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Resultants characterize the existence of roots of systems of multivariate nonlinear poly-
nomial equations, while their matrices reduce the computation of all common zeros to
a problem in linear algebra. Sparse elimination theory has introduced the sparse resul-
tant, which takes into account the sparse structure of the polynomials. The construction
of sparse resultant, or Newton, matrices is the critical step in the computation of the
multivariate resultant and the solution of a nonlinear system. We reveal and exploit the
quasi-Toeplitz structure of the Newton matrix, thus decreasing the time complexity of
constructing such matrices by roughly one order of magnitude to achieve quasi-quadratic
complexity in the matrix dimension. The space complexity is also decreased analogously.
These results imply similar improvements in the complexity of computing the resultant
polynomial itself and of solving zero-dimensional systems. Our approach relies on fast
vector-by-matrix multiplication and uses the following two methods as building blocks.
First, a fast and numerically stable method for determining the rank of rectangular ma-
trices, which works exclusively over floating point arithmetic. Second, exact polynomial
arithmetic algorithms that improve upon the complexity of polynomial multiplication
under our model of sparseness, offering bounds linear in the number of variables and the
number of nonzero terms.

1. Introduction

Resultants characterize the solvability of zero-dimensional systems of multivariate
nonlinear polynomial equations, and their matrix formulae reduce the computation of
all common solutions to a matrix eigenproblem. Multivariate resultants have a long and
rich history in the context of classical elimination. More recently, sparse elimination the-
ory introduced the sparse resultant, which generalizes the classical resultant and whose
degree depends on the monomial structure of the polynomials, thus leading to tighter
bounds and faster algorithms for systems encountered in application areas. Sparse re-
sultant matrices, also known as Newton matrices, generalize Sylvester and Macaulay
matrices, and from their determinants the sparse resultant can be computed. This paper
identifies and exploits the structure of Newton matrices by designing an efficient numer-
ical rank test and exact polynomial arithmetic in the context of sparse elimination. This
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yields better time and space complexity bounds for their construction, the computation
of the sparse resultant and, ultimately, the solution of nonlinear polynomial systems.
Our methods can be extended to the case of imperfectly known coefficients, or to solv-
ing overconstrained systems as long as the number of solutions is finite. Hence, our effort
is a contribution in efficient and numerically stable algorithms in nonlinear algebra.

Construction and manipulation of Newton matrices is a critical operation in some of
the most efficient known algorithms for solving zero-dimensional systems of equations
[CKL89, Emi9%, Laz81, Man94, MP97, MRP00]. They may be used to construct the
multiplication table in the quotient ring defined by a polynomial ideal, which is a cru-
cial step in numerically approximating all solutions of a well-constrained system. Our
practical motivation is the real-time solution of systems with, say, up to 10 variables;
or the computation of the resultant polynomial, for instance, in graphics and modeling
applications where the implicit expression of a curve or surface is precisely the resultant.
Such systems may give rise to matrices with dimension in the hundreds or even higher,
as illustrated by specific examples in table 2. By palliating the effects of matrix size,
with respect to both time and space complexity, our work deals with what is probably
the Achilles heel of Newton’s matrices. This general area is a field of active research.

The solution of such equations is itself irrational, even in the univariate case. Hence it
requires further numeric computation following the construction of a resultant matrix,
as explained in section 6.

The main contribution of the present paper is to construct Newton matrices with
quasi-quadratic time complexity, whereas the existing methods have cubic complexity
in the matrix dimension. This uses the incremental construction algorithm of [EC95].
We improve both time and space complexities by almost one order of magnitude and
manage to rely essentially on floating-point routines, in order to fully use the power of
contemporary computers as well as the availability of linear algebra software libraries.
Analogous improvements are then obtained for computing the sparse resultant polyno-
mial itself and, eventually, for solving systems of polynomial equations by resultant-based
methods.

These bounds ultimately rely on the Fast Fourier Transform (FFT). Yet, for smaller
input sizes, other polynomial multiplication methods, such as Karatsuba’s, may offer
simpler though asymptotically slower alternatives. Table 1 compares the existing and
the achieved complexities, in terms of row and column dimension, respectively denoted
a and ¢, and the number of variables n, as explained in section 6. Note that a > ¢ and
typically ¢ > n.

Table 1. Asymptotic complexity for matrix construction

method time  space
previous a’c ac
Karatsuba  ¢2%n cn
FFT cZn cn

There are some further results of independent interest. First, a fast numeric proce-
dure, namely algorithm 3.1, is proposed for computing the numerical rank of a rectan-
gular matrix, based on Lanczos’ algorithm. It exploits matrix structure, in particular
fast vector-by-matrix multiplication, and achieves numerical stability by the standard
technique of vector orthogonalization. A faster variant, namely algorithm 3.3, is de-
signed for testing whether a given rectangular matrix is rank deficient or not, within the
prescribed tolerance. Second, the reduction of vector-by-matrix multiplication to poly-
nomial multiplication calls for exact sparse polynomial arithmetic, namely evaluation
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and interpolation. We design such algorithms, with linear time and space complexity
in terms of n and the cardinality of the supports, thus improving the known bounds
under our model of sparseness. In short, our approach relies on the interplay of numeric
and symbolic building blocks. Lastly, by studying the structure of resultant matrices,
we generalize the theory of Toeplitz matrices and some of their essential properties to
quasi-Toeplitz matrices, which include Newton, Macaulay and Sylvester matrices. Some
results can be extended to Bézout and Dixon resultant matrices.

Dealing with randomized algorithms, we shall distinguish between Las Vegas algo-
rithms, which may fail with a small bounded probability but otherwise output correct
solutions and, on the other hand, Monte Carlo algorithms, which may produce incorrect
results but with a small bounded probability.

All time complexity bounds are in terms of arithmetic complexity; hereafter “ops”
stands for “arithmetic operations.” Space complexity includes the input and output
storage, unless we explicitly refer to “additional” storage space. We let O*(c¢) stand for
O(clog? c) for any fixed constant v independent of ¢ and we let |S| denote the cardinality
of a set S. In our notation, W7 is the transpose of a matrix or of a vector W, WH is
the Hermitian transpose of a matrix and I}, is a k X k identity matrix. This paper makes
heavy use of dense structured matrices; for a comprehensive account of their definitions
and properties, the reader may consult [BP94, Pan01]. In particular, recall that a k x k
Toeplitz matrix can be multiplied by a vector in O(klog k) ops [BP94, sect. 2.5] and in
O(k) storage space, based on the FFT.

This paper is organized as follows. The next section expands on related work. Section 3
proposes an efficient numerical rank determination algorithm and a faster rank deficiency
test. Section 4 considers exact sparse polynomial arithmetic. Certain important proper-
ties of the Newton matrix are investigated in section 5, including its multiplication by
a vector. Section 6 improves the complexity of a known algorithm for constructing such
matrices by exploiting their structure. Computing the sparse resultant itself is investi-
gated in section 7. We conclude with extensions of our results, a discussion of certain
alternatives, and some open questions, in section 8.

2. Related work

Resultant-based approaches to studying and solving systems of polynomial equations
have a long history. Recent interest in matrix-based methods is supported by certain
practical results that have established resultants, along with Grobner bases and con-
tinuation techniques, as the method of choice in solving zero-dimensional polynomial
systems [CKL89, Emi96, Laz81, Man94, MP97, vdW50]. A generalization of the clas-
sical resultant was introduced in the context of sparse elimination theory (outlined in
section 5). Two main algorithms, generalizing Sylvester’s as well as Macaulay’s construc-
tions, have been proposed for constructing Newton, or sparse resultant, matrices: The
subdivision-based algorithm by Canny and Emiris (see [CE00] for a complete account),
subsequently improved and generalized in [CP93, Stu94], and the incremental algorithm
of [EC95], which constructs a rectangular matrix and then obtains a square nonsingular
submatrix.

In the case of univariate polynomials, the Bézout and Sylvester matrices have a
Hankel-like and Toeplitz-like structure, respectively [BP94]. In the multivariate case,
things become more subtle. Canny, Kaltofen and Lakshman [CKL89] studied the struc-
ture of Macaulay matrices and proved that multiplication of a Macaulay matrix by a
vector is of almost linear complexity in the matrix dimension. Then they applied Wiede-
mann’s technique [Wie86] in order to compute the determinant of such a matrix. Our re-
sults generalize their approach. Independently, Mourrain and Pan [MP97, MP98, MP00]
generalized [CKL89] in another direction, by formalizing the Toeplitz- or Hankel-like
structure of general resultant matrices, including Macaulay, Bézout and Newton matri-
ces. Mourrain and Pan’s works, though technically distinct, provide a related viewpoint
to our approach. Corollary 5.4 improves proposition 24 of [MP97]; our result can be
drawn from this proposition by using a special set of points, such as those of algo-
rithm 4.5.
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An auxiliary issue (also important in its own right) is to devise algorithms for mul-
tiplying sparse multivariate polynomials within the computational complexity bounds
expressed via the support cardinality or the Newton polytope. The existing general
bounds are interesting only in the dense case [BP94] since they require at least d™
operations, where n is the number of variables and d is the maximum degree in any
one variable. Sparse interpolation has received a lot of attention; see the algorithms
in [KL88, Zip93], supporting complexity linear in the product of n, the maximum de-
gree in any single variable and a bound on the number of monomials. Section 4 improves
these bounds by exploiting the structure of nonzero terms, and generalizes [CKL89] from
completely dense supports to arbitrary supports. Alternative models of sparseness have
been studied, including straight-line programs, Khovanskii’s fewnomials (to which our
results apply), and Vasiliev’s density model (under which evaluation requires at least 2™
operations).

Some results of sections 4-7 appeared in preliminary form in [EP97].

3. A fast numerical rank test

We describe an efficient and numerically stable method for testing whether a rectan-
gular matrix has full rank and determining its rank. By Lanczos’ method, we reduce
the problem to vector-by-matrix multiplication, thus exploiting structure and achieving
stability.

An exact-arithmetic Las Vegas algorithm was presented in [EP96, alg. 3.1] for testing
whether an a X ¢ matrix M, with a > ¢, has full rank. It relied on two results. First, the
preconditioning techniques of [KS91] (see also [Pan96b, fact 7.2]). Second, the extension
of [Wie86, thm. 1] given in [KP91, lem. 2]. The time and space complexities are, respec-
tively, O(cC'+aclogc) and O(G+a), where C and G are the time and space complexities
of premultiplying a 1 X a vector by matrix M. The algorithm yields as a by-product the
determinant of a square matrix and can be modified in a straightforward way to yield
an algorithm that finds the rank of a rectangular matrix in O(cC'logc + aclog?c) ops
and O(G + a) storage; see also [EP97| for a brief account of this algorithm.

This approach would typically be implemented by modular arithmetic, thus intro-
ducing some additional probability of error. However, on modern day computers, fixed-
precision floating point arithmetic can be substantially faster. This algorithm cannot
take advantage of this feature because rounding-off to a fixed number of digits would
cause it to be numerically unstable. The reason is that the vector-matrix products com-
puted by Wiedemann’s algorithm, denoted by M?v or vT M?, for some column vector
v, become close to each other for larger 7. This motivates the following approach, which
improves the numerical method of [EP96, alg. 3.2] and [EP97, thm. 3.4].

Over the complex field C or its subfields, we test by a floating point computation
whether matrix M has full numerical rank, that is, whether M has ¢ singular values
whose moduli exceed a fixed small positive tolerance value e. Therefore we have to deal
with the symmetrization of M, either implicit or explicit. We could have used any black
box algorithm for computing the Singular Value Decomposition (SVD) of M, such as
the customary SVD algorithms found in [GV96]. Based on [Pan96a], we shall instead
describe a much less costly algorithm for computing the numerical rank, which exploits
the structure of M and avoids computing SVD. Numerical nonsingularity is stronger
than usual nonsingularity unless € is replaced by 0, in which case the two definitions
coincide.

ArgoriTHM 3.1. (NUMERICAL RANK COMPUTATION)Input: An a X ¢ matrix M, where
a > ¢, over the complex field or its subfield, and a positive €.
Output: The numerical rank of M with respect to the tolerance e.

Computations:

1Apply Lanczos’ algorithm to compute the orthogonal similarity transformation of
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the Hermitian matrix MH M into a tridiagonal matrix 7" = QMY MQH | where
Q is a ¢ x ¢ matrix such that QQ¥ = I.. On Lanczos’ algorithm see, for instance,
[GV96, ch.9] or [BP94, alg. 2.3.1].

2Let T; be the ¢ x i leading principal submatrix of 7' and compute the values
pi(e?) = det(I; — 2T;), fori=1,...,c.

3Let s € N be the number of sign changes in the sequence (p1(€?),...,pc(€?))
computed by applying Sturm sequences. Output numerical rank ¢ — s.

Correctness of the algorithm follows from the well known result that ¢ — s is the
number of the eigenvalues of MH M exceeding €2 (see, for instance, [GV96, Par80])
which, in turn, equals the number of singular values of M exceeding ¢. The calculation
of numerical rank includes two well-known numerical linear algebra subtasks, namely
matrix tridiagonalization by Lanczos’ method and a Sturm sequence computation. Since
the main operation in Lanczos’ method is vector-matrix multiplication, both subtasks
only involve field operations, which could also be performed by rational arithmetic and
hence exactly, albeit with a higher cost.

Stage 1 performs O(c) vector-by-matrix multiplications involving MH M. Each of
these multiplications reduces to one premultiplication and one postmultiplication of the
a X ¢ matrix M by a 1 X a and a ¢ X 1 vector, respectively. The computational cost
is bounded by O(cC + c2) ops. The last two stages have complexity O(c?) ops since
T is ¢ X ¢ and tridiagonal. All operations are performed over fixed precision floating
point numbers, hence the bit complexity is asymptotically the same as the arithmetic
complexity. This discussion is summarized in the following statement.

THEOREM 3.2.Let C and G be the mazimum time and space complezities, respectively,
of pre- and post-multiplying a complexr a X ¢ matriz M, with a > ¢, by a vector. Then
there exists a randomized algorithm that computes the numerical rank of M, within a
given tolerance € > 0, in O(cC + ¢?) ops and O(G + c) storage space.

In spite of using a random vector to start Lanczos’ algorithm, its numerical per-
formance is practically valid, and the algorithm is one of the most popular methods
in numerical linear algebra. Moreover, it is implemented in publicly available software
packages. This responds to the numerical stability issue raised with respect to the algo-
rithm of [EP96]. The key feature is that Lanczos’ algorithm ensures the orthogonality
of the computed vectors, though at the price of a certain slowdown when it is applied to
structured matrices. Numerical stability also characterizes the Sturm sequence computa-
tion. Interestingly, the use of Sturm theory in order to compute the number of real roots
exceeding a certain value is one of the most important tools in symbolic computation;
see, e.g. [BCL82]|.

It is known that Lanczos’ algorithm uses a random vector and, hence, it is a Las
Vegas algorithm. In other words, it may fail with a small bounded probability, but never
produces an incorrect result. More specifically, if the tridiagonalization of step 1 is not
achieved in O(cC) ops, then the procedure is stopped and reports failure. To remove
randomization, one would have to accept worst-case time and space complexities in
O(c2C) and O(G + c?).

Yet another option is to use Monte Carlo randomization, that is, to accept the pos-
sibility of wrong output with a bounded small probability. Then, a simplified version of
the above algorithm that tests rank deficiency is the following. A matrix is said to have
full rank with respect to a given tolerance if its minimum singular value exceeds this
tolerance.

AvcoriTHM 3.3. (NUMERICAL RANK TEST)Input: An a X ¢ matrix M, where a > c,
over the complex field or its subfield, and a positive €.

Output: A single bit 0 or 1 indicating whether M has full rank or not with respect to
the tolerance € with high probability.
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Computations:

1Apply Lanczos’ algorithm to compute an upper estimate 712 of the square of the
largest singular value o1 of M. Equivalently, U'% is the largest eigenvalue of M M
and '1'12 2 U'%.

2Apply Lanczos’ algorithm again to compute an upper estimate 722 of the largest
eigenvalue 72 —0o2 of the matrix 72I.— M M. Here o2 is the smallest eigenvalue of
MH M or, equivalently, o is the smallest singular value of M. Since 72 2 -2,
then 72 — 72 is a lower estimate of o2,

3If 7§ — 73 < €2, then output bit 1 indicating rank deficiency. Otherwise output

bit 0 indicating full rank.

Theoretically, the algorithm may produce a wrong output if the random vector for
Lanczos’ algorithm is chosen unsuccessfully, causing degeneration in step 1 or 2 or both.
This has a low probability, fully estimated in [KW92, KW94].

THEOREM 3.4.[KW92, thm. 4.2(a)] Let § € [0,1) be the relative error of Lanczos’ al-
gorithm in approzimating the largest eigenvalue of a symmetric positive definite ¢ X ¢
matriz. Let k be the number of multiplications of the matriz by a vector. If k is at least
as large as the number of distinct eigenvalues, then the algorithm will always produce an
approzimation within §. For general k, the probability that the algorithm fails is bounded
by

1.648\/ce—VE(2k—1)

Practically, the degeneration is much less likely since roundoff errors usually remove
the computed vectors from the subspace of degeneracy [GV96, ch. 9]. If we agree to
include ac — 1 comparisons, we may replace step 1 by the computation of a deterministic
upper estimate, namely the square of the largest absolute value of any entry of M. This
is at least as large as the largest entry of MH M and, hence, an upper bound on o‘%.
Then, the randomization in Lanczos’ algorithm, which is potentially a source of wrong
output, will be confined to step 2.

The complexity of algorithm 3.3 is O(Ck) ops and O(G + c) storage space, where k is
the number of iterations required by Lanczos’ algorithm. Since k can be smaller than c,
this algorithm is possibly faster than algorithm 3.1. Theorem 3.4 implies that k& depends
on the probability of error that we wish to guarantee.

4. Exact sparse polynomial arithmetic

We present exact-arithmetic algorithms for polynomials defined by their supports, or
nonzero terms, as is the case in the context of sparse elimination theory. In particular,
we examine support evaluation and polynomial multiplication.

We will work in the ring of Laurent polynomials P = K[z, :nl_l, ey @,y t], where
K is any given field of characteristic zero. The support of f € P is a subset of Z™ denoted
supp(f) and containing all the exponent vectors of monomials with nonzero coefficients
in f.If S =supp(f) C Z™, then

f= anr“, % = :B;.Ii,
a€S =1
where a = (a1,...,an) € Z", co € K. In dealing with supports, we slightly abuse

terminology and speak of a monomial in a support, referring to the monomial defined
by the integer point representing its exponent. In the sequel, we assume, without loss
of generality, that all polynomial supports contain the origin; this can be achieved by a
translation of the supports.

For every polynomial, there is an associated Newton polytope, which is the convex
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hull of the support. Newton polytope generalizes the classical notion of total degree of
an n-variate polynomial; for a completely dense polynomial, the Newton polytope is the
n-dimensional unit simplex. Define the Minkowski sum A+ B of two point sets A and B
in R™ as the point set A+ B = {a+b| a € A,b € B}. If A, B are convex polytopes, then
so is A + B. For further information on sparse elimination see [EC95, Emi96, Stu94] and
their references.

The following algorithms and their complexity analysis are of independent interest
as they demonstrate that the complexity of polynomial multiplication, evaluation and
interpolation on some special sets of points depends on the corresponding support car-
dinalities and Newton polytope volumes; these two are asymptotically equivalent. This
discussion complements the known results on sparse evaluation and interpolation by
settling the case where sparseness is measured by the support.

To simplify the notation, we assume when we discuss evaluation that all monomials
have non-negative exponents.

LemMA 4.1.Consider a set S of s positive integers, such that S C N N[0,d], for some
positive integer d. If we are given a value p, we may evaluate all powers of p with
exponents in S by using O*(s +/d) ops and O(s) storage space.

Proor.Let b = |V/d] and represent every a € S as a = i + bk, where 0 < i < b and
0<k<d/b Let So={i:i+bkcS}and S1 = {k:i+ bk € S}. Then, compute p?,
for all s € So, in O(b) ops, and ¢F = pb*, for all k € Sy, in O(d/b) ops. Then we may
compute p® = pi¢* for all @ € S, in s ops.

ArLcgoriTHM 4.2. (SuPPORT EVALUATION)This algorithm evaluates a given vector set at
a given value per coordinate.

Input: A set of monomials or, equivalently, of their exponent vectors S C Z™, and scalar
values p1,p2,...,Pn.

Output: The values of all monomials with exponents in S at the given values p1,- -, pn.

Computations:

1Compute n sets of positive integers S1,S2,...,57, Si = {a; € N : Ja =

(a1,...,a;,...,an) € S} representing all powers of the i-th variable encountered
among the monomials in S.

2Compute all powers p¢, for all @ € S; and @ = 1,2,...,n, as in the proof of
lemma 4.1.

3Compute the values of all monomials in S by multiplying, for each monomial, at
most n powers computed in the previous step.

LeEmMA 4.3.Consider a set S of s monomials in n variables, such that the exponent of
every monomsal in the ith variable lies in [0,d], fori =1,2,...,n. Given n scalar values
P1,P2,--.,Pn, one may evaluate all the monomials of S at these values in O*(sn+n\/ﬁ)
ops and O(sn) space by the above algorithm.

Proor.Apply algorithm 4.2. Its first stage takes O*(sn) ops. The second stage requires
O*(s ++/d) ops, for each i, by lemma 4.1. The final stage 3 can be performed in O*(sn)
ops.

REMARK 4.4.The algorithm uses space in O(s) in addition to the space required to store
the input exponent vectors. The latter is in the worst case in O(sn), but can be reduced
to O(s) if the exponent vectors have “short” entries so that each is stored in constant
space. This is the typical case in practice, hence the overall space complexity becomes

O(s).

The following multiplication algorithm extends the approach of [CKL89, sect. 3],
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based on the widely used evaluation-interpolation scheme, with node sets from a special
customary class, also used in [BP94, KL88, Zip93]. We will focus on multiplication, but
our algorithm improves sparse evaluation and interpolation as a by-product.

ALGORITHM 4.5. (SPARSE POLYNOMIAL MULTIPLICATION)

Input: n-variate polynomials f, g € P with supports A, B C Z", respectively. Also given
is a set of points S C Z"™ such that A+ B C S, so that S contains the support of fg.
Output: The product fg.

Computations:

1Let A = {a1,...,aj4|}, with each a; € A written as (a1,...,ak,). Let S =
{mi,...,ms} C Z™, where s is the cardinality of S. Pick n distinct primes
P1,---,Pn, supposed to be readily available.

2Compute the values v of the monomials in A at point (p1,...,pn), for k =
1,2,...,]A|. Since the k-th monomial is z%k = H?zl x?’”‘i, it follows that v =
H?Zl p;*i. Observe that the j-th power v} = ?:1(;;{)%1' is the value of 2%k at
point (p]17 ...,p%), whose coordinates are also j-th powers. Therefore, multiplica-

tion of the row vector of the coefficients of f by the |A| x s matrix

1 un vi71
s—1
1 v‘A| U|A‘

expresses the evaluation of f at the points (pjll, e ,pzl) forj=0,1,---,s— 1. We
append rows of powers l,vi,---,vffl, for distinct v;, i = |A| + 1, --,s, to the
matrix above in order to obtain an s X s Vandermonde matrix V (see example 4.6).

3Let ¢y be the s x 1 column vector whose first |A| entries are the coefficients of f,
in the order defined by an arbitrary but fixed monomial sequence (a1, ..., a|A‘);
let the last s — | A| entries be zeros. Then the column vector of the values of f at
v1,...,v]4| is expressed as VTe; = (VTV)(V~1cs). Compute VIV, V~lc; and
their product as discussed in [CKL89, sect. 3a] or [BP94, ch. 2]; for improving the
numerical stability or the constant of the complexity bound in solving transposed
Vandermonde systems, see [Pan01, sect. 3.4,3.6]. Analogously evaluate the poly-
nomial g at the same points. Then multiply the values of f and g pointwise, thus
computing the values of fg at every point (pJ,...,p%), 7 =0,...,s — 1.

4Let l74 and cyq denote the vectors of the product values and of the unknown coef-
ficients fg ordered, respectively, by (p],...,p%) for j =0,...,s—1 and by a fixed
monomial sequence (m1, ..., ms). Compute w; as the value of m; at (p1,...,pn)
and let W be the s X s Vandermonde matrix [wf71]7 analogous to V' in step 2.
Solve the transposed Vandermonde system WTCfg = lyg4, e.g. by applying the
algorithm of [KL88]. The solution cy, defines fg; some coefficients are zero if and
only if the support of the product is a proper subset of S.

ExAMPLE 4.6.For illustration, let fi = co+ci1x+ caxy and g1 = so + s1x, which means
that ¢y = [co,c1,¢2,0,0] and cg = [so,s1,0,0,0]. Moreover, A = ((0,0),(1,0),(1,1)),
B = ((0,0),(1,0)), and S = ((0,0),(1,0),(1,1),(2,0),(2,1)). In evaluating f1, the cor-
responding 5 X 5 Vandermonde matriz V can be

v3 v% vi” v
1 1 1 1
2 4 8 16

1 v v% vi’ v‘l1
V2 v% vg v%
1

3

e
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THEOREM 4.7.Given n-variate polynomials f,g € P with supports A, B C Z™, respec-
twely, and given a point set S C Z™ such that A+ B C S, the product fg can be
computed by algorithm 4.5 by using O*(sn 4+ n\/d) ops and O(sn) space, where d is the
mazimum degree of each input polynomial in any variable and s = |S|.

Proor.In steps 2 and 4, the Vandermonde matrices are defined by at most s values v;
and w;, respectively. These are the values of all monomials from the set A at a point
(p1,- -, p2); according to lemma 4.3, such values can be computed in O* (sn +n+v/d) ops
since the maximum degree of the product polynomial in each variable is bounded by 2d.
For interpolation, note that all monomials in fg belong to S. The storage requirement
is O(sn). Steps 3 and 4 take each O(slog?s) ops and O(s) storage space, due to the
techniques of [CKL89, KL88| (also see [BP94, sect. 2.6]). Both estimates exploit the
structure of the Hankel matrix VTV, U

REMARK 4.8.The entries of VIV equal the power sums of the roots of the polynomial
Hl(a: — v;), @n the notation of the above algorithm. These entries can be computed
via the identities involving the symmetric functions of the corresponding coefficients,
by solving a Toeplitz linear system of 2|A| equations. In fact, this Toeplitz linear sys-
tem is triangular, so its solution is substantially simpler than that stated in [CKL89,
sect. 3al. A slightly simpler way reduces the computation to a polynomial reciprocal and
a polynomial product [Pan97].

5. The structure of the Newton matrix

In this section, we describe the general problem of constructing Newton matrices,
which express the sparse resultant by means of a determinant; we refer the reader
to [EC95, Emi96, Stu94] and their references for a comprehensive presentation. The
quasi-Toeplitz structure of these matrices is revealed and applied to establishing good
upper bounds on the complexity of multiplying a Newton matrix by a row or column
vector. These bounds are significantly lower than quadratic in the matrix dimension,
and even quasi-linear for premultiplication by a row vector.

Sparse elimination uses certain notions from combinatorial geometry. Given con-
vex polytopes Q1,...,Q» C R™ and non-negative A1,...,A, € R, the standard n-
dimensional Euclidean volume of the Minkowski sum A1 Q1 +- -+ Ap Qr is a polynomial
in the A1,...,\n, homogeneous of degree n. The coefficient of the multilinear term
A1 -+ An is defined to be the mized volume of Q1,...,Qr and denoted by MV (Q1,...,
Qn). If the Q; have integer vertices, as in the case of Newton polytopes, then their mixed
volume takes integer values. These facts and a number of equivalent definitions of mixed
volume are demonstrated in [Ewa96]; see also [EC95] for computational issues regarding
mixed volumes.

Consider a well-constrained polynomial system f1,..., fn € P = K[z,271], where K
is the base field of characteristic zero. Bernstein’s theorem states that the mixed volume
of the Newton polytopes associated to the polynomial system of equations f; = --- =
fn = 0 bounds the number of isolated roots of this system in (K" )™ = (K \ {0})™, where
K is the algebraic closure of the base field. The mixed volume is typically much less than
Bézout’s bound for sparse polynomial systems. We recall that Bézout’s bound on the
number of (projective) roots is Hl d;, where d; is the total degree of the polynomial f;,
for1 <i<n.

Now we pass to the context of overconstrained systems fi,..., fny1 € P. The sparse
resultant R of polynomials f1,..., fn41 is an irreducible polynomial in the f; coefficients,
which provides a necessary condition for solvability of the overconstrained system f; =
oo = fap1 = 0 over (K")™, i.e., it vanishes whenever there exists a solution in (K )".
R is a homogeneous polynomial in the coefficients of each f; whose degree, denoted
degy, R, is given by the following mixed volume.

degy, R=MV(f1,.., fi—1, fit1,- -, fnt1). (5.1)
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The algorithmic problem of computing R is typically solved by constructing square
matrices, called resultant matrices, whose determinant is ideally R or, more generally,
a nontrivial multiple of R. Even in the second case, the resultant matrix suffices for
reducing the computation of all roots of fi = --- = f,41 = 0 to a problem in linear
algebra,; see, for instance, [Emi96].

For a nonempty set of monomials S C Z", let

P(S)={f€P :supp(f)Cc S} CP

be the vector space over some monomial basis in S, of dimension equal to the cardinality
s = |S|. Hence a polynomial is represented by a vector, and a list of polynomials by a
concatenation of vectors.

DEeFINITION 5.1.Let n + 1 polynomials f1,..., fny1 € P have supports A1,...,Apt1 C
Z"™. Let By, ...,Bpy1 C Z™ be the supports of polynomials g1,...,gn+1 € P such that
the linear transformation

pe P(B1)x - x P(Buy1) — P (Ui (A + By)), (5.2)

+1
[g1, - gnt1] = 91, gna )M =[S0 gifi]

is surjective for generic coefficients of the f; and, moreover, the dimension of the domain
of p is at least as large as the dimension of the range, in other words, ZZ |Bi| >

| U?Ill (A; 4+ B;)|. Then the matriz M is the transpose of the matriz of u, has entries
in K and has at least as many rows as columns. If, furthermore, |B;| > degy, R for
i = 1,...,n 4+ 1, then this is a sparse resultant, or Newton, matrix for the system

frseoos ot

Observe that the coefficients of f; are generic, or symbolic, and those of g; are imma-
terial. Each entry of M is either zero or equal to a coefficient of some f;. The rows of M
are indexed by the points in B;, so that the row corresponding to b € B; expresses the
polynomial z?f;. The columns of M are indexed by the points in Ui(A; + B;), which
is precisely the support of Zl gi fi. In short, Newton matrices are constructed in the
same way as Sylvester and Macaulay matrices [vdW50] and correspond, therefore, to
the transpose of the linear transformation above.

Keeping with the philosophy of this paper, we store a Newton matrix by storing only
the B; and f;, i = 1,...,n + 1, hence using O(cn) space, where ¢ denotes the number
of matrix columns and bounds the cardinality of any B;. This space bound relies on the
hypothesis that a multi-index representing an integer exponent vector or, equivalently, a
monomial takes O(1) space. This is assumed in the rest of the paper and is justified by
the observation that, typically, the list of n maximum degrees in any variable (denoted
d) can be stored in constant amount of space.

The following well known theorem is the basis for computing nontrivial multiples of
the resultant [CE00, vdW50].

THEOREM 5.2.Consider any mazimal nonzero minor (determinant of a mazimal sub-
matriz) D of a Newton matriz M. Then D is a nontrivial multiple of the sparse resultant
R.

Proor.If there is a common zero £ € (f*)" for fi,..., fn+1, then it is a common zero for
all polynomials in the range of p. Consequently, this range cannot contain any monomial,
because the monomial value at £ cannot be zero. Therefore, p is not surjective, i.e., every
maximal minor of the matrix M vanishes on the coefficient specializations for which there
exists a solution in (K" )™. Consider D and R as polynomials in the coefficients of input
polynomials f; and compare the two sets (or algebraic varieties) in the space of these
coefficients on which D and R vanish. According to the above argument, D vanishes on
the zero set (or variety) of R and, since R is irreducible, Hilbert’s Nullstellensatz [vdW50]
implies that R must divide D. (This holds for every maximal minor.) Furthermore, the
hypothesis D # 0 implies that this is a nontrivial multiple. O
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Our approach to demonstrating the matrix structure proceeds by studying its prop-
erties concerning multiplication by a vector, namely the fact that this operation has
complexity substantially lower than quadratic in the matrix dimension. This essen-
tially amounts to revealing the quasi-Toeplitz structure of M, which reduces both pre-
and post-multiplication by a vector to polynomial multiplication. In [MP97] the quasi-
Toeplitz and quasi-Hankel structure of all types of resultant matrices is formalized,
including Bézout and Dixon matrices. The question remains how to perform this mul-
tiplication. Straightforward application of theorem 4.7 is non-optimal. An improvement
is possible by the approach of [MP97, prop. 24] in the case of premultiplication. Yet, by
modifying algorithm 4.5 we obtain a further improvement, whereas postmultiplication is
immediately reduced to premultiplication due to the following powerful general theorem.

TueoreM 5.3. (TELLEGEN’S THEOREM)[BCS97, thm. 13.20] Let M be an a X ¢ matriz
with no zero rows and L(A) denote the complexity of postmultiplying any rectangular
matriz A by a vector of appropriate dimension. Then L(M) = L(MT) + ¢ — a.

We now consider premultiplication of M by an a-dimensional vector. Polynomial f
will capture the structure of M. If M is viewed as an (n+1) x 1 block matrix, the blocks
would be of Toeplitz type in the univariate (Sylvester matrix) case. If the polynomial
associated to an a x ¢ Toeplitz matrix with (i, j)-th entry t;_; is f = 22;11_@ tpz®, then
premultiplication of the matrix by a row vector [v1,...,vq] is expressed by polynomial
multiplication fg, where g = E;;l v;zt. So f must account for the various blocks and, in
the multivariate case, take into consideration the fact that the structure is not exactly
Toeplitz, but rather quasi-Toeplitz. The first issue is addressed by introducing a new
variable xz,,41 in order to index the k-th block, £k =1,...,n + 1, by xﬁJrl. The second
issue is addressed by indexing the rows by the monomials in B; and the columns by the
monomials in UM (A; + By).

In the case of premultiplication of M by a row vector the polynomial associated to
the quasi-Toeplitz matrix is

n+1
[=Y i fi).
i=1
Any row vector can be decomposed into subvectors of length |B;|, ¢ = 1,...,n + 1,

and the respective entries can be thought of as the coefficients of a polynomial g; with
support B;, just as in expression (5.2). The polynomial associated to the vector contains
monomials of the type x;+1x”, where b € B;, ¢+ = 1,...,n + 1. Hence, the polynomial
of the input vector is

n+1
3 b
9= E xy, q19i(xz), where g¢;= E gipx’,
i=1 beB;

and g, is an appropriate element of the given vector. Then the premultiplication by any
vector is reduced to computing Zl g: fi. The latter has support equal to the set of all
column monomials and represents the constant coefficient of fg regarded as a univariate
polynomial in 1.

n+1 n+1

Zfi(x)gi(x) Z z? Z Z CicGi(q—e)»
i=1

q€U; (A;+Bj;) i=1 e€cA;:q—e€EB;
where f; = E ccA; T€Cie.
i

ExaMPLE 4.6 (coNTINUED) Let fi = cg + ciz1 + camix2, with ordered support A; =
((0,0),(1,0),(1,1)), let B1 = ((0,0),(1,0)) and consider the subsequence ((0,0), (1,0),
(1,1), (2,0),(2,1)) of S. For an arbitrary row vector [sg, s1,...], the first entries can be
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thought of as the coefficients of polynomial g; = sp + s1z1. Then, premultiplication by
this vector starts as follows:

1 21 x122 x% x%azg

c c c
1 o oo 00 f;
c c c x
[ so s1 ] 0 1 2 1J1
1 T 1T ZB% 1‘%1‘2

= [ soco soci+sico soc2  sie1r sica |-l

To the right of the matrix, we mark the polynomials filling in the rows, and above
the matrix and the vectors, we show the monomials indexing the columns or entries,
respectively.

We can now describe a modification of algorithm 4.5 for computing the interesting
part of fg, whose complexity stays within the same asymptotic bounds. Suppose S =
{mi,...,ms} C Z™ is given, such that U;(A; + B;) C S.

1Pick primes pi,...,Pn,Pn+1 and compute the values w, = ?:1 p?ki7 k =
1,...,s. This takes O*(sn + nv/d) ops and O(sn) storage by lemma 4.3, where d
is the maximum degree of f;, g; in any variable.

2Let A} = {(e,—i) : e € A;} C Z"*!l. Evaluate all A\ monomials, for i =
1,...,n + 1, by multiplying the appropriate wj, by p;fH. This takes O*(s) per
polynomial and total space O(sn) to compute all necessary values. The new values
define Vandermonde matrix V; expressing evaluation of f, and whose dimension
is |supp(f)| < sn, since supp(f) = U; A, and A; C S. Construct the coefficient
vector ¢y and compute the evaluation vector [y = VTCf. Analogously proceed for
the polynomial g. Then multiply pointwise the two evaluation vectors in order to
obtain l74. All operations have complexity O*(sn) by the proof of theorem 4.7.

3Let W be the Vandermonde matrix defined by the evaluation of the support mono-
mials of f and g computed above; its dimension is (2n + 1)s. Solve WTCfg =lyq

for the coefficient vector csy of Ez—ll fig: and return the subvector correspond-
ing to the constant monomials with respect to xz,41. This step has complexity
O*(sn).

The algorithm can clear denominators by multiplying all monomials by I‘Z_T_i, then
returning the coefficient of xi’}H in the product polynomial. Now an immediate corollary

of theorem 4.7 is the following.

COROLLARY 5.4.Consider polynomials f;,9; € P,i=1,..., n+ 1. Let A;, B; C Z" be
the respective supports and let S C Z™ be such that U;(A; + B;) C S. Then computing

?:Jrll fig: has time complexity O*(sn 4+ nv/d) and space complexity O(sn), where d is
the mazimum degree of f;,g; in any variable. This implies that premultiplication of M
by a row vector can be performed within these complexity bounds.

The second important property is that postmultiplication of M by a c-dimensional
vector can also be performed substantially faster than the straightforward quadratic
method. This is a corollary of Tellegen’s theorem 5.3.

CoOROLLARY 5.5.Consider Newton matriz M defined by n-variate polynomials f; with
supports A; and by support sets B; CZ™,i=1,...,n+1. Let s and d be as above. Then
computing the product Mv for some column vector v has time and space complezity in
O*(sn + nV/d) by Tellegen’s theorem 5.3.
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S can be taken to be precisely U;(A; + B;), the set of the monomials indexing the
columns of M, hence ¢ = |S|. Typically, the exact computation of support S is expensive,
so we can bound it by the integer lattice points lying in the Minkowski sum of the Newton
polytopes of the f;. In the dense context, s = |S| was bounded simply as a function of
the degrees, thus yielding a quite loose bound. This development culminates with the
following result.

THEOREM 5.6.Let M be an a x ¢ Newton matriz of the transformation of (5.2) where
a > ¢, and let v be a 1 X a vector, both with constant entries. Then computing the vector
vM takes O*(cn + nv/d) ops and O(cn) storage space, where d is the mazimum degree
of f1,- -, fnt1 in any one variable. Computing vector Mv, where v is a ¢ X 1 column
vector with constant entries, has time and space complexity in O*(cn + n\/a)

An improvement of practical interest is possible when multiplication of M by a row or
column vector must be repeated several times, as in computing the rank of M. Namely,
the first steps of the above algorithms, which evaluate the supports and vector [f, may
be performed only once.

An interesting extension for polynomial system solving is when the matrix entries are
univariate polynomials in an indeterminate, other than the variables eliminated by the
resultant [Emi96, vdW50]. This means that in the course of performing the computations
above, a typical vector by which M is multiplied has entries that are polynomials in this
indeterminate. This would increase the time complexity by an additional quasi-linear
factor in the maximum degree of the input polynomials in this indeterminate.

6. Incremental matrix construction

In this section we sketch the incremental algorithm for constructing a Newton ma-
trix, proposed in [EC95], and reduce its time complexity by one order of magnitude;
the original algorithm had cubic complexity in the matrix dimension. The incremental
construction yields the smallest Newton matrices among all existing algorithms and,
moreover, constructs optimal matrices in several cases, including all cases where opti-
mal matrices provably exist. An implementation is available and experiments have shown
that the matrix dimension is typically within a factor of three of the optimal.

The matrix is constructed by adding integer points to the candidate sets B;, until
a Newton matrix is found. For every intermediate candidate matrix with at least as
many rows as columns, the algorithm tests whether it has full rank. To formalize, let
Q; denote the Newton polytope of f; and define Minkowski sums Q_; = Zj# Qj,

i=1,...,n+1,and Q = Zj Q;- Then the set of row monomials is the disjoint union
of sets B; C Q—; N Z™. The set of column monomials always lies in @ and, at any
stage of the algorithm, it is defined to be U;(A; + B;) for the B; at this stage. The
algorithm linearly orders all points in each @Q_;, so that there is a well-defined rule for
incrementing the sets B; for i = 1,...,n + 1. As the B; are incremented, the algorithm
constructs successively larger matrices until a Newton matrix is found. Instead of using
generic coefficients for the f;, in practice we use random integer values.

Initially B; contains the optimal number of points, namely degy, R, given by iden-
tity (5.1), ¢ = 1,...,n + 1. The number of incremental steps is bounded by the final
number of rows, because every step adds at least one point to some B;. In practice, every
step adds more than one point; in this regard, computing the matrix rank provides useful
information. The matrix obtained at each step is characterized by the same structure
as the Newton matrix. The idea is, therefore, to exploit the structure of the rectangular
matrix in order to accelerate each rank test.

LEmMMA 6.1.Let polynomial system f1,..., fn4t1 € P and let M be an a X ¢ matriz
constructed in the course of the incremental algorithm, with numeric entries, such
that a > c¢. Computing the numerical rank of M within some given tolerance requires
O*(c®n + enV/d) ops and O*(cn + n\/d) storage space.
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Proor.The proof follows from theorem 3.2 if we apply theorem 5.6 to bound the cost
of a vector-by-matrix multiplication. (]

To obtain a regular square Newton matrix from a full-rank rectangular incremental
matrix M we rely on an observation of [EP96| which, itself, uses the probabilistic con-
struction in [Pan96b, fact 7.2]; see, alternatively, [EP96, lem. 3.1]. The complexity of
this step is dominated by the matrix construction.

LeEmMA 6.2.[EP96, prop. 5.4] Let an a X ¢ matriz M be of full rank and assume that
L is a unit a X a lower triangular Toeplitz matriz, with its a — 1 subdiagonal entries
randomly chosen from a fized finite set T'. Let W be the ¢ X ¢ trailing principal submatriz
of LM . Then, W is nonsingular and det W is a multiple of the sparse resultant R with
a probability at least 1 — ¢/|T)|.

The following theorem gives an output-sensitive upper bound on the worst-case com-
plexity of the incremental algorithm for computing a Newton matrix. In the rest of this
section, we ignore the cost of computing the monomial set indexing the columns of the
Newton matrix. For the sake of simplicity, we make the hypothesis that a = O*(cn); this
is a reasonable assumption, based on our experience.

THEOREM 6.3.Assume that the given n + 1 polynomials in n variables have numeric
coefficients and let t be the number of rank tests required by the incremental algorithm
of [ECI95] in order to construct M. Assume that the mazimum degree in any variable is
d = O(c?) and that we are given some numeric tolerance ¢. Then, using the numerical
algorithm 3.1 with complexity bounded by theorem 3.2 yields an overall time complexity
in O*(c®nt) and space complexity in O*(cn).

The previous time complexity bound was O(a?c) from [EC95, lem. 7.2] and the space
complexity was O(ac). These bounds follow from the fact that the algorithm tests the
nonsingularity of several matrix candidates, by applying an incremental version of LU-
decomposition, which is performed in place. Table 2 shows the various parameters in
examples studied in [EC95, Emi97| using our implementation in C, publicly available at
http://wuw-sop.inria.fr/galaad/logiciels/emiris/soft_alg.html. This implemen-
tation relies on LAPACK procedures for the numerical operations [ABB195]. The first
three examples are multihomogeneous systems with three groups of two, one and one
variables respectively, where the corresponding degrees are given in the table and the
following two are different expressions of the cyclic 6-root problem; see [EC95] for details.
The last example is the Stewart platform from parallel robot kinematics; see [Emi97].

Table 2. Performance of the incremental algorithm

type n degR c a t
(2,1,1;2,1,1) 240 260 260 5
(2,1,1;2,2,1) 480 592 690 43

original cyclic 290 849 1457 180
simplified cyclic 66 102 121 18

4
4
(2,1,1;2,2,2) 4 960 1120 1200 <49
6
5
Stewart platform 6 214 405 526 68

Clearly, an important issue concerns a formal bound on the number of singularity
tests t.
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LeEMMA 6.4.Consider the incremental algorithm described above and suppose that a valid
Newton matriz is defined by point sets B;, i = 1,...,n+ 1. If any or all of the B; are
incremented (by following the ordering on the respective set Q_; N Z™), then the new
matriz is again o valid Newton matriz.

This lemma suggests the following heuristic rule to minimize ¢: At every incremental
step, for a fixed D, the algorithm adds at least D new rows, by appending as many
points to the corresponding sets B;. Let a; denote the number of rows in the first full-
rank matrix encountered by the algorithm, and let ag < a1 be the number of rows in
the last (hence largest) rejected candidate matrix. The algorithm tries to optimize the
number of rows by performing a binary search in the heuristic range (ao,a1]. Hence,
the total number of tests is roughly a1 /D + log D. We applied the new algorithm for D
roughly equal to deg R to the 1st, 4th and 5th inputs in table 2 and obtained a matrix
with the same number of columns after 7, 15 and 5 tests respectively. Our experiments
showed that a; increases at most at the same rate as deg R; this justifies the following
assumption.

COROLLARY 6.5.In the context of theorem 6.3, assume that the number of rows a in
a Newton matriz constructed by the incremental algorithm is bounded by a constant
multiple of deg R. Then, with the binary search in the heuristic range just described,
the time complexity of the algorithm for finding this matriz becomes O*(c%n).

There are two main reasons for constructing Newton matrices. The first is for solv-
ing systems of nonlinear polynomial equations. We have examined the phase of matrix
construction, which is comparatively costly. Once this is over, certain matrix operations
are applied to simplify the linear algebra problem and, eventually, obtain a multipli-
cation table; this is a matrix for which we have to compute eigenvalues and eigen-
vectors [EC95, Emi97, BMP00]. This is an important question for which we refer the
reader to [PC99, PCZ98] on recent results. The method of [BMPO00] exploits structure or
sparsity in computing selected eigenvalues and eigenvectors of the multiplication table
obtained from the Newton matrix as a Schur complement. On the other hand, [MRP00]
proposes iterative methods based on structured matrices for computing all real roots and
all roots in a given box or disc. Further results exploiting matrix structure are desirable.

The second major application is in computing the exact sparse resultant polynomial,
which divides the determinant of the Newton matrix. In this context, the coefficients are
typically polynomials in a single variable, denoted w. This may be the same situation
as in the wu-resultant approach [vdW50]| or when u has been chosen among the input
variables to be “hidden” in the coefficient field [Emi96]. In both cases, the first question
is to compute det M (u) as a univariate polynomial; the rest of the problem is considered
in the next section.

COROLLARY 6.6.We are given an a X ¢ Newton matriz M with univariate entries of
degree d. Under the hypotheses of theorem 6.3, there exists a Las Vegas algorithm to
compute the (univariate) determinant by using O*(c3nd) ops and O*(cn + cd) storage
space.

Proor.This can be achieved by the well-known evaluation-interpolation technique. The
determinant degree in u is bounded by cd, the number of evaluations is 1 + cd, and one
determinant of the specialized matrix requires O*(c?n) ops. The latter bound follows
from theorem 5.6 and the Las Vegas algorithm of [Wie86, thm. 1] as extended in [KP91,
lem. 2|; see alternatively [EP96, thm. 3.2] or [EP97, thm. 3.2]. The needed space is
O*(cn) in addition to O(cd) needed for storing the determinant values and interpolating
from them to the polynomial coefficients. |

For the wu-resultant construction, d = 1 and the number of columns containing u
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equals the degree of resultant R in the coefficients of the u-polynomial. If the latter is
fn+1, then the time complexity becomes O*(c%n degy, ., R).

7. Sparse resultant computation

This section focuses on computing the sparse resultant from a set of Newton matrices,
when all input coefficients are given specific numeric values. These are either exact or
known to some limited precision. Moreover, it is straightforward to extend our algorithms
to the case where some polynomial coefficients remain indeterminate or are expressed
in terms of parameters, just as at the end of the previous section. Exploiting the matrix
structure enables us to decrease the overall complexity by a factor proportional to the
square root of matrix size.

We shall require an additional property for the Newton matrices used. Associate each
matrix with one of the given polynomials f;, so that the number of rows of M containing
multiples of f; is precisely deg; R, hence the degree of det M in the coefficients of f;
equals the corresponding degree of the resultant. This property can be guaranteed in the
case of the incremental algorithm if we fix set B; to its initial size [EC95], and is also
satisfied in the case of the subdivision-based algorithm of [CEO00]. Thus, either algorithm
can be used in the discussion that follows.

The naive way to compute R as the Greatest Common Divisor (GCD) of n+ 1 deter-
minants is known not to work for arbitrary coefficient specializations [Zip93]. For this,
two probabilistic methods have been proposed by Canny and Emiris; detailed complexity
and error analysis can be found in [CEO00]. Another source of randomization that we do
not explicitly determine is the application of the Las Vegas algorithm of corollary 6.6.

Let M; be the Newton matrix associated to f;, for 1 < i < n + 1. Recall that the f;
have indeterminate coefficients and let g; be the specialization of f; and h; be a random
polynomial with the same support. Denote by D§])7 0 < j < mn+1 the determinant
of matrix M; for the system obtained after specializing fr — g + €hg, for & < j and
fr — hyg, for k > j, where € is an indeterminate that will go to zero.

The division method determines the resultant of the system g; + eh; (within a scalar
factor) by

(n+1) (1)
D, D

Rgi+ ehi) = 5= Ty
Dn+1 Dl

The desired resultant R(g;) can then be obtained by setting ¢ = 0, provided that the

choice of h; is sufficiently generic. This is equivalent to requiring that all ng), as poly-
nomials in ¢, have full degree. If the coefficients of each h; is distributed uniformly with
3 bits, then the probability that this requirement fails is bounded by (n + 2)? deg R/2°
[CE00]. Note that R may be computed by using less than n + 1 matrix determinants, if
at least one of them happens to have the same degree as R in the coefficients of more
than one polynomial.

THEOREM 7.1.Suppose that we have already computed all (and at most n+1) necessary
Newton matrices for polynomial system gi,...,g9n4+1 € P, with matriz size ¢ X c. The
sparse resultant of the specialized system can be computed by the division method (a Las
Vegas algorithm) in O*(c?>n? deg R) ops, using O*(cn) additional storage space, where
deg R denotes the total degree of the sparse resultant in the input coefficients.

Proor.The evaluation-interpolation scheme is used with 1 + deg R different values for
€, since the degree of R(g; + €h;) in € is bounded by deg R. The dominant complexity is
that of evaluating the 2n determinants. Since deg R < ¢, the storage for the interpolation
phase is in O*(cn) by setting d = 1 in corollary 6.6. []

Observe that only the constant term of R(g; + €h;) is needed. The previous time
complexity bound was O*(M(c)deg R), where M(c) is the arithmetic complexity of
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a ¢ X ¢ matrix multiplication. Theoretically, M(c) = O(c%3®) but in practice it is in
0(62'81).

The following method uses only two Newton matrix determinants by distinguishing
an exponent vector a € Ay and imposing a related technical constrain on By (for details,
see [CE00]). The first determinant, denoted D1, is D§"+1) under the above notation.
The second, denoted D, is the determinant of M for specialized system f1 +— z{ +¢h,
fi — gi + €h;, for ¢ > 2. Then, the GCD method computes

Dy

R(g; + €hj) = ————~,
(g + hi) gcd(Dy, DY)

and the desired resultant is again obtained by setting ¢ = 0.

THEOREM 7.2. With the above notation, the sparse resultant of g1,...,gn+1 € P can be
computed by the GCD method in O*(c>n) ops, using O*(cn) total space.

Proor.The dominant step is the computation of D1, D’1 as univariate polynomials in e,
with degree bounded by c. By the evaluation-interpolation scheme, this takes O*(c3n)
ops and O*(cn) storage. Computing the GCD, then evaluating the fraction and, lastly,
interpolating to the least significant coefficient of R(g; +¢€h;), all have dominated comple-
xities.

The previous time complexity bound was O*(M(c)c). Note that the univariate GCD
computation can be reduced to a branch-free computation of a subresultant because
the degree of the GCD, which is precisely the extraneous factor in Dj, is known in
advance. Moreover, this computation can be enhanced by probabilistic interpolation
techniques [Zip93, ch. 15].

Both the division and the GCD method are readily extended to computing the sparse
resultant polynomial, if the coefficients are specialized to functions of one or more pa-
rameters. This covers also the case of the u-resultant.

8. Conclusion

Most complexity bounds rely on the efficiency of FF'T, i.e., its quasi-linear time com-
plexity and linear space complexity. Yet, it is known that the latter algorithm is truly
advantageous only for rather large inputs, due to the relatively high overhead constant
hidden in the O() notation. Our methods can be adapted to other basic algorithms for
polynomial multiplication of intermediate speed, namely the classical algorithm and the
so-called Karatsuba’s method [KO63|, which may be preferable for inputs of moderate
size [Ber01]. Karatsuba’s multiplication algorithm has linear space complexity and time
complexity O(k'83) for k-degree polynomials, where lg denotes the logarithm in base 2.
See table 1 for some ramifications.

Our results contribute in the direction of developing numerical nonlinear algebra. Re-
sultant matrices reduce polynomial system solving in the zero-dimensional case to a lin-
ear algebra problem, including an eigenvalue/eigenvector computation. We have pointed
out recent advances, though further results exploiting matrix structure are desirable.

We may try to combine other ways of exploiting structure and sparsity, in particular
since the large number of zero entries usually constitute the great majority. One exam-
ple is by applying nested dissection [LRT79]. Last but not least, we would like to use
information between successive rank tests since every rejected candidate is a submatrix
of the next.
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