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Resultants characterize the existence of roots of systems of multivariate nonlinear poly�
nomial equations� while their matrices reduce the computation of all common zeros to
a problem in linear algebra� Sparse elimination theory has introduced the sparse resul�
tant� which takes into account the sparse structure of the polynomials� The construction
of sparse resultant� or Newton� matrices is the critical step in the computation of the
multivariate resultant and the solution of a nonlinear system� We reveal and exploit the
quasi�Toeplitz structure of the Newton matrix� thus decreasing the time complexity of
constructing such matrices by roughly one order of magnitude to achieve quasi�quadratic
complexity in the matrix dimension� The space complexity is also decreased analogously�

These results imply similar improvements in the complexity of computing the resultant
polynomial itself and of solving zero�dimensional systems� Our approach relies on fast
vector�by�matrix multiplication and uses the following two methods as building blocks�
First� a fast and numerically stable method for determining the rank of rectangular ma�
trices� which works exclusively over �oating point arithmetic� Second� exact polynomial
arithmetic algorithms that improve upon the complexity of polynomial multiplication
under our model of sparseness� o�ering bounds linear in the number of variables and the
number of nonzero terms�

�� Introduction

Resultants characterize the solvability of zero�dimensional systems of multivariate
nonlinear polynomial equations� and their matrix formulae reduce the computation of
all common solutions to a matrix eigenproblem� Multivariate resultants have a long and
rich history in the context of classical elimination� More recently� sparse elimination the�
ory introduced the sparse resultant� which generalizes the classical resultant and whose
degree depends on the monomial structure of the polynomials� thus leading to tighter
bounds and faster algorithms for systems encountered in application areas� Sparse re�
sultant matrices� also known as Newton matrices� generalize Sylvester and Macaulay
matrices� and from their determinants the sparse resultant can be computed� This paper
identi�es and exploits the structure of Newton matrices by designing an e�cient numer�
ical rank test and exact polynomial arithmetic in the context of sparse elimination� This
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yields better time and space complexity bounds for their construction� the computation
of the sparse resultant and� ultimately� the solution of nonlinear polynomial systems�
Our methods can be extended to the case of imperfectly known coe�cients� or to solv�
ing overconstrained systems as long as the number of solutions is �nite� Hence� our e�ort
is a contribution in e�cient and numerically stable algorithms in nonlinear algebra�

Construction and manipulation of Newton matrices is a critical operation in some of
the most e�cient known algorithms for solving zero�dimensional systems of equations
�CKL�� Emi�� Laz��� Man	� MP�� MRP���� They may be used to construct the
multiplication table in the quotient ring de�ned by a polynomial ideal� which is a cru�
cial step in numerically approximating all solutions of a well�constrained system� Our
practical motivation is the real�time solution of systems with� say� up to �� variables�
or the computation of the resultant polynomial� for instance� in graphics and modeling
applications where the implicit expression of a curve or surface is precisely the resultant�
Such systems may give rise to matrices with dimension in the hundreds or even higher�
as illustrated by speci�c examples in table �� By palliating the e�ects of matrix size�
with respect to both time and space complexity� our work deals with what is probably
the Achilles heel of Newton�s matrices� This general area is a �eld of active research�

The solution of such equations is itself irrational� even in the univariate case� Hence it
requires further numeric computation following the construction of a resultant matrix�
as explained in section ��

The main contribution of the present paper is to construct Newton matrices with
quasi�quadratic time complexity� whereas the existing methods have cubic complexity
in the matrix dimension� This uses the incremental construction algorithm of �EC���
We improve both time and space complexities by almost one order of magnitude and
manage to rely essentially on �oating�point routines� in order to fully use the power of
contemporary computers as well as the availability of linear algebra software libraries�
Analogous improvements are then obtained for computing the sparse resultant polyno�
mial itself and� eventually� for solving systems of polynomial equations by resultant�based
methods�

These bounds ultimately rely on the Fast Fourier Transform �FFT�� Yet� for smaller
input sizes� other polynomial multiplication methods� such as Karatsuba�s� may o�er
simpler though asymptotically slower alternatives� Table � compares the existing and
the achieved complexities� in terms of row and column dimension� respectively denoted
a and c� and the number of variables n� as explained in section �� Note that a � c and
typically c� n�

Table �� Asymptotic complexity for matrix construction

method time space

previous a�c ac
Karatsuba c���n cn

FFT c�n cn

There are some further results of independent interest� First� a fast numeric proce�
dure� namely algorithm ���� is proposed for computing the numerical rank of a rectan�
gular matrix� based on Lanczos� algorithm� It exploits matrix structure� in particular
fast vector�by�matrix multiplication� and achieves numerical stability by the standard
technique of vector orthogonalization� A faster variant� namely algorithm ���� is de�
signed for testing whether a given rectangular matrix is rank de�cient or not� within the
prescribed tolerance� Second� the reduction of vector�by�matrix multiplication to poly�
nomial multiplication calls for exact sparse polynomial arithmetic� namely evaluation
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and interpolation� We design such algorithms� with linear time and space complexity
in terms of n and the cardinality of the supports� thus improving the known bounds
under our model of sparseness� In short� our approach relies on the interplay of numeric
and symbolic building blocks� Lastly� by studying the structure of resultant matrices�
we generalize the theory of Toeplitz matrices and some of their essential properties to
quasi�Toeplitz matrices� which include Newton� Macaulay and Sylvester matrices� Some
results can be extended to B�zout and Dixon resultant matrices�

Dealing with randomized algorithms� we shall distinguish between Las Vegas algo�
rithms� which may fail with a small bounded probability but otherwise output correct
solutions and� on the other hand� Monte Carlo algorithms� which may produce incorrect
results but with a small bounded probability�

All time complexity bounds are in terms of arithmetic complexity� hereafter �ops�
stands for �arithmetic operations�� Space complexity includes the input and output
storage� unless we explicitly refer to �additional� storage space� We let O��c� stand for
O�c logv c� for any �xed constant v independent of c and we let jSj denote the cardinality
of a set S� In our notation� WT is the transpose of a matrix or of a vector W � WH is
the Hermitian transpose of a matrix and Ik is a k�k identity matrix� This paper makes
heavy use of dense structured matrices� for a comprehensive account of their de�nitions
and properties� the reader may consult �BP	� Pan���� In particular� recall that a k� k
Toeplitz matrix can be multiplied by a vector in O�k log k� ops �BP	� sect� ���� and in
O�k� storage space� based on the FFT�

This paper is organized as follows� The next section expands on related work� Section �
proposes an e�cient numerical rank determination algorithm and a faster rank de�ciency
test� Section 	 considers exact sparse polynomial arithmetic� Certain important proper�
ties of the Newton matrix are investigated in section �� including its multiplication by
a vector� Section � improves the complexity of a known algorithm for constructing such
matrices by exploiting their structure� Computing the sparse resultant itself is investi�
gated in section �� We conclude with extensions of our results� a discussion of certain
alternatives� and some open questions� in section ��

�� Related work

Resultant�based approaches to studying and solving systems of polynomial equations
have a long history� Recent interest in matrix�based methods is supported by certain
practical results that have established resultants� along with Gr�bner bases and con�
tinuation techniques� as the method of choice in solving zero�dimensional polynomial
systems �CKL�� Emi�� Laz��� Man	� MP�� vdW���� A generalization of the clas�
sical resultant was introduced in the context of sparse elimination theory �outlined in
section ��� Two main algorithms� generalizing Sylvester�s as well as Macaulay�s construc�
tions� have been proposed for constructing Newton� or sparse resultant� matrices� The
subdivision�based algorithm by Canny and Emiris �see �CE��� for a complete account��
subsequently improved and generalized in �CP�� Stu	�� and the incremental algorithm
of �EC��� which constructs a rectangular matrix and then obtains a square nonsingular
submatrix�

In the case of univariate polynomials� the B�zout and Sylvester matrices have a
Hankel�like and Toeplitz�like structure� respectively �BP	�� In the multivariate case�
things become more subtle� Canny� Kaltofen and Lakshman �CKL�� studied the struc�
ture of Macaulay matrices and proved that multiplication of a Macaulay matrix by a
vector is of almost linear complexity in the matrix dimension� Then they applied Wiede�
mann�s technique �Wie��� in order to compute the determinant of such a matrix� Our re�
sults generalize their approach� Independently� Mourrain and Pan �MP�� MP�� MP���
generalized �CKL�� in another direction� by formalizing the Toeplitz� or Hankel�like
structure of general resultant matrices� including Macaulay� B�zout and Newton matri�
ces� Mourrain and Pan�s works� though technically distinct� provide a related viewpoint
to our approach� Corollary ��	 improves proposition �	 of �MP��� our result can be
drawn from this proposition by using a special set of points� such as those of algo�
rithm 	���
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An auxiliary issue �also important in its own right� is to devise algorithms for mul�
tiplying sparse multivariate polynomials within the computational complexity bounds
expressed via the support cardinality or the Newton polytope� The existing general
bounds are interesting only in the dense case �BP	� since they require at least dn

operations� where n is the number of variables and d is the maximum degree in any
one variable� Sparse interpolation has received a lot of attention� see the algorithms
in �KL��� Zip��� supporting complexity linear in the product of n� the maximum de�
gree in any single variable and a bound on the number of monomials� Section 	 improves
these bounds by exploiting the structure of nonzero terms� and generalizes �CKL�� from
completely dense supports to arbitrary supports� Alternative models of sparseness have
been studied� including straight�line programs� Khovanskii�s fewnomials �to which our
results apply�� and Vasiliev�s density model �under which evaluation requires at least �n

operations��

Some results of sections 	�� appeared in preliminary form in �EP���

�� A fast numerical rank test

We describe an e�cient and numerically stable method for testing whether a rectan�
gular matrix has full rank and determining its rank� By Lanczos� method� we reduce
the problem to vector�by�matrix multiplication� thus exploiting structure and achieving
stability�

An exact�arithmetic Las Vegas algorithm was presented in �EP�� alg� ���� for testing
whether an a� c matrix M � with a � c� has full rank� It relied on two results� First� the
preconditioning techniques of �KS�� �see also �Pan�b� fact ������ Second� the extension
of �Wie��� thm� �� given in �KP�� lem� ��� The time and space complexities are� respec�
tively� O�cC�ac log c� and O�G�a�� where C and G are the time and space complexities
of premultiplying a �� a vector by matrix M � The algorithm yields as a by�product the
determinant of a square matrix and can be modi�ed in a straightforward way to yield
an algorithm that �nds the rank of a rectangular matrix in O�cC log c � ac log� c� ops
and O�G� a� storage� see also �EP�� for a brief account of this algorithm�

This approach would typically be implemented by modular arithmetic� thus intro�
ducing some additional probability of error� However� on modern day computers� �xed�
precision �oating point arithmetic can be substantially faster� This algorithm cannot
take advantage of this feature because rounding�o� to a �xed number of digits would
cause it to be numerically unstable� The reason is that the vector�matrix products com�
puted by Wiedemann�s algorithm� denoted by M iv or vTM i� for some column vector
v� become close to each other for larger i� This motivates the following approach� which
improves the numerical method of �EP�� alg� ���� and �EP�� thm� ��	��

Over the complex �eld C or its sub�elds� we test by a �oating point computation
whether matrix M has full numerical rank� that is� whether M has c singular values
whose moduli exceed a �xed small positive tolerance value �� Therefore we have to deal
with the symmetrization of M � either implicit or explicit� We could have used any black
box algorithm for computing the Singular Value Decomposition �SVD� of M � such as
the customary SVD algorithms found in �GV��� Based on �Pan�a�� we shall instead
describe a much less costly algorithm for computing the numerical rank� which exploits
the structure of M and avoids computing SVD� Numerical nonsingularity is stronger
than usual nonsingularity unless � is replaced by �� in which case the two de�nitions
coincide�

Algorithm ���� �Numerical rank computation�Input� An a � c matrix M � where
a � c� over the complex �eld or its sub�eld� and a positive ��
Output� The numerical rank of M with respect to the tolerance ��

Computations�

�Apply Lanczos� algorithm to compute the orthogonal similarity transformation of
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the Hermitian matrix MHM into a tridiagonal matrix T � QMHMQH � where
Q is a c� c matrix such that QQH � Ic� On Lanczos� algorithm see� for instance�
�GV�� ch�� or �BP	� alg� �������

�Let Ti be the i � i leading principal submatrix of T and compute the values
pi��

�� � det�Ii � ��Ti�� for i � �� � � � � c�
�Let s � N be the number of sign changes in the sequence �p������ � � � � pc�����
computed by applying Sturm sequences� Output numerical rank c� s�

Correctness of the algorithm follows from the well known result that c � s is the
number of the eigenvalues of MHM exceeding �� �see� for instance� �GV�� Par����
which� in turn� equals the number of singular values of M exceeding �� The calculation
of numerical rank includes two well�known numerical linear algebra subtasks� namely
matrix tridiagonalization by Lanczos� method and a Sturm sequence computation� Since
the main operation in Lanczos� method is vector�matrix multiplication� both subtasks
only involve �eld operations� which could also be performed by rational arithmetic and
hence exactly� albeit with a higher cost�

Stage � performs O�c� vector�by�matrix multiplications involving MHM � Each of
these multiplications reduces to one premultiplication and one postmultiplication of the
a � c matrix M by a � � a and a c � � vector� respectively� The computational cost

is bounded by O�cC � c�� ops� The last two stages have complexity O�c�� ops since
T is c � c and tridiagonal� All operations are performed over �xed precision �oating
point numbers� hence the bit complexity is asymptotically the same as the arithmetic
complexity� This discussion is summarized in the following statement�

Theorem ����Let C and G be the maximum time and space complexities� respectively�
of pre� and post�multiplying a complex a � c matrix M � with a � c� by a vector� Then
there exists a randomized algorithm that computes the numerical rank of M � within a
given tolerance � � �� in O�cC � c�� ops and O�G� c� storage space�

In spite of using a random vector to start Lanczos� algorithm� its numerical per�
formance is practically valid� and the algorithm is one of the most popular methods
in numerical linear algebra� Moreover� it is implemented in publicly available software

packages� This responds to the numerical stability issue raised with respect to the algo�
rithm of �EP��� The key feature is that Lanczos� algorithm ensures the orthogonality
of the computed vectors� though at the price of a certain slowdown when it is applied to
structured matrices� Numerical stability also characterizes the Sturm sequence computa�
tion� Interestingly� the use of Sturm theory in order to compute the number of real roots
exceeding a certain value is one of the most important tools in symbolic computation�
see� e�g� �BCL����

It is known that Lanczos� algorithm uses a random vector and� hence� it is a Las
Vegas algorithm� In other words� it may fail with a small bounded probability� but never
produces an incorrect result� More speci�cally� if the tridiagonalization of step � is not
achieved in O�cC� ops� then the procedure is stopped and reports failure� To remove
randomization� one would have to accept worst�case time and space complexities in
O�c�C� and O�G� c���

Yet another option is to use Monte Carlo randomization� that is� to accept the pos�
sibility of wrong output with a bounded small probability� Then� a simpli�ed version of
the above algorithm that tests rank de�ciency is the following� A matrix is said to have
full rank with respect to a given tolerance if its minimum singular value exceeds this
tolerance�

Algorithm ���� �Numerical rank test�Input� An a � c matrix M � where a � c�
over the complex �eld or its sub�eld� and a positive ��
Output� A single bit � or � indicating whether M has full rank or not with respect to
the tolerance � with high probability�
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Computations�

�Apply Lanczos� algorithm to compute an upper estimate ��� of the square of the
largest singular value �� of M � Equivalently� ��� is the largest eigenvalue of MHM

and ���
�� ��� �

�Apply Lanczos� algorithm again to compute an upper estimate ��� of the largest
eigenvalue ������c of the matrix ��� Ic�MHM � Here ��c is the smallest eigenvalue of

MHM or� equivalently� �c is the smallest singular value ofM � Since ���
�� ��� ���c �

then ��� � ��� is a lower estimate of ��c �
�If ��� � ��� � ��� then output bit � indicating rank de�ciency� Otherwise output

bit � indicating full rank�

Theoretically� the algorithm may produce a wrong output if the random vector for
Lanczos� algorithm is chosen unsuccessfully� causing degeneration in step � or � or both�
This has a low probability� fully estimated in �KW�� KW	��

Theorem �����KW�� thm� 	���a�� Let � � ��� �� be the relative error of Lanczos� al�
gorithm in approximating the largest eigenvalue of a symmetric positive de�nite c � c
matrix� Let k be the number of multiplications of the matrix by a vector� If k is at least
as large as the number of distinct eigenvalues� then the algorithm will always produce an
approximation within �� For general k� the probability that the algorithm fails is bounded
by

���	

p
ce�

p
���k����

Practically� the degeneration is much less likely since roundo� errors usually remove
the computed vectors from the subspace of degeneracy �GV�� ch� �� If we agree to

include ac�� comparisons� we may replace step � by the computation of a deterministic
upper estimate� namely the square of the largest absolute value of any entry of M � This
is at least as large as the largest entry of MHM and� hence� an upper bound on ��� �
Then� the randomization in Lanczos� algorithm� which is potentially a source of wrong
output� will be con�ned to step ��

The complexity of algorithm ��� is O�Ck� ops and O�G� c� storage space� where k is
the number of iterations required by Lanczos� algorithm� Since k can be smaller than c�
this algorithm is possibly faster than algorithm ���� Theorem ��	 implies that k depends
on the probability of error that we wish to guarantee�

�� Exact sparse polynomial arithmetic

We present exact�arithmetic algorithms for polynomials de�ned by their supports� or
nonzero terms� as is the case in the context of sparse elimination theory� In particular�
we examine support evaluation and polynomial multiplication�

We will work in the ring of Laurent polynomials P � K�x�� x
��
� � � � � � xn� x

��
n �� where

K is any given �eld of characteristic zero� The support of f � P is a subset of Zn denoted
supp�f� and containing all the exponent vectors of monomials with nonzero coe�cients
in f � If S � supp�f� � Zn� then

f �
X
a�S

cax
a� xa �

nY
i��

x
ai
i
�

where a � �a�� � � � � an� � Zn� ca � K� In dealing with supports� we slightly abuse
terminology and speak of a monomial in a support� referring to the monomial de�ned
by the integer point representing its exponent� In the sequel� we assume� without loss
of generality� that all polynomial supports contain the origin� this can be achieved by a
translation of the supports�

For every polynomial� there is an associated Newton polytope� which is the convex
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hull of the support� Newton polytope generalizes the classical notion of total degree of
an n�variate polynomial� for a completely dense polynomial� the Newton polytope is the
n�dimensional unit simplex� De�ne the Minkowski sum A�B of two point sets A and B
in Rn as the point set A�B � fa�b j a � A� b � Bg� If A�B are convex polytopes� then
so is A�B� For further information on sparse elimination see �EC�� Emi�� Stu	� and
their references�

The following algorithms and their complexity analysis are of independent interest
as they demonstrate that the complexity of polynomial multiplication� evaluation and
interpolation on some special sets of points depends on the corresponding support car�
dinalities and Newton polytope volumes� these two are asymptotically equivalent� This
discussion complements the known results on sparse evaluation and interpolation by
settling the case where sparseness is measured by the support�

To simplify the notation� we assume when we discuss evaluation that all monomials
have non�negative exponents�

Lemma ����Consider a set S of s positive integers� such that S � N � ��� d�� for some
positive integer d� If we are given a value p� we may evaluate all powers of p with
exponents in S by using O��s�

p
d� ops and O�s� storage space�

Proof�Let b � bpdc and represent every a � S as a � i � bk� where � 	 i � b and
� 	 k � d�b� Let S� � fi � i � bk � Sg and S� � fk � i � bk � Sg� Then� compute pi�
for all i � S�� in O�b� ops� and qk � pbk� for all k � S�� in O�d�b� ops� Then we may
compute pa � piqk for all a � S� in s ops� �

Algorithm ���� �Support evaluation�This algorithm evaluates a given vector set at
a given value per coordinate�
Input� A set of monomials or� equivalently� of their exponent vectors S � Zn� and scalar
values p�� p�� � � � � pn�
Output� The values of all monomials with exponents in S at the given values p�� 
 
 
 � pn�

Computations�

�Compute n sets of positive integers S�� S�� � � � � Sn� Si � fai � N � �a �
�a�� � � � � ai� � � � � an� � Sg representing all powers of the i�th variable encountered
among the monomials in S�

�Compute all powers pa
i
� for all a � Si and i � �� �� � � � � n� as in the proof of

lemma 	���
�Compute the values of all monomials in S by multiplying� for each monomial� at
most n powers computed in the previous step�

Lemma ����Consider a set S of s monomials in n variables� such that the exponent of
every monomial in the ith variable lies in ��� d�� for i � �� �� � � � � n� Given n scalar values
p�� p�� � � � � pn� one may evaluate all the monomials of S at these values in O��sn�n

p
d�

ops and O�sn� space by the above algorithm�

Proof�Apply algorithm 	��� Its �rst stage takes O��sn� ops� The second stage requires
O��s�

p
d� ops� for each i� by lemma 	��� The �nal stage � can be performed in O��sn�

ops� �

Remark ����The algorithm uses space in O�s� in addition to the space required to store
the input exponent vectors� The latter is in the worst case in O�sn�� but can be reduced

to O�s� if the exponent vectors have �short	 entries so that each is stored in constant
space� This is the typical case in practice� hence the overall space complexity becomes
O�s��

The following multiplication algorithm extends the approach of �CKL�� sect� ���
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based on the widely used evaluation�interpolation scheme� with node sets from a special
customary class� also used in �BP	� KL��� Zip��� We will focus on multiplication� but
our algorithm improves sparse evaluation and interpolation as a by�product�

Algorithm ���� �Sparse polynomial multiplication�
Input� n�variate polynomials f� g � P with supports A�B � Zn� respectively� Also given
is a set of points S � Zn such that A�B � S� so that S contains the support of fg�
Output� The product fg�

Computations�

�Let A � fa�� � � � � ajAjg� with each ak � A written as �ak�� � � � � akn�� Let S �
fm�� � � � �msg � Zn� where s is the cardinality of S� Pick n distinct primes
p�� 
 
 
 � pn� supposed to be readily available�

�Compute the values vk of the monomials in A at point �p�� � � � � pn�� for k �
�� �� � � � � jAj� Since the k�th monomial is xak �

Qn

i��
x
aki
i

� it follows that vk �Qn

i��
p
aki
i

� Observe that the j�th power vj
k
�
Qn

i��
�pj
i
�aki is the value of xak at

point �pj�� � � � � p
j
n�� whose coordinates are also j�th powers� Therefore� multiplica�

tion of the row vector of the coe�cients of f by the jAj � s matrix
�
��

� v� 
 
 
 vs��
�

���
���

���

� vjAj 
 
 
 vs��
jAj

�
��

expresses the evaluation of f at the points �pj�� 
 
 
 � pjn� for j � �� �� 
 
 
 � s� �� We

append rows of powers �� vi� 
 
 
 � vs��
i

� for distinct vi� i � jAj � �� 
 
 
 � s� to the
matrix above in order to obtain an s�s Vandermonde matrix V �see example 	����

�Let cf be the s� � column vector whose �rst jAj entries are the coe�cients of f �
in the order de�ned by an arbitrary but �xed monomial sequence �a�� � � � � ajAj��
let the last s� jAj entries be zeros� Then the column vector of the values of f at
v�� � � � � vjAj is expressed as V T cf � �V TV ��V ��cf �� Compute V TV � V ��cf and
their product as discussed in �CKL�� sect� �a� or �BP	� ch� ��� for improving the
numerical stability or the constant of the complexity bound in solving transposed
Vandermonde systems� see �Pan��� sect� ��	������ Analogously evaluate the poly�
nomial g at the same points� Then multiply the values of f and g pointwise� thus
computing the values of fg at every point �pj�� � � � � p

j
n�� j � �� � � � � s� ��

	Let lfg and cfg denote the vectors of the product values and of the unknown coef�

�cients fg ordered� respectively� by �pj�� � � � � p
j
n� for j � �� � � � � s�� and by a �xed

monomial sequence �m�� � � � �ms�� Compute wi as the value of mi at �p�� � � � � pn�
and let W be the s � s Vandermonde matrix �wj��

i
�� analogous to V in step ��

Solve the transposed Vandermonde system WT cfg � lfg� e�g� by applying the
algorithm of �KL���� The solution cfg de�nes fg� some coe�cients are zero if and
only if the support of the product is a proper subset of S�

Example ����For illustration� let f� � c�� c�x� c�xy and g� � s�� s�x� which means
that cf � �c�� c�� c�� �� �� and cg � �s�� s�� �� �� ��� Moreover� A � ���� ��� ��� ��� ��� ����
B � ���� ��� ��� ���� and S � ���� ��� ��� ��� ��� ��� ��� ��� ��� ���� In evaluating f�� the cor�
responding �  Vandermonde matrix V can be

V �

�
���

� v� v�� v�� v��
� v� v�� v�� v��
� v� v�� v�� v��
� � � � �
� � 	 
 ��

�
��� �
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Theorem ��	�Given n�variate polynomials f� g � P with supports A�B � Zn� respec�
tively� and given a point set S � Z

n such that A � B � S� the product fg can be
computed by algorithm 
�� by using O��sn�n

p
d� ops and O�sn� space� where d is the

maximum degree of each input polynomial in any variable and s � jSj�

Proof�In steps � and 	� the Vandermonde matrices are de�ned by at most s values vi
and wi� respectively� These are the values of all monomials from the set A at a point
�p�� 
 
 
 � p��� according to lemma 	��� such values can be computed in O��sn�n

p
d� ops

since the maximum degree of the product polynomial in each variable is bounded by �d�
For interpolation� note that all monomials in fg belong to S� The storage requirement
is O�sn�� Steps � and 	 take each O�s log� s� ops and O�s� storage space� due to the
techniques of �CKL�� KL��� �also see �BP	� sect� ������ Both estimates exploit the
structure of the Hankel matrix V TV � �

Remark ��
�The entries of V T V equal the power sums of the roots of the polynomialQ
i
�x � vi�� in the notation of the above algorithm� These entries can be computed

via the identities involving the symmetric functions of the corresponding coe�cients�
by solving a Toeplitz linear system of �jAj equations� In fact� this Toeplitz linear sys�
tem is triangular� so its solution is substantially simpler than that stated in CKL���
sect� �a�� A slightly simpler way reduces the computation to a polynomial reciprocal and
a polynomial product Pan����

�� The structure of the Newton matrix

In this section� we describe the general problem of constructing Newton matrices�
which express the sparse resultant by means of a determinant� we refer the reader
to �EC�� Emi�� Stu	� and their references for a comprehensive presentation� The
quasi�Toeplitz structure of these matrices is revealed and applied to establishing good

upper bounds on the complexity of multiplying a Newton matrix by a row or column
vector� These bounds are signi�cantly lower than quadratic in the matrix dimension�
and even quasi�linear for premultiplication by a row vector�

Sparse elimination uses certain notions from combinatorial geometry� Given con�
vex polytopes Q�� � � � �Qn � Rn and non�negative 	�� � � � � 	n � R� the standard n�
dimensional Euclidean volume of the Minkowski sum 	�Q�� 
 
 
�	nQn is a polynomial
in the 	�� � � � � 	n� homogeneous of degree n� The coe�cient of the multilinear term
	� 
 
 
	n is de�ned to be the mixed volume of Q�� � � � � Qn and denoted by MV �Q�� � � � �
Qn�� If the Qi have integer vertices� as in the case of Newton polytopes� then their mixed
volume takes integer values� These facts and a number of equivalent de�nitions of mixed
volume are demonstrated in �Ewa��� see also �EC�� for computational issues regarding
mixed volumes�

Consider a well�constrained polynomial system f�� � � � � fn � P � K�x�x���� where K
is the base �eld of characteristic zero� Bernstein�s theorem states that the mixed volume
of the Newton polytopes associated to the polynomial system of equations f� � 
 
 
 �
fn � � bounds the number of isolated roots of this system in �K

�
�n � �K nf�g�n� where

K is the algebraic closure of the base �eld� The mixed volume is typically much less than
B�zout�s bound for sparse polynomial systems� We recall that B�zout�s bound on the
number of �projective� roots is

Q
i
di� where di is the total degree of the polynomial fi�

for � 	 i 	 n�

Now we pass to the context of overconstrained systems f�� � � � � fn	� � P � The sparse
resultant R of polynomials f�� � � � � fn	� is an irreducible polynomial in the fi coe�cients�
which provides a necessary condition for solvability of the overconstrained system f� �

 
 
 � fn	� � � over �K

�
�n� i�e�� it vanishes whenever there exists a solution in �K

�
�n�

R is a homogeneous polynomial in the coe�cients of each fi whose degree� denoted

degfi R� is given by the following mixed volume�

degfi R � MV �f�� � � � � fi��� fi	�� � � � � fn	��� �����
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The algorithmic problem of computing R is typically solved by constructing square
matrices� called resultant matrices� whose determinant is ideally R or� more generally�
a nontrivial multiple of R� Even in the second case� the resultant matrix su�ces for
reducing the computation of all roots of f� � 
 
 
 � fn	� � � to a problem in linear
algebra� see� for instance� �Emi���

For a nonempty set of monomials S � Zn� let
P �S� � ff � P � supp�f� � Sg � P

be the vector space over some monomial basis in S� of dimension equal to the cardinality
s � jSj� Hence a polynomial is represented by a vector� and a list of polynomials by a
concatenation of vectors�

Definition ����Let n� � polynomials f�� � � � � fn	� � P have supports A�� � � � � An	� �
Zn� Let B�� � � � � Bn	� � Zn be the supports of polynomials g�� � � � � gn	� � P such that
the linear transformation


 � P �B��� 
 
 
 � P �Bn	��� P
�Sn	�

i��
�Ai � Bi�

�
� �����

�g�� � � � � gn	�� � �g�� � � � � gn	��M �
�Pn	�

i��
gifi
	

is surjective for generic coe�cients of the fi and� moreover� the dimension of the domain
of 
 is at least as large as the dimension of the range� in other words�

P
i
jBij �

j �n	�
i�� �Ai � Bi�j� Then the matrix M is the transpose of the matrix of 
� has entries

in K and has at least as many rows as columns� If� furthermore� jBij � degfi R for
i � �� � � � � n � �� then this is a sparse resultant� or Newton� matrix for the system
f�� � � � � fn	��

Observe that the coe�cients of fi are generic� or symbolic� and those of gi are imma�
terial� Each entry of M is either zero or equal to a coe�cient of some fi� The rows of M
are indexed by the points in Bi� so that the row corresponding to b � Bi expresses the
polynomial xbfi� The columns of M are indexed by the points in �i�Ai � Bi�� which
is precisely the support of

P
i
gifi� In short� Newton matrices are constructed in the

same way as Sylvester and Macaulay matrices �vdW��� and correspond� therefore� to
the transpose of the linear transformation above�

Keeping with the philosophy of this paper� we store a Newton matrix by storing only
the Bi and fi� i � �� � � � � n � �� hence using O�cn� space� where c denotes the number
of matrix columns and bounds the cardinality of any Bi� This space bound relies on the
hypothesis that a multi�index representing an integer exponent vector or� equivalently� a
monomial takes O��� space� This is assumed in the rest of the paper and is justi�ed by
the observation that� typically� the list of n maximum degrees in any variable �denoted
d� can be stored in constant amount of space�

The following well known theorem is the basis for computing nontrivial multiples of
the resultant �CE��� vdW����

Theorem ����Consider any maximal nonzero minor �determinant of a maximal sub�
matrix� D of a Newton matrixM � Then D is a nontrivial multiple of the sparse resultant
R�

Proof�If there is a common zero � � �K
�
�n for f�� � � � � fn	�� then it is a common zero for

all polynomials in the range of 
� Consequently� this range cannot contain any monomial�
because the monomial value at � cannot be zero� Therefore� 
 is not surjective� i�e�� every
maximal minor of the matrixM vanishes on the coe�cient specializations for which there
exists a solution in �K

�
�n� Consider D and R as polynomials in the coe�cients of input

polynomials fi and compare the two sets �or algebraic varieties� in the space of these
coe�cients on which D and R vanish� According to the above argument� D vanishes on
the zero set �or variety� of R and� since R is irreducible� Hilbert�s Nullstellensatz �vdW���
implies that R must divide D� �This holds for every maximal minor�� Furthermore� the
hypothesis D �� � implies that this is a nontrivial multiple��
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Our approach to demonstrating the matrix structure proceeds by studying its prop�
erties concerning multiplication by a vector� namely the fact that this operation has
complexity substantially lower than quadratic in the matrix dimension� This essen�
tially amounts to revealing the quasi�Toeplitz structure of M � which reduces both pre�
and post�multiplication by a vector to polynomial multiplication� In �MP�� the quasi�
Toeplitz and quasi�Hankel structure of all types of resultant matrices is formalized�
including B�zout and Dixon matrices� The question remains how to perform this mul�
tiplication� Straightforward application of theorem 	�� is non�optimal� An improvement
is possible by the approach of �MP�� prop� �	� in the case of premultiplication� Yet� by
modifying algorithm 	�� we obtain a further improvement� whereas postmultiplication is
immediately reduced to premultiplication due to the following powerful general theorem�

Theorem ���� �Tellegen�s theorem��BCS�� thm� ������ Let M be an a� c matrix
with no zero rows and L�A� denote the complexity of postmultiplying any rectangular
matrix A by a vector of appropriate dimension� Then L�M� � L�MT � � c� a�

We now consider premultiplication of M by an a�dimensional vector� Polynomial f
will capture the structure of M � If M is viewed as an �n����� block matrix� the blocks
would be of Toeplitz type in the univariate �Sylvester matrix� case� If the polynomial

associated to an a�c Toeplitz matrix with �i� j��th entry tj�i is f �
Pc��

k���a tkx
k� then

premultiplication of the matrix by a row vector �v�� � � � � va� is expressed by polynomial
multiplication fg� where g �

Pa

i��
vixi� So f must account for the various blocks and� in

the multivariate case� take into consideration the fact that the structure is not exactly
Toeplitz� but rather quasi�Toeplitz� The �rst issue is addressed by introducing a new
variable xn	� in order to index the k�th block� k � �� � � � � n � �� by xkn	�� The second
issue is addressed by indexing the rows by the monomials in Bi and the columns by the
monomials in �n	�

i�� �Ai �Bi��

In the case of premultiplication of M by a row vector the polynomial associated to
the quasi�Toeplitz matrix is

f �

n	�X
i��

x�in	�fi�x��

Any row vector can be decomposed into subvectors of length jBij� i � �� � � � � n � ��
and the respective entries can be thought of as the coe�cients of a polynomial gi with
support Bi� just as in expression ������ The polynomial associated to the vector contains
monomials of the type xin	�x

b� where b � Bi� i � �� � � � � n � �� Hence� the polynomial
of the input vector is

g �

n	�X
i��

xin	�gi�x�� where gi �
X
b�Bi

gibx
b�

and gib is an appropriate element of the given vector� Then the premultiplication by any
vector is reduced to computing

P
i
gifi� The latter has support equal to the set of all

column monomials and represents the constant coe�cient of fg regarded as a univariate
polynomial in xn	��

n	�X
i��

fi�x�gi�x� �
X

q��i�Ai	Bi�
xq

n	�X
i��

X
e�Ai
q�e�Bi

ciegi�q�e��

where fi �
P

e�Ai x
ecie�

Example ��� �continued� Let f� � c� � c�x� � c�x�x�� with ordered support A� �
���� ��� ��� ��� ��� ���� let B� � ���� ��� ��� ��� and consider the subsequence ���� ��� ��� ���
��� ��� ��� ��� ��� ��� of S� For an arbitrary row vector �s�� s�� � � ��� the �rst entries can be
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thought of as the coe�cients of polynomial g� � s� � s�x�� Then� premultiplication by
this vector starts as follows�

� x�
� s� s� 
 
 
 �

� x� x�x� x�� x��x��
�

c� c� c� � �
� c� � c� c�

�
��

�
�

f�
x�f�

�
��

�

� x� x�x� x�� x��x�
� � s�c� s�c� � s�c� s�c� s�c� s�c� � � 
 
 
 �

To the right of the matrix� we mark the polynomials �lling in the rows� and above

the matrix and the vectors� we show the monomials indexing the columns or entries�
respectively�

We can now describe a modi�cation of algorithm 	�� for computing the interesting
part of fg� whose complexity stays within the same asymptotic bounds� Suppose S �
fm�� � � � �msg � Zn is given� such that �i�Ai �Bi� � S�

�Pick primes p�� � � � � pn� pn	� and compute the values wk �
Qn

i��
p
mki

i
� k �

�� � � � � s� This takes O��sn� n
p
d� ops and O�sn� storage by lemma 	��� where d

is the maximum degree of fi� gi in any variable�

�Let A�i � f�e��i� � e � Aig � Zn	�� Evaluate all A�i monomials� for i �

�� � � � � n � �� by multiplying the appropriate wk by p�i
n	�� This takes O��s� per

polynomial and total space O�sn� to compute all necessary values� The new values

de�ne Vandermonde matrix Vf expressing evaluation of f � and whose dimension
is jsupp�f�j 	 sn� since supp�f� � �iA�i and Ai � S� Construct the coe�cient
vector cf and compute the evaluation vector lf � V T

f
cf � Analogously proceed for

the polynomial g� Then multiply pointwise the two evaluation vectors in order to
obtain lfg� All operations have complexity O��sn� by the proof of theorem 	���

�LetW be the Vandermonde matrix de�ned by the evaluation of the support mono�
mials of f and g computed above� its dimension is ��n� ��s� Solve WT cfg � lfg

for the coe�cient vector cfg of
Pn	�

i��
figi and return the subvector correspond�

ing to the constant monomials with respect to xn	�� This step has complexity
O��sn��

The algorithm can clear denominators by multiplying all monomials by xn��
n	�� then

returning the coe�cient of x�nn	� in the product polynomial� Now an immediate corollary
of theorem 	�� is the following�

Corollary ����Consider polynomials fi� gi � P � i � �� � � � � n� �� Let Ai� Bi � Zn be
the respective supports and let S � Zn be such that �i�Ai � Bi� � S� Then computingPn	�

i��
figi has time complexity O��sn� n

p
d� and space complexity O�sn�� where d is

the maximum degree of fi� gi in any variable� This implies that premultiplication of M
by a row vector can be performed within these complexity bounds�

The second important property is that postmultiplication of M by a c�dimensional
vector can also be performed substantially faster than the straightforward quadratic
method� This is a corollary of Tellegen�s theorem ����

Corollary ����Consider Newton matrix M de�ned by n�variate polynomials fi with
supports Ai and by support sets Bi � Zn� i � �� � � � � n��� Let s and d be as above� Then
computing the product Mv for some column vector v has time and space complexity in
O��sn� n

p
d� by Tellegen�s theorem ����
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S can be taken to be precisely �i�Ai � Bi�� the set of the monomials indexing the
columns of M � hence c � jSj� Typically� the exact computation of support S is expensive�
so we can bound it by the integer lattice points lying in the Minkowski sum of the Newton
polytopes of the fi� In the dense context� s � jSj was bounded simply as a function of
the degrees� thus yielding a quite loose bound� This development culminates with the
following result�

Theorem ����Let M be an a � c Newton matrix of the transformation of ����� where
a � c� and let v be a ��a vector� both with constant entries� Then computing the vector
vM takes O��cn� n

p
d� ops and O�cn� storage space� where d is the maximum degree

of f�� 
 
 
 � fn	� in any one variable� Computing vector Mv� where v is a c� � column
vector with constant entries� has time and space complexity in O��cn� n

p
d��

An improvement of practical interest is possible when multiplication of M by a row or
column vector must be repeated several times� as in computing the rank of M � Namely�
the �rst steps of the above algorithms� which evaluate the supports and vector lf � may
be performed only once�

An interesting extension for polynomial system solving is when the matrix entries are
univariate polynomials in an indeterminate� other than the variables eliminated by the
resultant �Emi�� vdW���� This means that in the course of performing the computations
above� a typical vector by which M is multiplied has entries that are polynomials in this
indeterminate� This would increase the time complexity by an additional quasi�linear
factor in the maximum degree of the input polynomials in this indeterminate�

�� Incremental matrix construction

In this section we sketch the incremental algorithm for constructing a Newton ma�
trix� proposed in �EC��� and reduce its time complexity by one order of magnitude�
the original algorithm had cubic complexity in the matrix dimension� The incremental
construction yields the smallest Newton matrices among all existing algorithms and�
moreover� constructs optimal matrices in several cases� including all cases where opti�
mal matrices provably exist� An implementation is available and experiments have shown
that the matrix dimension is typically within a factor of three of the optimal�

The matrix is constructed by adding integer points to the candidate sets Bi� until
a Newton matrix is found� For every intermediate candidate matrix with at least as
many rows as columns� the algorithm tests whether it has full rank� To formalize� let
Qi denote the Newton polytope of fi and de�ne Minkowski sums Q�i �

P
j ��iQj �

i � �� � � � � n� �� and Q �
P

j
Qj � Then the set of row monomials is the disjoint union

of sets Bi � Q�i � Zn� The set of column monomials always lies in Q and� at any
stage of the algorithm� it is de�ned to be �i�Ai � Bi� for the Bi at this stage� The
algorithm linearly orders all points in each Q�i� so that there is a well�de�ned rule for
incrementing the sets Bi for i � �� � � � � n� �� As the Bi are incremented� the algorithm
constructs successively larger matrices until a Newton matrix is found� Instead of using

generic coe�cients for the fi� in practice we use random integer values�
Initially Bi contains the optimal number of points� namely degfi R� given by iden�

tity ������ i � �� � � � � n � �� The number of incremental steps is bounded by the �nal
number of rows� because every step adds at least one point to some Bi� In practice� every
step adds more than one point� in this regard� computing the matrix rank provides useful
information� The matrix obtained at each step is characterized by the same structure
as the Newton matrix� The idea is� therefore� to exploit the structure of the rectangular
matrix in order to accelerate each rank test�

Lemma ����Let polynomial system f�� � � � � fn	� � P and let M be an a � c matrix
constructed in the course of the incremental algorithm� with numeric entries� such
that a � c� Computing the numerical rank of M within some given tolerance requires
O��c�n� cn

p
d� ops and O��cn� n

p
d� storage space�
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Proof�The proof follows from theorem ��� if we apply theorem ��� to bound the cost
of a vector�by�matrix multiplication��

To obtain a regular square Newton matrix from a full�rank rectangular incremental
matrix M we rely on an observation of �EP�� which� itself� uses the probabilistic con�
struction in �Pan�b� fact ����� see� alternatively� �EP�� lem� ����� The complexity of
this step is dominated by the matrix construction�

Lemma �����EP�� prop� ��	� Let an a � c matrix M be of full rank and assume that
L is a unit a � a lower triangular Toeplitz matrix� with its a � � subdiagonal entries
randomly chosen from a �xed �nite set T � Let W be the c�c trailing principal submatrix
of LM � Then� W is nonsingular and detW is a multiple of the sparse resultant R with
a probability at least �� c�jT j�

The following theorem gives an output�sensitive upper bound on the worst�case com�
plexity of the incremental algorithm for computing a Newton matrix� In the rest of this
section� we ignore the cost of computing the monomial set indexing the columns of the
Newton matrix� For the sake of simplicity� we make the hypothesis that a � O��cn�� this
is a reasonable assumption� based on our experience�

Theorem ����Assume that the given n � � polynomials in n variables have numeric
coe�cients and let t be the number of rank tests required by the incremental algorithm
of EC��� in order to construct M � Assume that the maximum degree in any variable is
d � O�c�� and that we are given some numeric tolerance �� Then� using the numerical
algorithm ��� with complexity bounded by theorem ��� yields an overall time complexity
in O��c�nt� and space complexity in O��cn��

The previous time complexity bound was O�a�c� from �EC�� lem� ���� and the space

complexity was O�ac�� These bounds follow from the fact that the algorithm tests the
nonsingularity of several matrix candidates� by applying an incremental version of LU�
decomposition� which is performed in place� Table � shows the various parameters in
examples studied in �EC�� Emi�� using our implementation in C� publicly available at
http���www�sop�inria�fr�galaad�logiciels�emiris�soft�alg�html� This implemen�
tation relies on LAPACK procedures for the numerical operations �ABB	��� The �rst
three examples are multihomogeneous systems with three groups of two� one and one
variables respectively� where the corresponding degrees are given in the table and the
following two are di�erent expressions of the cyclic ��root problem� see �EC�� for details�
The last example is the Stewart platform from parallel robot kinematics� see �Emi���

Table �� Performance of the incremental algorithm

type n degR c a t

��� �� �� �� �� �� 	 �	� ��� ��� �
��� �� �� �� �� �� 	 	�� �� �� 	�
��� �� �� �� �� �� 	 �� ���� ���� 	 	�
original cyclic � �� �	 �	�� �
�
simpli�ed cyclic � �� ��� ��� �

Stewart platform � ��	 	�� ��� ��

Clearly� an important issue concerns a formal bound on the number of singularity
tests t�



Structure in resultant matrices ��

Lemma ����Consider the incremental algorithm described above and suppose that a valid
Newton matrix is de�ned by point sets Bi� i � �� � � � � n� �� If any or all of the Bi are
incremented �by following the ordering on the respective set Q�i � Zn�� then the new
matrix is again a valid Newton matrix�

This lemma suggests the following heuristic rule to minimize t� At every incremental
step� for a �xed D� the algorithm adds at least D new rows� by appending as many
points to the corresponding sets Bi� Let a� denote the number of rows in the �rst full�
rank matrix encountered by the algorithm� and let a� � a� be the number of rows in
the last �hence largest� rejected candidate matrix� The algorithm tries to optimize the
number of rows by performing a binary search in the heuristic range �a� � a��� Hence�
the total number of tests is roughly a��D � logD� We applied the new algorithm for D
roughly equal to degR to the �st� 	th and �th inputs in table � and obtained a matrix
with the same number of columns after �� �� and � tests respectively� Our experiments
showed that a� increases at most at the same rate as degR� this justi�es the following
assumption�

Corollary ����In the context of theorem ���� assume that the number of rows a in
a Newton matrix constructed by the incremental algorithm is bounded by a constant
multiple of degR� Then� with the binary search in the heuristic range just described�
the time complexity of the algorithm for �nding this matrix becomes O��c�n��

There are two main reasons for constructing Newton matrices� The �rst is for solv�

ing systems of nonlinear polynomial equations� We have examined the phase of matrix
construction� which is comparatively costly� Once this is over� certain matrix operations
are applied to simplify the linear algebra problem and� eventually� obtain a multipli�
cation table� this is a matrix for which we have to compute eigenvalues and eigen�
vectors �EC�� Emi�� BMP���� This is an important question for which we refer the
reader to �PC� PCZ�� on recent results� The method of �BMP��� exploits structure or
sparsity in computing selected eigenvalues and eigenvectors of the multiplication table
obtained from the Newton matrix as a Schur complement� On the other hand� �MRP���
proposes iterative methods based on structured matrices for computing all real roots and
all roots in a given box or disc� Further results exploiting matrix structure are desirable�

The second major application is in computing the exact sparse resultant polynomial�

which divides the determinant of the Newton matrix� In this context� the coe�cients are
typically polynomials in a single variable� denoted u� This may be the same situation
as in the u�resultant approach �vdW��� or when u has been chosen among the input
variables to be �hidden� in the coe�cient �eld �Emi��� In both cases� the �rst question
is to compute detM�u� as a univariate polynomial� the rest of the problem is considered
in the next section�

Corollary ����We are given an a � c Newton matrix M with univariate entries of
degree d� Under the hypotheses of theorem ���� there exists a Las Vegas algorithm to
compute the �univariate� determinant by using O��c�nd� ops and O��cn� cd� storage
space�

Proof�This can be achieved by the well�known evaluation�interpolation technique� The
determinant degree in u is bounded by cd� the number of evaluations is � � cd� and one
determinant of the specialized matrix requires O��c�n� ops� The latter bound follows
from theorem ��� and the Las Vegas algorithm of �Wie��� thm� �� as extended in �KP��
lem� ��� see alternatively �EP�� thm� ���� or �EP�� thm� ����� The needed space is
O��cn� in addition to O�cd� needed for storing the determinant values and interpolating
from them to the polynomial coe�cients� �

For the u�resultant construction� d � � and the number of columns containing u
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equals the degree of resultant R in the coe�cients of the u�polynomial� If the latter is
fn	�� then the time complexity becomes O��c�n degfn�� R��

�� Sparse resultant computation

This section focuses on computing the sparse resultant from a set of Newton matrices�
when all input coe�cients are given speci�c numeric values� These are either exact or
known to some limited precision� Moreover� it is straightforward to extend our algorithms
to the case where some polynomial coe�cients remain indeterminate or are expressed
in terms of parameters� just as at the end of the previous section� Exploiting the matrix
structure enables us to decrease the overall complexity by a factor proportional to the
square root of matrix size�

We shall require an additional property for the Newton matrices used� Associate each
matrix with one of the given polynomials fi� so that the number of rows of M containing
multiples of fi is precisely degfi R� hence the degree of detM in the coe�cients of fi
equals the corresponding degree of the resultant� This property can be guaranteed in the
case of the incremental algorithm if we �x set Bi to its initial size �EC��� and is also

satis�ed in the case of the subdivision�based algorithm of �CE���� Thus� either algorithm
can be used in the discussion that follows�

The naive way to compute R as the Greatest Common Divisor �GCD� of n�� deter�
minants is known not to work for arbitrary coe�cient specializations �Zip��� For this�
two probabilistic methods have been proposed by Canny and Emiris� detailed complexity
and error analysis can be found in �CE���� Another source of randomization that we do
not explicitly determine is the application of the Las Vegas algorithm of corollary ����

Let Mi be the Newton matrix associated to fi� for � 	 i 	 n� �� Recall that the fi
have indeterminate coe�cients and let gi be the specialization of fi and hi be a random

polynomial with the same support� Denote by D
�j�
i

� � 	 j 	 n � � the determinant
of matrix Mi for the system obtained after specializing fk � gk � �hk� for k 	 j and
fk � hk� for k � j� where � is an indeterminate that will go to zero�

The division method determines the resultant of the system gi � �hi �within a scalar
factor� by

R�gi � �hi� �
D

�n	��
n	�

D
�n�
n	�


 
 
 D
���
�

D
���
�

�

The desired resultant R�gi� can then be obtained by setting � � �� provided that the

choice of hi is su�ciently generic� This is equivalent to requiring that all D
�j�
i

� as poly�
nomials in �� have full degree� If the coe�cients of each hi is distributed uniformly with
� bits� then the probability that this requirement fails is bounded by �n� ��� degR���

�CE���� Note that R may be computed by using less than n� � matrix determinants� if
at least one of them happens to have the same degree as R in the coe�cients of more
than one polynomial�

Theorem 	���Suppose that we have already computed all �and at most n��� necessary
Newton matrices for polynomial system g�� � � � � gn	� � P � with matrix size c� c� The
sparse resultant of the specialized system can be computed by the division method �a Las
Vegas algorithm� in O��c�n� degR� ops� using O��cn� additional storage space� where
degR denotes the total degree of the sparse resultant in the input coe�cients�

Proof�The evaluation�interpolation scheme is used with � � degR di�erent values for
�� since the degree of R�gi � �hi� in � is bounded by degR� The dominant complexity is
that of evaluating the �n determinants� Since degR 	 c� the storage for the interpolation
phase is in O��cn� by setting d � � in corollary ���� �

Observe that only the constant term of R�gi � �hi� is needed� The previous time
complexity bound was O��M�c� degR�� where M�c� is the arithmetic complexity of
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a c � c matrix multiplication� Theoretically� M�c� � O�c����� but in practice it is in
O�c������

The following method uses only two Newton matrix determinants by distinguishing
an exponent vector a � A� and imposing a related technical constrain on B� �for details�

see �CE����� The �rst determinant� denoted D�� is D
�n	��
� under the above notation�

The second� denoted D�
�� is the determinant of M� for specialized system f� � xa� ��h��

fi � gi � �hi� for i � �� Then� the GCD method computes

R�gi � �hi� �
D�

gcd�D��D�
��
�

and the desired resultant is again obtained by setting � � ��

Theorem 	���With the above notation� the sparse resultant of g�� � � � � gn	� � P can be
computed by the GCD method in O��c�n� ops� using O��cn� total space�

Proof�The dominant step is the computation of D�� D�
� as univariate polynomials in ��

with degree bounded by c� By the evaluation�interpolation scheme� this takes O��c�n�
ops and O��cn� storage� Computing the GCD� then evaluating the fraction and� lastly�
interpolating to the least signi�cant coe�cient of R�gi��hi�� all have dominated comple�
xities� �

The previous time complexity bound was O��M�c�c�� Note that the univariate GCD
computation can be reduced to a branch�free computation of a subresultant because
the degree of the GCD� which is precisely the extraneous factor in D�� is known in
advance� Moreover� this computation can be enhanced by probabilistic interpolation
techniques �Zip�� ch� ����

Both the division and the GCD method are readily extended to computing the sparse
resultant polynomial� if the coe�cients are specialized to functions of one or more pa�
rameters� This covers also the case of the u�resultant�

�� Conclusion

Most complexity bounds rely on the e�ciency of FFT� i�e�� its quasi�linear time com�
plexity and linear space complexity� Yet� it is known that the latter algorithm is truly
advantageous only for rather large inputs� due to the relatively high overhead constant
hidden in the O�� notation� Our methods can be adapted to other basic algorithms for
polynomial multiplication of intermediate speed� namely the classical algorithm and the
so�called Karatsuba�s method �KO���� which may be preferable for inputs of moderate
size �Ber���� Karatsuba�s multiplication algorithm has linear space complexity and time
complexity O�klg�� for k�degree polynomials� where lg denotes the logarithm in base ��
See table � for some rami�cations�

Our results contribute in the direction of developing numerical nonlinear algebra� Re�
sultant matrices reduce polynomial system solving in the zero�dimensional case to a lin�
ear algebra problem� including an eigenvalue�eigenvector computation� We have pointed
out recent advances� though further results exploiting matrix structure are desirable�

We may try to combine other ways of exploiting structure and sparsity� in particular
since the large number of zero entries usually constitute the great majority� One exam�
ple is by applying nested dissection �LRT��� Last but not least� we would like to use
information between successive rank tests since every rejected candidate is a submatrix
of the next�
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