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Abstract

The known fast sequential algorithms for multiplying two N x N matrices (over an arbitrary
ring) have time complexity O(N®), where 2 < a < 3. The current best value of « is less than
2.3755. We show that for all 1 < p < N%, multiplying two N x N matrices can be performed on a
p-processor linear array with a reconfigurable pipelined bus system (LARPBS) in
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time. This is currently the fastest parallelization of the best known sequential matrix multiplication

N2.3755

algorithm on a distributed memory parallel system. In particular, forall1 < p < , multiplying

two N x N matrices can be performed on a p-processor LARPBS in
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time, and linear speedup can be achieved for p as large as O(N2375%/(log N)

6.3262) * Furthermore,

multiplying two N x N matrices can be performed on an LARPBS with O(N®) processors in O(log N)

time. This compares favorably with the performance on a PRAM.
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1 Introduction

Many sequential algorithms have been proposed for matrix multiplication, one of the most
fundamental problems in sciences and engineering. The standard sequential algorithm takes
O(N3) operations to multiply two N x N matrices. Since Strassen’s remarkable discovery of
his O(N?2-807) algorithm [35], successive progress has been made to develop fast sequential
matrix multiplication algorithms with time complexity O(N®), where 2 < a < 3. The
current best exponent is o < 2.3755 [6].

The standard algorithm for matrix multiplication, Strassen’s algorithm of [35] and
Winograd’s algorithm (see [27, page 169]) both with o < 2.8074, are used extensively in
practice [9]. Other known asymptotically fast algorithms are not practically useful because
of large overhead constants hidden in the big-O notation (this applies to all the known
algorithms with o < 2.78), or because of the requirement of increasing memory space [12].
It is still plausible that faster practical algorithms for matrix multiplication will appear,
which should motivate theoretical importance of parallelization of matrix multiplication
algorithms, and in the case of Strassen’s and Winograd’s algorithms, such a parallelization
should already have practical value.

On shared memory multiprocessors, Strassen’s algorithm has been parallelized [4].
Furthermore, it is well known that two N x N matrices can be multiplied under a CREW
PRAM in O(log N) time by using O(N®*¢) processors, for any fixed positive ¢, as soon
as we have an algorithm using O(N®) arithmetic time for N x N matrix multiplication
[3, 28, 30]. As a matter of fact, based on any of the known algorithms for N x N matrix
multiplication running in O(N?%) time, we yield O(log N) parallel time using O(N®/log N)
arithmetic processors under the PRAM model.

On distributed memory multicomputers (which are considered more practical), re-
search has essentially focused on the parallelization of the standard method. It was shown
that matrix multiplication can be done in O(N3/p + log(p/N?)) time on a hypercube with
p processors, where N? < p < N3 [7]. It was also reported that matrix multiplication
can be done in constant time on a reconfigurable mesh with N* processors [31]. Such an
implementation, though very fast, is far from cost-optimal.

To have fast and processor efficient parallel algorithms, it is necessary to consider
non-standard algorithms. To the best of the authors’ knowledge, all O(N®) sequential
algorithms with a < 3 have not been fully parallelized on any distributed memory systems,
since these systems do not have sufficient capability to support complicated communication
efficiently. In [7], it was shown that matrix multiplication can be done in O(N®/p(®=1)/2)
time on a hypercube with p processors, where 1 < p < N2. This algorithm is valid only
in a small interval of p, which is not cost-optimal (as compared to the O(N®) sequential
algorithm), and the shortest execution time reached when p = N? is O(N), which is very
slow. The reason is that the O(N®) algorithm is invoked sequentially to calculate submatrix
products and not parallelized at all.



To fully parallelize the fast sequential matrix multiplication algorithms on distributed
memory systems, more powerful communication mechanism is required. It is clear that all
existing realistic static networks with electronic connections have limited communication
capability in supporting fast parallelization of an O(N?) algorithm, where a < 3.

Recently, fiber optical buses have emerged as promising networks [2, 5, 8, 10, 13, 22, 25,
33, 38]. Pipelined optical buses can support massive volume of data transfer simultaneously,
and can implement various communication patterns. Furthermore, a system with optical
buses can be reconfigured into independent subsystems, which can be used simultaneously
to solve subproblems in parallel [25]. It is now feasible to build distributed memory systems
that are no less powerful and flexible than shared memory systems in solving many problems,
such as Boolean matrix multiplication [14] and sorting [21]. Numerous parallel algorithms
using optical interconnection networks have been developed recently [1, 11, 17, 18, 19, 20,
23, 24, 26, 32, 34, 36, 37].

On a linear array with a reconfigurable pipelined bus system (LARPBS) proposed in
[25], Strassen’s algorithm has been parallelized and has execution time O((log N')?) by using
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processors, where 0 < ¢ < 1 [19]. This implies that matrix multiplication can be done in

N28074) processors. This is

O(1) time using N processors, and in O(log N) time using O(
thus far the fastest parallel matrix multiplication algorithm on distributed memory models.
In this paper, we show that for all 1 < p < N¢, multiplying two N x N matrices (over

an arbitrary ring) can be performed on a p-processor LARPBS in
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time. If the number of processors is

Na
D= ) ( (IOg N)a/(a72) ) )

our algorithm achieves linear speedup and is cost-optimal. This is currently the fastest and
most processor efficient parallelization of the best known sequential matrix multiplication
algorithms on a distributed memory parallel system. In particular, for all 1 < p < N2-3755,

multiplying two N x N matrices can be performed on a p-processor LARPBS in
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time, and linear speedup can be achieved for p as large as O(N?37%/(log N)®3%62). Fur-
thermore, multiplying two N x N matrices can be performed by an LARPBS with O(N®)
processors in O(log N) time. This matches the performance of PRAM. Also, it is clear that
the processor complexity is substantially reduced as compared with that in [19].



The rest of the paper is organized as follows. In Section 2, we present the LARPBS
computing model. Section 3 reviews the class of bilinear algorithms, and the strategy
of their parallelization. In Section 4, we provide the implementation details of the fastest
sequential matrix multiplication algorithm on an LARPBS, assuming that we have sufficient
processors. Section 5 considers the case where the number of processors p is arbitrarily
chosen in the range 1 < p < N® In Section 6, we analyze the cost-optimality of our
parallelization. We conclude the paper by raising an interesting open problem in Section 7.

2 The LARPBS Computing Model

A pipelined optical bus system uses optical waveguides instead of electrical signals to trans-
fer messages among electronic processors. In addition to the high propagation speed of light,
there are two important properties of optical signal (pulse) transmission on an optical bus,
namely, unidirectional propagation and predictable propagation delay. These advantages of
using waveguides enable synchronized concurrent accesses of an optical bus in a pipelined
fashion [5, 13, 33]. Such pipelined optical bus systems can support a massive volume of
communications simultaneously, and are particularly appropriate for applications that in-
volve intensive communication operations such as broadcasting, one-to-one communication,
multicasting, global aggregation, and irregular communication patterns.

A linear array with a reconfigurable pipelined bus system (LARPBS) consists of N
processors Py, Py, Ps, ..., Py, connected by an optical bus. In addition to the tremendous
communication capabilities, an LARPBS can also be partitioned into k£ > 2 independent
subarrays LARPBS;, LARPBS,, ..., LARPBS;, such that LARPBS; contains processors
Pij—1+1? R;j_l+2, e Pij, where 0 = 49 < 71 < i2--- < iy = N. The subarrays can operate
as regular linear arrays with pipelined optical bus systems, and all subarrays can be used
independently for different computations without interference (see [25] for an elaborated
exposition).

As in many other parallel computing systems, a computation on LARPBS is a sequence
of alternate global communication and local computation steps. The time complexity of an
algorithm is measured in terms of the total number of bus cycles in all the communication
steps, as long as the time of the local computation steps between successive communication
steps is bounded by a constant and independent of the problem size.

Perhaps the best way to understand the LARPBS computing model is to inspect the
primitive operations that it can efficiently support. A number of basic communication,
data movement, and aggregation operations on the LARPBS model implemented using the
coincident pulse processor addressing technique [5, 13, 33] have been developed [19, 25].
Each of these primitive operations can be performed in a constant number of bus cycles.
They provide an algorithmic view on parallel computing using optical interconnections, and
also allow us to develop, specify, and analyze parallel algorithms by ignoring optical and
engineering details. These powerful primitives that support massive parallel communica-
tions, plus the reconfigurability of the LARPBS model, make the LARPBS very attractive



in solving problems that are both computation and communication intensive.

The following primitive operations on LARPBS are used in this paper, and our algo-
rithms are developed using these operations as building blocks. The reader is referred to
[19, 25] for the implementation details of these operations via optical signals. Here, we only
give the definitions.

One-to-One Communication. Assume that processors P; , P;,, ..., P;, are senders, and
processors Py, Pj,, ..., Pj are receivers. In particular, processor FP;, sends a value
z;, to Pj,, for all 1 <k < ¢ simultaneously.

Broadcasting. Here, we have a source processor F;, who sends a value z to all the NV
processors Py, P>, Ps, ..., Py.

Multicasting. In a multicasting operation, we have a source processor P;, who sends a
value z to a subset of the N processors P, Pj,, ..., P, .

Multiple Multicasting. Assume that we have g disjoint groups of destination processors,
Gr = {Pj,.» Pj,.> Pjss -}, 1 < k < g, and there are g senders P, P, ..., Pj,.
Processor P;, has value z;, to be broadcast to all the processors in Gy, where 1 <
k < g. Since there are g simultaneous multicasting, we have a multiple multicasting

operation.

Global Summation. Suppose that every processor P; holds a numerical value v;, 1 < j <
N, where v; is an integer or a floating-point value with finite magnitude and precision,
we need to calculate the summation v; +wve + v3 4+ - - - +vy. The summation is finally
saved in P;.

All these communication, data movement, and global aggregation primitives can be
performed on an LARPBS in constant number of bus cycles [19, 25].

It has been a common practice in algorithm analysis to assume that a single manip-
ulation (e.g., an arithmetic operation) takes constant time. This essentially implies that
numerical values have finite magnitude and precision; otherwise, a manipulation either takes
longer time, or requires extra hardware support. Therefore, our assumption in the global
summation is quite reasonable. However, since in this paper, we are dealing with matrix
multiplication on an arbitrary ring, we need the following general aggregation operation.

Global Aggregation. Suppose that every processor P; holds a value v;, 1 < j < N, where
vj is in an arbitrary set S with a binary associative operator &, we need to calculate
v Bvy Dus P --- ®oy. The result of the aggregation is finally saved in P;. We say
that the size of the aggregation is N.

It may not be the case that all such kind of global aggregations can be implemented
using optical signals in constant number of bus cycles. However, we can still use the
ordinary binary tree method to find the aggregation in O(log N) time, where the data



communications can be easily supported by an optical bus. If IV is a constant, such an
aggregation requires constant amount of time. Fortunately, in this paper, we only use
aggregations of constant sizes on subarrays whose sizes are independent of matrix sizes, and
hence, their constant execution time is independent of the data set S and the definition of
@. We will mention the size of each aggregation explicitly.

3 The Strategy

In this section, we show how to parallelize any fast sequential matrix multiplication algo-
rithm, with one limitation, namely, the execution time is bounded from below by O(log V).
This limitation is due to the recursive nature of the class of bilinear algorithms, not to
the communication constraints on a parallel system. Assume that the known sequential
algorithm for multiplying two N x N matrices has time complexity O(N®).

We follow the approach [3, pages 315-316] and [28, 29, 30]. With no loss of generality,
we will consider the class of recursive bilinear algorithms for the evaluation of the matrix
product C' = A x B, where A = (a;;), B = (b;i), and C = (c;) are m x m matrices. First
of all, there is a basis bilinear computation that has three steps.

Step (a). In the first step, the values of 2R linear functions are computed,

Ly= Y [f(i,j,u)ay, Ly= Y [*(k w)bj,

1<i,j<m 1<) k<m
where u = 1,2,..., R.
Step (b). Then, in the second step, we compute the R products L, L}, for all 1 <u < R.

Step (c). Finally, in the third step, we calculate the m? outputs,
m R
cik =Y aigbig = > f*(k,i,u)L,L},
j=1 u=1

forall 1 <,k <m.

In the above computation, all the f(i,7,u)’s, f*(j,k,u)’s, and f**(k,i,u)’s are con-
stants. The value R is called the rank of the algorithm. For any positive € and any existent
or plausible algorithm for N x N matrix multiplication running in O(N®) arithmetic time,
we may fix a natural m and a basis bilinear computation with R < m®*¢ [27]. For all
the known algorithms for N x N matrix multiplication running in O(N?) time for a < 3
(including the standard algorithm for a = 3, Strassen’s algorithm for o = log, 7 < 2.8074
[35], and the ones of [6] for v < 2.3755, which are currently asymptotically fastest), we have
R = m® in the associated basis bilinear construction. In the latter case, we will call a a
basic exponent. (Note that for fixed m and «, R is finite.)



The above bilinear algorithm can be used recursively. Let A = (4;5), B = (Bj), and
C = (Cjx) be N x N matrices, where N = m". Assume that m is fixed, and n — oo. Each of
these matrices are partitioned into m? submatrices A;j, Bji, Cjj, of size m™ ' xm™ . Then,
the above computation is still applicable when all the a;;’s, bj;’s, and c;;;’s are replaced by
submatrices. The recursive algorithm that computes C' = A x B is described below.

Step (0). If the matrices are of size m x m, compute the product C = A x B directly using
the method above (i.e., Steps (a)-(c)), and return; otherwise, do Steps (1)-(3).

Step (1). Calculate 2R linear combinations of submatrices

Lu = Z f(iaja U)Aija

1<i,j<m

and

Ly= Y f(j.k,u)Bj,
1<jk<m

for all 1 <wu < R, where L, and L} are m”~ ! x m"~ 1! matrices.
Step (2). Calculate the R matrix products L, x L}, for all 1 <u < R.
Step (3). Compute
m R
Cit =y AijBjr, =Y f**(k,i,u)(Ly x Ly),
j=1 u=1
forall 1 <,k <m.

The above recursive algorithm has n = [log,, N levels. (A few extra dummy rows
and columns are introduced if N is not a power of m.) The recursion reaches its base case
(see Step (0)) when the size of the submatrices is m x m. If sufficiently many processors are
available, we can calculate the L,’s in parallel, and then all the L?’s in parallel (cf. Step
(1)). After the recursion in Step (2), all the Cj;’s are also computed in parallel (see Step
(3)). Hence, each level takes constant time, and the overall time complexity is O(log N).

Under the PRAM model, the above computation only needs R/ log N < m(®+e) /log N
= N®*¢/log N processors, for any fixed positive e. Furthermore, for all so far available
sequential algorithms for matrix multiplication, there is a parallelization which requires
O(N%/log N) processors (see p.317 in [3]).

4 Implementation Details

In this section, we examine the implementation details of a bilinear algorithm on an
LARPBS with m?R" processors. Our algorithm is called Fast(n), which stands for the
fastest bilinear algorithm parallelized on an LARPBS with p, = m?R" processors P;, P,
..., Pp,,, where p,, is the total number of processors required in the above bilinear algorithm.



The number of processors required to achieve the above maximum parallelism is an-
alyzed as follows. When n = 1, we have the base case. Step (a) needs m2R processors so
that all the L,’s (and then all the L}’s) are obtained in parallel. Step (b) only requires R
processors. Step (c) takes m2R processors so that all the c;;’s are calculated in parallel.
Hence, p; = m?R.

In general, when n > 1, Steps (1) and (3) require m?R(m™ )2 = m?"R processors,
and Step (2) needs p,_1 R processors. That is, p, = max(m?"R,p,_1R). It can be proven
by induction on n that p, = m?R", for all n > 1. Therefore, for a fixed m, and n — oo,
the total number of processors used for multiplying two N x N matrices, where N = m",

is p, = O(R™) = O(REn ) = O(N'°8m B) = O(N®),

4.1 The Base Case

We first examine Fast(1), that is, the base case when n = 1, which calculates C' = A x B,
where A = (a;j), B = (bji), and C = (c;x) are m x m matrices, in constant time by using
p1 = m?R processors.

Assume that initially, the input matrices A and B are stored in the first m? processors
in the row-major order, that is, elements a;; and b;; are stored in processor P;_1)py, for
all 1 < 4,7 < m, and when algorithm Fast(1) completes, the output matrix C' is stored in
the first m? processors in the row-major order, that is, element cij is found in processor
Pli—tymyj, for all 1 <4,5 <m,

For convenience, different index systems are used for the p; processors during the
execution of algorithm Fast(1). In Step (a), processors are also named as P,; j, where
1<u<R,and 1 < 4,57 < m, and the processors are mapped to the linear array using
the lexicographical order, namely, P, ; ; corresponds t0 P, _1)m2(i—1)ym4j- We use Py .
to denote a subarray with m? processors, i.e., the P,;;’s for all 1 < i,57 < m. The py
processors will be divided into R subarrays, P s «, P2+, ..., Pr«, such that the subarray

*

v, where 1 < wu < R. There are three basic operations

P, «+ is used to calculate L, and L
to compute the L,,’s.

e For all 1 < 4,5 < m, processor P ;; sends a;; to P,;;, for all 2 < « < R. This
is actually a multiple multicasting operation. Thus, matrix A is available to each
subarray Py .., where 1 <u < R.

e Processor P, ; ; performs one local calculation for f(i,j,u)a;;, for all 1 < i,j < m,
and 1 <u < R.

e The value L, is then calculated by the m? processors in P, . via an aggregation
of size m? for the summation 1<ij<m f (4, Jyu)aij. To this end, it is necessary to
reconfigure the original LARPBS with p; processors into R independent subsystems
LARPBS;, LARPBS,, ..., LARPBSEg, where LARPBS,, contains processors in P, .,
forall 1 <u < R.



The L}’s can be obtained in a similar way. Let us assume that after Step (a), L, and L
are hold by processor P, 11, for all 1 <u < R.
In Step (b), there are two basic operations.

e Processor P, 1,1 sends L, and Lj, to processor P, for all 1 <u < R in parallel. This

can be done using two one-to-one communications.

*

e Once processor P, receives L, and L},

it can compute the product L, L;, using local
computation.

After Step (b) is finished, processor P, has the values L, L}, for all 1 <u < R.

In Step (c), processors are called Py, where 1 < i,k < m, and 1 < u < R. The
subarray P; i ., which contains processors P; 1, P; k2, ..., P g, is used to compute c;;, for
all 1 <i,k < m.

e First, for all 1 <wu < R, processor P, sends the product L, L;, to processor F; ,, for
all 1 <14,k < m, via a multiple multicasting operation.

e Second, processor P, j, computes the value f**(k,i,u)L, L locally.

e Third, the summation c;, = le f**(k,i,u)L, L} is assembled by the processors in
P; ;. . using an aggregation operation of size R. The result c;; is then stored in P 1,
for all 1 <14,k < m. System reconfiguration is required in this step.

e Finally, we need to perform a one-to-one communication to bring c;; from P;;; to
Pi_1ym+k, for all 1 <,k < m, to meet the output data layout requirement.

It is clear that Steps (a), (b), and (c) can all be implemented using primitive data move-
ment and communication operations, aggregations of constant sizes, and local operations,
in constant number of bus cycles. Hence, we reach the following conclusion.

Theorem 1. Multiplying two m X m matrices can be performed in constant time on an
LARPBS with p; = m?R processors. [ |

4.2 The General Case

Now, let us look at algorithm Fast(n) in the general case where n > 1. As mentioned
before, the number of processors used by algorithm Fast(n) is p, = m?R". Basically, we
will show how each level of the recursion can be implemented in constant amount of time.

We assume that the input matrices A and B, as well as the output matrix C are
all arranged in the shuffled-row-major order in the first N? processors of an LARPBS.
Essentially, this means that if A = (A4;;) of size m™ x m™ is divided into blocks A;; of

n=1 % m™~! then the blocks are arranged in the row-major order. Furthermore, the

size m
arrangement of the blocks are defined recursively, and the base matrices of size m x m are

in the row-major order.



In Step (0), we reach the base case. Therefore, algorithm Fast(1) is executed in
constant time using p; processors to multiply two base matrices of size m X m.

In Step (1), only p, = N2R = m?>"R < m?R™ = p, processors are required. These
p!. processors are divided into m?R groups, and each group of m2=1) processors is called
a super-processor, which can be used to store a block A;; in the shuffled-row-major order.
Let us label these super-processors as P, ; j, where 1 < u < R, and 1 < 4,7 < m. The
subarray of super-processors Py . . calculates matrices L, and L, foralll <u<R. Itis
clear that in the shuffled-row-major order, super-processor P ; ; holds the block A;;, for all
1<4,5 <m.

e For all 1 <4,5 < m, super-processor Py ; j sends A;; to Py ; ;, for all 2 < u < R. This
is accomplished by a multiple multicasting operation. Matrix A is then available to
each subarray P ., where 1 <u < R.

e Super-processor P, ; ; computes f(i,j,u)A;; using local calculation, for all 1 <4,j <
m,and 1 <u < R.

L'x m" ! is then calculated by the m? super-processors

e The matrix L, of size m"~
in Py« To this end, in addition to reconfiguration of the original LARPBS into
R independent subsystems of super-processors, it is necessary to perform data rear-
rangement within each subsystem, and to reconfigure each subsystem into m2(n=1)

sub-subsystems, such that each sub-subsystem (with m? processors) calculates one

element in L,. There are three operations to obtain the submatrix summation

Yi<ij<m f (¢,j,u)A;ij, a one-to-one communication to bring the corresponding sub-

matrix elements together into sub-subsystems, parallel aggregations of size m? in the

sub-subsystems, and a one-to-one communication to put the results to the right pro-

cessors. Detailed specification is omitted here.

The matrix L} can be obtained in a similar way. Let us assume that after Step (1), L,, and
L, are hold by super-processor P, 1,1 in the shuffled-row-major order, for all 1 <u < R.

In Step (2), all the p, processors are employed. These p, processors will be divided
into R subsystems LARPBS;, LARPBS,, ..., LARPBSg, and each subsystem LARPBS,
has p,_1 processors used to calculate the matrix product L, x L}, for all 1 <u < R. For
convenience, processors are also grouped into super-processors.

e Super-processor P, 11 sends L, and L;, to the first super-processor in LARPBS,,, for
all 1 <u < R in parallel, using two one-to-one communications.

e LARPBS, computes the product L, x L} by recursively invoking algorithm Fast(n—1)
and using p,_1 processors, where 1 < u < R.

After Step (2) is finished, the first super-processor in LARPBS,, has the matrices L, x L,
for all 1 <u < R.

10



In Step (3), again, only p! processors are used. Once more, the p!, processors are
grouped into super-processors P;,, where 1 < i,k < m, and 1 < u < R, and each

2(n—1) processors. These m2R super-processors are divided into m?

super-processor has m
subarrays P; j, ., and P; i, . is used to compute one submatrix Cj, where 1 <,k < m. Each
subarray P; . has R super-processors P; i 1, Pi k2, ..., Pik,r, Where P; ;. ,, holds the matrix

product L, x L}, for all 1 <u < R.

e For all 1 < u < R, the first super-processor in LARPBS,, of Step (2) sends the matrix
product L, x Ly to all P ,, where 1 <1,k < m.

e Super-processor P; ., calculates f**(k,i,u)(L, x L) by local computation, where
1<i,k<m,and 1 <u <R.

o Subarray P; ;. computes the submatrix summation % | f**(k,i,u)(L, x L%), where
1 < i,k < m, through appropriate data rearrangement and aggregations of size R.
The summation is stored in super-processor P; j 1.

e Super-processor P; i 1 sends the result Cj to the right place via a one-to-one commu-
nication, for all 1 < i,k < m.

It is clear that except the recursion in Step (2), all other steps take constant number
of bus cycles. Since each of the O(log V) levels of the recursion requires constant amount of
time, algorithm Fast(n) has time complexity O(log N). Thus, we have the following claim.

Theorem 2. For any basic exponent «, multiplying two N X N matrices can be performed
in O(log N) time on an LARPBS with p, = O(N®) processors. ]

5 Fewer Processors: 1 < p < N¢

In the last section, we provide the implementation details of parallelization of the fastest
sequential matrix multiplication algorithm when there are sufficiently many processors. In
reality, the number of processors available is not always enough for an application. In this
section, we examine the case where the number of processors p is arbitrarily chosen in the
range [1..N?].

It is clear that in the implementation of Section 4, processors perform computation
and communication at the element level, that is, processors

e send to each other one matrix element at a time;
e calculate element product locally;

e and aggregate element summations.

11



(Remark: Communication and aggregation of submatrices among super-processors are ac-
tually done by individual processors at the element level.) All the above operations take
constant bus cycles. When there are fewer processors, it is necessary for processors to
perform computation and communication at the submatrix level.

Let ¢ be an integer such that ¢® < p, i.e., ¢ = |p'/®], and s = [N/q]. All the matrices
A= (Aj;), B = (Bji), and C = (Cj;) are partitioned into submatrices A;j, Bj, Cy, of size
s X . Our algorithm is called Fast(n,p), which is essentially the same as Fast(n), except
that we imagine that each of these submatrices is a single element. Therefore, processors

e send to each other one submatrix at a time;
e calculate submatrix product locally;
e and aggregate submatrix summations.

Each communication (i.e., one-to-one and multiple multicasting) or aggregation at the sub-
matrix level can be realized by s?> communication or aggregation at the element level. This
implies that the execution times of Steps (1), (2), and (3) are augmented by a factor of s2.
In Step (0), i.e., the base case, each processor calculates submatrix multiplication sequen-
tially, which takes O(s®) time. It seems that the matrix sizes are reduced from N x N to
q X q, if all submatrices are treated as single elements. This implies that the number of
levels of recursion is [log,, ¢]. Therefore, the overall execution time T'(N, p, ) of algorithm
Fast(n,p) to multiply two N x N matrices using p processors by parallelizing the best
O(N®) sequential algorithm is

T(N.p,a) = O(s"+ 5’ logq)

- o3 ()

N® 1/ N?
= O(— + —<—> logp).
P a p2/a

The above discussion essentially proves the following theorem.

Theorem 3. For any basic exponent o and for all 1 < p < N%, multiplying two N x N
matrices can be performed on a p-processor LARPBS in

N© N2
O(— + (T) logp)
D pe

time. -
Theorem 2 is a special case of Theorem 3 by taking p = N¢.

Corollary 1. For any basic exponent o, multiplying two N x N matrices can be performed
on an LARPBS in O(log N) time, using N processors. In particular, multiplying two N x N
matrices can be performed on an LARPBS in O(log N) time, using N2-37 processors. ®

Notice that Corollary 1 is well known on the PRAM model [30].
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6 Cost-Optimality

We now show that algorithm Fast(n,p) achieves linear speedup and is cost-optimal in a
wide range of p for all the known N x N matrix multiplication algorithms. It is clear
from Theorem 3 that when p < N, the term O(N®/p) dominates the time complexity of
Fast(n,p). When p is close to N¢, the second term dominates T'(N,p, a). Since

N N 2/
T(Nap’ a) = O<— + <—> 10gp>a
p p

we write p = N*/f(N), which yields
T(N,p,a) = O(f(N) + (f(N))*/*log N),
where f(N) is a small infinity. Clearly, when f(N) = O((log N)*/(®*=2)), we have
T(N,p,@) = O((f(N))**log N).
When p does not exceed O(N®/(log N)*/(*=2)), the speedup of algorithm Fast(n,p) is
S(N,p, ) = O(p).

When p = Q(N®/(log N)*/(®=2)), we still have

B O(Na) B Noz72p2/o¢ B P
SN0 = N ) = Q( log N ) - Q(logN)'

Similarly, the cost of algorithm Fast(n,p) is
C(N,p,a) = O(N?)
for p as large as O(N®/(log N)®/(®=2)). When p = Q(N*/(log N)*/(*~2)), we have
C(N,p,a) = T(N,p,a)p = O(p* 2/*N?1og N).
The highest cost is O(N%log N), when p = N“.

Corollary 2. If the number of processors is

Na
P = O ( (IOg N)a/(a—?) ) )

algorithm Fast(n,p) achieves linear speedup and is cost-optimal. [
The following result is an immediate consequence of Theorem 3 and Corollary 2.

Corollary 3. For all 1 < p < N2375 multiplying two N x N matrices can be performed

N2.3755 N2
O( D + <p0.8419> lng)

time. Hence, linear speedup can be achieved for p = O(N?-37% /(log N)

on a p-processor LARPBS in

6.3262). m

13



7 Concluding Remarks

We have developed an efficient parallelization of the fastest sequential matrix multiplica-
tion algorithm on a linear array with a reconfigurable pipelined optical bus system. The
algorithm has linear speedup and cost-optimality in a wide range of choice for the number
of processors. It turns out that for parallel matrix multiplication, a distributed memory
system with optical interconnections like LARPBS compares favorably with shared memory
systems, where the concurrent read capability is replaced by highly efficient communications
with predictable senders and receivers.

The results of this paper can be applied to solve many other matrix computation
problems such as calculating matrix chain products, computing the powers, the charac-
teristic polynomial, the determinant, the rank, the inverse, an LU-factorization, and a
QR-factorization of a matrix, solving linear systems of equations, and so on. All these com-
putations contain matrix multiplication as subcomputations, and hence fast and scalable
parallel algorithms can be developed [15, 16].

As indicated in Section 3, under the PRAM model, O(N®/log N) processors are
enough to achieve O(log N) parallel execution time. While such a parallelization is not
difficult under the PRAM model, where all the processors share infinite common memory,
it is more involved to implement such a parallelization in a distributed memory model.
However, we believe that by carefully designing data distribution and scheduling the com-
putation and communication, it is possible to parallelize a sequential O(N®) matrix mul-
tiplication algorithm on an LARPBS in O(log N) time by using O(N®/log N) processors.
This will be our next step of investigation.

It is also noticed that the time complexity of algorithm Fast(n,p) is bounded from
below by O(log N). An interesting question is, “Can we obtain sublogarithmic execution
time by using more processors?” The following theorem was established in [19].

Theorem 4. For all p = N3/(§)(log N)S, where 0 < § < 1, multiplying two N X N matrices
can be performed on a p-processor LARPBS in O((log N)?) time. ]

When § < 1, we have (%)(log N = o(N°€), for all € > 0. This means that Theorem
4 results in sublogarithmic time complexity for matrix multiplication in an interval of p
that is less than [N3~¢ N3], for all € > 0. An interesting open problem is, “Can we obtain
sublogarithmic execution time by using N3¢ processors, for some € > 0?” This is worth of
further investigation.
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