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Abstract-As in our previous work, we reduce parallel computation of a Krylov matrix to solving 
a parametrized linear system of equations. This time we show that such a method is effective in the 
cases of banded matrices, sparse and structured matrices and triangular matrices. 
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For a pair of natural m and n, an n x n matrix A, and an n-dimensional vector v, one may 

define the n x m Krylov matrix 

K(A,v,m) = (v, Au, A2v, A3v,. . . , Am-b), (1) 

whose computation (for various m ranging from a small constant to order of n) is a major task of 

numerical linear algebra [l]. Sequential computation of K(A, v, m) is straightforward: it amounts 

to m - 1 successive multiplications of the matrix A by vectors A%, i = 0, 1, . . . , m - 2. 

To evaluate the matrix K(A, v, m) on a parallel computer (assuming m = 2h - 1 for simplicity), 

one may recursively compute the matrices A2”, i = 1,. . . , h - 1, and then 

A2(v, Au) = (A2v, A3v) , 

A4 (v, Au, A2v, A3v ) = (A4v, A5v, A%, A7v) , (59 

This well-known algorithm [2] only needs 2h - 2 matrix multiplications, which, however, do not 

preserve the structure of A. For structured (dense and sparse) matrices A, we will recall the 

distinct approach of [3], originally proposed for Toeplitz and Toeplitz-like matrices A, and will 

extend it to the cases of banded (block tridiagonal) and some other special matrices A. 

According to the recipe of [3], one should introduce an auxiliary scalar parameter X, define the 

matrix B(X) = I - XA, and then compute the column vectors A% of K(A, v, m) as the coefficients 

of Newman’s expansion, 

B(X)-% = (I - AA)-% = f$A)%, 
i=O 

reduced modulo Xm. 
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Due to the latter equation, the computation of the Krylov matrix A of (1) reduces to the 

solution of the linear system 

B(X)X = w mod A”. (3) 

Our task, respectively, reduces to recalling some parallel algorithms for the system (3), for some 

selected classes of matrices A, and to estimating parallel arithmetic cost of performing these 

algorithms (in terms of parallel time and the number of processors used), and we will refer the 

reader to the relevant bibliography for the proofs and details. 

To express this parallel cost, we hereafter let O(t,p) denote the pair of simultaneous bounds 

O(t) on the arithmetic parallel time and O(p) on the number of processors supporting this time 

bound. Under this notation, O(log Ic, Ic) bounds the parallel cost of addition, subtraction and 

multiplication of a pair of polynomials in X performed modulo Xk [2]; furthermore, essentially the 

same cost bounds apply to computation modulo A’” of the reciprocal of a polynomial in X with a 

nonzero X-free term. 

Hereafter, we let O(tl(k),pl(k)) denote the parallel complexity of k x k matrix inversion, where 

we may set tl(k) = log2 k, pi(k) = kd/lOgk, [2], assumed randomization and provided that 

k x k matrix multiplication costs O(log k, kd/log k). (Theoretically, one may set d < 2.38, but 

practically, d stays at the levels 3 or 2.81, [1,2].) 

We note that algorithm (2) computes the Krylov matrix K(A, w, m) at cost 0( (log m) log n, nd) 

for a general (dense and unstructured) matrix A. Next we will show improved estimates in the 

case of special matrices A. 
In particular, the latter bound decreases to O((logm) log n, mn/ logm) if A is a Toeplitz or 

Hunkel matrix or, more generally, a Toeplitz-like + Hunkel-like matrix, [2-41. 

Next consider the cost of s x s block tridiagonal matrices A with k x k blocks, which is essentially 

the case of banded matrices A. Then we may solve the system (3) by applying the block cyclic 

reduction algorithm [I]. The cost of application of this algorithm to the scalar input matrix is 

bounded bv 

0 tl(k) logs, PIOS 
log s 

(see [5]). Since we deal with polynomials reduced modulo A”, the cost of every arithmetic oper- 

ation increases from 0( 1,l) to O(log m, m), and we arrive at the overall cost 0( (log m)tl(k) log s, 

%(k)s/ logs). 

Next consider the case of sparse matrices A given with their s(n)-separator families, s(n) = 

o(n), (see definitions of [6-g]). In this case, application of the parallel generalized nested dissection 

algorithm of [9] gives the cost bound O(log3 n, (s(n)d)/ log2 n) f or solving a linear system with 

scalar sparse input matrix. This is immediately extended to the cost bound O((logm) log3 n, 

(s(n))dm/ log2 n) for the solution of the system (3). 

We conclude with the case of triangular matrices A. In this case, we may apply the algo- 

rithm of [lO,ll], which supports the cost bound 0(&i log n, n 3/2 / log n) for solving a triangu- 

lar linear system with a scalar coefficient matrix. For the system (3), this cost bound turns 

into O((logm)fi logn,n312 m/ log n). Compared to the cost bound O(n log n, n2/ log n) of the 

straightforward evaluation of K(A, v, m) via m - 1 successive multiplications of A by vectors, we 

note acceleration if &i logn = o(m). 
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