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Abstract—For a Toeplitz or Toeplitz-like matrix T', we define a preconditioning applied to the
symmetrized matrix THT, which decreases the condition number compared to the one of THT and
even the one of T. This enables us to accelerate the conjugate gradient algorithm for solving Toepiltz
and Toeplitz-like linear systems, thus extending the previous results of 1], restricted to the Hermitian
positive definite case. The extension relies on some recent formulae of Gohberg and Olshevsky for
the inverses of Toeplitz-like matrices. .
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1. INTRODUCTION

We present a new approach to preconditioning of an unsymmetric Toeplitz matrix 7', which
substantially improves the solution of unsymmetric Toeplitz linear systems of n equations, by
means of the conjugate gradient method. The approach also works for the more general class of
Toeplitz-like linear systems too.

In contrast to the direct Toeplitz solvers using order of the n? or nlog?n arithmetic opera-
tions [2-8], the conjugate gradient method requires O (knlogn) operations, where k = k(T') is
the condition number of T. Therefore, the method is particularly effective for well-conditioned
Toeplitz linear systems, which motivates the search for good preconditioners that would decrease
the condition number and preserve the Toeplitz structure.

In [1], such effective preconditioning was proposed for Hermitian (or real symmetric) positive
definite (hereafter, h.p.d.) Toeplitz systems, based on factorization of T into the product

T = (T + ul) (I— y(T+pI)'l)
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for a scalar u. The key idea of [1] is that an appropriate choice of the scalar u defined by two
extreme eigenvalues of T implies a substantial decrease of the condition number of both factors
relatively to k£ and thus substantially accelerates the solution of an associated Toeplitz linear
system. This algorithm, however (as well as other competitive iterative preconditioned Toeplitz
solvers [9-12]), works neither for the unsymmetric nor for Toeplitz-like cases, which are also
highly important in computational practice.

The present paper gives a desired extension of the algorithm of [1] to these cases. The extension
relies on the properties of the circulant and skew-circulant displacement operators associated with
Toeplitz and Toeplitz-like matrices and, in particular, on the recent explicit formulae expressing
the displacement generators of the inverses of such matrices via few vectors associated with the
inverses [13]. More specifically, we replace T by its symmetrization T¥T and respectively change
the factorization. THT + ul and I — u (TH T+ pul )_l are still Toeplitz-like matrices, which we
represent by using their short displacement generators and the explicit formulae from [13]. This
still enables fast multiplication of the matrix I — p (THT + pI )*1 by a vector and leads to the
desired extension of the algorithm of [1], defining fast Toeplitz-like solvers, in the case of an
ill-conditioned input.

In our presentation, we try to follow the line of [1]. In the next section, we recall some relevant
results on displacement representation of Toeplitz-like matrices. In Section 3, we show a general
outline of the method. In Section 4, we specify various policies of choosing the parameter u and
their influence on the number of arithmetic operations required for the solution of Toeplitz and
Toeplitz-like linear systems. In Section 5, we specify the more effective solver in the Toeplitz
case.

2. SOME PROPERTIES OF TOEPLITZ-LIKE MATRICES

DEFINITION 2.1. (Compare [14, Definition 2.11.1].) Let F' : F, n — Fp, , be an operator, let
A € Fpuxn, and let G € Fpxi, H € F,y; denote two matrices such that F(A) = GH'. Then
[ = rank(F(A)), the rank of the matrix F(A), is called the F-rank of A, and the pair of the
matrices G and H is called an F-generator of A of length .

Given a scalar ¢ # 0, an m x m matrix X, and an n x n matrix Y, define the operator
Fix,y)(A) = A — XAY and specify a displacement operator of Toeplitz-type as follows:

F(A) = Fg, 77 )(A) = A~ Z,AZ]),,

0 . . . ¢
10 . . .

1

Zy=101 . . . | @
00010

DEFINITION 2.2. Anm X n matrix is called a Toeplitz-like matriz if it has F-rank bounded from
above by a constant independent of m and n, where F is the operator defined in (1).

Hereafter, let ¢ = 1, Z = Z;. We have the following basic lemmas.

LEMMA 2.1. [14] Let A € Fuxn, B € Fpxm be two Toeplitz-like matrices given with their
F-generators of lengths |4 and lp, respectively. Then AB is a Toepiltz-like matrix having an
F-generator of length lup <la +lp.

PROOF. It follows from the observation that F(AB) = F(A)B + ZAZ" F(B).
LEMMA 2.2, (Compare [13-15].) Let A be a nonsingular Toeplitz-like matrix with an F-generator

F(A) = G1H] of length l4. Then A~! is a Toeplitz-like matrix with an F-generator equal to
GH", where G = —A~'Gy, HT = H] ZA™'Z".
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PrOOF. Immediate.
From these results, we have the following corollary.
COROLLARY 2.1. Let T be an n x n Toeplitz-like matrix with an F-generator of length lr. Then

B=THT 4 uI, C = I — uB~?! are Toeplitz-like matrices with lg < 27 and l¢ < 2l7, provided
that —pu is not an eigenvalue of THT.

DEFINITION 2.3. [14] An m x n matrix Circg(r) = Circg mn)(r) = [z;], for a vector r =
[ro,... y"m—1]" and for a scalar ¢ # 0, is called a ¢-circulant matrix if z; j; = Ti-jmodm fOr i 2 j;
2 = ¢7'i—jmodm fori< ]

Hereafter, [ will stand for 1.

3. A CONDITION-IMPROVING MATRIX FACTORIZATION

LEMMA 3.1. [1] Let A be an n x n matrix, B= A+ ul, C =1 — uB~!. Then A= BC = CB.
If —p is not an eigenvalue of A, then both B and C have inverses, and A~ = C-1B~! = B~1C-1,

Let the eigenvalues of A, B and C be given by

ansan—IS"‘SOH:)\(A),
ﬂnSﬂn—lS"'Sﬂ1=A(B)s
Yo < Mm-1< - < = XNO).

By the definition of B and C, we have
Bi=aj+u  v=1-pBl.

LeEMMA 3.2. [1] Let A, B and C be as above and let u > 0. Then the condition numbers of B
and C are given by

_oqtp
k(B) = ot p and (2)
a fa,+u
kC)=— [ ——
( ) Qn (a1+u), (3)
so that for all y > 0, we have
k(A) = k(B)k(C). 4)

LEMMA 3.3. [1] Let y = /16, Then k(B) = k(C) = /k(A).

4. A FAST TOEPLITZ-LIKE SOLVER

Consider the linear system
Tz =b, (5)

where T is an n x n nonsingular Toeplitz-like matrix, given with its F-generator of length [.
Apply the matrix factorization of the previous section to the linear system,

THTz = THp, (6)

Let A = THT, then A is an n x n h.p.d. Toeplitz-like matrix, I, < 2l. Define B = A + ul,
C =1 — uB~!. Suppose that —pu is not an eigenvalue of A. Then, by the results of the previous
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section, B and C are nonsingular Toeplitz-like matrices with g < 2! and lc < 2I. By the results
of [13], B~! is completely defined by its last row and its F-generator:

20

- . 1 : .
B~! = Cir¢;, + s Z Circg (m) Cirey (s,,) , (7)

m=1

where ¢ is arbitrary, ¢ # 1, Circ;, is the l-circulant matrix with the last row equal to y7.
Furthermore, Ty, Sm and y' satisfy the following equations:

Bry, = gm, (8)
Bty = —2] B, (9)
Sm = Zitm, m=1,2,...,2, (10)
By=en.1, e€,-1=(0,0,...,1)7, (11)

where G = [g1,...,9a2], H = [hi,..., ha] of A. Therefore, we have the following algorithm:

ALGORITHM 1.

Input: Ann x n nonsigular Toeplitz-like matrix T, a vector b, and a shift value u.
Output: T~ 'b.

Stage 1: Solve the equations (8), (9), (10) and (11).

Stage 2: Solve Bz = THb.

Stage 3: Solve Cx = z; return z.

We use conjugate gradient (CG) method [16] to obtain the solution at Stages 1 and 3 in np
and n¢ iteration steps, respectively. Stage 2 amounts to 2o + 1 multiplications of f-circulant
matrices by vectors for f = 1 and f = ¢ (see the representation (7)). Therefore, by the well-
known results (see, e.g., [13]), the arithmetic cost of performing Stage 1, i.e., the arithmetic cost
of performing np steps of the CG iteration on B, equals

cost(B) = (41 + 1)(4l + 3)d(n)np,
and similarly at Stage 3, we have
cost(C) = (4l + 3)p(n)nc,
for nc iterations of CG, where ¢(n) is the cost of an n-point FFT.

4.1. The Optimal Shift

We will next follow [1] by choosing the optimal u such that the total work {(4!+1)(4l+3)np +
(4l + 3)nc)¢(n) is minimized, where np and nc are the numbers of steps of the CG iteration at
Stages 1 and 3, respectively. Let

ng = F\/k(B), (12)
nc = F\/K(O), | (13)

where F is a constant. Then by (4),

npnc = F24/ k(A) = M = constant.
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Define

M
f(ng)=Lng +nc =Lng + —,
np

where L = 4l + 1. Then f (np) is minimized at

ng = V J—LM—, ng = LnB. (14)

In view of (12)-(14), we choose 4 satisfying
k(C) = L?k(B). (15)

Use (2), (3) and let u = m,/aia,. We have the following equation:

m? (L? - k(4)) +m [2 (L - 1) VA(A)] + (L?k(4) - 1) =0,

= (L2 —1) VE(A) + L(k(4) - 1)
Mt = L2 — k(A) ’

where k(A) = a1/ayn, L =41 + 1. Since L > 5, k(A) > 1, we have m_ > 0 only for k(4) > L2
LEMMA 4.1. [1] Let p = m./oj0y,, where m = m_ (see above). Then

k(B) = L™'\/k(A), (16)
k(C) = L\/k(A). (17)

Now assume (14) and choose u = m_,/ajor,. Then the total cost is

(41 + 3)[(4l + 1)np + nclo(n) = (4 + 3) (Lng + nc) ¢(n)
= 2(4l + 3)F/k(C)é(n) (18)
= 2(4l + 3)V4l + 1kY4(A)Fg(n).
For comparison, let nog be the number of iterations required by CG for A. We have
Cost(CG) = (4l + 3)nced(n) = (4l + 3)kY/2(A)Fé(n). (19)
Comparing with (18), we can see an improvement for k(A4) > 16(4l + 1)2.

4.2. Recursive Preconditioning

We may use the factorization A = THT = BC recursively. In particular, we may solve
equations (8), (9) and (11) at Stage 1 of Algorithm 1 by choosing one optimal shift u;, and we
may choose another optimal shift u2 to solve the system Cz = z for z at Stage 3 of Algorithm 1.
Since we have g < 2, lc < 2l (where lw denotes the length of an F-generator of W, for W = B,
W = C), it follows from (18), that the total computational cost of performing Stages 1 and 3 is
bounded by

2(8 + 1)(8! + 3)vBI + 1 k/4(B)F(n) (20)
and
2(81 + 3)v8I + 1 kY4(C)Fo(n), (21)

respectively. Now we choose u so as to minimize the sum of (20) and (21). Since k(A) =
1/3
k(B)k(C), we have the solutions k(B) = 4}, k(C) = (81 +1)%k/2(4), and

_ ok 2(A)[kY2(A) (8L + 1) - 1]
B k1/2(A) — (81 +1)2 '
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We have p > 0 for k(A) > (81+1)*, and the total computational cost of recursive preconditioning

18
4(8L + 1)(81 + 3)Fp(n)k'/3(A). (22)

This is less than the cost (18) of nonrecursive preconditioning for

28(81 +1)8(81 + 3)8
(4] + 1)4(4l + 3)8

k(A) >

and is also less than the cost of application of the unpreconditioned (CG) method to Az = b
w 8/3
(see (19)) when k(A) > [4 8l+1) (8143 ] .

a+3
For | = 2,3, we compare the estimates (18), (19) and (22) and show the results in the next

table.

Cost 1=2 =3
CG method 11k1/2(A)Feé(n) 15kY/2(A)Fo(n)
nonrecursive 66k1/4(A)Fe(n) 30V 13k 4(A) F(n)

recursive 1292k1/8( A) F(n) 2700kY/8(A)Fo(n)

5. PRECONDITIONED CG METHOD FOR A TOEPLITZ MATRIX

In this section, we use the same notation as in the previous section, except that 7" now denotes
a nonsingular Toeplitz matrix (so that ! = 2). Since B = THT + I, multiplying the matrix B
by a vector costs 8¢(n) + O(n). Thus in Algorithi 1, we have cost(B) = 72¢(n) at Stage 1.
By [13], cost(C) = 11¢(n) at Stage 3, for each iteration. Therefore, the overall work is equal to

72

(T2ng + 11ng) é(n) = 11 (I’LnB + nc) o), L=1,

where np and nc denote the number of the CG iterations at Stages 1 and 3, respectively. Assume
the optimal value of p = m_ /oq0,, where

(E? - 1) VEA) £ L(k(4) - 1)
L2 - k(4)

m4 =

Then, similarly to (17), we derive the following cost bound for the entire computation:
2nco(n) = 12v22k/4(A)Fp(n). (23)

We may compare the bound of (23) to the cost of the solution via the CG method (without
preconditioning), which is estimated similarly to (19) and is bounded by

8kY/2(A)Fé(n). (24)
The comparison shows that our preconditioning improves the CG method for
k(A) > 2450.25.

Now, we use the factorization A = BC recursively. We choose ; so as to minimize the cost of
performing Stage 1 of Algorithm 1, which gives us the bound

9.12- V22 kY4(B)F¢(n) = 108v22 k'/4(B)F¢(n), (25)



Toeplitz-Like Solvers 63

where the factor 9 comes from the equations at Stage 1. At Stage 3, choose 2 so as to decrease
the cost to
4(8-4+1)(8 -4+ 3)Fo(n)k*/3(C) = 4620Fp(n)k/¥(C) (26)

(compare (22)). Now we choose p so as to minimize the sum of (25) and (26). Then we obtain
that

_(1155\° 1
k(B) - ( 54 > ) 9294/3 -k (A)a
k(C) = 54 i - (22)3 . K2/3(4)
~\ 1155 ’

and the overall cost is bounded by

2 1/3
[108(22)1/6 (%) + 4620 (%5) 221/6] k/12(A)Fo(n) = EKY/*(A)F$(n),  (27)

where

1155\ 54 \'3]__,
E— 110 o4 /6 _
[108( = ) +4620< - 155) 221/8 = 400,993.268.. ..

{compare(22)). Therefore, the recursive method is superior to the nonrecursive method only

if k(A) is enourmosly large: k(A) > (E/ (12\/2_2))6. We also compare (27) and (24) and conclude
that the recursive method improves the unpreconditioned CG method only for extremely large
K(4), K(A4) > (E/8)"*/".
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