Matrix structure , polynomial arithmetic, and
erasure-resilient encoding/decoding -

Victor Y. Pan
Mathematics and Computer Science Department
Lehman College, CUNY, Bronx, NY 10468

vpan@alpha.lehman.cuny.edu

ABSTRACT

We exploit various matrix structures to decrease the run-
ning time and memory space of the known practical de-
terministic schemes for erasure-resilient encoding/decoding.
Polynomial interpolation and multipoint evaluation enable
both encoding and decoding in nearly linear time but the
overhead constants are large (particularly, for interpolation),
and more straightforward quadratic time algorithms prevail
in practice. We propose faster algorithms. At the encoding
stage, we decrease the running time per information packet
from Clog?r, for a large constant C, or from r (for practi-
cal encoding) to logr. For decoding, our improvement is by
factors C and N/ log N, respectively, for the input of size N.
Our computations do not involve polynomial interpolation.
Multipoint polynomial evaluation is either also avoided or
is confined to decoding.

1. INTRODUCTION

Computations with structured matrices are ominipresent in
algebraic and numerical computations (see, e.g., [3], [4], [10],
[21], [15], [16], [17], [22], [20], [13], and bibliography therein).
The complexity of these computations is much lower than
for the ones with general matrices because of the close cor-
relation to polynomial computations (see [19], [3]).

In this paper, we apply computations with structured ma-
trices to erasure-resilient codes and improve the known al-
gorithms for encoding/decoding.

Erasure-resilient codes are highly important in practice and
have been intensively studied, particularly in the last decade.
The existent codes are quite advanced technically and incor-
porate several approaches, including various algebraic and
combinatorial methods as well as some differential equation
techniques. Because of practical importance of the problem,
even minor progress in its solution is highly desirable, but

*Supported by NSF Grant CCR. 9732206 and PSC-CUNY
Award 669363

the area is more limited technically and much less amenable
to further progress than, say, error-correcting codes, so that
one should be tempted to conclude that the intensive efforts
spent here by the researchers have exhausted all the likely
directions to further substantial improvements.

Our goal is to prove that this is not the case. That is,
we found a novel way to improving the known scheme for
erasure-resilient encoding/decoding. Our progress relies on
manipulation with structured matrices. In particular, we
exploit transformations among various classes of structured
matrices in order to improve the known algorithms. The
idea can be traced back to [18], but we propose its novel
realizations.

Let us compare our approach to some previous works. The
known techniques reduce the encoding to Trummer’s cele-
brated problem of multiplication of an (n —m) x m Cauchy
matrix C' by a vector provided that m information packets
and n—m redundant packets are sent through the communi-
cation channel and a total of n — m packets are erased. The
decoding is reduced to solving a nonsingular linear system
of k equations whose coefficient matrix is a submatrix of C'
and, therefore, is also a Cauchy matrix (cf. [14], [1], [26], [2]
on this approach).

Trummer’s problem can be also interpreted as the problem
of multipoint evaluation of rational functions represented
via their poles. Its solution is the basis for the solution of
such important problems as many-body simulation in me-
chanics, computing the velocity field, computation of con-
formal mapping, and the evaluation of the Riemann zeta
function. (Extensive bibliography on Trummer’s problem
can be traced from [21].) Simple straightforward solution
of this problem as well as the solution of a Cauchy linear
system has arithmetic cost O(N?), for the input size N.

Applications of the fast algorithms of [8] for Trummer’s
problem and [7] for solving a Cauchy linear system yield
encoding/decoding at the computational cost O(E(I)n/l +
H(k) + I(k) + E(k)). Here, | = min{m,n — m}, k may
vary between 0 and /, but in some typical practical compu-
tations k/n ranges between 0.4 and 0.5, and here and here-
after, we write E(s) = O(M(s)log s), I(s) = O(M(s)log s),
H(s) = O(M(s)logs), and M(s) = O((slog s)loglog s) to
denote the computational cost of the evaluation of a poly-
nomial of degree s at s + 1 points, interpolation to such a
polynomial, the recovery of its coefficients from its roots,

and multiplication of two polynomials of degree s, respec-
tively (cf. [3]). (We measure the computational cost in
terms of the number of field operations involved and will
refer to them as ops.)

The overhead constants hidden in the above “O” notation
are quite large, however, particularly for the interpolation,
and in practice the computation goes by more straightfor-
ward algorithms that involve O((n—m)m) and O(km) ops at
the stages of encoding and decoding, respectively [5]. More
efficient codes can be devised by using randomization [11],
but several major applications require deterministic codes.

We propose alternative deterministic solution algorithms,
which better exploit the Cauchy structure involved. This en-
ables us to avoid interpolation completely and either to avoid
multipoint polynomial evaluation too (in the case where the
ratios k/n and (m — k)/n are not small) or to limit it to
the decoding stage (otherwise). The encoding stage can
be performed in O(M (I)n/l) ops or, alternatively, by using
O(r)+2DFT(r) ops provided that r > max{m,n —m} and
the ground field allows us to perform the discrete Fourier
transform at the r-th roots of 1 by using DFT(r) ops, which
is O(rlogr) if FFT can be applied. This improves the known
encoding approaches by factor logr. At the stage of decod-
ing it is sufficient to use O((E(k)+M (k))m/k) ops or, unless
k/n is small, only O((H (k) + M (k))m/k) ops. In all our es-
timates, at both encoding and decoding stages, we achieve
substantial decrease of the overhead constants hidden in the
“O” notation, versus the approach based on [7] and [8].

To summarize, we improve by factor C'log r, for a large con-
stant C, the known asymptotically fast encoding methods
(which are nonpractical because C is large) and by factor of
order r/ log r the practical encoding methods. (This reduces
the record asymptotic time bound for encoding from order
log?r to O(logr) per packet.) For decoding, our improve-
ment is by factors C and k/log k, respectively.

All our computations are performed in linear space, of n
words of memory at the encoding stage and from O(k) to n
at the decoding stage.

Technically, we rely on the well known algebraic encod-
ing/decoding algorithm of [14], [1], [26], [2], [5] (see Algo-
rithm 3.1 and Remark 3.1 in our section 3), whose imple-
mentation in [5] is known as the best practical deterministic
erasure-resilient code, but we propose novel versions of its
basic blocks of structured matrix computations. There, we
yield improvements that demonstrate the potential power of
the application of structured matrices to encoding/decoding
and promise to be practically useful. The algorithm allows
its further practical improvements by using the XOR’s com-
puter words and tabulation (cf. [5]). Our computations are
reduced to polynomial multiplication or FFT and, there-
fore, allow processor efficient parallel acceleration to yield
the time bounds O(logm) and O(log® k) at the encoding
and decoding stages, respectively.

Due to the well known importance of Trummer’s problem,
its slightly improved solution proposed in section 5 may be
of some independent interest.

More specifically, our progress is achieved based on our novel
combination of the Cauchy matrix structure, which ensures
nonsingularity, with the Fourier type or Hankel structure,
which support additional theoretical and practical speed up
of the computations. Our exploitation of structured matri-
ces for improving erasure-resilient codes is of distinct nature
than the known applications of structured matrices to error-
correcting codes (cf. [17], [20]). Indeed, these two coding
areas are quite distinct, as well as the techniques involved
there, in spite of some apparent similarities. For instance,
the advantages of working in GF(2P) are typical for the
error-correcting codes but turned out to be less important
and overweighted by other considerations (such as nonsin-
gularity of the Cauchy generator matrices) for the determin-
istic erasure-resilient codes. Furthermore, as we mentioned,
the relative simplicity of the area of erasure-resilient codes
leaves much less room for innovations and new progress.

We organize our paper as follows. After some definitions
and preliminaries in the next section, we describe the basic
encoding/decoding scheme in section 3, where we also show
some choices for Cauchy matrix defining the code generator.
We specify our computations with structured matrices for
both encoding and decoding in section 4-6. In the same
sections we estimate the computational cost of each stage.

Acknowledgement. The problem of improving the erasure-
resilient encoding/decoding and reference [5] were brought
to my attention by Marek Karpinski.

2. DEFINITIONS AND SOME PRELIMIN ARY

RESULTS
Fix two integers m and n, n > m > 0, a field F (say, GF'[2] or
GF[2"]) and its n distinct elements s;,i = 0,... ,n—m —1,
and —t;,5 =0,... ,m—1. Let I, stand for the s x s identity
matrix. Let s = (s;)72" "' € F""™,t = (¢; ;";01 €EF u=
(u;)?~g € F*, and v = (v;)!_4 € F? be some vectors of
dimensions n — m, m,p and ¢, respectively. W = (w;;)
is a Hankel matriz if w;; = wi—1,j4+1 for all pairs (4, 7).
For a vector r = (r;)*2), let H(r) = (hi;) be the I x
triangular Hankel matrix defined by its first column vector
r, hij = riyjfori+j5 <1, hij = 0for i +j > 1, let
V(r) = (rf)f;zlol_l be a k x I Vandermonde matrix, and
write Vi (r) = V(r). For a vector or a matrix W, let W7
be its transpose. Let C' = C(u,v) = (u,-iuj-)f;ol”f:_(]l be a
p x q Cauchy matriz, defined by two vectors u and v, and

— — Im xm
let G = G(s,t) = (C(s, t)) € F**™ be the n x m generator
matriz. diag(u) = diag(u;)?—, will be our notation for the
p X p diagonal matrix with diagonal entries uo,... ,up—1;
hu(z) for the monic polynomial Hfz_ol (z — ;) of degree p in
z, hi, (z) for its derivative in z, and |S| for the cardinality of
aset S.

For a vector v = (v;)?;é, a matrix W = (wj,k)g;éjz;é, and
two subsets, J of the set {0,...,¢g — 1} and K of the set
{0,...,p — 1}, let v; be the subvector (v;)jes of v and let

W,k be the submatrix (w;)jcs,rex of W.

Hereafter, “ops” stands for “operations in the field 7, M (k)
ops suffice to multiply modulo ¥ a pair of polynomials in

Ty
M(k) < 2k> —2k+1, M(k) = O((klogk)loglogk), (1)

H (k) ops suffice to compute the coefficients of the polyno-
mial hw(z) for a given vector w € F*

H(k) < (k—1)%, H(k) = O(M(k)logk), (2)

E(k,1) ops suffice to evaluate a polynomial of degree at most
k—1 on a set of ! points, {r;},7 =0,...,l—1, which is equiv-
alent to multiplication of the Vandermonde matrix V (r) by
the coefficient vector of this polynomial,

BE(k,1) < (2k = 1)I, E(k,1) = O((M(k)log k)[I/K]), (3)

and F'(k,1) ops suffice to perform such an evaluation where
the points are of the form b, =0,1,... ,l —1;b € F,

F(k,1) = O((k + 1) log(min{k,1})) (4)

(cf. [3]). Hereafter, we write E(k,k) = E(k),F(k,k) =
F(k). F(k,l) and F (k) represent the computational cost of
generalized discrete Fourier transform (generalized DFT) [3,
p-14]. For b being a primitive k-th root of 1, we arrive at
the classical DFT, and then

F(k) < 1.5klog, k (5)

if k is a power of 2. If the field F contains a primitive 2k-th
root of 1 for an integer s, then

M(k) < 9% log, (2k) ()
(cf. [3])-
DEFINITION 2.1. The minimum number of ops, required

to multiply o fized rectangular or square matriz W by a vec-
tor will be denoted by cw .

LEMMA 2.1. cv < cw for any submatriz V' of a matriz
w.

LEMMA 2.2. Let V be a k x I block matriz with g X h
blocks V(i,j), i = 0,...,k—1; 5 = 0,...,1l —1. Then
ev <3 evig + (1= 1)gk.

We will also use the following results, the first and the third
of which are obvious:

LEMMA 2.3. cy,r) < E(k,1), ifr € F*.

LEMMA 2.4. (Cf [23]) CyT(r) = Cv(r)-

LEMMA 2.5. (Cf. [3].) ew < M(k+ 2l —2) for a k x1
Hankel matriz W; ew < M(2k — 1) for a k X k triangular
Hankel matric W = H(r).

3. ERASURE-RESILIENT ENCODING/ DE-
CODING SCHEME

The next scheme for erasure-resilient encoding/decoding in-
volves a Cauchy matrix and relies on a Reed-Solomon sys-
tematic linear code with an m-packet message vector v and
a generator matrix G = G(s,t) [14], [1], [26], [2]. Stage 1
represents encoding, stages 2-4 decoding. Practically, the
scheme is applied to several vectors v, which are processed
successively or concurrently.

ALGORITHEM 3.1. (Erasure-resilient encoding/decoding).

INPUT: a field F, two integers m and n, n > m, an m-packet
message v, a pair of vectors s € F*~™ and t € F" with n
distinct components, the generator matrix G = G(s,t) =
<C(I:t)> € F**™, a set {pi = pi(s,t)}; of elements of
F obtained by performing some arithmetic operations with
the components of the vectors s and t, and a subset @ of
cardinality |@Q| = n—m in the set {0,... ,n—1}, (Q indexes
the n — m erased packets);

1. (encoding an m-packet message v). Compute the vector
u=G_Gv.

2. Define the intersections, K and P, of the set @ with the
sets {0,...,m — 1} and {m,...,n — 1}, respectively; the
complements of these intersections, M = {0,... ,m—1}— K
and J = {m,... ,n — 1} — P; the subvectors ug and uy
of u, and the Cauchy matrices Cy,x = C(p,q) € F*** and
Csa = C(p,r) € F**(m=F) (these are two submatrices of
the matrix Cy,xum = C(p,t), for k = |J| = |K]|.

3. Compute the matrix G = CJ_}{

4. Compute the vectors ix = ux — C(p,r)unm and vk =
Gugk.

OUTPUT: the vector v composed of its subvectors var =
uy and vg.

REMARK 3.1. The algorithm is the basis for the current
best practical deterministic erasure-resilient encoding and de-
coding [5]. We refer the reader to the latter paper for many
implementation details.

The use of a Cauchy matrix C(s,t) is due to the next the-
orem, which also implies the correctness of Algorithms 3.1
[14].

THEOREM 3.1. (Cf. [12].) Every square submatriz of the
matriz C = (=25-)i,; s nonsingular if all n values s;,t; are
it
distinct.

We allow cost-free precomputations with vectors s and t
because these vectors are given once and for all messages
sent through. (Note that the vectors p, q and r are treated

differently - they are updated with each new message.) The
choice of vectors s and t is in fact ours, and we will use such
a choice to simplify the computations. Specifically, we will
rely on two choices:

si=as', tj=bt', a,b,s,tcF, (7)
t1=0,1...,.n—m—-1;,7=0,1,... , m—1,

Siy1 — 8 = tj — tj41 for all pairs (¢, 7). (8)

Equations (7) impose generalized Fourier structure on the
matrices Vi(s) and Vj(t), which we will associate with the
matrix C(s, t), and consequently, on their submatrices V;(p),
Vi(q), and Vi(r) (cf. Lemma 2.1):

Fact 3.1. Equations (7) imply that

evip) < cvye) S F(n—myl) +n—m,
max{cy, (), cvi(q) } < ey < F(m,).

In the special case where F contains w,,, a primitive n-th root
of 1, we may satisfy (7) by choosing a = 1,b = w;;”™,s =
t = wy. In this case generalized DFT’s supporting Fact 3.1
turn into classical DFT’s.

Equations (8) impose Hankel structure on the matrix C(s, t):

Fact 3.2. The matriz C(s,t) = (#)” is a Hankel
matriz if and only if equations (8) hold.

In particular, we have C(s,t) = (;555)is if 8i = ¢ +a,

t; = —j, for all pairs (4, j); this choice satisfies (8).

Our next objective is to specify the algorithms for the mul-
tiplication of the matrices C(s,t), C(p,r) and C~'(p,q)
by vectors and to estimate the computational complexity
CC(s,t)s CO(p,r) @A Co-1(p,q) Of such operations. We will
do this in the next three sections. This will complete our
description and analysis of Algorithm 3.1, which consists of
such three multiplications apart from k subtractions in the
field F performed at its stage 4.

4. MULTIPLICA TION OF THE INPUT MA-

TRIX ¢(s,T) BY AVECTOR
The straightforward algorithm implies that

cos,t) < (m—n)(2m — 1). (9)

Based on (8), Fact 3.2 and Lemma 2.5 we obtain faster com-
putation, by using

cogs,t) < Mnm+m-—1). (10)
ops. Let us next assume (7) and deduce that
co(s,t) < F(m)+ M(m) + F(n—m) + n. (11)

Our algorithm supporting (11) relies on the following for-
mulae [6], [3, p.174], [9]]:

O(s, t) = (diag(he(s:))"5") " V()V ™ (t) diag(hi (¢)) 1=,

(12)

Vi) =

R Ty (he + fe @)V (t) diag(ht (t:)(f — 7™)izg" ") 7,
(13)

where f # 0 is any element of F, ¢® = (1,0,...,0)T is
the first coordinate vector, hy is the coefficient vector of the
polynomial ht(z) — ™ of degree m — 1, R,, is the m x m
reversion matrix, R, = (r,-,j):-f;_:lo, ri; = 1ifi =m—
1—j, ri,; = 0, otherwise, and Tf(w) denotes the square f-
circulant matriz with the first column w = (w;)s, Ty(w) =
ZiwiT}, Tf = (ti,j), ti,j =1if ¢ = 7+ 1, ti,j = f if
1=0,7 =m —1; t;,; =0 otherwise.

Fact 4.1. (Cf. [8].) M(m) ops are sufficient to multiply
an f-circulant m x m matriz by a vector.

To arrive at (11), we fix f € F and precompute the vector
h; + fe® and the diagonal matrices diag(hs(s;))7" and
diag(f — t77™)?Zy""!, whose entries only depend on the
vectors s and t. (Such a precomputation is cost-free by our
assumption.) Then, by (12), (13), it remains to multiply by
vectors the following matrices: diag(f — t7~™)"=;""" (by
using n—m ops), V7 (t) (by using cy () ops, by Lemma 2.4),
cviy < F(m) (by Fact 3.1), Ty(he + fe@) (M(m) ops, by
Fact 4.1), R, (no ops involved), V(s) (cv () < F(n—m) (by
Fact 3.1), and diag(h¢(s;:))"™," (m ops). Summarizing, we
obtain (11). The choice among the three bounds (9), (10)
or (11) depends on the input values m and n and is fixed
together with the generator matrix.

5. MULTIPLICA TION OF A SUBMATRIX
c@P,r) BY AVECTOR
The straightforward algorithm implies that
cC(p,r) S (2m — 2k — 1)k (14)

On the other hand, C(p,r) is a submatrix of the matrix
C(s,t), so by Lemma 2.1,

Co(p.r) < CO(s,t)s (15)

and the multiplication of the matrix C(p,r) by a vector can
be performed by the algorithms of the previous sections. Let
us recall two other algorithms. The first of them relies on

Fact 5.1. (Cf. [25], [6].)

Op,x) = (diag(he(p)'5y) V®)HEWV(r).

Now, to multiply the matrix C(p, r) by a vector, we may first
compute the coefficients of the polynomial hr(z) (by using
H(m — k) ops), then its values hr(p;) for i =0,1,... ;k—1
(cv,, _n(p) OPS), and then successively multiply by vectors
the matrices V7 (r), H(r), V(p), and (diag(he(pi))¥25)~" (k
divisions). By Lemmas 2.4 and 2.5 and Fact 3.1, the overall
cost of these computations is bounded by

copr) <k+H(m—k)+ M(2m —2k —1)

(16)
t v, k@) T CV(p) T CV(r)s

where
cv,,_p) <min{E(m —k+ 1,k), F(n—m,m —k)}, (17)
cv(py < min{E(k), F(n —m,k)}, (18)
cv)y < min{E(m — k), F(m,m — k)}, (19)
and all values E(l, q) satisfy (3).

Finally, an alternative algorithm [16] computes the product

m—k—1

= Z v; /(Pi —75)); _01

j=0

C(p,r)v

by first computing the coefficients of two polynomials n(x)
and d(z) such that

m— 1

k—
n(z)/d(z Z v; [(x—Tj),

Jj=0

degn(z) < degd(zx)

= m—k,

and then computing the values u(z)/d(z) at the points z =
pi,t = 0,1,... ,k — 1. The computation of the coefficients
is by recursive summation of partial fractions, which starts
with the pairs 1)2]'71/(1‘ — 7“21'71) and 1)2j/($ — 7"2j). This
stage involves

Emk <3) _2°7TM(2)) =

i=1

O(M(m — k)log(m — k)) (20)

ops for s = [log,(m — k)]. The subsequent computation of
the k values u(p;)/d(p:) involves k + 2¢y, _, (p) OpPS, and we
obtain that

Ce(p,r) S 5m—k +k+ 2ch_k(P) (21)

for ém—r and cy,,_, (p) bounded according to (20) and (17).

Unlike the better known algorithm of [8], our algorithms for
Trummer’s problem of multiplication of a Cauchy matrix
C(p,r) by a vector avoid interpolation.

The choice among the algorithms of this section depends on
the values n, m and k, that is, may vary with the number of
erased packets.

6. SOLUTION OF A CAUCHY LINEAR SYS-
TEM OF EQUATIONS

We will consider two approaches. One of them relies on an
extension of (12) and (13):

C ' (p,q) =

(diag(hly (@)= ") ™' V(@Q)V ™! (p) diag(hq(p))is
(22)

Vip) =

RyTy(hp + fe'2)V" (p) diag(hp (p:)(f — pf))iZg). (23)

The algorithm based on (22), (23) is similar to the one sup-
porting (11), except that now we have to include the cost
of computing the entries of the diagonal matrices because
they depend on the set @ (besides the vectors s and t) and,
therefore, generally change with each new message sent. The
algorithm supports the following cost bound:

Co-1(pq) S2H (k) + 5k + 1 + M(k) + kP (k)

(24)
+ 2¢cy(p) + 3¢y (q)

provided that ¢y (p) is bounded according to (18),
cv(q) < min{E(k), F(m, k)}, (25)

and each power p()

can be computed in P(k) ops,
P(k) < 2[log, k]. (26)

An alternative approach relies on

THEOREM 6.1. (Cf. [24], [6]). For vectors p, q filled with
2k distinct coordinates, we have

C~'(p,a) = DoC(q,p)D1,
where
. h(qz-)>’°‘1 : (h @)\
Dy = dia (P , D1 =dia g .
©= T\ ha@) /i E\ o)/ ;0

In this approach, we evaluate the diagonal matrices Do and
D; and multiply them and the matrix C(p,q) by vectors.
This leads us to the cost bound

co-1(pa) < ZH(K) + 6k + 2¢v (p) + 2¢v (q) + Co(ap)- (27)

The terms cy(py and cy(q) are bounded according to (18)
and (25), and we may extend the algorithm of section 5 to
estimate cc(q,p). The choice between the two algorithms
supporting (24)-(26) and (27) depends on the values n,m
and k, that is, changes for each new message sent. The
bound of (24) is smaller for large k, but the bound of (27) is
smaller for smaller k. In particular, by using the straightfor-
ward evaluation of the coefficients of the polynomials hp(x)
and hq(x), we extend (27) to yield

co-1(pq) < 2(k —1)® + 6k + 5(2k — 1)k = 12k* — 3k + 2.

7. REFERENCES
[1] A. Albanese, J. Blomer, J. Edmonds, M. Luby, M
Sudan, Priority Encoding Transmission, Proc. 35th
Ann. Symp. on Foundations of Computer Science
(FOCS), 604-613, IEEE Computer Society Press,
1994.

[2] N. Alon, J. Edmonds, M. Luby, Linear Time Erasure
Codes with Nearly Optimal Recovery, Proc. 86th Ann.
Symp. on Foundations of Computer Science (FOCS),
512-519, IEEE Computer Society Press, 1995.

[3] D. Bini, V.Y. Pan, Polynomial and Matriz
Computations, Volume 1: Fundamental Algorithms,
Birkh&user, Boston, 1994.

[4] D. Bini, V.Y. Pan, Polynomial and Matriz
Computations, Volume 2: Fundamental and Practical
Algorithms, Birkhauser, Boston, 2000.

[5] J. Blomer, M. Kalfane, R. Karp, M. Karpinski, M
Luby, D. Zuckerman, An XOR-Based
Erasure-Resilient Coding Scheme, Technical Report
TR-95-48, International Computer Science Institute,
Berkeley, Califormia, 1995.

[6] T. Fink, G. Heinig, K. Rost, An Inversion Formula
and Fast Algorithms for Cauchy-Vandermonde
Matrices, Linear Algebra Appl., 183, 179-191, 1993.

[7]

(8]

[9

—

[12]

[13]

[14]

[15]

[17]

[18]

N. Gastinel, Inversion d’'une Matrice Generalisant la
Matrice de Hilbert, Chiffres, 3, 149-152, 1960.

A. Gerasoulis, A Fast Algorithm for the Multiplication
of Generalized Hilbert Matrices with Vectors, Math.
Comp., 50, 181, 179-188, 1987.

I. Gohberg, V. Olshevsky, Complexity of
Multiplication with Vectors for Structured Matrices,
Linear Algebra Appl., 202, 163-192, 1994.

T. Kailath, A. Sayed, Fast Reliable Algorithms for
Matrices with Structure, SITAM Publications,
Philadelphia, 1999.

M. G. Luby, M. Mitzenmacher, M. A. Shokrollahi, D.
A. Spielman, V. Stemann, Practical Loss-Resilient
Codes, Proc. 29th Ann. Symp. on Theory of
Computing (STOC’97), ACM Press, New York, 1997.

L. Mirsky, An Introduction to Linear Algebra, Dover,
New York, 1982.

B. Mourrain, V. Y. Pan, Multivariate Polynomials,
Duality and Structured Matrices, J. of Complezity,
16, 1, 2000.

F. J. MacWilliams, N. J. A. Sloane, The Theory of
Error-Correcting Codes, North-Holland, New York,
1977.

V. Olshevsky, V. Y. Pan, A Unified Superfast
Algorithm for Boundary Rational Tangential
Interpolation Problem and for Inversion and
Factorization of Dense Structured Matrices, Proc.
39th Annual IEEE Symposium on Foundations of
Computer Science, 192-201, IEEE Computer Society
Press, 1998.

V. Olshevsky, V. Y. Pan, Polynomial and Rational
Interpolation and Multipoint Evaluation (with
Structured Matrices), Proc. 26th Intern. Collogquium
on Automata, Languages and Programming
(ICALP’99), 1644, 585-594, Springer’s LNCS, Berlin,
1999.

V. Olshevsky, M. A. Shokrollahi, A Displacement
Approach to Efficient Decoding of
Algebraic-Geometric Codes, Proc. 31st Ann. Symp. on
Theory of Computing, 235-244, ACM Press, New
York, May 1999.

V.Y. Pan, On Computations with Dense Structured
Matrices, Proc. ACM-SIGSAM Intern. Symp. on
Symbolic and Alg. Comp., 34-42, ACM Press, New
York, 1989, and Math. of Computation., 55, 191,
179-190, 1990.

V. Y. Pan, Complexity of Computations with Matrices
and Polynomials, STAM Review, 34, 2, 225-262, 1992.

V.Y. Pan, Nearly Optimal Computations with
Structured Matrices, Proc. 11th Ann. ACM-SIAM
Symp. on Discrete Algorithms, SODA’2000), 953-962,
ACM Press, New York, and SIAM Publications,
Philadelphia, 2000.

(21]

[22]

23]

[24]

25]

[26]

V. Y. Pan, M. AbuTabanjeh, Z. Chen, E. Landowne,

A. Sadikou, New Transformations of Cauchy Matrices
and Trummer’s Problem, Computer and Math. (with

Applics.), 35, 12, 1-5, 1998.

V. Y. Pan, Z. Chen, The Complexity of the Matrix
Eigenproblem, Proc. 81st Annual ACM Symp. on
Theory of Computing, 507-516, ACM Press, New
York, 1999.

P. Penfield Jr., R. Spencer, S. Duinker, Tellegen’s
Theorem and Electrical Networks, MIT Press,
Cambridge, Massachusetts, 1970.

M. O. Rabin, Efficient Dispersal of Information for
Security, Load Balancing, and Fault Tolerance, J.
ACM, 36, 2, 335-348, 1989.

J. F. Traub, Associated Polynomials and Uniform
Methods for the Solution of Linear Problems, SIAM
Review, 8, 277-301, 1966.

S. B. Wicker, V. Bhargava, Reed-Solomon Codes and
Their Applications, IEEE Press, New York, 1994.

