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A b s t r a c t - - W y e l ' s  qum:ltree algorithm was proposed in 1924 for approximating polynomial zeros. 
We extend it to the unsymmetric eigenvalue problem; the extension relies on the heuristic proximity 
test based on the known correlation between the reciprocal of the norm of matrix inverse and the 
distance from the matrix to the closest singular matrix. 

We propose a new algorithm for approximating the eigenvalues of an unsymmetric  matr ix  A. The 
algorithm can be viewed as 2-dimensional bisection or as a variant of Weyl's algorithm, originally 
devised for approximating polynomial zeros [1] and also well known in computat ional  geometry 
under the name of quadtree algorithm. 

In principle, one may directly apply Weyl's algorithm to approximating the eigenvalues of A. 
This would essentially amount  to recursive application of a subalgorithm tha t  would approximate  
from below the distance d(z) from the origin to the nearest eigenvalue of A - zI ,  where z is a 
current approximation to an eigenvalue of A. Such a subalgorithm should output  z if d(z) < t 
for a fixed tolerance t. 

We propose an alternative approach where approximating d(z) is replaced by approximating 

the distance el(z) from A - z I  to the nearest singular matr ix  (so that  d(z) _< d(z)), with the goal 
of output t ing z such tha t  d(z) < t for a fixed tolerance t. The computat ion of d(z) relies on the 
following well-known equation [2,3], which holds for any fixed matr ix  B and any fixed operator  
norm ( that  is, matr ix  norm subordinate to some vector norm): 

1 
II B - i  II - m~n lIB - SII , (1) 

where the minimum is over all singular matrices S. Due to this equation, we may set 

J ( z )  - i 
II ( A - z I ) -  ~11' (2) 

for a fixed matr ix  norm, and then estimate d(z) by means of some well-known techniques, [4, 
p. 128-132]. In the next specific implementation of this approach (in the form of Algorithm 1), 
we assume any fixed operator (matrix) norm (in particular, the row norm I1" I1~o seems to be a 
good choice) and let S(x,  r) denote the square on the complex plane with center x and 4 vertices, 
x ~- (-1)(i+2g)/4r,  g = 0, 1, 2, 3. 
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ALGORITHM 1. 
I n p u t :  an n x n matrix A and a positive scalar t (error tolerance). 
O u t p u t :  a natural N and a set of N complex values A1, . . . ,  AN such that  

(a) every Ag is an eigenvalue of some matrix Ag satisfying ]lAg - A H < t, 

(b) if A is an eigenvalue of a matrix A satisfying ] ] A - A l l  < t, then ] A -  Ag] _< t for 
some g, 1 < g _< N,  and 

(c) under the assumptions (a) and (b), the computed value N is within the factor 4 from its 
minimum. 

C o m p u t a t i o n  

S t a t e  O: Initial ization.  Compute a square S(x (°), r0) containing all the eigenvalues of A. 
(For instance, one may set x (°) = 0,r0 = [[A]]oo.) Call S(x(o°),ro) a suspect square. Compute 
H = [log2(ro/t)]. Set No = 1. 
S t a g e  h, h = 1 . . . .  , H .  Parti t ion each suspect square S(x~ h-l),  rh-1) into 4 congruent subsquares 

S(z4i+g,rh) z4i+9 = x~ h-l) + (--1)(l+2g)/4rh, rh = rh-1/2 = ro/2 h, g = 0, 1, 2, 3; i = 1 , . . . ,  Nh- l .  

^ (h) .~(h) > rh, discard For every pair (g, i), compute a lower bound ~4i+g A(h) on d(z4i+g), see (2). If ~4i+g 

the square S(z(hi)+g, rh). Otherwise, call this square suspect. Having performed such computation 

for all the suspect squares S(x~ h-l),  rh-1) , i  = 1 , . . . ,  Nh-1, discard them. Then renumber the 

centers ~4i+g~(h) of all the remaining suspect squares S(z(h)+g,rh) and denote these centers x~ h) 

i =  1 , . . , N h .  I f h = H ,  s t o p a n d o u t p u t  N = Nh, Ai = x (h) i =  1 , . . , N .  Otherwise, go to 
stage h + 1. 

C o m m e n t s  

(1) Correctness of the algorithm follows from (1) and from the observation that  the diameter 
of every suspect square decreases by the factor of 2 in each stage. 

(h) (within (2) If at every stage h of Algorit,,m 1 we had computed lower bounds on d(z4i+g ) 

relative errors of 10%, say) and had used them instead of ~(h)g,_ for all i and g, then every 
eigenvalue of A could have generated at most 4 suspect squares for each h, so that  we would 

(h) have had Nh <_ 4n. We have actually chosen to approximate __d~h)g (rather than d(z4i+g)) in 
order to simplify the computations; but for matrices A with well-conditioned eigenspaces, 

(h) the values ~4i+g A(h) and d(z4i+# ) lie close to each other, and then we should have Nh = O(n) 
for all h. 
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