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Abstract

For a system of polynomial equations, we seek its specified
root, maximizing or minimizing the absolute value of a fixed
polynomial over all roots of the system. The latter require-
ment to a root, complicating the already difficult classical
problem, is motivated by several practical applications. We
first reduce the solution to the computation of an eigenvector
of an associated matrix. Our novel treatment of this rather
customary stage enables us to apply it uniformly to several
resultant constructions and to simplify substantially the so-
lution of an overconstrained polynomial system having only
a simple root or a few roots. Likewise, where the reduction
of a general polynomial system to an eigenproblem relies
on the Grébner basis techniques, we also obtain substantial
simplification. Then we elaborate application of the power
method and the (shifted) inverse power method to the so-
lution of the resulting eigenproblem. Our elaboration is not
straightforward since we achieve the computation preserv-
ing the sparsity and the structure of the associated matrix
involved. This enables the decrease of the arithmetic cost by
roughly factor N, denoting the dimension of the associated
resultant matrix. Furthermore, our experiments show that
our computations can be performed numerically, with single
or double precision arithmetic, and the iteration converged
to a specified root quite fast.

1 Introduction

Many problems in Robotics, Computer Vision, Computa-
tional Geometry, Signal Processing, ...involve the solution
of polynomial systems of equations. Such polynomial sys-
tems are usually defined by a few monomials but may be
very hard to solve, both from the computational complexity
point of view and from the numerical stability point of view.
In spite of long and intensive study of this subject and sub-
stantial progress (see e.g. [16], [15], [1], [18], [13], [5]), many
theoretical and practical problems of the solution of poly-
nomial systems remain largely open. Particular difficulties
arise in the case where one needs to select and to compute a
specific root of a polynomial system. This is often the case
for many practical problems, where the only interesting root
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is the root that maximizes or minimizes the absolute value
of a given functional.

A major representative of a few available approaches
is the Grobner basis method. Its well known weakness is
its adherence to modular computations. Indeed, it can-
not be applied safely with floating point arithmetic and
actually requires to increase the precision of computations
dramatically, relative to the input and output precision.
The method has also a high arithmetic computational cost.
Moreover, even when the method is applied to find a single
root, most part of its computation applies to all roots, thus
increasing the overall arithmetic cost by a large extra factor
of at least D, for D denoting the total number of all roots
of a given system. Other known methods have some other
deficiencies. For instance, in some cases Newton-type itera-
tive methods may converge quickly to a root but provide no
mean to guarantee convergence to a selected root.

In this paper, we propose a new iterative method for com-
puting a selected root of a polynomial system, which extends
previous works on the power method (see e.g. [14], [17]) to
improve computations with structured matrices associated
with multivariate polynomial systems. This method can be
implemented with floating point arithmetic, and its com-
putational cost is defined by the number of monomials in
the input equations and the dimension N of the associated
resultant matrix More precisely, we solve the polynomial
system by an iterative process which converges linearly to
the solution and uses O (N?) arithmetic operations in each
recursive step, whereas the known approaches use order of
N3 operations. Technically, we achieve this by relying on
numerical linear algebra and exploiting the structure and
sparsity of matrices, such as resultant matrices, involved in
our solution of polynomial systems.

We start with a known reduction of a polynomial system
to linear algebra computations, namely, to a matrix eigen-
problem. We contribute to this well known and well stud-
ied topic by showing a simple unifying approach, based on
the study of the associated maps, operators and functionals,
which enables more effective control over the structure and
sparsity of the matrices involved (see section 4).

Furthermore, our techniques enable us to achieve sub-
stantial additional improvement of the solution in the special
but practically highly important case where we deal with an
overconstrained polynomial system, which has only a few
roots or only a single root. Moreover, our modification of
the Grobner basis approach enables us to direct the com-



putation towards the approximation of only a specified root
and to preserve the matrix structure and sparsity. In both
overconstrained and Grébner basis cases, we substantially
decrease the computational cost, roughly by factor D (the
overall number of roots), versus the known algorithms.

Furthermore, our algorithms rely on a novel observation
(which becomes quite simple under our mapping/operator
approach to the problem) that the application of some cus-
tomary matrix computations (namely, of the power method
and the shifted inverse power method) can be elaborated
to compute a specific solution to the system, that is, a root
maximizing or minimizing the absolute value of a fixed poly-
nomial fo(z). Such an application of the power method and
the (shifted) inverse power method to our problem is not
straightforward, particularly because we care about preserv-
ing the structure and sparsity of matrices involved. We elab-
orate this application in sections 2 and 3. In section 4, we
specify three approaches to the construction of these struc-
tured matrices and give a demonstration for a parameterized
polynomial system, where we compute a single Sylvester-like
matrix, for all parameters, unlike the usual application of
Grébner basis method, which recomputes such a matrix for
every parameter.

Some other papers [4], [24], [23], [7], [25] also exploited
the reduction of the problem to polynomial multiplication,
although by different means and without the techniques
cited above, which enabled our computation of the extremal
roots (maximizing a chosen functional) and our application
to the solution of overconstrained systems.

The results of our experiments, performed for several
samples of practical problems and reported in section 5,
show the expected behavior of the algorithms. Even for
large input polynomial systems, the algorithms sufficiently
fast converge to a specified root minimizing or maximizing
a fixed polynomial. We intend to continue our experimen-
tation to clarify numerical behavior of the algorithms.

We believe that our algorithms have good potentials to
became practical and should allow various further improve-
ments, for instance, by using parallel processing.

2 Reduction of the solution of a polynomial system
to matrix eigenproblem

In this section we formalize the reduction of the solution of a
polynomial system to matrix eigenproblem (cf. [1], [29], [8],
[21], [22]). We denote by R = Clz1,. .., zx] the ring of poly-
nomials in the variables x = (z1,...,2,), with coefficients
in the field of complex numbers C. Many of our results are
valid for any algebraically closed field K.

To motivate and illustrate the material of this section,
we first consider the univariate case, where we have a poly-
nomial f € C[z] of degree d with d simple roots: f(z) =
fa TI&,(z — ¢). The quotient algebra of residue polynomi-
als modulo f, denoted by A = Clz]/(f), is a vector space
of dimension d. Its basis is (1,z,...,2°"). Consider the
Lagrange polynomials
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Verify immediately that ), e; =1 and e;e; = ei(e;—1) =0
(for these two polynomials vanish at the roots of f). In other
words, the Lagrange polynomials e; are orthogonal idempo-
tents in A and we have A = ), Ce;. Moreover, for any

polynomials a € A, we also have (a — a((;))e; = 0, so that
e; is an eigenvector for the operator of multiplication by a in
A, for the eigenvalue a(¢;). These multiplication operators
have a diagonal form in the basis (e;) of A. A basic property
of Lagrange polynomials implies that for any a € A, we have
a =), a((;) ei(x). Therefore, the dual basis of (e;) (formed
by the coefficients of e; in this decomposition) consists of the
linear forms associating to a its values at the points (;. We
will extend this approach to the case of multivariate polyno-
mial systems, which of course will require substantial further
elaboration and algebraic formalism. We refer to [20], [21],
[22], [29] for further details.

Let f1,..., fm be m polynomials of R, defining the poly-
nomial system fi(z) = 0,...,fm(z) = 0. Let I be the
ideal generated by these polynomials. We consider the case,
where the quotient algegra A = R/I is of finite dimen-
sion D over C. This implies that the set of roots or so-
lutions Z(I) = {¢ € C"; f1(¢) = = fm({) = 0} is fi-
nite: Z(I) = {¢1,...,Ca} with d < D. To this set of roots,
we associate a fundamental set of orthogonal 1dempotents
ei,...,eq satisfying

0if ¢ B
ei1+---+eq=1, and e;e; = { e, if Zé:]j,
such that if I = @1 N--- N Qq is the minimal primary de-
composition of I, we have e; A ~ R/Q;, where A; = e; A is
a local algebra, for the maximal ideal m¢,; defining the root
¢i. This also implies that A = A1 §--- & Aq4.

We denote by R the dual space of R, that is, the set of
maps (linear forms) from R to C and by A the dual space
of A, that is, the set of elements A € R such that A(]) =0
(also denoted by It).

For any element a € A, we denote by

M,: A — A
b — ab

the map of multiplication by a in A, and we denote by
A — a-A

its transposed map. By definition of the transposed op-
erator, for any A € A, we have A(abd) = A(Ma(b)) =
Mg (A)(b) = (a- A)(b).

Theorem 2.1 There ezxists a basis of A such that for all
a € A the matriz M, of M, in this basis is of the form

M1 0
M, =
0 Ma,q
where Mg ; of the form
a(éi) *
Mo = .
0 a(i)

is the matriz of multiplication by a in A;.



In the case of a simple root (;, we have M, ; = diag(a((;)).
If ¢; is a multiple root, it may happen that M, ; has several
Jordan blocks and its set of eigenvectors is not of dimension
one.

It is also possible to characterize the eigenspace of M/ in
terms of evaluations and differentials at the roots (;, which
are defined as follows. At first, for any point ¢ € C, let us
write

1c:: R — C
p = p()

and note that 1, € A if and only if ¢ € Z(I). For the
systems of polynomial equations having multiple roots, we
introduce additional techniques involving higher order differ-
ential forms (the reader may first examine these techniques
in the univariate case of a single equation). Specifically, we
also consider the map (linear form)

d;:R — C
1 a an
o (da) e (da) 0O, (1)
i=1 @i
where a = (a1,...,an) € N?, d,, is the derivative with
respect to the variable z;. We denote this linear form d? =
(d1,¢)* -+ (dag)*™".

We remark that for any pair of a,b € A, we have
M (1¢,)(b) = 1¢; (ab) = a(Ci)b(G:) = a(Ci)1e, (),

so that 1¢, is an eigenvector of M, for the eigenvalue a((;).
In the case of multiple roots, a complete description of the
eigenspace involves the maps dg,. See [9], [19], [20], ... for
further details.

Proposition 2.2 The eigenspace of M associated to the
eigenvalue a((;) is generated by 1¢, and by some linear com-
binations of the differentials dZ,.

As for any pair of a,b € A, the multiplication maps
Mg, My commute with each other, it follows that they share
common eigenvector spaces. Indeed, we have the following
property (see [21]):

Proposition 2.3 The common eigenvectors of M. for all
a € A are the non-zero multiples of 1¢,, fori=1,...,d.

Remark 2.4 If the root (; is simple, the eigenvector asso-
ciated to the eigenvalue a((s) is 1¢; (up to a scalar).

Remark 2.5 If (x*',...,x%P ) is a basis of A, then the
coordinates of 1¢, in its dual basis are (¢*,...,(P), by
definition of the dual basis.

Summarizing, we arrive at the following algorithm for the
computation of the simple roots.

Algorithm 2.6 COMPUTING THE SIMPLE ROOTS OF A
POLYNOMIAL SYSTEM f1 =+ = f,, = 0.

1. Compute the transpose of the matriz of multiplication
by a € A in a basis of the form (1,z1,...,Zn,...).

2. Compute its eigenvectors Vi = (Vi1,Viyzyy -« - Viyzny«--)
fori=1,...,d.

8. Fori=1,...,d, compute and output

G = (—viizl e —vi"z" ).
Vi1 Vi1

3 Controlled iterative methods for solving polyno-
mial systems

3.1 The classical power method and inverse power
methods

Algorithm 2.6 reduces the solution of a polynomial system
to eigenvector computations, and for the latter task we will
adjust the classical (inverse) power method (cf. [14]).

Let M, be the matrix of multiplication by a in a basis
B of A and let us assume that a(¢;) # 0 for s = 1,...,d.
Then, by theorem 2.1, M, is invertible and a is invertible iI/l\
A. Let vo = wy be the coordinate vector of an element of A
in the dual basis of B. The power method and the inverse
power method amount to the inductive computation of the
sequences:

1 t

Wi = Miwk,l and v = m(Ma)_lkaly
—1

w1l
k=1,2,..., respectively.

Due to remarks 2.4, 2.5 and to the well known conver-
gence results for the (inverse) power method [14], we have
the following proposition:

Proposition 3.1 Let ( € Z(I) b

la(¢)I < la(O)] (resp. 0 < a(Q)] < |a(¢)]) for all ¢' €
Z(I), ¢ # ¢ Let p=maz{|%T|, ¢ € Z(1),¢' #¢} <1
(resp. p = max{|%|, ¢ e Z(I),¢" # ¢} < 1) Let
w = ((¥)ace (resp. v = ((%)ack) be the monomial basis
evaluated at the root ¢ and let w* = ﬁ (resp. v* = ”“:—”)
Then for the generic choice of the vector vo, we have

e a simple root such that
|
l,

lwi —w*|| < cp”, (resp. |[vi — v < cp"),
for some constant ¢ € RT.

The proposition provides a way to selecting an eigenvec-
tor corresponding to the roots which minimize or maximize
the modulus of a.

If B contains 1,z1,...,Z,, algorithm 2.6 immediately
computes the coordinates of the root ¢, from the coordinates
of v* or w*.

If there are k roots (i, ...,Cr such that |a(¢1)| = -+ =
|a({r )| is the minimum value of |a| on Z(I), it is also possible
to recover the eigenvectors corresponding to a((1), ..., a(Cx)
from the successive vectors Va, ..., Vayr—1 (see [14]).

If the root ¢ is a multiple root, we may also apply recur-
sive multiplication of a random vector by the matrix M, or
M. In this case the recursive process also converges proba-
bilistically to an eigenvector of M, or M;,, albeit more slowly
than in the case of simple eigenvalues, and the coordinates
of the roots can be computed from the eigenvalues.

3.2 Implicit inverse power method

Usually, the multiplication map is not available directly from
the input equations. However, in many interesting cases,
the matrix of this map can be recovered from Sylvester-like
matrices S, representing multiples of these input equations.
‘We will see in the next section, how such matrices can be
built. In order to apply the method that we propose, we will
construct matrices S with the following properties:



Hypotheses 3.2 The matriz S is a square matriz of the
form
A B
= (53) o

1. its rows are indeved by monomials (x*)acrF,

such that

2. the set of monomials By = (X*)acE, indexing the rows
of the block (A B) is a basis of A= R/(f1,-.-, fm),

3. the columns of represent the elements x* fo for

A
C
a € Ey, expressed as linear combinations of the mono-
mials (x°)ger,

B .
D represent some multiples of the
polynomials f1,..., fm, ezpressed as linear combina-
tions of the monomials (x?)scr,

4. the columns of

5. the block D is invertible.

For any matrix S satisfying these hypotheses, we may obtain
the map of multiplication by fo modulo f1,..., f» as follows
(cf. [8], [23]):

Proposition 3.3 Under hypothesis 3.2, the matriz of mul-
tiplication by fo in the basis Bo = (x%)acp, of A =
R/(f1,---, fm) is the Schur complement of D in S:

M;, =A—BD'C.

Based on proposition 2.4, we may apply the power
method to compute the root ¢ € Z(I), for which |fo(¢)|
is maximum:

Algorithm 3.4 THE POWER METHOD FOR THE SCHUR
COMPLEMENT.

1. Choose a random vector uo.
2. Forn>1,

o compule Vpy1 = Btun,
o solve D'woi1 = Vat1,
o compute rnpt1 = Alu,p1 — Clwioys,
8. Let rny1,1 be the first coordinate of rny1. If it is not
zero, then compute Upy1 = Trra I+ replace n by
n+ 1 and go to stage 2, else stop.

Due to proposition 3.3, we obtain the following estimate.

Proposition 3.5 Assume that ( € Z(I) is a simple root
such that |fo(¢")] < |fo(€)| for all ¢" € Z(T), ¢’ # (. More-

over, assume that the first row of S is indexed by 1. Let
o1 = ((¥aer, and py = maz{| LG |;¢" € 2(1),¢ # ¢} <
1. Then we have ||uny1 — oy|| < c4 pY, for some constant
cy € RT.

Next, we will show how to apply the inverse power
method to compute a root of our system that minimizes
|fol- A known advantage versus the power method is the
possible use of shifts of the variable (that is the transforma-
tion from the matrix M; ' to the matrix (M, —oI)™", where o
is close to the selected eigenvalue of M,) for the convergence
acceleration.

Proposition 3.6 Under the hypothesis 3.2, if S of (2) is
invertible and S™! has block decomposition of the form

o (U v
=2 4)

(cf- (2)), then My, is invertible and U = Mjiol.

Proof. Under the hypothesis 3.2 and according to the de-
composition

A B I 0\ [/a-BD!'Cc B

CD -p~'¢ 1 )~ 0 D )’
S is invertible if and only if M¢, = A —BD ™! C is invertible,
and then we have

o I 0 Mg, B\

5= (D*lc 11) ( 0 D
_ I o v BN A T |
~ \p'c I o o' )"\ z pt')

which proves the proposition. |
Thus, if v is the coordinate vector of an element V' of A, the
first block w of the solution of the linear system

w v
o[ w]-13]
represents the element f; 1V in the monomial basis By of

A

Similarly, if 1 is the coordinate vector of a linear form A

in the dual basis of By in .Z, then the subvector s of the
solution of the system

t S _ 1
“12]=[o]
represents the element f; 1. A € A in the dual basis of Bo.

This yields the following iterative algorithm for selecting
the root that minimizes | fol.

Algorithm 3.7 IMPLICIT INVERSE POWER METHOD.

1. Choose a random vector ug.

t| Votl | _ | Un
2. Solve the system S [ Vi1 ] = [ 0 ] .

3. Let Vi41,1 be the first coordinate of vi41. If it is not
zero, then compute Unt1 = g Vet replace n by

n+ 1 and go to stage 2; else stop.

By combining propositions 3.1 and 3.3, we obtain the
following proposition:

Proposition 3.8 Assume that ( € Z(I) is a simple root
such that 0 < [o(Q)] < |fo(¢')] Jor all ¢’ € Z(I), ¢ £ C.

Assume, moreover, that the first row of S is indexed by 1. Let
0 = ((*)aen, and p— = maz{|£E4|, ¢ € 2(1),¢ # ¢} <
1. Then we have ||unt1 — || < c— p”, for some constant
c_ €RT.




To accelerate this algorithm, we will first compute the
LU-decomposition of the matrix St. Moreover, as we will see
in the following section, the matrix S and its blocks A,B,C,D
are structured matrices. They are sparse — the number of
non-zero terms per columns is bounded by the number of
monomials in the polynomials fo,..., fm, which is practi-
cally small compared to the size of these matrices. It also
has a structure, which generalizes the structure of Toeplitz
matrices to the multivariate case and can be used to simplify
multiplication of such a matrix by a vector (see [24], [23],
[22], [7]). In this paper, we do not use this structure, but
nevertheless we may multiply such matrices by vectors and
solve linear systems with such matrices effectively, based on
exploiting the sparsity and on the next proposition:

Proposition 3.9 (see [2]). Let N be the size of S and let C
be a bound on the number of arithmetic operations, required
to multiply S by a vector. Then each step of algorithms 3.4
and 3.7 can be performed in O(C N + Nlog?(N)) arithmetic
operations.

In particular, if S is sparse, having O(NN) non-zero entries,
then C' = O(N), and each step of algorithms 3.4 and 3.7 can
be performed by using O(N?) arithmetic operations versus
known bounds of order N3 (cf. eg. [27]). This remark is
confirmed by our experiments (see section 5).

4 Construction of the Sylvester-like matrices

In this section, we specify three approaches to the construc-
tion of matrices S satisfying the hypotheses 3.2. As soon as
these hypotheses are satisfied, we will be able to apply the
techniques of section 3.

4.1 Resultant matrices

The first approach is related to the resultants of n + 1 poly-
nomials fo,..., fn in n variables. The vanishing of the re-
sultant over a projective variety X of these polynomials is
the necessary and sufficient condition on the coefficients of
the polynomials fo, ..., f» to have a common root in X (see
[11]). Our presentation unifies several known approaches un-
der the same terminology of Sylvester map. In particular,
we will cover the cases where X = P™ is the projective space
of dimension n, which yields the classical resultant (see [16],
[31]), and where X is a toric variety, which yields the so
called toric resultant (see [11], [30], [3]). These resultants
can be computed as a factor of the determinant of a map,
which generalizes the Sylvester map for two polynomials in
one variable. Let Vo, ..., V., be the n+ 1 vector spaces gen-
erated by monomials x™¢ = {x%, o € E;}, where E; is the
set of the exponents,

E; ={Bi1,0B,2,---}

Let V be the vector space generated by all the monomials of
the polynomials f; x%#, for 8; € E;. This set of monomials
is denoted by x = (x”)scr. We define the following map:

S:VoX--xV, — V (3)

(q0a-'-,qn) g Zflqz
=0

The matrix S of S in the monomial basis of Vo X --- x V,
and V is of the form

Vo Vn
xal
1% : XBO-'l fo e | eeeeeens xﬂn‘,lf
x*N - .
It is decomposed into S = [So,...,Ss], where S; represent

the monomial multiples of the polynomial f;. The rows of
this matrix are indexed by the monomials x¥ so that the
hypothesis 3.2.1 is satisfied. The columns are indexed by the
monomials in x%, the matrix is filled with the coefficients
of fo,..., fa so that the entry indexed by x* € x¥ and x? €
x% is filled by the coefficient of x* in x? f; (in particular 0
if x* does not belong to x° f;).

In the classical case, we consider the construction due
to Macaulay (see [16]). Let do,...,d. be the degree of the
polynomials fo,..., fn and let v =do+---+d, —n. The set
x” will be the set of all monomials of degree < v in the vari-
ables z1,...,zn, and E; will be a subset of the monomials
of degree v — d; so that the map S is well-defined.

In the toric case, we consider the support of the poly-
nomials f;, that is, the set of monomials with non-zero co-
efficients in f;, and we denote by C; the convex hull of the
exponents of these monomials (also called the Newton poly-
tope of f;). In order to construct the map S that yields
the toric resultant, we fix (at random) a direction § € Q™.
For any polytope C, let C® denote the polytope obtained
from C by removing its facets whose normals have posi-
tive inner products with é. Taking E; = (32, C;)° and
F= (3 C;)® allows us to define the desired map S. We
refer the reader to [11], [30], [3], ... for further details.

Now let us check, step by step, that hypotheses 3.2 are
satisfied. In the examples, we will choose a linear form, for
fo. Here, we only assume that fo contains a constant term.
As all the monomials of foxZ° are in V, it implies that the
set of the monomials x which index the rows contains the
set xP0. Therefore, we can partition the matrix S according

to (2), so that So = ( g ) and [S1,...,S,] = ( g ), and

the hypotheses 3.2.3, 3.2.4 are satisfied.

In the classical case over P", the set Fo is Ey =
{(a1,...,az); 0 < a; < d; — 1}. For generic polyno-
mials fi,..., fn of degree m, this set is a basis of 4 =
R/(f1,..., fn) (see [16]). In the toric case, the set Eo is
a set of points in the mixed cell of a subdivision of the
(Minkowski) sum of the polytopes Ci,...,Cr. For generic
polynomials fi, ..., fn with support in C1,...,Ch, thisis a
monomial basis of A = R/(f1,..., fa) (see [8], [26]), and the
hypothesis 3.2.2 is also satisfied.

To check if hypothesis 3.2.5 holds, it is possible to spe-
cialize the coefficients of the polynomials f1,..., f, in such
a way that the matrix D has a dominant diagonal. Thus
the determinant of D, as a polynomial in the coefficients of
fi,..-, fn, is not identically zero. Consequently, it is not
zero for generic values of these coefficients.

Since hypotheses 3.2 are satisfied, we can apply the for-
ward or implicit inverse power iteration method, for generic
systems of equations of fixed degree or fixed support. These
resultant constructions take into account only the monomial



structure of the input polynomials, but not the values of
their coeflicients. It may happen, of course, that for specific
values of these coefficients, the matrix D would become sin-
gular. In this case, we may use the construction described
in section 4.3.

4.2 Overconstrained systems

The method for constructing S admits a natural generaliza-
tion to overconstrained systems, that is, to the systems of
equations f1 =0,..., fm = 0, with m > n, defining a finite
number of roots. For such a system, we obtain a substantial
simplification in the cases where the system has only one
or only a few roots (or pseudoroots, see below). We still
consider a map of the form

S Vox--xVm — V

(qO,---,Qm) g f‘bqh
i=0
such that the matrix of this map satisfies hypotheses 3.2.
Such a map can be constructed by using the techniques
of the previous section and by adding new columns corre-
sponding to the multiples of the polynomials fr41,..., fm-
This yields a rectangular matrix S1, from which we extract
a submatrix Ry, having as many rows, and whose number
of columns is exactly its rank. Let L be the list of polyno-
mials corresponding to these columns. Let us next choose a
minimal cardinality subset Eo C F' of monomials such that
(xFy = (xPoy @ (L), (cf. [15], [12]). This yields a square
matrix S, which will satisfy hypotheses 3.2.

A case of special interest is the case where A is of di-
mension 1, so that there is only one simple root, x =
(X15--+5Xn). A basis of A is 1, and the matrix of multi-
plication by z; is [xi]. Then for any matrix S satisfying
hypotheses 3.2 with fo = z;, A is a one-by-one matrix and
we have [yi;] = A —BD™'C. In this case, only one solution
of a linear system is required, and we may apply either of
algorithms 3.4 and 3.7.

This occurs, for instance, in problems of reconstruction
in Computer Vision, where any pair of points, in correspon-
dence to the images, gives a polynomial equation (see [10]).
This is also the case for kinematic problems where more
sensors than needed are used, and in computational biol-
ogy where the distances from an atom to more than three
other atoms are known. Furthermore, due to truncation
and roundoff errors of the coefficients of the input poly-
nomials, they define an overconstrained system, which has
no zeroes, but only pseudo-zeroes, at which the values of
f1(x), ..., fm(x) are not equal to but close to zero. Even
in this case, our techniques yield an approximation to the
solution of the exact equations.

4.3 Computing Sylvester matrices by using Grdb-
ner basis

In this section, we assume that a reduced Grobner basis
(91,-..,9s) of I, for some monomial order, refining the de-
gree order, is available. For any p € R, let £(p) be its leading
monomial. We also assume that we know a decomposition
of each g; in terms of the input polynomials:

gi = Aiamaafin + Aipmazfiz + -+ XMk, fik,

where X\;; € C, fi; € {f1,..., fm} and m; ; is a monomial
of R. We order these terms in such a way that £(m;; fi,j) >
L(m; j41fij+1)-

Let us denote by By = x™ = (x*!,...,x*P) the
set of all monomials that are not in the ideal gener-
ated by (L£(g1),...,£L(gs)). This set is a basis of 4 =
R/(f1,-.-, fm) = R/I (see [6]) and contains 1 if Z(I) # 0.

We describe how to construct a Sylvester-type matrix
S, satisfying hypotheses 3.2, with fo = wo + wiz1 +--- +
UnZn. The set of monomials F' and a list of multiples of
the polynomials fi,..., fm will be defined by induction as
follows:

Let F() = Bo, L() = 0 and let F1 = F()UﬂL’lF()U- . -anFo,
L, = 0. Assume that Fy,..., F}, have been defined and note
that they contain Bp. Then any monomial x* in F,, — Fr,_1
is a multiple of the initial £(gc(a)) Of ge(a) for some c(a) €
{1,...,m}: X* =naL(ge(a)). Let

Lnt1,e = {name(a),jfe(a),iid =1, ke(a }

and let F, 11,0 be the set of all monomials of the polynomials
of this set. Then we define

Fn+1 = UaEFn—Fn_an-‘,-l,a @] Fn,
Lny1 = Uaer,—F,_;Lnt1,6 U Ln.

Lemma 4.1 There exists some K > 1 such that Vn > K,
F, = Fk.

Proof. By construction, for all n in N, the set of monomials
F,, is included into the set of monomials, which precedes
the monomials z;m;1 (and m;j1), for ¢ = 1,...,n and
j = 1,...,s, according to the fixed ordering. By the
hypotheses about the monomial ordering, this set is finite,
so that the increasing sequence F,, is stationary, for n > K.
[m]

By construction, any polynomial in L := Lg can be
decomposed as a linear combination of the monomials in
F := Fg. Let §; be the coefficient matrix of the polynomials
in L, in this monomial basis x*".

By definition, any monomial of x™»+1 7= can be reduced
by monomial multiples of the polynomials ¢1,...,gs (that
is, by linear combinations of the polynomials in Lny1) to a
linear combination of monomials in x. By induction, this
shows that any monomial in F' can be reduced modulo the
polynomials L to a linear combination of monomials in Byp.
In other words, (x¥) = (Bo) @ (L).

If we divide the matrix §; into blocks as §; = ( g,i ),
according to whether the rows are indexed by the monomials
in By or not, the decomposition (x') = (By) @ (L) implies
that R} is of maximal rank. Let Si be the submatrix of §
such that the corresponding submatrix of R is invertible. It

is of the form S; = , with D invertible.

B
D
Let So be the coefficient matrix of the polynomials
(fox*)ack, in the monomial basis F' and let S = [So, S1].
We easily check that the hypotheses 3.2 are satisfied, so
that this matrix can be used in algorithms 3.4 and 3.7.
This method is most interesting when we have to solve
a polynomial system depending on parameters, for various
values of these parameters. The classical Grobner approach
requires to recompute a Grobner basis for each value of these



parameters. Moreover, it cannot be applied safely with float-
ing point coefficients. With the approach we propose, it is
sufficient to compute numerically a single Grobner basis, and
the matrix S is used for the other values of the parameters,
assuming that the geometric properties of these systems do
not change.

Algorithm 4.2 SOLVE A PARAMETERIZED POLYNOMIAL
SYSTEM FOR DIFFERENT VALUES OF THE PARAMETERS.

1. Compute a Griobner basis of this system, for rational
values of the parameters, over a prime field Z, for a
(good) prime number p.

2. Construct the matriz S corresponding to this computa-
tion and depending on the parameters.

8. Substitute the value of the parameters in S.

4. If the matriz D is not invertible, then stop. Otherwise
apply algorithms 8.4 or 3.7.

All the steps of this algorithm can be applied by using
the machine precision arithmetic (modular or floating point
arithmetic). Here again, the matrix S is structured and
sparse, so that each step of algorithms 3.4 or 3.7 can be
performed efficiently, taking into account the tolerance to
the coefficient errors.

5 Experimental tests

We report here on the results of our (still continuing) exper-
imentation for the implicit inverse power method, applied
for computing a selected root. In fact, in our experiments
we applied the shifted inverse power method, defining the
shifts dynamically, as the iteration converged to a root. For
solving the sparse linear system Sz = b, we used the li-
brary TNT! developed by R. Pozo; more precisely, we used
the GMRES solver with an ILU-preconditionner (see [28] for
more details on these solvers). The matrices are generated
by the C++ library ALP?, which implements Macaulay’s
construction of resultant matrices. We also plan to perform
similar experiments based on the implementation of toric
resultant matrices by I. Emiris ([3]).

N S D n k T
s44 36 138 16 2 7 0.050s
s442 165 821 32 3 6 0.151s

s4422 | 715 3704 64 4 8 1.179s
s455 364 1664 100 3 6  2.331s
s2445 | 1820 8795 160 4 8  4.323s
s22445 | 8568 41942 320 5 8 28.213s
sq4 126 585 16 4 5 0.313s
sqb 462 2175 32 5 44  2.135s
sq6 1716 7973 64 6 52 49.397s
sing 210 4998 21 2 14 0.438s
kruppa | 792 15822 1 5 1  0.698s

In this table, N is the dimension of the matrix S (that is,
the matrix has size N x N), S is the number of non-zero
entries of the matrix S, D is the dimension of 4, n is the
number of variables, k is the number of iterations required
for an error less than ¢ = 10™%, and T is the total time of
the computation. This time is the “user” time, obtained by

Isee http://math.nist.gov/tnt/
?see http://www.inria.fr/saga/logiciels/ALP/

the unix command time. This experimentation has been
carried out on a Dec Alpha 500 AU workstation with 512M
of local memory.

The examples s44, ..., s22445 are examples with a few
monomials, where Macaulay construction can be applied.
The number of solutions is the product of the degree. The
first example is a system of 2 equations in 2 variables, both of
degree 4, the second is a system of 3 equations in 3 variables
of degree 2, 4, 4, and so on.

The examples sq4, ..., sq6 correspond to the intersec-
tion of quadrics in a space of dimension 4, 5, 6, with no point
at infinity (this problem came from Signal Processing).

The example sing, corresponds to the singular points of
the plane curve defined by

pi=z%— 82Ty + 28z%y? — 56 2°y° + 70 2ty — 56 23y°
+28 22y® — 8ay” + y® — 12827 + 448 2%y — 672 2542
+560 2*y> — 280 23y* + 84 2%y — 14 zy® + y7 — 82
+48 2%y — 120 z*y? + 160 23y — 120 22y* + 48zy® — 8y°
+224 2% — 560 2ty + 560 23y? — 280 2%y + 70 zy? — 74°
+20z* — 80 2%y + 120 2%y® — 80 zy® + 20 ¢y* — 11223
+168 2%y — 84 zy? +149° — 1622 + 320y — 16 Y% + 142
—Ty+2

(see [5]). Such singular points are defined by p = 0,d.(p) =
0,dy(p) = 0. This leads to an overconstrained system
whose associated matrix S is of size 210. We construct
this matrix from the Macaulay matrix of p,d.(p),dy(p) +
dz(p) (which is of rank 189), by replacing the first 210 —
189 = 21 columns by multiples of the linear form z — 4.
Here is a picture of the structure of the Macaulay ma-
trix, the non-zero entries beeing represented by a point:

Frrr)

Though the polynomial p has many monomials, only 11%
of the coefficients of the matrix S are not zero. There are
21 singular points on this curve (which are all real), and
by this method we are able to select the point whose first
coordinate is the nearest to 4. Notice that the matrix of
multiplication by this linear form in A can be computed by
solving 21 systems associated to the matrix S.

The system kruppa corresponds to the Kruppa equations
of a reconstruction problem in Computational Vision (see
[10]) reduced to an overconstrained system of 6 quadrics in
a space of dimension 5. We construct the Macaulay matrix
associated to these 6 equations and replace its first column
by a multiple of a linear form. By solving one system of the
form Sx = b, we obtain one coordinate of the solution. The
time needed to compute this coordinate is reported in the
table.
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