages 1 or 2 or an Ca, B, f)-splitting
disc for p(x) at Stages 1, 2, or 3. It remains

(a) to examine the influence of the approximation errors on correctness of application of Algo-
rithm 6.1 as a block of Algorithm 7.1, and

(b) to show correctness of Algorithm 7.1 in the case where Algorithm 6.1 outputs 0 and where
the disc D -- D(C~, Rv) is an C a, B~, f~)-splitting disc for v(x).

Towards the first goal, we recall that, on the one hand, rH+l >_ 2 -B* unless some application
of Algorithm 4.1 gives us an (a, B, f)-splitting disc for p(x) and that, on the other hand, due
to (7.2) and Corollary 2.2, the zeros of all the computed approximations to the factors of p (~- 1)(x)
may deviate from the respective zeros of p(t-1)(x) by at most A = 2-Z. Therefore, in order to
preserve correctness of Algorithm 6.1, performed as a block of Algorithm 7.1, we only need to
extend the bound (6.1) as follows:

(fv + 1)(rH+l + 2A)s < (fv -- 1)iXH+ll.

Proposition 5.1 (for ~ < 1/4 of (6.5) and for H > 2) implies that rH/IXHI < 6/4 H÷I _< 3/32,
SO that IXH+ll >_]XHI -- rH >_ 291XHI/32, and therefore, it is sufficient for us to ensure that
(fv + 1)(rH+1-4-2A)s < 29(fv -- 1)IXHI/32. The desired extension of (6.1) to the latter inequality
immediately follows from (6.1) and from the following bounds: 4rH+ 1 _< rH (see (5.7),(6.5)),

CAJ'~A 31-12-[

122 V.Y. PAN

2 -B* ~ rH+l, and 2A < 2 -B* < 2rH+l (see (7.2), (7.3)). Thus, the errors of approximation of
the factors of p(t-x)(x) do not influence correctness of Algorithm 6.1.

Now, we shift to our second goal. Since D is assumed to denote an (a, By, fv)-splitting disc
for v(x), we obtain from Definition 4.1 that P~ < p~, where p~ = 2 -B~. Furthermore, due
to correctness of Algorithm 6.1, both discs, D = D(Cv, Rv) and, therefore, also D(Cv, p*), are
(3a - 2, s)-covers for p(x); that is, both of them contain a (3a - 2, s)-center for p(x). Now, we
apply Lemma 4.1, for r = rH+l, p* = p*, 6" ---- ~v, S ---- Sv, and the origin shifted into Cv, and
deduce that rH+l _< 6~Pv/(1--~f~,sv). Then (7.1) implies that rH+l _< 2 -B* • Now, Fact 4.1 implies
correctness of obtaining an (a, B, f)-splitting disc for p(x) at Stage 3 of Algorithm 7.1. |

Next, we will estimate (sequential and parallel) Boolean and arithmetic cost PBCD(B,n),
PACD(B, n), PRACD(B, n) and SACD(B, n) of performing Algorithm 7.1, DISC(p(x), B), for
n > 2, a of (4.2) and l = [(3a - 2)nJ + 1 of (4.1); in particular, we may define a and l by (4.3).
(Here, the subscript D abbreviates "DISC.")

As we have already observed, there can be at most O(log(dv/no)) = O(logn) transitions to
a new v(x) at Stage 1 of Algorithm 7.1, for dv = degv(x), and there can be as many passes
through Stages 1-3 of Algorithm 7.1. It remains to estimate the computational cost of each pass.
This cost is dominated by the complexity of application of the subroutine FACTOR(v(x), D), for
splitting the polynomial v(x).

Let us assume that equalities are set in (7.1) and (7.3). Then, application of Theorem 2.1 for n
replaced by dv = deg v(x), for

/3 = B~ +/3 + d., (7.4)

~ r B g s ~ i s ~ i n g
2 -- B y 2-B: =

f~F(3-3a)d~1-2 (7.5)

(compare (4.5) and (7.1)), and for/3 defined by (7.2) and (7.3), gives us the following bounds
on the computational complexity of each pass through Stages 1-3 of Algorithm 7.1 (where dv =
deg v(x) decreases in every pass):

o . + PBCs(B,d,,)
(log): _ ' k

PACs(B,d,) = Oa (logdv) log/3, l o g B] '

PRACs(B, dr) = OA ((log dr)t3,1 (JB, dr), dr), allowing Las Vegas randomization,

SACs(B, dr) = OA ((logdv)t2,1 (/3, dr) dr, 1),

for M(d) of (1.3) and tij(B, dv) = (logdv) i + (log/3) j of (1.4).
We summarize the above bounds, where/3 is defined by (7.4) and where initially dv takes on

the value n + 1 - l, l = [(3a - 2)n], and then, in each of the O(log n) recursive steps, decreases by
at least a fixed constant factor exceeding 1. This gives us the following estimates for the overall
arithmetic and Boolean cost of performing Algorithm 7.1:

PBCD(B,n) = OB ((logn)2 (logB)2, (M (n3 + ~nl°g[~))) ,

PACD(B,n) = O A (logn) 21og/3, ((log/3) logn) ' (7.7)

randomization, (7.8)

SACD(B,n) = OA ((logn)t2,1 (/3, n) n, 1), (7.9)

where M(d) and tij(JB, n) are defined by (1.3) and (1.4).

Algorithms for Approximating Polynomial Zeros 123

8. S U M M A R Y OF THE ENTIRE R E C U R S I V E PROCESS A N D
THE OVERALL C O M P L E X I T Y ESTIMATES

As soon as we compute an (a, f)-splitting disc for p(x), we apply Theorem 2.1 and split p(x) over
this disc, into two factors having degrees k and n - k , respectively, for (1-a)n/2 < k < (l+a)n/2;
in particular, n < 12k <:_ l l n if we choose a = 5/6, according to (4.3). Then Algorithm 7.1 and
Theorem 2.1 are recursively applied to the factors. O(logn) such recursive steps reduce the
original problem of approximating the zeros of p(x) to O(n) such problems for polynomials of
degrees at most no = O(1), which we then solve at the overall arithmetic cost Om(log(bn),n),
by applying the algorithms of [2] or [29], say. If at some recursive step we compute an (a, B, f)-
splitting disc D(X, p) for p(x) (rather than an (a, f)-splitting disc), then the recursive process is
only simplified. Indeed, to handle this case we write B - b, which satisfies (4.7), and then let
X approximate all the k > [(3a - 2)nJ zeros of p(x) lying in D(X, p). It remains to deal with a
single factor of p(x), of degree at most n - [(3a - 2)nJ - 1 <_ [(3 - 3a)n~ - 1 (that is, at most
[n/2~ - 1 for a of (4.3)), rather than with two factors.

The complexity bounds of Theorem 2.1 are given in terms of /~ = B* +/~ + n, where B* is
defined by (4.5) and (4.7). Due to (4.5), it suffices if B* > B+(2[(3-3a)n~ - 2) l o g f . Under (4.3)
and (6.9), we satisfy this bound already for B* = B + 0.15, which implies that

/~ = B + ~)+n + 0.15.

For B = b and, more generally, for B = O(b), we have /~ = O(b + b + n). For splitting the
polynomial p(l-1)(x) or its factors (denoted v(x)) over an (a, Bv,f,)-splitting disc, we apply
Theorem 2.1 for/~ -- B~ +/~ + dv of (7.4), where we define B~ and ~ by (7.1)-(7.3) and (7.5),
replacing the two inequalities by equalities in (7.1) and (7.3). We have dv < n, /3 = O(/3n)
(compare (7.2), (7.3)), and B* = O(B) (compare (6.12) and (7.1)). Consequently, assuming, as
before, that B = O(b), we obtain that /3 = O(b) and t~ = O(bn).

By taking into account the latter bounds on/~ and/~ , and by recursively applying the bounds
(7.6)-(7.9), Theorem 2.1, and the variant of Brent's principle, cited in the Introduction, we arrive
at the estimates of Theorem 1.1, for approximating the n zeros of p(x). |

REMARK 8.1. By applying some special techniques of binary segmentation (due to [61] and re-
discovered and extended at first in [62] and then in [1], in [63, Section 40], and in [64]), one
may further decrease the Boolean sequential time bound and the Boolean processor bound (by
roughly a logarithmic factor) [1,7].

9. A N A L G O R I T H M A N D C O M P L E X I T Y ESTIMATES
FOR SPLITTING A NORMALIZED POLYNOMIAL

OVER THE UNIT ISOLATED DISC

In this section, we will briefly recall a known splitting algorithm developed, in particular, by
Delves and Lyness [65], by Schrhder [17, pp. 295-320; 66], and, so far probably most extensively,
by Schhnhage [1] and Kirrinnis [7] (compare also [28, Appendices A and B]). The algorithm
splits a normalized polynomial over the unit disc D(0, 1). In Section 11, we will extend this
algorithm to splitting polynomial p(x) of (2.1),(2.2) over any fixed disc D(X, R), where X and R
satisfy (2.5). Together with our technique of recursive descending, to be introduced in Section 10,
this extension supports Theorem 2.1. The variant of Brent's principle (cited in the Introduction)
will be routinely applied in the following sections in order to improve processor bounds (by a
logarithmic factor) (compare, for instance, [39, Proposition 4.1.1]).

We will keep defining the norm by (1.7).

ALGORITHM 9.1. Splitting a normalized polynomial over the unit disc.

124 V . Y . PAN

INPUT: The values a and f satisfying (5.1) and (6.9), two integers k and n, 0 < k < n; positive
5, ~, c*, and B (see Remark 9.1 on the choice of g, ~, and c*), and a polynomial ~(y) satisfying
the following relations:

n n

P(Y) = ~-]~P~Y~ = P- r I (y - ~J), I I . ~ (y) l l = 1, i~n ~ 0, (9.1)
i = 0 j = ,

12jl <_ 1, j = 1, . . . ,k , (9.2)

f ~_12jl, j = k + l , . . . , n . (9.3)

OUTPUT: Approximations F~(y)-* and G,~_k(y) - * to the two factors, /~k(Y) = k ~i=l(Y 2i) and
Gn-k(Y) = P(Y)/~'k(Y) (compare Definition 2.2, where p(y), Fk(Y) and Gn-k(Y) replace p(x),
Fk(x) and Gn-k(X), respectively), satisfying the following bound:

IIZ, m)ll _< 2 -'~, z,m) = yz(y)va_~(y) -~(y) . (9.4)

C O M P U T A T I O N S .

1. Compute approximations s* to the power sums

k

si = E 2 ~ , i = 1 ,2 , . . . ,K, K = 2 r~°*k] < 2k,
j = l

of all the zeros of/~(y) lying in the disc D(0, 1), so as to satisfy the bounds

1
Is* - ~1 -< 2 ~ ' i = 1 , 2 , . . . ,K. (9.5)

2. Use the values s i* computed at Stage i in order to approximate the factor Fk(y) = ~j=lk (y_
~) of I0(Y) within the error norm bound 1/2 c-n, that is, to compute a monic polynomial
Fk (y) satisfying

Fk(Y) -- Fk(Y) --< 2 -c 'n. (9.6)

3. Approximate the factor Gn-k(Y) = P(Y)/Fk(Y) by a polynomial Gn-k(Y) so as to satisfy
the inequality

P(Y) - Fk(y)Gn-k(Y) _< 2 -en. (9.7)

4. Improve the approximations -~k(Y) and Gn-k(Y), computed at Stages 2 and 3, so as to
compute and to output -~ (y) and G*-k(Y) satisfying (9.4).

Stage 1 is performed by means of numerical integration (see [1, Section 12], or [28, Appen-
dix A]); that is, the values

1
8 i t , - - ~) <sy

are approximated by the sums

, 1 ~=,' .(,+l)qp'(~q).
si = ~/_. . , -~ ~(wq) "

"~ q=0 --" "

where i = 1 , . . . , K; w = exp(21rvFL--1/Q) is a primitive Q t h r o o t of 1, and a natural Q = Q(f) is
specified later on, as a function in f .

Algorithms for Approximating Polynomial Zeros 125

Stage 2 is the transition from the computed approximations s~ of the power sums s~ k) to the
initial approximations of the coefficients of -~k(Y). This stage is performed by means of a variant
of Newton-Hensel's lifting algorithm from [1, Section 13] (compare [39, pp. 34-35]).

Stage 3 is reduced to the division of i6(y) by the computed approximation Fk(x) to F'k(x)
(compare [64,67]).

Stage 4 relies on a sophisticated iteration algorithm of [1, Sections 10, 11, and 13] (also compare
[7; 17, pp. 295-320; 28, Appendices A and B; 66]).

REMARK 9.1. The choice of sufficiently large constants c*,~, and 5 (all of them independent of
and n) is specified in [1]. The constant 5 is chosen so as to ensure that the iteration algorithm
applied at Stage 4 converges sufficiently fast (so that ei+l <: Q1.5, where ~h denotes the error norm
bound in h iteration steps) provided that the initial approximations Fk(y) and Gn-k(Y) to ~'k(Y)
and G~-k(Y) satisfy (9.6) and (9.7). The constant c* is chosen so as to ensure the bound (9.7)
provided that (9.6) holds. The constant 5 is chosen so as to ensure (9.6) as long as the values s*
computed at Stage 1, satisfy (9.5).

According to the estimates of [28, Appendices A and B] and of [39, pp. 34-35], the arithmetic
cost of performing the four stages of Algorithm 9.1 is bounded as follows:

at Stage 1, by OA(lOgQ, Q),
at Stage 2, by OA((logn) 2, n~ log n),
at Stage 3, by OA(logn, n),
at Stage 4, by OA((logn)log(Bn),n).
Moreover, the analysis presented in [1, Sections 9-13,16; 2,4,7] shows that the precision of O(n)

bits suffices at Stages 1, 2, and 3, whereas the precision of O(/~ + n) bits suffices at Stage 4 (com-
pare Remark 9.1). Based on this analysis and on the known bounds (1.5) and OB (log d, d~ log d)
on the complexity of a multiplication and an addition/subtraction of two integers modulo 2 d - 1,
respectively, we extend the above arithmetic complexity bounds to the Boolean complexity esti-
mates. (The known asymptotic bounds on the Boolean cost of an integer division are either the
same (in the sequential case) or only slightly higher (in the parallel case) than ones for a multi-
plication [39,68], whereas the divisions required in Algorithm 9.1 are much less numerous than
multiplications, so the overall cost of performing all the multiplications involved in Algorithm 9.1
dominates the overall Boolean cost of performing the algorithm.)

The overall arithmetic and Boolean cost of performing Algorithm 9.1 depends on the choice
of Q = Q(f) at Stage 1. According to the estimates of [1,28], we need to choose Q of the order
n/ (f - 1). Since f is defined by (6.9), the latter bound on Q implies the choice of Q = O(n2),
and then, summarizing the above analysis gives us a splitting of/~(y) over the unit disc D(0, 1)
satisfying (9.4). The computational cost of this splitting is bounded according to parts (a) and (b)
of Theorem 2.1. In Section 11, we will show how to extend the cost bounds for splitting l~(y)
over D(0, 1) to ones for splitting over a subdisc of D(0, 1). Now, we observe that the arithmetic
cost bounds of part (b) of Theorem 2.1 are far from the optimum because the order of n 2 log n
arithmetic operations are involved in Stage 1 of Algorithm 9.1 (if Q is of the order n2). This does
not contradict our final arrival at nearly optimum Boolean cost bounds of part (a) of Theorem 1.1
because the latter arithmetic operations are performed with a lower precision, of O(n) bits (versus
O(/~ + n)-bit precision, generally required at Stage 4). Consequently, the Boolean cost bounds
(which more realistically measure the complexity of approximating polynomial zeros than the
arithmetic cost bounds do) are lower at Stage 1 than at Stage 4, at least in the case of our major
interest, where/~ is of the order bn and n = O(b) (compare (1.1) and Fact 2.6).

For theoretical purposes, however, we also wish to have an optimal or nearly optimal algorithm
in terms of arithmetic complexity, and in the next section we will decrease the overall arithmetic
cost of splitting given by part (b) of Theorem 2.1. We will achieve this goal by means of devising
an algorithm that lifts an isolation ratio of the input (splitting) disc D(0, 1) of Algorithm 9.1.

126 V . Y . PAN

Specifically, we will lift the ratio from f of (6.9) to f > 4 (say), which will decrease Q to the
level O(n). Furthermore, in Sections 12 and 13, we will show how to bound the precision of
computing by the resulting algorithm so as to make this algorithm supports the same (record and
nearly optimal) Boolean complexity bounds as ones obtained in parts (a) of Theorems 2.1 and 1.1
(provided that n = O(b)).

REMARK 9.2. Q has the order n / (f - 1) = cn2s under (4.11). (In particular, this is the order
of Q achieved by the algorithm of [3].) In comparison to the case of Q of the order O(n 2)
under (4.12), this implies an increase, by the factor s, of both arithmetic and Boolean cost
bounds of Theorems 2.1 and 1.1 on sequential time and number of processors, and we ought to
choose s of an order of at least n 1/3, to satisfy the assumptions of Theorem 4.1. Furthermore,
the arithmetic cost bounds have an order of at least Q log Q, which means, in particular, that
they stay above the level n2s for the algorithm of [3].

10. D E C R E A S I N G THE A R I T H M E T I C C O M P L E X I T Y
OF T H E S P L I T T I N G A L G O R I T H M

In this section, we will combine the known techniques (for Graeffe's recursive lifting and for
splitting a polynomial into two factors) with our new techniques (for recursive descending) in
order to increase the isolation ratio of a splitting disc for ~(y), from the value f of (6.9) to at
least 4. This will enable us to decrease the upper bound on the parameter Q (used at Stage 1 of
Algorithm 9.1) to the level O(n) and, thus, to decrease the upper bound on the overall arithmetic
computational cost of splitting.

ALGORITHM 10.1. Recursive lifting, splitting, and recursive descending.

INPUT: As in Algorithm 9.1.

OUTPUT: h monic polynomial F~(y), of degree k, satisfying (9.6) for Fk(Y) = F~(y).

COMPUTATIONS.

1. (recursive lifting). Set qo(Y) = P(Y)/Pn, for polynomial i~(y) of (9.1), set

u = l + log =O(logn) ,

and apply u iteration steps,

(10.1)

qj-FI(Y) = (-1) '~qj(-v~)qj (v fY) , j = O, 1,. . . ,u - 1. (10.2)

.

.

(The iteration (10.2) has been successively discovered and rediscovered at first by Dandelin,
n 2J then by Lobachevsky, and then by Graeffe [18].) Note that qj(y) = Hi=I(Y - 5~), j =

0 ,1 , . . . , u, so that D(0, 1) is an f2~-isolated disc, for the polynomial qj(y).

(splitting qu(y)). Deduce from (10.1) that f 2~ > 4 and apply Algorithm 9.1 for Q = O(n)
in order to split the polynomial ~ (y) = q~(y)/nq~(y)[[numerically, over the disc D(0, r2~),
into two factors, F~,u(y) and G~-k,u(Y) (compare [1,28]); obtain numerical factorization of
qu(y) as the product F~,~(y)Gn_k,u(y), where we write Gn_k,~(y) =][qu(Y)[[n-k,u(Y)"

(recursive descending). Recursively recover approximations to the factors Fk,u-j (y) (monic)
and Gn-k,u-j(y) in the splittings q~_j(y) = Fk,u-j(y)Gn-k,~-j(y) of the polynomials
q~_j(y) of (10.2) over the disc D(0, 1), for j = 1, 2 , . . . , u. Output the computed approxima-
tion to the factors Fk(y) = Fk,o(y) and G,~-k(y) = Gn-k,o(y) of the polynomials qo(Y) and
P(Y) = Pnqo(Y). Before the jth step of this recursive recovery (which we also call recursive
descending), we have the polynomial qu_j(y), computed at Stage 1, and an approximation

Algorithms for Approximating Polynomial Zeros 127

to the factor Gn-k,u-j+l(Y) of qu-j+l(Y) computed at the (j - 1) s t step (or at Stage 2 if
j = 1). At the jth step, first compute approximations Fk,u-j(Y) and Gn-k,u-j(-Y) to the
pair of the polynomials Fk,u-j(Y) and Gn-k,~-j(-y) , by observing that the latter pair of
polynomials fills up the (k, n - k)-entry of the Pad~ approximation table for the analytic

function Fk, -j(y)
= (10.3)

an-k,u-j+l (y2) Gn-k,~-j(-y)"

(We refer the reader to [39,69] on the definition and some basic properties of Padd tables.
To substantiate (10.3), observe the following equations:

q~,_j(y) = Fk,~,-j(y)Gn-k,~,-j(y),

and gcd(Fk,u-i(y), Gn-k,u-j(--Y)) = 1.) Ensure that

1 (10.4) qu-j(Y) - [~k,=-j(y)On-k,=-j(y) <_ 2e n {{q=_j(y)}{

(compare (9.7), where [[~5(y)[I = 1). Improve the computed approximations to Fk,u-j (y) and
Gn-k,=-j (y) by performing Stage 4 of Algorithm 9.1, where/~(y) is replaced by qu_j (y),
Fk(Y) by Fk,u-j(Y), and Gn-k(Y) by Gn-k,u-j(Y). Then go to the (j + 1) st step of the
recursive recovery if j < u or stop if j = u.

REMARK 10.1. The reader may examine two alternative versions of Stage 3 (see [8]), where
one either approximates the factors Fk,u-j(y) = gcd(q=_j(y), Fk,~_j+l(y2)) and G~-k,=-j(y) =
gcd(q=_j (y), Gn-k,=-j+l (y2)) or approximates only Fk,u-j (y) as the gcd and then applies Stages 3
and 4 of Algorithm 9.1 to compute some refined approximations to both factors. (Here, gcd(u(x),
v(x)) denotes the monic greatest common divisor of two polynomials u(x) and v(x).) The known
algorithms for computing the gcds [39] lead to the same arithmetic complexity estimates as for
computing the Pad6 approximations.

Next, let us estimate the arithmetic complexity of Algorithm 10.1 and of our solution of the
entire splitting problem.

By using the FFT based algorithms for polynomial computations [39, Chapter 1], we perform
Stage 1 of Algorithm 10.1 at the cost bounded by OA ((log n) 2, n). According to [28, Appendices A
and B], the cost of performing Stage 2 is OA((log n) 2, n) too.

At each of the u steps of Stage 3 of Algorithm 10.1, we may compute the Pad6 approximation
of the analytic function of (10.3) at the cost OA((logn)2n, 1) [39], which gives us the bound
OA((logn)3n, 1) for all the u steps (compare (10.1)).

To compute the Pad6 approximation of (10.3) in parallel, we reduce the problem to the so-
lution of a nonsingular Toeplitz linear system of n - k equations (see [39, equation (2.5.6)]),
associated with the entry (k, n - k) of the Pad~ approximation table for the analytic function
q~(y)/Gn-k#+l(y 2) = Fk,i(y)/Gn-k#(-Y); this entry is to be filled up with the nondegenerating
pair of polynomials (Fk#(y), Gn-k#(-y)) , i = u - j. (Nonsingularity and nondegeneration follow
since the degrees of the polynomials Fk#(x) and Gn-k,i(x) are known to be exactly k and n - k,
respectively.) At this point we apply the following theorem.

THEOREM 10.1. The exact solution of a nonsingular Toeplitz linear system of m equations with
an integer coefficient matrix T or with a matrix T filled with Gaussian integers (of the form a +
bx/-~, for integers a and b) can be computed at a cost O A ((log m) 2, m s / log m), by deterministic
Mgorithms, and at a cost OA((logm) 2 log L, m), by a randomized Las Vegas algorithm (using
only a single random parameter), provided that L = m log [ITII and that IITII m is an upper bound
on [det T[. Furthermore, both of these algorithms can be performed with the precision of O(L)
bits if the right-hand-side vector of the linear system is filled up by integers or Gaussian integers
whose absolute values are less than 2 L.

128 V.Y. PAN

REMARK 10.2. The estimates of Theorem 10.1 have been deduced in the case of a more general
class of nonsingular Toeplitz-like linear systems (see [39,70]).

The deterministic bound of Theorem 10.1 has been obtained in [70], by means of the techniques
of parametrized Newton's iteration (introduced in [70] and also applicable to the solution of
nonsingular Toeplitz-like linear systems of m equations over any field of constants having a
characteristic 0 or greater than m). The randomized bound of Theorem 10.1 has been obtained
in [39, p. 356], by means of straightforward combination of the results and techniques of [71-74].
(Specifically, the iterative algorithms of [71,72] have been originally proposed for parallel inversion
of a general nonsingular matrix and relied on the combination of the variable diagonal techniques
of [71,72] with the customary techniques of p-adic lifting. In the case of Toeplitz or (more
generally) Toeplitz-like input matrices T, these algorithms have been made more effective in [39]
(so as to support Theorem 10.1). This has been achieved by means of incorporation of the
techniques of [73,74], which, in particular, include a nontrivial algorithm for cutting the length
of displacement generators of the computed approximations to T-1.)

Since the output error bounds of (10.4) suffice for our purpose at the recursive descending
stage of Algorithm 10.4, it follows that we only need to apply Theorem 10.1 in the case where
log L = O(logm), m = n, and this application will give us the bounds OA((logn) 3, n2/logn)
(deterministic) and OA((log n) 4, n) (Las Vegas randomized) on the parallel cost of the solution of
the u = O(log n) Toeplitz or Sylvester linear systems at Stage 3 of Algorithm 10.1. (In Sections 12
and 13, we will show that, furthermore, we only need to deal with the case where L = n °(n).)

By summarizing the above complexity estimates for Algorithm 10.1 and by combining them
with ones of Section 9, for Q = O(n), we deduce the following result.

PROPOSITION 10.1. At a cost bounded according to parts (c) and (d) of Theorem 2.1, a normal-
ized polynoraial ~(y) of (9.1)-(9.3) can be split numerically, over the unit disc D(O, 1), so that
the two computed factors F~(y) and G*-k(Y) satisfy (9.4).

11. E X T E N S I O N TO S P L I T T I N G A P O L Y N O M I A L
O V E R A N Y DISC

In this section, we will extend the splitting Algorithms 9.1 and 10.1 from the case of a poly-
nomial/3(y), which satisfies (9.1)-(9.3), to the case of splitting any polynomial p(x) over any
f-isolated disc D(X, R), assuming that (2.1), (2.2) and (2.5) hold. To obtain such an extension,
for splitting over an f-isolated disc, we write

x = X + yR, (11.1)
(x - x)

Y - R ' (11.2)

q(Y) (11.3)
= II (y)ll'

~(y) = p(x) = p(X + yR). (11.4)

Equations (11.1) and (11.2) transform the discs D(X, R) = {x : I x - X I _< R} and D(0, 1) = {y :
lYl -< 1} into each other. Equations (11.3) and (11.4) transform io(Y) into p(x) (and vice versa).
We will also use the hounds IX] + R < 1, R _> 2 -B" of (2.5). Now, if D(X, R) is an (a, f)-splitting
disc for p(x) or an (a, B, f)-splitting disc for p(x), then we will apply the following algorithm.

ALGORITHM 11.1.

INPUT: Two integers, k and n, 0 _4 k _< n; a positive e, a polynomial p(x) of (2.1), and an
f-isolated disc D(X, R) containing exactly k unknown zeros of p(x), enumerated as z l , . . . , zk, so
that D(X, R) ~ zi; p(zi) = O, i = 1, . . . , k.

Algorithms for Approximating Polynomial Zeros 129

OUTPUT: Approximations F~(x) and G~_k(x) to the factors Fk(x) = l-I~=l(X-Zi) and Gn-k(x) =
p(x)/Fk(x), respectively, satisfying (2.4).

COMPUTATIONS.

(a) Compute the polynomial p(y) of (11.3).

(b) Recall Algorithms 9.1 and 10.1 in order to compute a pair of approximate factors ~'~(y)
(monic) and G[-k(Y) of p(y) satisfying (9.4), for an appropriate /~.

(c) Compute and output monic approximate factors of p(x) satisfying (2.4):

F~(x) = P~(y)Rk = F~ ((X R-X)) R k,

an-k(Y)llq(y)ll -* C._k ((z - X) / R) II (y)ll
G~_k(x) = Rk = Rk

(11.5)

(11.6)

The arithmetic cost of performing Stages (a) and (c) is bounded by 0 A (log n, n), due to Fact 2.1,
and is clearly dominated by the bounds (given in Theorem 9.1 and Proposition 10.1) on the arith-
metic cost of performing Stage (b). Furthermore, shifting and scaling the variable does not require
the use of precision of computations any higher than the precision of the approximation to the co-
efficients of the input and/or output polynomials in the splitting algorithms (compare [1]). Thus,
the Boolean complexity of Algorithm 11.1 is also dominated by the Boolean cost of performing
its Stage (b).

To complete the proof of Theorem 2.1, we will next show that the bound (9.4) for P >
B* + n + log(l/e) implies the bound (2.4).

PROPOSITION 11.1. Equations (9.1) and (9.4) imply (2.4)/or e -- 2 B*+n-/].

PROOF. Recall from (9.4) that/~(y) /X((x X) /R) -* -* = = - = F~ (y)Gn_k(y) -~(y) and write A(x)
F~(x)G*_k(X) -p (x) . Obtain from (11.1)-(11.6) that A(x) = £(y)ll~l(y)ll. Therefore,

Ila(x)ll= £ ((XRX)) Ilq(u)ll. (11.7)

The equation A(y) = £((x - X) /R) , together with (2.5), implies that [[/~((x - X)/R)I [<_
I[£(y)H(2/R) n < [[/X(y)[[2 B*+n.

On the other hand, by applying (11.4), we obtain []~(y)[[= [[p(X+yR)H =]] ~ i pi (X+yR) ' [[_<
~-~i [pi[([X[+ R) i. Now, recall (2.5) and deduce that the right-hand side of the latter inequality
and, therefore, also I]q(Y)H cannot exceed ~ i [Pil = [[p(x)]l. Substitute the latter upper bounds
on [[A((x - X)/R)[[and]I4(Y)[[into (11.7) and obtain Proposition 11.1. |

Due to Algorithm 11.1 and Proposition 11.1, the proof of Theorem 2.1 has been completed.]

12. R E D U C T I O N O F T H E C O N T R O L O V E R T H E P R E C I S I O N O F
T H E C O M P U T A T I O N O F R E C U R S I V E D E S C E N D I N G T O T H E

S T U D Y O F P E R T U R B A T I O N O F P A D I ~ A P P R O X I M A T I O N

Analysis along the lines of [1] shows that O(/~ + n)-bit precision of computing suffices at all
stages of Algorithms 9.1 and 10.1, except for the stages of solving the auxiliary Toeplitz linear
systems of equations, at which we seek polynomials -~k,~-j(Y) and Gn-k,u-j(Y) satisfying the
bound (10.4). Our next objective is to prove that O(n 2 logn)-bit precision suffices at the latter
stages. By combining such a precision estimate with the arithmetic cost bounds of Sections 9
and 10, we arrive at the same Boolean cost bounds as ones obtained in parts (a) of Theorems 1.1
and 2.1 (provided that bn = O(b) and n = O(b)).

130 V . Y . PAN

We will achieve our goal by analyzing the effect of perturbing the input polynomials, Pu_j (y),
of the Pad~ approximation problems, where

qu-j(Y) Fk,u-j(y) (12.1)
P~'-J(Y) = Gn-k,u-j+l(y) mod yn+l = Gn-k,~,-j(-y) mod yn+l

(compare (10.3)). Let Pu-j(Y) + Pu-j(Y) denote the perturbed polynomials, where we assume
that

liPs-3 (Y)II < IIP~-J (Y)ll n C n , (12.2)

for some fixed positive constant C. For our purpose, it suffices to show that such a perturbation
of Pu-j(Y) changes the norm of the polynomial Fk,~,-j(Y)Gn-k,~,-j(Y) of (10.4) by at most 2 -~n,
where C = C(C) ~ c~ as C ~ c~. Indeed, in this case, we may truncate the value of each
coefficient of P~_j (y) so as to represent it with O(n log n) bits, without violating the bound (10.4)
on the error of the output approximation to q~,_j(y). Then, by scaling the polynomial Pu-j(Y),
we may make all its coefficients Gaussian integers, of the form a ÷ bv/'ZT, where a and b are
integers, and [a I + [b[_ n °(n). Then Theorem 10.1 will imply that O(n 2 log n)-bit precision of
computing will suffice at the stages of solving the auxiliary Toeplitz linear systems.

Next, let us show that the perturbation of Pu-j(Y) satisfying (12.2) does not affect the
bound (10.4). For convenience, we will scale the variable y and the polynomials Pu-j(Y), pu-j(Y),
Fk,u-j (y), and Gn-k,u-j (Y), so as to shift from these variables and polynomials to a new variable
x = y/~, for some

> 1, (12.3)

and to polynomials Q(z) = aP~,_j(y), q(x) = apu-j(y), F(x) = j3Fk,~,_j(y), and G(x) =
~Gn-k,u-j(Y), where the scalars ~ = ~ _ j , a = a~_j , ~ = 13~_j, and "r = "r~-j have been
chosen such that

F(z) = Q(z)G(x) mod z n+l, (12.4)

k

f (x) = I I (x - 2i), [2i[_< -,1 i = 1,. . . , k, (12.5)
i =1

G(x) = U x - ,]~i]->qo, i = k + l , . . . , n . (12.6)
i=k-b l

In particular, the relations (12.3)-(12.6) imply that the pair (F(x), G(x)) fills up the (k, n)-entry
of the Pad~ approximation table (also called Padd table) for Q(x) and that the disc D(0, 1/~)
is ~2-isolated, with respect to the polynomial F(x)G(x). (The scaling x = y/~ implies the
latter property if f = ~2 and if the disc D(0, 1) is f-isolated with respect to the polynomial
q~,_j(y).) Hereafter, let (F(x) + f(x), G(x) + g(x)) denote the pair of polynomials that fill up the
(k,n - k)-entry of the Pad~ table for Q(x) ÷ q(x); that is,

Fix) ÷ f i x) = (Q(x) + q(x))(G(x) q- g(x)) mod x n+l, (12.7)

degf (x) < k, degg(x) < n - k. (12.8)

Here and hereafter, deg u(x) denotes the degree of a polynomial u(x). By the virtue of Frobenius
theorem (see [69, Theorem 3.1]), the equations (12.4) and (12.7), together with the bounds on
the degrees of F(x), f ix), G(x), and g(x) implied by (12.5), (12.6), and (12.8), uniquely define
the rational functions F(x)/G(x) and (F(x) ÷ f(x))/(G(x) + g(x)), for fixed Q(x) and q(x). It
follows that the relations (12.4)-(12.6) uniquely define the polynomials F(x) and G(x) too, for a
fixed Q(x).

Now, we may state our remaining goal as the proof of the following fact, which specifies that the
Padd approximation of Q(x) is well conditioned in the classical sense (compare [39, Chapter 3]).

Algorithms for Approximating Polynomial Zeros 131

FACT 12.1. There exist two positive constants Co and C1 such that if the relations (1 2 . 3) - (1 2 . 8)

hold and if IIq(x)H < (2 + 1A0) -°°n, then

1) C~n
IIf(x)ll + Hg(x)ll <_ Hq(x)H 2 + (qo 1------~

We will prove Fact 12.1 in the next section. In this section, we will use this fact in order
to obtain its extension to the case where the bound deg f (x) < k, of the assumption (12.8), is
replaced by the weaker bound, degf (x) _< k, provided that all other assumptions of Fact 12.1
hold and that

IIq(x)H <r lnn -Gin, ~ < m i n ~ 1 (1 - 1 Ao) (12.9)
- 1. 1 2 8 ' 9 J "

First consider a pair of polynomials (u(x), v(x)) filling up the (k, n - k)-entry of the Pad6 table
for a fixed polynomial P(x). Unless P(x) is identically 0, we can make the choice of such a
pair unique by requiring that u(x) be monic and have only constant common factors with v(x).
(Uniqueness of u(x) and v(x) follows for this normalization since u(x)/v(x) is unique, by the
virtue of Frobenius theorem.)

Clearly, the pair (F(x), G(x)) of (12.5) and (12.6) has been normalized in the above way. Let
us assume that the pair (F(x) + f(x), G(x) + g(x)) has also been normalized in the same way.
Then, deg f (x) < k if and only if

deg(F(x) + f(x)) = k.

It remains to prove the following fact.

FACT 12.2. The bound (12.9) implies (12.10).

(12.10)

PROOF. Consider the (n + 1)-dimensional linear space, SPACE(n + 1), of the coefficient vectors
of polynomials A(x) having degrees at most n. Let (Fzx(x), GA(X)) denote the normalized pair of
polynomials filling up the (k, n - k) - e n t r y of the Pad~ table for the input polynomial Q(x)+q(x)+
A(x). Then, clearly, the coefficient vectors of the polynomials A(x) for which degF~(x) < k
form an algebraic variety of a lower dimension in SPACE(n + 1), and therefore, there exists a
sequence of polynomials {Ah(x), h = 1, 2 , . . .} such that deg FAh(X) = k, for h = 1, 2 , . . . , and
[[Ah(x)[[--* 0 as h --* ~ . Since degFzxh(x) = k, we may apply Fact 12.1 to the polynomial
Q(z) + q(x) + Ah(x) replacing the polynomial Q(z) + q(z) and obtain that

IIF~(x) - F(x)ll +]lG~.(x) - G(x)ll _< nC'~llq(x) +/Xh(X)ll. (12.11)

The inequality (12.11) bounds the norms of the (m + 2)-dimensional row vectors (fzxh, Gzxh).
(Here and hereafter, we use the notation /3 for the coefficient vector of a polynomial P(x).)
Therefore, the sequence of vectors (-~h, G ~) , h = 1, 2 , . . . , has a subsequence, (ffah(,), G~h(,)),

i ---- 1, 2 , . . . , converging to some (m + 2)-dimensional vector, (F*, G*).
Let F*(x) and G*(x) be two polynomials having the coefficient vectors F v* and G*, respectively.

By considering (12.11) for h --* oo, we obtain that

IIF*(x) - F(x)I I + HG*(x) - G(x)H <_ nClnllq(x)l I.

We will next show that

F*(x) = (Q(x) + q(x))G*(x) mod x n+', (12.12)

that is, that the pair (F*(x), G*(x)) fills up the (k, n - k)-entry of the Pad~ table for the input
polynomial Q(x) + q(x). For this purpose, we recall that any fixed entry of the Pad~ table for
any fixed input polynomial P(x) can be obtained from a singular homogeneous linear system of

132 V.Y. PAN

equations, Lp, whose coefficients (except for some zeros and ones at some fixed places) are the
coefficients of P(x) (compare [39, equation (2.5.5)]). We observe that such systems Lp defined
by input polynomials P(x) = Q(x) + q(x) + Ah(o(x) have coefficients that converge (as i --* oo)
to the coefficients of the linear system LQ+q defined by the input polynomial Q(x) ÷ q(x). (The
convergence follows since Ah(i)(x) --+ 0 as i ~ co.) On the other hand, the system Lp for

P(x) = Q(x) ÷ q(x) ÷ Ah(~)(x) defines the vector (FAh(,~,G~h(,)) that converges to the vector

(F*,G*) as i ~ co. It follows that the latter vector must satisfy the linear system Lp for
P(x) = Q(x) + q(x) + Ah(i)(x) , and therefore, (12.12) holds.

Thus, we may identify F*(x) with F(x) ÷ f(x) and G*(x) with G(x) ÷ g(x) and rewrite our
previous bound as IIf(x)II + IIg(z)ll <- nClnl]q(x)ll" By combining the latter inequality with (12.5),
(12.6), (12.9), and Fact 2.7 applied to p(x) = Q(x) and p*(x) = Q(x) ÷ q(x), we obtain that all
the k zeros of F(x) ÷ f(x) and no zeros of G(x) + g(x) lie in the unit disc D(0, 1). Therefore,
(12.10) holds, and the two polynomials, F(x) ÷ f(x) of degree k and G(x) + g(x) of degree n - k,
have only constant common divisors, so that Fact 12.2 follows. |

Facts 12.1 and 12.2 give us estimates sufficient for our purpose. Indeed, we have the f-isolated
splitting disc for qo(Y) and for f of (6.9), and since each Graeffe's step (10.2) squares the isolation
ratio of the disc D(0, 1), we may choose ~ = (1 + 1/(120an)) 2'-' for a of (4.2),(4.3), when
we set Q(y) = P~(y) (compare (12.1)). Even for i = 0, where ~ is minimum, we have ~ >
1 ÷ 1/(250an). Now, application of Facts 12.1 and 12.2 immediately implies that the bound (10.4)
will be preserved under any perturbation of the polynomial Pu-j (Y) of (12.1) that satisfies (12.2)
for a sufficiently large C.

13. ANALYSIS OF THE P E R T U R B A T I O N
OF PAD]~ APPROXIMATION

We will start our proof of Fact 12.1 with some auxiliary results.

LEMMA 13.1. Let D be a disc on the complex plane, let F denote its boundary circle, let f(x)
and F(x) be two polynomials such that degf (x) < degF(x) and F(x) has all its zeros strictly
inside the disc D, so that F(x) ~ 0 for x E F, and let R(x) be a rational function having no poles
in the disc D. Then, for any x, we have

1 ~r f(t) F(t) - F(x) dE,
f(x) = 21rx/-~ F(t) t x

~rR(t) F(t~ - F(x) dt = O.
x

(13.1)

(13.2)

PROOF. (Compare [1, Proof of Lemma 10.1; 58, III, Ch. 4, No. 163; 75, Proof of Lemma 4.6].)
Cauchy's integral theorem [76] immediately implies (13.2). Furthermore, Cauchy's integral for-
mula [76] implies equation (13.1) for x being any zero of F(x). Since deg f (x) < degF(x) = N,
the equation (13.1) holds for all x if F(x) has N distinct zeros. Generally, for any positive e,
there exists a such that 0 < a < e and F(x)+c~ has N distinct zeros, so (13.1) holds for F(x)+c~
replacing F(x). For ~ --* 0, we arrive at (13.1). |

REMARK 13.1. Lemma 13.1 can be immediately extended to the case where D is any open set
on the complex plane whose boundary F consists of a finite number of piecewise regular Jordan
curves. One may also relax some of the assumptions of Lemmas 13.2 and 13.4.

LEMMA 13.2. Let F(x), f(x), G(x), g(x), Q(z), and q(x) be polynomials satisfying (12.3)-(12.8).
Let

w(x) = (G(x) + g(x))G(x)q(x) mod X n+l, deg w(x) < n. (13.3)

Algorithms for Approximating Polynomial Zeros 133

Then

where

IIf(x)ll <- MIIF'(x)II <_ MnllF(x)ll,

M - - m a x
Ixl=l F(x)G(x)

PROOF. Subtract (12.4) from (12.5) and obtain f(x) = (Q(x) + q(x))g(x) + q(x)G(x) rood x ~+1.
Multiply both sides of this equation by G(x), substitute G(z)Q(z) = F(x) (from (12.4)), and
obtain that G(x)f(x) = F(x)g(x)+(G(x)+g(x))G(x)q(z) mod x ~+1. Deduce from (12.5), (12.6),
and (12.8) that deg(G(x)f(x) - F(x)g(x)) <_ n and rewrite the latter equation as follows:

G(x)f(x) =F(x)g(x) +w(x), (13.4)

where w(x) is defined by (13.3). Divide both sides of (13.4) by F(x)G(x) and obtain that

f(x) g(x) w(x)
F(x) C(x) F(x)G(z)

Substitute this equation into (13.1), then apply (13.2) for R(t) -- g(t)/G(t), and obtain that

1 / w(t) F (t) - F (X) d t .
f(~) - 2.J-:-i F(t)C(t--------) t -

Apply this identity coefficientwise and deduce Lemma 13.2.

The estimate of the next lemma is immediate.

LEMMA 13.3. Let two polynomials F(x) and G(x) satisfy (12.5) and (12.6) for some ~ > 1. Then

rain]F(x)G(x)l > ~_,
Ixl=l

where
1

~_ -- 1 - - . (13.5)

Next, we will deduce the following result.

LEMMA 13.4. Suppose that the relations (12.3)-(12.8), (13.3), and (13.4) hold. Then

where

IIg(x)ll < 2 ~ - 1 ~ -k (llf(x)tl ÷ ~-kl lq(x)l l)
- (1 - 2"- l~-k l lq(x)H) '

~+ = 1 + ! < 2. (13.6)

PROOF. Recall that deg(F(x)g(x)) <_ n, and deduce from Fact 2.4 that llF(x)ll llg(x)l I <_ 2 n-I x
llF(x)g(x)}l. We have llF(x)ll _> 1, due to (12.5), and consequently, llg(x)l I <_ IIF(x)H llg(x)ll <_
2n-'llF(x)g(x) H. Substitute the bound]] F(x)g(x)]] <_ ItG(x)II]] f(x)II + IIw(x)II, implied by (13.4),
and obtain that IIg(x)ll < 2n-l(llG(z)ll IIf(z)ll + Itw(x)lt). From (13.3), we have the inequality
IIw(x)ll < (llG(x)ll + IIg(x)ll)IIG(x)ll IIq(x)ll. Combine the two latter inequalities and the bound
iiG(x)ll < ~_-k, implied by (12.6) and (13.6), and obtain that

IIw(x)ll < ~o~ -k (~ - k + IIg(x)ll)IIq(x)ll, (13.7)

Ilg(x)ll < 2n-l(~o~-kllf(x)ll + ~ _ - k (~ - k + IIg(x)ll)IIq(x)ll) = 2n- l~ -k (l [f (x) l l + ~--kl lq(x)l l +
n l n k IIg(x)ll Hq(x)ll). It follows that IIg(x)ll (1 - 2n-l~_-kllq(x)ll) _< 2 - ~+- (llf(x)ll + ~-kllq(x)ll),

and we arrive at Lemma 13.4. |

134 V . Y . PAN

COROLLARY 13.1. Assume the relations (12.3)-(12.8), (13.5), and (13.6) and let 2"llq(x)ll _<
1/¢p~_ -k, n2'~+l~-k(~+/~_)"Hq(x)[[<_ 1. Then

(a) U(x)ll < 4n~-k(~+/~-)"llq(x)ll,
(b) IIg(x)ll _< 2"~-"-=k(1 + 4n(~+/~-)")llq(x)ll.

PROOF. Combining the first of the two assumed upper bounds on][q(x)][with Lemma 13.4 implies
that

Ilg(x)l[_< 2"~_ -j` (l[.f(x)ll + ~-kl lq(x) l l) . (13.8)
On the other hand. from Lemmas 13.2 and 13.3. we have

U(~)II < nllF(x)llV: n max Iw(x)l.
I=1=1

Now. we deduce that IIF(x)ll <_ epk (see (12.5) and (13.6)) and maxl=l= 1 Iw(x)l <_ IIw(x)l I <
n - k ~ n - k ~+ (~+ + Hg(x)ll)IIq(x)l] (compare (13.7)). It follows that

IIf(x)ll _< n (~ - k + IIg(x)ll)IIq(x)ll.

Combine this bound with (13.8) and obtain that

I l f(x)] l <_ n (~_-k ÷ 2n~_-k (l l f (x)[I + ~_-'~l[q(x)l [))]lq(x)tl

-- n ~ -k -2-+ (1 + 2" (ll,f(x)ll + ~-kl lq(x)l l)) Ilq(x)ll.

Therefore,

(1-n2n~p~.-k(~--2-+) '~ , ,q(x),[),,f(x),,< n ~ - k (~--2-+) n (1+ 2"~o~_-k,,q(x),,) [,q(x),,.

Recall the second upper bound on [[q(x)l I assumed in Corollary 13.1 and deduce that IIf(x)JJ <
2n~_-k(~+/~_)n(1 + 2n~_-k[[q(x)[[)[[q(x)[[. Simplify this expression by using the first upper
bound on Hq(x)[[assumed in Corollary 13.1 and arrive at part (a) of Corollary 13.1. Combine
the bounds of part (a) and (13.8) and obtain part (b) of Corollary 13.1. |

Fact 12.1 immediately follows from Corollary 13.1.

A P P E N D I X A
A C O R R E L A T I O N B E T W E E N T H E C A R D I N A L I T I E S O F

I N T E R S E C T I O N A N D U N I O N

PROPOSITION A.1. Let $1, $2, . . . , Sn denote R finite sets, let U denote their union and I their
intersection. Let IS[denote the cardinality of a set S. Then

h

I/I -> ~ IS, I - (h - 1)IUl.
i = 1

PROOF. We only need this result for h = 3 and will prove it for this h by following [3].
Let sl and slj denote the set cardinalities, si -- [Si - (Sj U Sk)[, sij =](Sin Sj) - I[, where

i, j , k are distinct integers chosen among 1, 2, and 3 (in any order), Then, clearly,

[S l l ~-- 81 -~- 812 n u 813 + [I[,

IS2L = s2 + s12 + s23 + III,

IS3[~--- 83 -[- 813 Jr- 823 Jr- I l l ,

81 "[- 82 "~- 83 -Jr- 812 -[- 813 "~- 823 Jr- I l l =]U].

Algorithms for Approximating Polynomial Zeros 135

By subtracting twice the latter equation from the sum of the preceding three equations, we obtain
that

3

IZl - Sl - - 82 - - 83 = E I&1 - 2 1 u i ,

i = 1

which implies Proposition A.1 for h = 3, since si _> 0, i = 1,2,3. |

In Section 3, we use Proposition A.1, in the case where S1, $2, and $3 denote the three sets of
the zeros of p(x) lying in three fixed annuli.

A P P E N D I X B
E X T E N D I N G ROLLE'S T H E O R E M TO THE C O M P L E X CASE

We will follow [27] and will prove part (a) of Theorem 4.1. We will start with recalling a little
known but simple lemma.

LEMMA B.1. [27] Let vl, . . . , vk denote the vertices of a simplex a in the (k - 1)-dimensional real
space R k-1. Let c l , . . . ,ck be k complex points in C and let a : R k - 1 ~ C be the real aftJne

map taking vi to ci. Let f be an analytic function on the image of a. Let [c1, c2 , . . . , ck] f denote
the divided difference operator applied to f and let v (t) be the standard volume form on R k-1 .
Then

[c ,c2, .,ck]S = s dv (B.I)

PROOF OF THEOREM 4.1, PART (a). Apply Lemma B.1 where k = l, f (x) = p(x), and e l , . . . , ck

are the zeros ofp(x). Then the left-hand side of (B.1) vanishes. Therefore, so does the right-hand
side too. This means that its integrand must vary by at least 7r, and this implies the condition
on the zeros ofp(k-1)(x) of part (a) of Theorem 4.1 for k = I. |

A P P E N D I X C
I M P R O V I N G AN A R I T H M E T I C TIME B O U N D

Let us decrease the arithmetic time bounds of Theorems 1.1, 1.2, and 2.1, by performing Stage 3
of Algorithm 10.1 as follows.

SUBALGORITHM C.1. (Compare Remark 10.1.) Denote ru(y) = Fk,u(y), then recursively com-
pute

r~-i(y) = r~-i+l(y 2) mod q~_~(y), for i = 1, 2 , . . . , u - 1, (C.1)

and finally compute and output

Fk(x) = gcd (qo(x), r, (x2)). (C.2)

To prove correctness of this algorithm, first obtain from (10.2) the following extension of (10.3):

(C.3)

On the other hand, (10.2) implies that qi(x) divides q~+l(x 2) for every i, so that

g c d (q i (x) , F k , ~ (x 2 ~)) = g c d (q i (x) , q ~ + l (x 2) , F k , u (x 2 ~)) , f o r i = O , 1 , . . . , u - 1 .

Therefore, recursive modular reduction of Fk,~(x2~), performed according to (C.1) and (C.2),
defines the desired gcd of (C.3). |

136 V.Y. PAN

REMARK C.1. Subalgorithm C.1 can be modified if we redefine ru(y) as Gn-k,u(y). Then
application of (C.1) will enable us to output Gn-k(x) = gcd(qo(x),rl(x2)), since Gn-k(x) =

2 - gcd(qo(z), G,~-k,u(x)).

Performing Stage 3 of Algorithm 10.1 by means of Subalgorithm C.1, we replace u - 1 (out
of u) computations of the gcds by polynomial divisions, which enables us to improve the bounds
of parts (d) of Theorems 1.1 and 2.1 as follows:

SACz (b, n) = OA ((log n) 2 (log b) n, 1),

SAC~ (b,n) : OA ((logn)2 (logb) n, 1) ,

SACs (B, n) = OA ((n log n) log/3, 1).

Similar minor improvements follow for parts (b) and (c) of Theorems 1.1 and 2.1.
Alternatively, exactly the same minor asymptotic improvements of the estimates of parts

(b)-(d) of Theorems 1.1 and 2.1 can be obtained by replacing Algorithm 10.1 and Subalgo-
rithm C.1 by Algorithm 1 of [5], by Algorithm 3.1 of [6] (adjusted to the problem of splitting
p(x) into two factors, rather than to approximating all the zeros of p(x)), or by the algorithm
of [77]. |

REMARK C.2. Subalgorithm C. 1 involves recursive polynomial divisions, which requires us to in-
crease the precision of the computations and their overall Boolean cost. The algorithms of [5,6,77]
have the same feature. As a result, application of all these algorithms would only support Boolean
complexity bounds that are much inferior to ones of parts (a) of Theorems 1.1 and 2.1.

R E F E R E N C E S
1. A. Sch6nhage, The fundamental theorem of algebra in terms of computational complexity, (manuscript),

Math. Dept., University of Tiibingen, Tiibingen, Germany, (1982).
2. V.Y. Pan, Sequential and parallel complexity of approximate evaluation of polynomial zeros, Computers

Math. Applic. 14 (8), 591-622 (1987).
3. C.A. Neff and J.H. Reif, An O(nl+¢logb) algorithm for the complex root problem, In Proc. 35 ~a Ann.

IEEE Syrup. on Foundations of Computer Science, pp. 540-547, IEEE Computer Society Press, (1994).
4. C.A. Neff, Specified precision polynomial root isolation is in NC, Journal of Computer and System Sciences

48, 429-463 (1994).
5. D. Bini, Complexity of parallel polynomial computations, In Proc. Parallel Computing: Methods, Algo-

rithms, Applications, (Edited by J. Evans and C. Nodari), pp. 115-126, Adam Hilger, Bristol, (1989).
6. D. Bini and L. Gemignani, On the complexity of polynomial zeros, SIAM J. on Sci. Stat. Computing 8

(21), 781-799 (1992).
7. P. Kirrinnis, Polynomial factorization and partial fraction decomposition by simultaneous Newton's itera-

tion, (extended abstract), (1994).
8. V.Y. Pan, Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex

polynomial zeros, In Proc. 27 *h Annual ACM Symposium on Theory of Computing, pp. 741-750, ACM
Press, New York, (1995).

9. H. Weyl, Randbemerkungen zu Hauptproblemen der Mathematik, II, Fundamentalsatz der Algebra and
Grundlagen der der Mathematik, Math. Z. 20, 131-151 (1924).

10. L.E.J. Brouwer and B. de Loer, Intuitionisher Beweis des Fundamentalsatzes der Algebra, Amster-
dam Konigl. Acad. Van Wetenschapen, Proc. 27, 186-188 (1924); also in Coll. Works, (Edited by
L.E.J. Brouwer), North-Holland, Amsterdam, (1975).

11. H. Samet, The quadtree and related hierarchical data structures, Computing Surveys 16 (2), 187-260 (1984).
12. H. Senoussi, A quadtree algorithm for template matching on pyramid computer, Theor. Comp. Science

136, 387--417 (1994).
13. V.Y. Pan, Weyl's quadtree algorithm for the unsymmetric eigenvalue problem, Appl. Math. Left. 8 (5),

87-88 (1995).
14. C.F. Gauss, Demonstratio nova theorematics omnen functionem algebraicam rationalem integram unius

variablis in factores reales primi vel secondi gradus resolvi posse, In Gesammelte Werke, Ill, (1799); also in
C.F. Gauss, Werke, Band X, Georg Olms Verlag, New York, (1973).

15. E.T. Bell, The Development of Mathematics, McGraw-Hill, New York, (1940).
16. C.A. Boyer, A History of Mathematics, Wiley, New York, (1968).
17. B. Dejon and P. Henrici, Editors, Constructive Aspects of the Fundamental Theorem of Algebra, Wiley,

London, (1969).

Algorithms for Approximating Polynomial Zeros 137

18. A.S. Householder, The Numerical Treatment of a Single Nonlinear Equation, McGraw-Hill, New York,
(1970).

19. P. Henrici, Applied and Computational Complex Analysis, Vol. 1, Wiley, New York, (1974).
20. S. Smale, The fundamental theorem of algebra and complexity theory, Bull. Amer. Math. Soc. 4, 1-36

(1981).
21. V.Y. Pan, Solving a polynomial equation: Some history and recent progress, (preprint), (1995).
22. A.V. Aho, J.E. Hopcroft and J.D. Ullman, The Design and Analysis of Computer Algorithms, Addi-

son-Wesley, Reading, MA, (1976).
23. R. Karp and V. Ramachandran, A survey of parallel algorithms for shared memory machines, In Handbook

for Theoretical Computer Science, (Edited by J. van Leeuwen), pp. 869-941, North-Holland, Amsterdam,
(1990).

24. P. Turan, On the approximate solution of algebraic functions (in Hungarian), Comm. Math. Phys. Class
Hung. Acad., XVIII, 223-236 (1968).

25. P. Henrici and I. Gargantini, Uniformly convergent algorithms for the simultaneous approximation of all
zeros of a polynomial, In Constructive Aspects of the Fundamental Theorem of Algebra, (Edited by B. Dejon
and P. Henrici), Wiley, London, (1969).

26. J. Renegar, On the worst-case arithmetic complexity of approximating zeros of polynomials, J. of Complexity
3 (2), 90-113 (1987).

27. D. Coppersmith and C.A. Neff, Roots of a polynomial and its derivatives, In Proc. 5 th Ann. ACM-SIAM
Syrup. on Discrete Algorithms, pp. 271-279, ACM Press, New York, and SIAM Publications, Philadelphia,
(1994).

28. V.Y. Pan, Deterministic improvement of complex polynomial factorization based on the properties of the
associated resultant, Computers Math. Applic. 30 (2), 71-94 (1995).

29. V.Y. Pan, New techniques for approximating complex polynomial zeros, In Proc. 5 th Ann. ACM-SIAM
Syrup. on Discrete Algorithms, pp. 260-270, ACM Press, New York, and SIAM Publications, Philadelphia,
(1994).

30. M. Ben-Or, E. Feig, D. Kozen and P. Tiwari, A fast parallel algorithm for determining all roots of a
polynomial with real roots, SIAM J. on Comput. 17, 1081-1092 (1989).

31. M. Ben-Or and P. Tiwari, Simple algorithm for approximating all roots of a polynomial with real roots,
J. o/Complexity 6, 417-442 (1990).

32. D. Bini and V.Y. Pan, Parallel complexity of tridiagonal symmetric eigenvalue problem, In Proc. ~nd Ann.
ACM-SIAM Symp. on Discrete Algorithms, pp. 384-393, ACM Press, New York, and SIAM, Philadelphia,
(1991).

33. V.Y. Pan, New resultant inequalities and complex polynomial factorization, Journal on Computing 23 (5),
934-950 (1994).

34. M. Marden, Geometry of Polynomials, Amer. Math. Soc., Providence, RI, (1966).
35. Y.P. Ofman, On the algebraic complexity of discrete functions, Dokl. Acad. Nauk SSSR 145 (1), 48-51

(1962); English translation in Soviet Physics-Dokl. 7 (7), 589-591, (1963).
36. A. Sch6nhage and V. Strassen, Schnelle Multiplikation grosse Zahlen (in German), Computing 7, 281-292

(1971).
37. J.E. Savage, The Complexity of Computing, Wiley and Sons, New York, (1976).
38. D.E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, Vol. 2, Addison-Wesley,

Reading, MA, (1981).
39. D. Bini and V.Y. Pan, Polynomial and Matrix Computations, Vol. 1: Fundamental Algorithms, Birkh~iuser,

Boston, (1994).
40. A. Karatsuba and Yu. Ofman, Multiplication of multidigit numbers on automata, Soviet Physics Dokl. 7,

595-596 (1963).
41. E. Durand, Solutions Numdriques des Equations Algdbriques, Tome I: Equations du Type F(x) = O: Racines

d'un Polynome, Masson, Paris, (1960).
42. I.O. Kerner, Ein Gesamtschrittverfahren zur Berechnung der Nullstellen von Polynomen, Numer. Math. 8,

290-294 (1966).
43. O. Aberth, Iteration methods for finding all zeros of a polynomial simultaneously, Math. Comput. 27 (122),

339-344 (1973).
44. D. Bini, Numerical computation of polynomial zeros by Aberth's method, (manuscript), Dept. of Math.,

University of Pisa, (1994).
45. H.S. Wilf, A global bisection algorithm for computing the zeros of polynomials in the complex plane, J. ACM

25, 415-420 (1978).
46. V.Y. Pan, On approximating complex polynomial zeros: Modified quadtree (Weyl's) construction and

improved Newton's iteration, (preprint), (1994).
47. V.Y. Pan and E. Linzer, A new approach to bisection acceleration for the symmetric eigenvalue problem,

(preprint), (1995).
48. S. Smale, Algorithms for solving equations, In Proc. International Congress of Mathematicians,, Berkeley,

CA, 1986, pp. 172-195, American Math. Society, Providence, RI, (1987).
49. S. Smale, On the efficiency of algorithms of analysis, Bull. Amer. Math. Soc. 4, 1-36 (1986).
50. M.-H. Kim and S. Sutherland, Polynomial root-finding algorithms and branched covers, SIAM J. on Com-

puting 23 (2), 415-436 (1994).

138 V .Y. PAN

51. M. Shub and S. Smale, Complexity of Bezout's Theorem I: Geometric aspects, J. of the Amer. Math. Soc.
6, 459-501 (1993).

52. M. Shub and S. Smale, Complexity of Bezout's Theorem II: Volumes and probabilities, In Computational
Algebraic Geometry, Progress in Mathematics, Vol. 109, (Edited by F. Eyssette and A. Galligo), pp. 267-285,
Birkh~iuser, (1993).

53. M. Shub and S. Smale, Complexity of Bezout's Theorem III: Condition number and packing, J. of Com-
plezity 9, 4-14 (1993).

54. M. Shub and S. Smale, Complexity of Bezout's Theorem IV: Probability of success, extensions, Research
Report RC 18921, IBM T.J. Watson Research Center, Yorktown Heights, NY, (1993).

55. M. Shub and S. Smale, Complexity of Bezout's Theorem V: Polynomial time, Report No. 236, Centre de
Recerca Matemhtica, Institut d'Estudis Catalanas, Barcelona, Spain, (1993).

56. A. Van der Sluis, Upper bounds for roots of polynomials, Numer. Math. 15, 250-262 (1970).
57. P. Turan, Power sum method and approximative solution of algebraic equations, Math. Comp. 29, 311-318

(1975).
58. G. Polka and G. SzegS, Aufgaben und LehrMitze aus der Analysis, Vol. 1, Dover Publications, New York,

(1945).
59. R. Sch~itzle, Zur StSrung der Nullstellen von komplexen Polynomen, Dimplomarbeit, (in German), Math.

Dept., Univ. of Bonn, Bonn, Germany, (1990).
60. A. Sch6nhage, Quasi-GCD computations, J. of Complexity I, 118-137 (1985).
61. M.J. Fischer and M.S. Paterson, String matching and other products, SIAM-AMS Proc. 7, 113-125 (1974).
62. V.Y. Pan, The bit-operation complexity of the convolution of vectors and of the DFT, Tech. Rep. 80-6,

Computer Science Dept., SUNYA, Albany, NY, (1980); abstract in Bulletin of the EATCS 14, 95, (1981).
63. V.Y. Pan, How to Multiply Matrices Faster, Lecture Notes in Computer Science, Springer, Berlin, (1984).
64. D. Bini and V.Y. Pan, Polynomial division and its computational complexity, J. of Complexity 2, 179-203

(1986).
65. L.M. Delves and J.N. Lyness, A numerical method for locating zeros of an analytic function, Math. Comp.

21, 543-560 !.1967).
66. J. SchrSder, Uber das Newtonsche Verfahren, Arch. Rat. Mech. Anal. 1, 154-180 (1957).
67. V.Y. Pan, E. Landowne and A. Sadikou, Polynomial division with a remainder by means of evaluation and

interpolation, Information Process. Letters 44, 149-153 (1992); In Proc. 3 ra IEEE Conf. on Parallel and
Distributed Proc., pp. 212-218, IEEE Computer Society Press, (1991).

68. J.H. Reif and S.R. Tate, Optimal size division circuits, SIAM J. on Computing 19 (5), 912-925 (1990).
69. W.B. Gragg, The Pad~ table and its relation to certain algorithms of numerical analysis, SIAM Review 14

(1), 1-62 (1972).
70. V.Y. Pan, Parametrization of Newton's iteration for computations with structured matrices and applica-

tions, Computers Math. Applie. 24 (3), 61-75 (1992).
71. V.Y. Pan, Fast and efficient parallel algorithms for the exact inversion of integer matrices, In Proc. 5 th

Ann. Conference on Foundation of Software Technology and Theoretical Computer Science, Lecture Notes
in Computer Science, Vol. 206, pp. 504-521, Springer, Berlin, (1985).

72. V.Y. Pan, Complexity of parallel matrix computations, Theoretical Computer Science 54, 65-85 (1987).
73. V.Y. Pan, Parallel solution of Toeplitz-like linear systems, J. of Complexity 8, 1-21 (1992).
74. V.Y. Pan, Concurrent iterative algorithm for Toeplitz-like linear systems, IEEE Trans. on Parallel and

Distributed Systems 4 (5), 592-600 (1993).
75. P. Kirrinnls, Fast computation of numerical partial fraction decompositions and contour integrals of rational

functions, In Proc. ACM Annual Int. Symp. on Symb. and Alg. Comput. (ISSACgP), (Edited by P.S. Wang),
pp. 16-26, ACM Press, New York, (1992).

76. L. Ahlfors, Complex Analysis, McGraw-Hill, New York, (1979).
77. V.Y. Pan, Faster splitting a polynomial into factors over a fixed disc, (preprint), (1994).
78. G.H. Golub and C.F. Van Loan, Matrix Computations, Johns Hopkins University Press, Baltimore, MD,

(1989).

