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Abstract

The known fast sequential algorithms for multiplying two N �N matrices �over an arbitrary

ring� have time complexity O�N��� where � � � � �� The current best value of � is less than

������� We show that for all � � p � N�� multiplying two N �N matrices can be performed on a

p	processor linear array with a recon
gurable pipelined bus system �LARPBS� in

O
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p
�
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�

time� This is currently the fastest parallelization of the best known sequential matrix multiplication

algorithm on a distributed memory parallel system� In particular� for all � � p � N������� multiplying

two N �N matrices can be performed on a p	processor LARPBS in

O
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N������

p
�
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p������

�
log p

�

time� and linear speedup can be achieved for p as large as O�N��������logN�	���	��� Furthermore�

multiplying twoN�N matrices can be performed on an LARPBS with O�N�� processors in O�logN�

time� This compares favorably with the performance on a PRAM�
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� Introduction

Many sequential algorithms have been proposed for matrix multiplication� one of the most

fundamental problems in sciences and engineering� The standard sequential algorithm takes

O�N�� operations to multiply two N�N matrices� Since Strassen�s remarkable discovery of

his O�N������� algorithm ���	� successive progress has been made to develop fast sequential

matrix multiplication algorithms with time complexity O�N��� where 
 � � � �� The

current best exponent is � � 
����� ��	�

The standard algorithm for matrix multiplication� Strassen�s algorithm of ���	 and

Winograd�s algorithm �see �
�� page ��	� both with � � 
������ are used extensively in

practice �	� Other known asymptotically fast algorithms are not practically useful because

of large overhead constants hidden in the big�O notation �this applies to all the known

algorithms with � � 
����� or because of the requirement of increasing memory space ��
	�

It is still plausible that faster practical algorithms for matrix multiplication will appear�

which should motivate theoretical importance of parallelization of matrix multiplication

algorithms� and in the case of Strassen�s and Winograd�s algorithms� such a parallelization

should already have practical value�

On shared memory multiprocessors� Strassen�s algorithm has been parallelized ��	�

Furthermore� it is well known that two N �N matrices can be multiplied under a CREW

PRAM in O�logN� time by using O�N���� processors� for any �xed positive �� as soon

as we have an algorithm using O�N�� arithmetic time for N � N matrix multiplication

��� 
�� ��	� As a matter of fact� based on any of the known algorithms for N � N matrix

multiplication running in O�N�� time� we yield O�logN� parallel time using O�N�� logN�

arithmetic processors under the PRAM model�

On distributed memory multicomputers �which are considered more practical�� re�

search has essentially focused on the parallelization of the standard method� It was shown

that matrix multiplication can be done in O�N��p� log�p�N��� time on a hypercube with

p processors� where N� � p � N� ��	� It was also reported that matrix multiplication

can be done in constant time on a recon�gurable mesh with N� processors ���	� Such an

implementation� though very fast� is far from cost�optimal�

To have fast and processor e�cient parallel algorithms� it is necessary to consider

non�standard algorithms� To the best of the authors� knowledge� all O�N�� sequential

algorithms with � � � have not been fully parallelized on any distributed memory systems�

since these systems do not have su�cient capability to support complicated communication

e�ciently� In ��	� it was shown that matrix multiplication can be done in O�N��p����	���

time on a hypercube with p processors� where � � p � N�� This algorithm is valid only

in a small interval of p� which is not cost�optimal �as compared to the O�N�� sequential

algorithm�� and the shortest execution time reached when p � N� is O�N�� which is very

slow� The reason is that the O�N�� algorithm is invoked sequentially to calculate submatrix

products and not parallelized at all�






To fully parallelize the fast sequential matrix multiplication algorithms on distributed

memory systems� more powerful communication mechanism is required� It is clear that all

existing realistic static networks with electronic connections have limited communication

capability in supporting fast parallelization of an O�N�� algorithm� where � � ��

Recently� �ber optical buses have emerged as promising networks �
� �� �� ��� ��� 

� 
��

��� ��	� Pipelined optical buses can support massive volume of data transfer simultaneously�

and can implement various communication patterns� Furthermore� a system with optical

buses can be recon�gured into independent subsystems� which can be used simultaneously

to solve subproblems in parallel �
�	� It is now feasible to build distributed memory systems

that are no less powerful and �exible than shared memory systems in solving many problems�

such as Boolean matrix multiplication ���	 and sorting �
�	� Numerous parallel algorithms

using optical interconnection networks have been developed recently ��� ��� ��� ��� �� 
��


�� 
�� 
�� �
� ��� ��� ��	�

On a linear array with a recon�gurable pipelined bus system �LARPBS� proposed in

�
�	� Strassen�s algorithm has been parallelized and has execution time O��logN��� by using

O

�
N�

����
��logN	�

�

processors� where � � � � � ��	� This implies that matrix multiplication can be done in

O��� time using N� processors� and in O�logN� time using O�N������� processors� This is

thus far the fastest parallel matrix multiplication algorithm on distributed memory models�

In this paper� we show that for all � � p � N�� multiplying two N �N matrices �over

an arbitrary ring� can be performed on a p�processor LARPBS in

O

�
N�

p
�

�
N�

p���

�
log p

�

time� If the number of processors is

p � O

�
N�

�logN�������	

�
�

our algorithm achieves linear speedup and is cost�optimal� This is currently the fastest and

most processor e�cient parallelization of the best known sequential matrix multiplication

algorithms on a distributed memory parallel system� In particular� for all � � p � N����

�

multiplying two N �N matrices can be performed on a p�processor LARPBS in

O

�
N����



p
�

�
N�

p������

�
log p

�

time� and linear speedup can be achieved for p as large as O�N����

��logN��������� Fur�

thermore� multiplying two N �N matrices can be performed by an LARPBS with O�N��

processors in O�logN� time� This matches the performance of PRAM� Also� it is clear that

the processor complexity is substantially reduced as compared with that in ��	�

�



The rest of the paper is organized as follows� In Section 
� we present the LARPBS

computing model� Section � reviews the class of bilinear algorithms� and the strategy

of their parallelization� In Section �� we provide the implementation details of the fastest

sequential matrix multiplication algorithm on an LARPBS� assuming that we have su�cient

processors� Section � considers the case where the number of processors p is arbitrarily

chosen in the range � � p � N�� In Section �� we analyze the cost�optimality of our

parallelization� We conclude the paper by raising an interesting open problem in Section ��

� The LARPBS Computing Model

A pipelined optical bus system uses optical waveguides instead of electrical signals to trans�

fer messages among electronic processors� In addition to the high propagation speed of light�

there are two important properties of optical signal �pulse� transmission on an optical bus�

namely� unidirectional propagation and predictable propagation delay� These advantages of

using waveguides enable synchronized concurrent accesses of an optical bus in a pipelined

fashion ��� ��� ��	� Such pipelined optical bus systems can support a massive volume of

communications simultaneously� and are particularly appropriate for applications that in�

volve intensive communication operations such as broadcasting� one�to�one communication�

multicasting� global aggregation� and irregular communication patterns�

A linear array with a recon�gurable pipelined bus system �LARPBS� consists of N

processors P�� P�� P�� ���� PN � connected by an optical bus� In addition to the tremendous

communication capabilities� an LARPBS can also be partitioned into k � 
 independent

subarrays LARPBS�� LARPBS�� ���� LARPBSk� such that LARPBSj contains processors

Pij����� Pij����� ���� Pij � where � � i� � i� � i� � � � � ik � N � The subarrays can operate

as regular linear arrays with pipelined optical bus systems� and all subarrays can be used

independently for di�erent computations without interference �see �
�	 for an elaborated

exposition��

As in many other parallel computing systems� a computation on LARPBS is a sequence

of alternate global communication and local computation steps� The time complexity of an

algorithm is measured in terms of the total number of bus cycles in all the communication

steps� as long as the time of the local computation steps between successive communication

steps is bounded by a constant and independent of the problem size�

Perhaps the best way to understand the LARPBS computing model is to inspect the

primitive operations that it can e�ciently support� A number of basic communication�

data movement� and aggregation operations on the LARPBS model implemented using the

coincident pulse processor addressing technique ��� ��� ��	 have been developed ��� 
�	�

Each of these primitive operations can be performed in a constant number of bus cycles�

They provide an algorithmic view on parallel computing using optical interconnections� and

also allow us to develop� specify� and analyze parallel algorithms by ignoring optical and

engineering details� These powerful primitives that support massive parallel communica�

tions� plus the recon�gurability of the LARPBS model� make the LARPBS very attractive

�



in solving problems that are both computation and communication intensive�

The following primitive operations on LARPBS are used in this paper� and our algo�

rithms are developed using these operations as building blocks� The reader is referred to

��� 
�	 for the implementation details of these operations via optical signals� Here� we only

give the de�nitions�

One�to�One Communication� Assume that processors Pi� � Pi� � ���� Piq are senders� and

processors Pj� � Pj� � ���� Pjq are receivers� In particular� processor Pik sends a value

xik to Pjk � for all � � k � q simultaneously�

Broadcasting� Here� we have a source processor Pi� who sends a value x to all the N

processors P�� P�� P�� ���� PN �

Multicasting� In a multicasting operation� we have a source processor Pi� who sends a

value x to a subset of the N processors Pj� � Pj� � ���� Pjm �

Multiple Multicasting� Assume that we have g disjoint groups of destination processors�

Gk � fPjk�� � Pjk�� � Pjk�� � ���g� � � k � g� and there are g senders Pi� � Pi� � ���� Pig �

Processor Pik has value xik to be broadcast to all the processors in Gk� where � �

k � g� Since there are g simultaneous multicasting� we have a multiple multicasting

operation�

Global Summation� Suppose that every processor Pj holds a numerical value vj � � � j �

N � where vj is an integer or a �oating�point value with �nite magnitude and precision�

we need to calculate the summation v�� v�� v�� � � �� vN � The summation is �nally

saved in P��

All these communication� data movement� and global aggregation primitives can be

performed on an LARPBS in constant number of bus cycles ��� 
�	�

It has been a common practice in algorithm analysis to assume that a single manip�

ulation �e�g�� an arithmetic operation� takes constant time� This essentially implies that

numerical values have �nite magnitude and precision� otherwise� a manipulation either takes

longer time� or requires extra hardware support� Therefore� our assumption in the global

summation is quite reasonable� However� since in this paper� we are dealing with matrix

multiplication on an arbitrary ring� we need the following general aggregation operation�

Global Aggregation� Suppose that every processor Pj holds a value vj � � � j � N � where

vj is in an arbitrary set S with a binary associative operator �� we need to calculate

v� � v� � v� � � � � � vN � The result of the aggregation is �nally saved in P�� We say

that the size of the aggregation is N �

It may not be the case that all such kind of global aggregations can be implemented

using optical signals in constant number of bus cycles� However� we can still use the

ordinary binary tree method to �nd the aggregation in O�logN� time� where the data

�



communications can be easily supported by an optical bus� If N is a constant� such an

aggregation requires constant amount of time� Fortunately� in this paper� we only use

aggregations of constant sizes on subarrays whose sizes are independent of matrix sizes� and

hence� their constant execution time is independent of the data set S and the de�nition of

�� We will mention the size of each aggregation explicitly�

� The Strategy

In this section� we show how to parallelize any fast sequential matrix multiplication algo�

rithm� with one limitation� namely� the execution time is bounded from below by O�logN��

This limitation is due to the recursive nature of the class of bilinear algorithms� not to

the communication constraints on a parallel system� Assume that the known sequential

algorithm for multiplying two N �N matrices has time complexity O�N���

We follow the approach ��� pages �������	 and �
�� 
� ��	� With no loss of generality�

we will consider the class of recursive bilinear algorithms for the evaluation of the matrix

product C � A�B� where A � �aij�� B � �bjk�� and C � �cik� are m�m matrices� First

of all� there is a basis bilinear computation that has three steps�

Step �a�� In the �rst step� the values of 
R linear functions are computed�

Lu �
X

��i�j�m

f�i� j� u�aij � L�u �
X

��j�k�m

f��j� k� u�bjk�

where u � �� 
� ���� R�

Step �b�� Then� in the second step� we compute the R products LuL
�
u� for all � � u � R�

Step �c�� Finally� in the third step� we calculate the m� outputs�

cik �
mX
j�

aijbjk �
RX

u�

f���k� i� u�LuL
�
u�

for all � � i� k �m�

In the above computation� all the f�i� j� u��s� f��j� k� u��s� and f���k� i� u��s are con�

stants� The value R is called the rank of the algorithm� For any positive � and any existent

or plausible algorithm for N �N matrix multiplication running in O�N�� arithmetic time�

we may �x a natural m and a basis bilinear computation with R � m��� �
�	� For all

the known algorithms for N � N matrix multiplication running in O�N�� time for � � �

�including the standard algorithm for � � �� Strassen�s algorithm for � � log� � � 
�����

���	� and the ones of ��	 for � � 
������ which are currently asymptotically fastest�� we have

R � m� in the associated basis bilinear construction� In the latter case� we will call � a

basic exponent� �Note that for �xed m and �� R is �nite��

�



The above bilinear algorithm can be used recursively� Let A � �Aij�� B � �Bjk�� and

C � �Cik� be N�N matrices� where N � mn� Assume thatm is �xed� and n��� Each of

these matrices are partitioned intom� submatrices Aij � Bjk� Cik of sizem
n���mn��� Then�

the above computation is still applicable when all the aij �s� bjk�s� and cik�s are replaced by

submatrices� The recursive algorithm that computes C � A�B is described below�

Step ���� If the matrices are of size m�m� compute the product C � A�B directly using

the method above �i�e�� Steps �a���c��� and return� otherwise� do Steps ��������

Step ���� Calculate 
R linear combinations of submatrices

Lu �
X

��i�j�m

f�i� j� u�Aij �

and

L�u �
X

��j�k�m

f��j� k� u�Bjk�

for all � � u � R� where Lu and L�u are mn�� �mn�� matrices�

Step ���� Calculate the R matrix products Lu � L�u� for all � � u � R�

Step ���� Compute

Cik �
mX
j�

AijBjk �
RX

u�

f���k� i� u��Lu � L�u��

for all � � i� k �m�

The above recursive algorithm has n � dlogmNe levels� �A few extra dummy rows

and columns are introduced if N is not a power of m�� The recursion reaches its base case

�see Step ���� when the size of the submatrices is m�m� If su�ciently many processors are

available� we can calculate the Lu�s in parallel� and then all the L�u�s in parallel �cf� Step

����� After the recursion in Step �
�� all the Cik�s are also computed in parallel �see Step

����� Hence� each level takes constant time� and the overall time complexity is O�logN��

Under the PRAMmodel� the above computation only needsRn� logN � m����	n� logN

� N���� logN processors� for any �xed positive �� Furthermore� for all so far available

sequential algorithms for matrix multiplication� there is a parallelization which requires

O�N�� logN� processors �see p���� in ��	��

� Implementation Details

In this section� we examine the implementation details of a bilinear algorithm on an

LARPBS with m�Rn processors� Our algorithm is called Fast�n�� which stands for the

fastest bilinear algorithm parallelized on an LARPBS with pn � m�Rn processors P�� P��

���� Ppn � where pn is the total number of processors required in the above bilinear algorithm�

�



The number of processors required to achieve the above maximum parallelism is an�

alyzed as follows� When n � �� we have the base case� Step �a� needs m�R processors so

that all the Lu�s �and then all the L�u�s� are obtained in parallel� Step �b� only requires R

processors� Step �c� takes m�R processors so that all the cik�s are calculated in parallel�

Hence� p� � m�R�

In general� when n � �� Steps ��� and ��� require m�R�mn���� � m�nR processors�

and Step �
� needs pn��R processors� That is� pn � max�m�nR� pn��R�� It can be proven

by induction on n that pn � m�Rn� for all n � �� Therefore� for a �xed m� and n � ��

the total number of processors used for multiplying two N �N matrices� where N � mn�

is pn � O�Rn� � O�RlogmN � � O�N logm R� � O�N���

��� The Base Case

We �rst examine Fast���� that is� the base case when n � �� which calculates C � A�B�

where A � �aij�� B � �bjk�� and C � �cik� are m �m matrices� in constant time by using

p� � m�R processors�

Assume that initially� the input matrices A and B are stored in the �rst m� processors

in the row�major order� that is� elements aij and bij are stored in processor P�i��	m�j � for

all � � i� j � m� and when algorithm Fast��� completes� the output matrix C is stored in

the �rst m� processors in the row�major order� that is� element cij is found in processor

P�i��	m�j � for all � � i� j �m�

For convenience� di�erent index systems are used for the p� processors during the

execution of algorithm Fast���� In Step �a�� processors are also named as Pu�i�j� where

� � u � R� and � � i� j � m� and the processors are mapped to the linear array using

the lexicographical order� namely� Pu�i�j corresponds to P�u��	m���i��	m�j � We use Pu����
to denote a subarray with m� processors� i�e�� the Pu�i�j�s for all � � i� j � m� The p�
processors will be divided into R subarrays� P������ P������ ���� PR����� such that the subarray

Pu���� is used to calculate Lu and L�u� where � � u � R� There are three basic operations

to compute the Lu�s�

� For all � � i� j � m� processor P��i�j sends aij to Pu�i�j� for all 
 � u � R� This

is actually a multiple multicasting operation� Thus� matrix A is available to each

subarray Pu����� where � � u � R�

� Processor Pu�i�j performs one local calculation for f�i� j� u�aij � for all � � i� j � m�

and � � u � R�

� The value Lu is then calculated by the m� processors in Pu���� via an aggregation

of size m� for the summation
P

��i�j�m f�i� j� u�aij � To this end� it is necessary to

recon�gure the original LARPBS with p� processors into R independent subsystems

LARPBS�� LARPBS�� ���� LARPBSR� where LARPBSu contains processors in Pu�����

for all � � u � R�

�



The L�u�s can be obtained in a similar way� Let us assume that after Step �a�� Lu and L�u
are hold by processor Pu����� for all � � u � R�

In Step �b�� there are two basic operations�

� Processor Pu���� sends Lu and L�u to processor Pu� for all � � u � R in parallel� This

can be done using two one�to�one communications�

� Once processor Pu receives Lu and L�u� it can compute the product LuL
�
u using local

computation�

After Step �b� is �nished� processor Pu has the values LuL
�
u� for all � � u � R�

In Step �c�� processors are called Pi�k�u� where � � i� k � m� and � � u � R� The

subarray Pi�k��� which contains processors Pi�k��� Pi�k��� ���� Pi�k�R� is used to compute cik� for

all � � i� k � m�

� First� for all � � u � R� processor Pu sends the product LuL
�
u to processor Pi�k�u� for

all � � i� k � m� via a multiple multicasting operation�

� Second� processor Pi�k�u computes the value f���k� i� u�LuL
�
u locally�

� Third� the summation cik �
PR

u� f
���k� i� u�LuL

�
u is assembled by the processors in

Pi�k�� using an aggregation operation of size R� The result cik is then stored in Pi�k���

for all � � i� k �m� System recon�guration is required in this step�

� Finally� we need to perform a one�to�one communication to bring cik from Pi�k�� to

P�i��	m�k � for all � � i� k � m� to meet the output data layout requirement�

It is clear that Steps �a�� �b�� and �c� can all be implemented using primitive data move�

ment and communication operations� aggregations of constant sizes� and local operations�

in constant number of bus cycles� Hence� we reach the following conclusion�

Theorem �� Multiplying two m �m matrices can be performed in constant time on an

LARPBS with p� � m�R processors�

��� The General Case

Now� let us look at algorithm Fast�n� in the general case where n � �� As mentioned

before� the number of processors used by algorithm Fast�n� is pn � m�Rn� Basically� we

will show how each level of the recursion can be implemented in constant amount of time�

We assume that the input matrices A and B� as well as the output matrix C are

all arranged in the shu�ed�row�major order in the �rst N� processors of an LARPBS�

Essentially� this means that if A � �Aij� of size mn � mn is divided into blocks Aij of

size mn�� �mn��� then the blocks are arranged in the row�major order� Furthermore� the

arrangement of the blocks are de�ned recursively� and the base matrices of size m�m are

in the row�major order�





In Step ���� we reach the base case� Therefore� algorithm Fast��� is executed in

constant time using p� processors to multiply two base matrices of size m�m�

In Step ���� only p�n � N�R � m�nR � m�Rn � pn processors are required� These

p�n processors are divided into m�R groups� and each group of m��n��	 processors is called

a super�processor� which can be used to store a block Aij in the shu�ed�row�major order�

Let us label these super�processors as Pu�i�j� where � � u � R� and � � i� j � m� The

subarray of super�processors Pu���� calculates matrices Lu and L�u� for all � � u � R� It is

clear that in the shu�ed�row�major order� super�processor P��i�j holds the block Aij � for all

� � i� j � m�

� For all � � i� j � m� super�processor P��i�j sends Aij to Pu�i�j� for all 
 � u � R� This

is accomplished by a multiple multicasting operation� Matrix A is then available to

each subarray Pu����� where � � u � R�

� Super�processor Pu�i�j computes f�i� j� u�Aij using local calculation� for all � � i� j �

m� and � � u � R�

� The matrix Lu of size mn�� � mn�� is then calculated by the m� super�processors

in Pu����� To this end� in addition to recon�guration of the original LARPBS into

R independent subsystems of super�processors� it is necessary to perform data rear�

rangement within each subsystem� and to recon�gure each subsystem into m��n��	

sub�subsystems� such that each sub�subsystem �with m� processors� calculates one

element in Lu� There are three operations to obtain the submatrix summationP
��i�j�m f�i� j� u�Aij � a one�to�one communication to bring the corresponding sub�

matrix elements together into sub�subsystems� parallel aggregations of size m� in the

sub�subsystems� and a one�to�one communication to put the results to the right pro�

cessors� Detailed speci�cation is omitted here�

The matrix L�u can be obtained in a similar way� Let us assume that after Step ���� Lu and

L�u are hold by super�processor Pu���� in the shu�ed�row�major order� for all � � u � R�

In Step �
�� all the pn processors are employed� These pn processors will be divided

into R subsystems LARPBS�� LARPBS�� ���� LARPBSR� and each subsystem LARPBSu
has pn�� processors used to calculate the matrix product Lu � L�u� for all � � u � R� For

convenience� processors are also grouped into super�processors�

� Super�processor Pu���� sends Lu and L�u to the �rst super�processor in LARPBSu� for

all � � u � R in parallel� using two one�to�one communications�

� LARPBSu computes the product Lu�L
�
u by recursively invoking algorithm Fast�n���

and using pn�� processors� where � � u � R�

After Step �
� is �nished� the �rst super�processor in LARPBSu has the matrices Lu � L�u�

for all � � u � R�

��



In Step ���� again� only p�n processors are used� Once more� the p�n processors are

grouped into super�processors Pi�k�u� where � � i� k � m� and � � u � R� and each

super�processor has m��n��	 processors� These m�R super�processors are divided into m�

subarrays Pi�k��� and Pi�k�� is used to compute one submatrix Cik� where � � i� k � m� Each

subarray Pi�k�� has R super�processors Pi�k��� Pi�k��� ���� Pi�k�R� where Pi�k�u holds the matrix

product Lu � L�u� for all � � u � R�

� For all � � u � R� the �rst super�processor in LARPBSu of Step �
� sends the matrix

product Lu � L�u to all Pi�k�u� where � � i� k � m�

� Super�processor Pi�k�u calculates f���k� i� u��Lu � L�u� by local computation� where

� � i� k � m� and � � u � R�

� Subarray Pi�k�� computes the submatrix summation
PR

u� f
���k� i� u��Lu�L�u�� where

� � i� k � m� through appropriate data rearrangement and aggregations of size R�

The summation is stored in super�processor Pi�k���

� Super�processor Pi�k�� sends the result Cik to the right place via a one�to�one commu�

nication� for all � � i� k � m�

It is clear that except the recursion in Step �
�� all other steps take constant number

of bus cycles� Since each of the O�logN� levels of the recursion requires constant amount of

time� algorithm Fast�n� has time complexity O�logN�� Thus� we have the following claim�

Theorem �� For any basic exponent �� multiplying two N �N matrices can be performed

in O�logN� time on an LARPBS with pn � O�N�� processors�

� Fewer Processors� � � p � N�

In the last section� we provide the implementation details of parallelization of the fastest

sequential matrix multiplication algorithm when there are su�ciently many processors� In

reality� the number of processors available is not always enough for an application� In this

section� we examine the case where the number of processors p is arbitrarily chosen in the

range ����N�	�

It is clear that in the implementation of Section �� processors perform computation

and communication at the element level� that is� processors

� send to each other one matrix element at a time�

� calculate element product locally�

� and aggregate element summations�

��



�Remark� Communication and aggregation of submatrices among super�processors are ac�

tually done by individual processors at the element level�� All the above operations take

constant bus cycles� When there are fewer processors� it is necessary for processors to

perform computation and communication at the submatrix level�

Let q be an integer such that q� � p� i�e�� q � bp���c� and s � dN�qe� All the matrices

A � �Aij�� B � �Bjk�� and C � �Cik� are partitioned into submatrices Aij � Bjk� Cik of size

s� s� Our algorithm is called Fast�n� p�� which is essentially the same as Fast�n�� except

that we imagine that each of these submatrices is a single element� Therefore� processors

� send to each other one submatrix at a time�

� calculate submatrix product locally�

� and aggregate submatrix summations�

Each communication �i�e�� one�to�one and multiple multicasting� or aggregation at the sub�

matrix level can be realized by s� communication or aggregation at the element level� This

implies that the execution times of Steps ���� �
�� and ��� are augmented by a factor of s��

In Step ���� i�e�� the base case� each processor calculates submatrix multiplication sequen�

tially� which takes O�s�� time� It seems that the matrix sizes are reduced from N � N to

q � q� if all submatrices are treated as single elements� This implies that the number of

levels of recursion is dlogm qe� Therefore� the overall execution time T �N� p� �� of algorithm

Fast�n� p� to multiply two N � N matrices using p processors by parallelizing the best

O�N�� sequential algorithm is

T �N� p� �� � O�s� � s� log q�

� O

��
N

q

��
�

�
N

q

��
log�p����

�

� O

�
N�

p
�

�

�

�
N�

p���

�
log p

�
�

The above discussion essentially proves the following theorem�

Theorem �� For any basic exponent � and for all � � p � N�� multiplying two N � N

matrices can be performed on a p�processor LARPBS in

O

�
N�

p
�

�
N�

p���

�
log p

�

time�

Theorem 
 is a special case of Theorem � by taking p � N��

Corollary �� For any basic exponent �� multiplying two N�N matrices can be performed

on an LARPBS inO�logN� time� usingN� processors� In particular� multiplying two N�N

matrices can be performed on an LARPBS in O�logN� time� using N����

 processors�

Notice that Corollary � is well known on the PRAM model ���	�

�




� Cost�Optimality

We now show that algorithm Fast�n� p� achieves linear speedup and is cost�optimal in a

wide range of p for all the known N � N matrix multiplication algorithms� It is clear

from Theorem � that when p 	 N � the term O�N��p� dominates the time complexity of

Fast�n� p�� When p is close to N�� the second term dominates T �N� p� ��� Since

T �N� p� �� � O

�
N�

p
�

�
N�

p

����
log p

�
�

we write p � N��f�N�� which yields

T �N� p� �� � O�f�N� � �f�N����� logN��

where f�N� is a small in�nity� Clearly� when f�N� � O��logN�������	�� we have

T �N� p� �� � O��f�N����� logN��

When p does not exceed O�N���logN�������	�� the speedup of algorithm Fast�n� p� is

S�N� p� �� � O�p��

When p � ��N���logN�������	�� we still have

S�N� p� �� �
O�N��

T �N� p� ��
� �

�
N���p���

logN

�
� �

�
p

logN

�
�

Similarly� the cost of algorithm Fast�n� p� is

C�N� p� �� � O�N��

for p as large as O�N���logN�������	�� When p � ��N���logN�������	�� we have

C�N� p� �� � T �N� p� ��p � O�p����	��N� logN��

The highest cost is O�N� logN�� when p � N��

Corollary �� If the number of processors is

p � O

�
N�

�logN�������	

�
�

algorithm Fast�n� p� achieves linear speedup and is cost�optimal�

The following result is an immediate consequence of Theorem � and Corollary 
�

Corollary �� For all � � p � N����

� multiplying two N �N matrices can be performed

on a p�processor LARPBS in

O

�
N����



p
�

�
N�

p������

�
log p

�

time� Hence� linear speedup can be achieved for p � O�N����

��logN���������

��



� Concluding Remarks

We have developed an e�cient parallelization of the fastest sequential matrix multiplica�

tion algorithm on a linear array with a recon�gurable pipelined optical bus system� The

algorithm has linear speedup and cost�optimality in a wide range of choice for the number

of processors� It turns out that for parallel matrix multiplication� a distributed memory

system with optical interconnections like LARPBS compares favorably with shared memory

systems� where the concurrent read capability is replaced by highly e�cient communications

with predictable senders and receivers�

The results of this paper can be applied to solve many other matrix computation

problems such as calculating matrix chain products� computing the powers� the charac�

teristic polynomial� the determinant� the rank� the inverse� an LU�factorization� and a

QR�factorization of a matrix� solving linear systems of equations� and so on� All these com�

putations contain matrix multiplication as subcomputations� and hence fast and scalable

parallel algorithms can be developed ���� ��	�

As indicated in Section �� under the PRAM model� O�N�� logN� processors are

enough to achieve O�logN� parallel execution time� While such a parallelization is not

di�cult under the PRAM model� where all the processors share in�nite common memory�

it is more involved to implement such a parallelization in a distributed memory model�

However� we believe that by carefully designing data distribution and scheduling the com�

putation and communication� it is possible to parallelize a sequential O�N�� matrix mul�

tiplication algorithm on an LARPBS in O�logN� time by using O�N�� logN� processors�

This will be our next step of investigation�

It is also noticed that the time complexity of algorithm Fast�n� p� is bounded from

below by O�logN�� An interesting question is� �Can we obtain sublogarithmic execution

time by using more processors�� The following theorem was established in ��	�

Theorem �� For all p � N����� �
�logN	� � where � � � � �� multiplying two N �N matrices

can be performed on a p�processor LARPBS in O��logN��� time�

When � � �� we have ��� �
�logN	� � o�N ��� for all � � �� This means that Theorem

� results in sublogarithmic time complexity for matrix multiplication in an interval of p

that is less than �N���� N�	� for all � � �� An interesting open problem is� �Can we obtain

sublogarithmic execution time by using N��� processors� for some � � ��� This is worth of

further investigation�

��
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