The structure of sparse resultant matrices

Toannis Z. Emiris
INRIA, B.P. 93, Sophia-Antipolis 06902, France.
emiris@sophia.inria.fr
http://www.inria.fr/safir/whoswho/emiris

Victor Y. Pan
Mathematics and Computer Science Department, CUNY, Bronx, NY 10566, USA.
vpan@lcvax.lehman.cuny.edu

Abstract

Resultants characterize the existence of roots of systems
of multivariate nonlinear polynomial equations, while their
matrices reduce the computation of all common zeros to a
problem in linear algebra. Sparse elimination theory has in-
troduced the sparse resultant, which takes into account the
sparse structure of the polynomials. The construction of
sparse resultant, or Newton, matrices is a critical step in the
computation of the resultant and the solution of the system.
We exploit the matrix structure and decrease the time com-
plexity of constructing such matrices to roughly quadratic
in the matrix dimension, whereas the previous methods had
cubic complexity. The space complexity is also decreased
by one order of magnitude. These results imply similar im-
provements in the complexity of computing the resultant
itself and of solving zero-dimensional systems. We apply
some novel techniques for determining the rank of rectangu-
lar matrices by an exact or numerical computation. Finally,
we improve the existing complexity for polynomial multipli-
cation under our model of sparseness, offering bounds linear
in the number of variables and the number of nonzero terms.

1 Introduction

Resultants characterize the solvability of zero-dimensional
systems of multivariate nonlinear polynomial equations, and
their matrix formulae reduce the computation of all common
solutions to a matrix eigenproblem. Resultants have a long
and rich history in the context of classical elimination. More
recently, sparse elimination theory introduced the sparse re-
sultant, which generalizes the classical resultant and whose
degree depends on the monomial structure of the polynomi-
als, thus leading to tighter bounds and faster algorithms for
systems encountered in application areas; section 5 gives a
formal introduction. Sparse resultant matrices, also known
as Newton malrices, generalize Sylvester and Macaulay ma-
trices, and from their determinant the sparse resultant can
be computed. This paper identifies and exploits the struc-
ture of Newton matrices, thus deriving better time and space
complexity bounds for their construction, the computation

of the sparse resultant and the solution of polynomial sys-
tems.

Construction and manipulation of Newton matrices is a
critical operation in some of the most efficient known algo-
rithms for solving zero-dimensional systems of equations [3,
12, 5, 13]. Our practical motivation is the real-time solution
of systems with, say, up to 10 variables; or the computa-
tion of the resultant polynomial, for instance in graphics
and modeling applications where the implicit expression of
a curve or surface is precisely the resultant. Such systems
may give rise to matrices with dimension in the hundreds or
even higher, as illustrated by specific examples in table 2.
By palliating the effects of matrix size, our work deals with
what is probably the Achille’s heel of Newton’s matrices, in
comparison to the Bézout/Dixon matrix, which is typically
smaller.

The main contribution of the present paper is to con-
struct Newton matrices in time complexity quasi-quadratic
in the matrix dimension, which constitutes an improvement
of one order of magnitude. The same improvement for space
complexity yields a quasi-linear bound. Analogous improve-
ments are then obtained for computing the sparse resultant
and, eventually, for solving systems of polynomial equations.
These bounds ultimately rely on the Fast Fourier Transform
(FFT). Yet, other polynomial multiplication methods, such
as Karatsuba’s, may offer simpler though asymptotically
slower alternatives; the latter may be advantageous in cer-
tain circumstances, as discussed in section 8. Table 1 com-
pares the existing and the achieved complexities, in terms
of matrix row and column dimension, respectively denoted
a and c and the number of variables n, as explained in sec-
tion 6. Note that a > ¢ and typically a,c > n.

Table 1: Asymptotic complexity for matrix construction

[method | time | space |
previous a’c ac
Karatsuba | a'®%cn | cn
FFT 2n cn

There are certain auxiliary results of independent inter-
est. The reduction of vector-by-matrix multiplication to po-
lynomial multiplication calls for efficient sparse polynomial
evaluation and interpolation. The proposed algorithms have
linear time and space complexity in terms of n and the cardi-
nality of the supports, i.e., the sets of nonzero terms. This
improves the known algorithms for polynomial evaluation
and interpolation under our model of sparseness.

Furthermore, we sketch fast algorithms for computing
the rank of a rectangular matrix. We refer to an exact-

arithmetic randomized method as well as a numerical ap-
proximative method, both exploiting matrix structure, in
particular, fast matrix-vector multiplication.

It shall become clear that our results make use of a vari-
ety of techniques for polynomial arithmetic and structured
matrix computation. This allows us to improve the existing
straightforward bounds, thus contributing to the develop-
ment of resultant-based methods, a field of active research.
The most relevant work is that on Macaulay matrices [3],
which our results generalize, and the related and alternative
viewpoint adopted in [13].

This paper is organized as follows. The next section ex-
pands on related work. Section 3 indicates two efficient rank
determination algorithms, and section 4 considers efficient
sparse polynomial arithmetic. Certain important properties
of the Newton matrix are investigated in section 5, includ-
ing its premultiplication by a vector. Section 6 improves the
complexity of a known algorithm for constructing such ma-
trices by exploiting their structure. Computing the sparse
resultant itself is investigated in section 7. We conclude with
extensions of our results in section 8.

2 Related work

Resultant-based approaches to studying and solving systems
of polynomial equations have a long history, a more compre-
hensive account of which is in [8]. This article also includes
several important references to other related work that had
to be omitted here because of space restrictions.

Recent interest in matrix-based methods is supported
by certain practical results that have established resultants,
along with Grobner bases and continuation techniques, as
the method of choice in solving zero-dimensional polynomial
systems [17, 3, 12, 5, 13]. A generalization of the classical
resultant was introduced in the context of sparse elimina-
tion theory (outlined in section 5). Two main algorithms,
generalizing Sylvester’s as well as Macaulay’s constructions,
have been proposed for constructing Newton, or sparse re-
sultant, matrices: The subdivision-based algorithm of [2]
(subsequently improved and generalized in [4, 16]) and the
incremental algorithm of [7], which constructs a rectangular
matrix and then obtains a square nonsingular submatrix.

Canny, Kaltofen and Lakshman [3] studied the struc-
ture of Macaulay matrices Our results generalize their ap-
proach. Independently, Mourrain and Pan [13] formalized
the Toeplitz- or Hankel-like structure of general resultant
matrices, including Macaulay, Bézout and Newton matrices.
Their work provides a related and alternative viewpoint to
our approach.

An aucxiliary issue (also important on its own right) is to
devise algorithms for multiplying sparse multivariate poly-
nomials within the computational complexity bounds ex-
pressed via the support cardinality or the Newton polytope.
The existing general bounds are interesting only in the dense
case [1]. Sparse interpolation has received a lot of attention;
see the algorithms in [19, 9], supporting complexity linear
in the product of n, the maximum degree in any single vari-
able and a bound on the number of monomials. Section 4
improves these bounds by exploiting the structure of nonzero
terms, and generalizes [3] from completely dense supports to
arbitrary supports.

3 Fast rank tests

We describe an exact-arithmetic probabilistic method, as
well as a rational approximative method for testing whether

a rectangular matrix has full rank. These results are impor-
tant for improving the known algorithms for solving polyno-
mial systems of equations as well as of independent interest.
Here we offer an outline of the main properties and refer the
reader to [8] for further discussion, including the description
of the algorithms and all proofs.

All time complexity bounds are in terms of arithmetic
complexity; hereafter “ops” stands for “arithmetic operations.”
Space complexity includes the input and output storage, un-
less when we explicitly refer to “additional” storage space.
We let O*(c) stand for O(clog® ¢) for any fixed constant v
independent of c.

Let WT denote the transpose of a matrix or of a vector
W, I denote the k x k identity matrix, O the rectangular
null matrix of an appropriate size, and [A, B] the 1 x 2
block matrix with A and B as its blocks. This paper makes
heavy use of dense structured matrices; for a comprehensive
account of their definitions and properties, the reader may
consult [1]. We recall that a k x k Toeplitz matrix can be
multiplied by a vector in O(klog k) ops [1, sect. 2.5] and in
O(k) storage space, based on the FFT.

Lemma 3.1 [15, fact 7.2] Let M be an a x ¢ malriz of a
rank v with entries in any field. Let L and UT denote two
unit lower triangular Toeplilz matrices of sizes a X a and
¢ X ¢, respectively, defined by the a — 1 and ¢ — 1 entries
in each of the matrices’ first column. Suppose that these
a + ¢ — 2 entries are random, chosen independently of each
other from a fized finite subset T of the base field or of ils
extension, assuming the uniform probability distribution on
T. Then the r X r trailing principal submatriz of the matriz
LMU is nonsingular with a probability at least 1 — 2r/|T|,
which increases at least to 1 — r/|T| if r = min(a,c).

Theorem 3.2 [18, thm. 1], [10, lem. 2] The determinant of
a c X c matric W (defined over any field of constants having
o finite subset T of at least |T| > 50¢* log, ¢ elements) can
be computed in O(c) multiplications of O(c) wectors by W
and, in addition, in O*(c”) ops requiring O(c) additional
storage space, by means of a randomized algorithm, using
¢ random parameters and having a failure probability of at
most 2¢/|T|.

Theorem 3.3 Let C' and G be the time and space comple-
zities, respectively, of multiplying an 1 X a vector by an a X ¢
matriz M, with a > ¢, over any field of constants having at
least 50c” log, c elements. Then there exists a randomized al-
gorithm that tests whether M has full rank in O(cC+aclog c)
ops using O(G + a) storage space, not including the cost of
generating the a + ¢ — 1 required random parameters.

Proof We apply the construction of lemma 3.1 and then
the algorithm implied by theorem 3.2. The full algorithm is
detailed in [8]. |

Over the complex field C or its subfields, we may test
by a floating point computation whether matrix M has full
rank, that is, whether M has c singular values whose moduli
exceed a fixed small positive tolerance value e. This can be
achieved by means of any black box algorithm for computing
the Singular Value Decomposition (SVD) of M. A much less
costly algorithm of [14] exploits the structure of M. The
algorithm avoids computing SVD and is rational, that is,
only involves field operations, which can also be performed
in exact arithmetic.

Theorem 3.4 Let C and GG be the time and space complexi-
ties, respectively, of multiplying an 1 X a vector by a complex
a X ¢ matriz M, with a > c¢. Then there exists a rational
randomized algorithm that tests numerically, in O(aC + a?)
ops and O(G + a) storage, whether M has full rank within
a given tolerance € > 0.

Proof The algorithm applies Lanczos’ algorithm [1, alg.
2.3.1] to reduce M to a tridiagonal form T, then computes
the sequence of the signs of det(I; — €2T;), for i = 1,...,a,
where T; is the i x ¢ leading principal submatrix of T'. This
sign sequence determines the rank within e. The full algo-
rithm is detailed in [14, §]. a

Corollary 3.5 The algorithm of theorem 3.3 yields as by-
product the determinant of a square matriz and can be modi-
fied in a straightforward way to yield an algorithm that finds
the rank of a rectangular matriz in O(cC'log c+aclog® ¢) ops
and O(G + a) storage. The algorithm of theorem 8./ com-
pules the rank of a rectangular matriz as a by-product. For
both algorithms, the input rectangular matriz can be rank
deficient.

4 Support evaluation and sparse polynomial multiplication

We examine polynomial multiplication in the setting of sparse
elimination theory, where polynomials are defined by their
supports. Certain results of this section improve upon the
corresponding results in [8]; the latter article also contains
the proofs and algorithms that are omitted here.

We will work in the ring of Laurent polynomials P =
Klz1,27', ..., &, 2], where K is any given field of charac-
teristic zero. The support of f € P is a subset of Z™ denoted
supp(f) and containing all the exponent vectors of monomi-
als with nonzero coefficients in f. If S = supp(f) C Z",

then
n
f= cax®, " = x]h,
i=1

a€S

where a = (a1,...,an) € Z", cq € K. In dealing with sup-
ports, we slightly abuse terminology and speak of a mono-
mial in a support, referring to the monomial defined by the
integer point representing its exponent. In the sequel, we
assume, without loss of generality, that all polynomial sup-
ports contain the origin; this can be achieved by a transla-
tion of the supports.

For every polynomial, there is an associated Newton poly-
tope, which is the convex hull of the support. Newton poly-
tope generalizes the classical notion of total degree of an n-
variate polynomial; for a completely dense polynomial, the
Newton polytope is the n-dimensional unit simplex. Define
the Minkowski sum A + B of two point sets A and B in R"
as the point set A+ B={a+0b|a € Abe B}. If A, B are
convex polytopes, then so is A+ B. For further information
on sparse elimination see [16, 7, 5] and their references.

The following algorithms and their complexity analysis
are of independent interest as they demonstrate that the
complexity of polynomial multiplication, evaluation and in-
terpolation on some special sets of points depends on the
corresponding support cardinalities and Newton polytope
volumes; these two are asymptotically equivalent. This dis-
cussion complements the known results on sparse evaluation
and interpolation by settling the case where sparseness is
measured by the support.

To simplify the notation, we assume when we discuss
evaluation that all monomials have non-negative exponents.

Lemma 4.1 Consider a set S of s posilive integers, such
that S C N N[0,d], for some positive integer d. If we are
given a value p, we may evaluate all powers of p with expo-
nents in S by using O* (s ++/d) ops and O(s) storage space.

Lemma 4.2 Consider a set S of s monomials in n vari-
ables, such that the exponent of every monomial in the ith
variable lies in [0,d], fori=1,2,...,n. Given n scalar val-
UES P1,P2,- .., Pn, 0ne may evaluate all the monomials of S
at these values in O*(sn+mnv/d) ops and O(sn) space by the
corresponding algorithm of [8].

Storage space can be reduced to O(s) under the hypoth-
esis that the exponent vectors representing monomials have
“short” entries so that they can be stored in constant space.

The following multiplication algorithm extends the ap-
proach of [3, sect. 3], based on the widely used evaluation-
interpolation scheme, with node sets from a special custom-
ary class, also used in [9, 19, 1]. We will focus on multi-
plication, but our algorithm improves sparse evaluation and
interpolation as by-product.

Algorithm 4.3 (Sparse polynomial multiplication)
Input: n-variate polynomials f,¢g € P with supports A, B
C Z", respectively. Also given is a set of points S C Z"
such that A+ B C S, so that S contains the support of fg.
Output: The product fg.

Computations:

1. Let A = {a1,...,a)4/}, with each a, € A written as
(ak1,-..,akn). Let S = {mi,...,ms} C Z", where s
is the set cardinality. Pick n distinct primes p1,- - -, pn,
supposed to be readily available.

LLei

2. Compute the values vy = [['_, pi** of the monomi-
als in A at the point (p1,...,pn), for k=1,2,...]A|.
Note that v} = :Lzl(pg)“’“? is the value of z®* at
(pl,...,ph). Therefore, multiplication of the row vec-
tor of the coefficients of f by the |A| x s matrix

1 v;—l
s—1
L v oo ia

expresses the evaluation of f at the points (p],-- -, p?)
for ;7 = 0,1,---,s — 1. We append rows of powers
1,vi,+++,v; ", for distinct v;, i = |A| +1,---, s, to the
matrix above in order to obtain an s x s Vandermonde
matrix V.

3. Let ¢y be the s x 1 column vector whose first | A| entries
are the coefficients of f, in the order defined by an
arbitrary but fixed monomial sequence (a1,...,a a));
let the last s — | A| entries be zeros. Then the column
vector of the values of f at vi,...,v 4] is expressed
as VTcy = (VIV)(V7es). Compute VIV, Vics
and their product as discussed in [3, sect. 3a] or [1,
ch. 2]. Analogously evaluate the polynomial ¢ at the
same points. Then multiply the values of f and ¢
pointwise, thus computing the values of fg at every
point (pl,...,pL), 5 =0,...,s — 1.

4. Let lfy and cyy denote the vectors of the product val-
ues and of the unknown coefficients fg ordered, re-
spectively, by (p],...,p%) for j =0,...,s — 1 and by

a fixed monomial sequence (mi,...,ms). Compute
w; as the value of m; at (p1,...,pn) and let W be
the s x s Vandermonde matrix [w’ '], analogous to V
in step 2. Solve the transposed Vandermonde system
WTery = lgg, e.g. by applying the algorithm of [9].
The solution ¢y, defines fg; some coefficients are zero
if and only if the support of the product is a proper
subset of S.

Theorem 4.4 Given n-variale polynomials f,g € P with
supports A, B C Z™, respectively, and given a point set S C
Z" such that A+ B C S, the product fg can be computed by
algorithm 4.3 by using O (sn 4+ n\/d) ops and O(sn) space,
where d is the mazimum degree of each input polynomial in
any variable and s = |S|.

Proof In steps 2 and 4, the Vandermonde matrices are
defined by at most s values v; and w;, respectively. These
are the values of all monomials from the set A at a point
(p1,- -, p2); according to lemma 4.2, such values can be com-
puted in O* (sn+n+/d) ops since the maximum degree of the
product polynomial in each variable is bounded by 2d. For
interpolation, note that all monomials in fg belong to S.
The storage requirement is O(sn). Steps 3 and 4 take each
O(slog? s) ops and O(s) storage space, due to the techniques
of [9, 3] (also see [1, sect. 2.6]). Both estimates exploit the
structure of the Hankel matrix VIV, O

Remark 4.5 The entries of VTV equal the power sums of
some polynomaial roots. These entries are computed via the
identities involving the symmetric functions of the corre-
sponding coefficients, by solving a Toeplitz linear system of
equations. In fact, this Toeplitz linear system is triangular,
so its solution is substantially simpler than that stated in [,
sect. 3a.

With the notation of the previous theorem, let f;, g; be
polynomials in P, ¢ = 1,...,k, and A;, B; C Z" be the
respective supports. If S C Z™ is given so that U; (A; + B;) C
S, then computing Zle figi has time complexity O* (s n k+
nkv/d) and space complexity O(sn). This straightforward
corollary can be improved when k is bounded with respect to
n, by the approach of [13, prop. 24]. Moreover, by choosing
a special set of points, the following algorithm and theorem
arrive at a small improvement upon [13, prop. 24].

We modify algorithm 4.3 (and use its notation), in order
to compute part of product F'G, where

n+1 n+1

i 1
F= E x2+1+lfi» G = E xZL ‘gi
=1 i=1

are (n + 1)-variate polynomials and z,41 is a new variable.
If we consider F'G' as a polynomial in z,4+1, the coefficient

of 227, equals E?:ll figi.
Algorithm 4.6 (Sum of polynomial products)
Input: n-variate polynomials f;,g; € Pi=1,...,n+ 1,
with respective supports A;, B; C Z". S C Z" is given,
such that U;(A4; + B;) C S.

n+1
Output:) .~ figi.

Computations:

1. Pick primes pi,...,pn, pn+1 and compute the values
wy, :Hizlpzn’“, k=1,...,s.

2. Let A, = {(a,n—141i):a € A;} C Z""'. Evaluate
all A} monomials, for ¢ = 1,...,n + 1, by multiplying
the appropriate wy by pZHJ”. The new values define
Vandermonde matrix Vr expressing evaluation of F.
Construct the coefficient vector cp and compute the
evaluation vector [= VZcp. Analogously proceed
for polynomial G. Then multiply pointwise the two
evaluation vectors in order to obtain [rg.

3. Let [be the leading s-subvector of [rg, after dividing
the jth entry, j = 0,...,5— 1, by (p2";)?. Let W be
the s x s Vandermonde matrix defined by the w;, and
solve WTe = [for the coefficient vector ¢ of E?Ill fig:.

Theorem 4.7 Consider polynomials fi,g; € P, i =1,...,
n+ 1. Let A;, Bi C Z"™ be the respective supports and let
S C Z" be such that U;(A; + B;) C S. Then computing
n+1
i=1
nVd) and space complezity O(sn), where d is the mazimum
degree of fi,g: in any variable.

figi by algorithm 4.6 has time complezity O*(sn +

Proof Step 1is within the complexity bounds by lemma 4.2.
Step 2 takes O*(s) per polynomial and total space O(sn)
to compute all necessary values. Matrix Vr has dimension
equal to the cardinality of supp(F’), which is at most sn be-
cause supp(F) = U; A and A; C S. Hence, computing [
and, subsequently, {¢ and [rg, all have complexity O™ (sn)
by the proof of theorem 4.4. Step 3 has complexity O*(s). O

Observe that the computation of Ip = V@ cp can be
simplified to computing [I,,0]VZ cr, since only a leading
s-subvector of [r is needed.

This theorem is instrumental in accelerating multiplica-
tion of a vector by sparse resultant matrix M constructed by
our algorithms. S can be taken to be precisely U;(A; + B;).
Typically, the exact computation of support S is expensive,
so we can bound it by the integer lattice points lying in the
Minkowski sum of the Newton polytopes of the f;. In the
dense context, s = |S| was bounded simply as a function of
the degrees, thus yielding a quite loose bound.

5 The Newton matrix and its premultiplication by a vector

In this section, we first recall some major concepts and re-
sults of sparse elimination theory and briefly describe the
general problem of constructing Newton matrices, which
express sparse resultants; we refer the reader to [16, 7, 5]
and their references for a comprehensive presentation. We
specify a simple randomized transformation of a rectangular
Newton matrix into a square one, then show how to premul-
tiply Newton matrices by vectors fast.

Consider a well-constrained polynomial system f1, ..., fn
€ P. Given convex polytopes Aq,..., A, C R", there is a
real-valued function MV (Ax1,..., Ay), called the mized vol-
ume of Aq,..., A,. See [7] for a number of equivalent de-
finitions of mixed volume and an efficient algorithm for its
computation. Bernstein’s theorem states that the mixed vol-
ume of the Newton polytopes associated to the polynomial
system of equations fi = --- = f, = 0 bounds the number
of isolated roots of this system in (K)™ = (K\{0})", where
K is the algebraic closure of the base field. The mixed vol-
ume is typically much less than Bézout’s bound for sparse
polynomial systems. We recall that Bézout’s bound on the
number of (projective) roots is Hl d;, where d; is the total
degree of the polynomial f;, for 1 <17 < n.

Now we pass to the context of overconstrained systems
fi,--, fan+1 € P. The sparse resultant R of polynomials
fi,--+, fn+1 is an irreducible polynomial in the f; coeffi-
cients, which provides a necessary condition for solvability
of the overconstrained system f; = --- = f,41 = 0 over
(K")™, i.e., it vanishes whenever there exists a solution in

(K*)" R is a homogeneous polynomial in the coefficients
of each f; whose degree, denoted deg; R, is given by the
following mixed volume.

degs, R=MV(f1,..., fi-1, fi+1,- -+ fat1)- (1)

The algorithmic problem of computing R is typically
solved by constructing square matrices, called resultant ma-
trices, whose determinant is ideally R or, more generally, a
nontrivial multiple of R. Even in the second case, the re-
sultant matrix suffices for reducing the computation of all
roots of fi =--- = fry+1 =0 to a problem in linear algebra;
see, for instance, [5].

For a nonempty set of monomials S C Z", let

P(S)={f€P :supp(f)CS}CP

be the vector space over some monomial basis in S, of dimen-
sion equal to the cardinality s = |S|. Hence a polynomial
is represented by a vector, and a list of polynomials by a
concatenation of vectors.

Definition 5.1 Let n+1 polynomials fi,..., fa+1 € P have
supports A1,...,Any1 CZ". Let Bi,...,Bnt1 CZ" be the
supports of polynomials g1, ..., gn+1 € P such that the linear
transformation

p: P(B1)x - x P(Bus1) — P (U (Ai + B)), (2)
o gnn]M = Y1 gifi]

is surjective for generic coefficients of the f; and, moreover,
the dimension of the domain of p is at least as large as
the dimension of the range, in other words,). |Bi| > | U;
(A; + B;)|. Then the matriz M of this transformation has
entries in K and has at least as many rows as columns.
This is a sparse resultant, or Newton, matrix for the system

froooos frgr

Observe that the coefficients of g; in this definition are
immaterial. Each entry of M is either zero or equal to a
coefficient of some f;. The rows of M are indexed by the
points in B;, so that the row corresponding to b € B; ex-
presses the polynomial 2 f;. The columns of M are indexed
by the points in U; (A; + B;), which is precisely the support
of Zl gi fi. In short, Newton matrices are constructed in
the same way as Sylvester and Macaulay matrices [17].

However, keeping with the philosophy of this paper, we
store a Newton matrix by storing only the B; and f;, i =
1,...,n + 1, hence using O(cn) space, where c¢ denotes the
number of matrix columns and bounds the cardinality of
any B;. This space bound relies on the hypothesis that
a multi-index representing an integer exponent vector or,
equivalently, a monomial takes O(1) space. This is assumed
in the rest of the paper and is justified by the observation
that, typically, the list of n maximum degrees in any variable
(denoted d) can be stored in constant space. The following
well known theorem is the basis for computing nontrivial
multiples of the resultant [17, 2, §8].

l91,. .. gn+1] — [g1,..

Theorem 5.2 Consider any mazimal nonzero minor (de-
terminant of a mazimal submatriz) D of a Newton matriz
M. Then D is a nontrivial multiple of the sparse resultant
R.

Proposition 5.3 Let an a X ¢ matriz M be a Newton ma-
triz, a > ¢, and assume that L is a unit a X a lower trian-
gular Toeplitz matriz, with its subdiagonal entries randomly
chosen from a fized finite set T', as in lemma 3.1. Then
the matriz W = [O, I.]LM is nonsingular and det W is a
nonzero multiple of the sparse resultant R with a probability
at least 1 —c/|T.

Proof Since M has full rank, it follows, by lemma 3.1,
that det W # 0 with probability at least 1 — ¢/|T|. Let
L = [l”] fOI‘ i,j = 1,...,0, (Where lii =1 and li]‘ =0 if
t < j). Suppose that the ith row of M expresses polynomial
2@ f,0;), where b(i) lies in B,y and t(i) € {1,...,n+1}, for
i1 =1,...,a. Then the kth row of LM for k =a—c+1,...,a
expresses the polynomial

k—1
:cb(k)ft(k) + Z lijb(j)ft(j)y
j=1

where t(j) € {1,...,n 4 1}, b(j) € By). Now the proof of
theorem 5.2 applies to W. a

Another important property of Newton matrix M is that
its premultiplication by a vector reduces to computing the
sum of polynomial products. Refer to expression (2); both
vectors g1, -+, gn1] and [, gifi] are understood with re-
spect to the fixed monomial basis defined by the sequence
of monomials indexing the columns. Moreover, any vec-
tor can be decomposed into subvectors of length |B;|, i =
1,...,n+1, and the respective entries can be thought of as
the coefficients of a polynomial g;. Then the premultiplica-
tion by any vector is reduced to computing El gi fi.

Example 5.4 Let fi = co+cix14caxize, with ordered sup-
port Ay = ((07 0)7 (17 0); (1; 1))7 let By = ((07 0); (1’ 0)) and
consider the subsequence ((0,0),(1,0), (1,1), (2,0),(2,1))
of S. For an arbitrary row vector [so, s1,...], the first en-
tries can be thought of as the coefficients of polynomial g1 =
so + siz1. Then, premultiplication by this vector starts as
follows:

2 2
1 z1 2122 7 122

1z c(;) c1 coz 0 O fi
c c1 ¢ T
[so s1] 0 1 C2 1f1
1 T1 Tr1T2 .CC% $%$2

]+..._

= [SoCp Soc1 + S1Co SpC2 S1C1 S1C2

To the right of the matriz, we mark the polynomials filling
in the rows, and above the matriz and the vectors, we show
the monomials indexing the columns or entries, respectively.

Proposition 5.5 Let M be an a x ¢ Newton matriz of the
transformation of (2) where a > ¢, and let v be a 1xa vector,
both with constant entries. Then computing the vector vM
takes O*(cn + nv/d) ops and O(cn) storage space, where d
is the mazimum degree of fi1,---, fnt1 in any one variable.

Proof Consider v as expressing the coefficients of the
polynomials ¢g; whose supports B; define the rows of M,
it = 1,...,n + 1. Then vM is the row vector express-
ing). figi, whose support is S = U;(A; + B;), where
A; = supp(fi). Moreover, S is precisely the set of the mono-
mials indexing the columns of M, hence ¢ = |S|. By the-

orem 4.7, we can compute Y. figi in O*(cn + nv/d) ops.

Since each product requires O(cn) space, and the sum can
be stored and updated in O(c) memory locations, the overall
storage needed is O(cn). a

An interesting extension for polynomial system solving
is when the matrix entries are univariate polynomials in a
fixed indeterminate [17, 5]. This means that in the course
of performing the computations above, a typical vector by
which M is premultiplied has entries that are polynomials in
this indeterminate. This would increase the time complexity
by an additional quasi-linear factor in the maximum degree
of the input polynomials in this indeterminate.

6 Incremental matrix construction

In this section we sketch the incremental algorithm for con-
structing a Newton matrix proposed in [7] and reduce its
time complexity to quasi-quadratic in the matrix dimension,
whereas the original algorithm had cubic complexity. The
incremental construction yields the smallest Newton matri-
ces among all existing algorithms and, moreover, constructs
optimal matrices in several cases, including all cases where
optimal matrices provably exist. An implementation is avail-
able at the http address of the first author. Experiments
have shown that the matrix dimension is typically within a
factor of three of the optimal.

The matrix is constructed by adding integer points to
the candidate sets B;, until a Newton matrix is found. For
every intermediate candidate matrix with at least as many
rows as columns, the algorithm tests whether it has full rank.
To formalize, let @; denote the Newton polytope of f; and
define Minkowski sums Q_; = Ej# Qj,i=1,...,n+1,
and @ = Zj Q@;. Then the set of row monomials is the

disjoint union of sets B; C Q—-; N Z"™. The set of column
monomials always lies in @ and, at any stage of the algo-
rithm, it is defined to be U;(A; + B;) for the B; at this stage.
The algorithm linearly orders all points in each Q—;, so that
there is a well-defined rule for incrementing the sets B; for
i =1,...,n+ 1. As the B; are incremented, the algorithm
constructs successively larger matrices until a Newton ma-
trix is found.

Initially B; contains the optimal number of points, namely
deg;, R, given by identity (1),¢ =1,...,n+1. The number
of incremental steps is bounded by the final number of rows,
because every step adds at least one point to some B;. In
practice, every step adds more than one point; in this regard,
computing the matrix rank provides useful information and
can be done within the same complexity, by corollary 3.5.
Most values for the number of tests are smaller than ¢/10.

The matrix obtained at each step is characterized by the
same structure as the Newton matrix. The idea is, therefore,
to exploit the structure of the rectangular matrix in order
to accelerate each rank test.

Lemma 6.1 Let polynomial system fi,..., fn41 € P and
let M be an a X ¢ matriz constructed in the course of the
incremental algorithm, with numeric entries, such that a >
c. Testing whether M has full rank by an ezact-arithmetic
randomized computation requires O™ (c*n + envd + ac) ops,
where d is the mazimum degree of the f; in any variable,
and O(cn+a) storage. The same test performed numerically
within some given tolerance value requires O* (acn—f-anﬂﬂ—
a®) ops and has space complezity O(cn + a).

Proof The proof follows from theorems 3.3 and 3.4 if
we apply proposition 5.5 to bound the cost of a vector-by-

matrix multiplication. O

The following theorem gives an oulput-sensitive upper
bound on the worst-case complexity of the incremental al-
gorithm. In the rest of this section, we ignore the cost of
computing the monomial set indexing the columns of the
Newton matrix. For the sake of simplicity, we make the hy-
pothesis that a = O*(cn), which is validated experimentally.

Theorem 6.2 Assume that the given n 4+ 1 polynomials in
n variables have numeric coefficients and let t be the num-
ber of rank tests required by the incremental algorithm of [7]
in order to construct M. Assume that the mazimum de-
gree in any variable is d = O(c?). Then, using the ran-
domized algorithm of theorem 3.3, the time complexity is
O*(c®nt), and using the numerical algorithm of theorem 3.4
with some given tolerance, it is O*(acnt). The space com-
plexity is O*(cn) for both approaches.

The previous time complexity bound was O(a’c) from [7,
lem. 7.2] and the space complexity was O(ac). These bounds
follow from the fact that the algorithm tests the nonsingular-
ity of several matrix candidates, by applying an incremental
version of LU-decomposition, which is performed in place.
Table 2 shows the various parameters in examples studied
in [7, 6]. The first three are multihomogeneous systems with
3 groups of 2, 1 and 1 variables respectively, where the cor-
responding degrees are given in the table, the following two
are different expressions of the cyclic 6-root problem, and
the last example is the Stewart platform from robot kine-
matics.

Table 2: Performance of the incremental algorithm

| type [n]degR] c | a | t]
(2,1,1;2,1,1) 4 240 | 260 | 260 5
(2,1,1;2,2,1 4 480 | 592 | 690 43
(2,1,1;2,2,2) 4 960 | 1120 | 1200 | <49
original cyclic 6 290 | 849 | 1457 180

improved cyclic | 5 66 102 121 18
Stewart platform | 6 214 | 405 526 68

Clearly, an important issue concerns a formal bound on
the number of singularity tests ¢.

Lemma 6.3 Consider the incremental algorithm described
above and suppose that a valid Newton matriz is defined by
point sets B;, it = 1,...,n+ 1. If any or all of the B; are
incremented (by following the ordering on the respective set
Q—i NZ"), then the new malriz is again a valid Newton
matriz.

This lemma suggests the following heuristic rule to min-
imize t: At every incremental step, the algorithm adds at
least deg R new rows, by adding as many points in the cor-
responding sets B;. Let a1 denote the number of rows in the
first full-rank matrix encountered by the algorithm, and let
ao < a1 be the number of rows in the last (hence largest)
rejected candidate matrix. The algorithm tries to optimize
the number of rows by performing a binary search in the
heuristic range (ao,a1]. Hence, the total number of tests
is roughly a1/ deg R + log deg R. We applied the new algo-
rithm to the 1st, 4th and 5th inputs in table 2 and obtained
a matrix with the same number of columns after 7, 15 and
5 tests respectively. Based on experimental evidence we can
bound a; in terms of deg R.

Corollary 6.4 In the context of theorem 6.2, assume that
the number of rows a in a Newton matriz constructed by the

incremental algorithm is bounded by a constant multiple of
deg R. Then, with the binary search in the heuristic range
just described, the time complexity of the algorithm for find-
ing this matriz becomes O*(c*n) or O*(acn), depending on
the rank-test algorithm used.

There are two main reasons for constructing Newton ma-
trices. The first is for solving systems of nonlinear polyno-
mial equations. We have examined the phase of matrix con-
struction, which is comparatively costly. Once this is over,
certain matrix operations are applied to simplify the linear
algebra problem [6]; here, the matrix structure comes very
handy. The final problem is an eigenvalue/eigenvector com-
putation, for which strong results exploiting matrix struc-
ture are desirable.

The second major application is in computing the exact
sparse resultant polynomial, which divides the determinant
of the Newton matrix. In this context, the coefficients are
typically polynomials in a single variable, denoted u. This
may be the same situation as in the u-resultant approach [17]
or when u has been chosen among the input variables to be
“hidden” in the coefficient field [5]. In both cases, the first
question is to compute det M (u) as a univariate polynomial,
the rest of the problem is considered in the next section.

Corollary 6.5 We are given a X ¢ Newton matriz with uni-
variate entries M of degree d. Under the hypotheses of theo-
rem 6.2, we can compute the univariate determinant of ¢ X ¢
matriz W = [0, I.]LM by using O(c®*nd) ops and O(cn +cd)
storage space.

Proof This can be achieved by the well-known evaluation-
interpolation technique. Since the degree of det W in w is
bounded by cd, the number of evaluations is ed. By corol-
lary 3.5, one determinant computation of the specialized ma-
trix requires O*(c®n) ops. The needed space is O(cn) in
addition to O(cd) needed for storing the determinant values
and interpolating from them to the polynomial coefficients.
O

For the u-resultant construction, d = 1 and the number
of columns containing u equals the degree of resultant R in
the coefficients of the u-polynomial. If the latter is fn41,
then the time complexity becomes O* (¢*n degy ., R).

7 Sparse resultant computation

This section focuses on computing the sparse resultant from
a set of Newton matrices, when all input coefficients are
given specific numeric values. Then, it is straightforward to
extend our algorithms to the case where some polynomial
coefficients remain indeterminate or are expressed in terms
of parameters, just as at the end of the previous section.
Exploiting the matrix structure enables us to decrease the
overall complexity by about a linear factor in matrix size.

We shall require an additional property for the Newton
matrices used. Associate each matrix with one of the given
polynomials f;, so that the number of rows of M containing
multiples of f; is precisely deg,, R, hence the degree of det M
in the coefficients of f; equals the corresponding degree of
the resultant. This property can be guaranteed in the case
of the incremental algorithm if we fix set B; to its initial
size [7], and is also satisfied in the case of the subdivision-
based algorithm of [2]. Thus, either algorithm can be used
in the discussion that follows.

The naive way to compute R as the Greatest Common
Divisor (GCD) of n + 1 determinants is known not to work

for arbitrary coefficient specializations [19]. For this, two
probabilistic methods have been proposed in [2, sect. 5].
Let M; be the Newton matrix associated to f;, for 1 <
i <n+ 1. Recall that the f; have indeterminate coefficients
and let g; be the specialization of f; and h; be a random

polynomial with the same support. Denote by Dlm, 0 <
j < n + 1 the determinant of matrix M; for the system
obtained after specializing fi — gr + ¢hg, for & < j and
fx +— hg, for k > j, where € is an indeterminate that will go
to zero.

The division method determines the resultant of the sys-
tem g; + eh; (within a scalar factor) by

D(n+1) D(l)
R(g; +€h;) = n(JS %0).
D,/ D,

The desired resultant R(g;) can then be obtained by setting
e = 0, provided that the choice of h; is sufficiently generic.
This happens with very high probability. Note that R may
be computed by using less than n 4+ 1 matrix determinants,
if at least one of them happens to have the same degree as
R in the coefficients of more than one polynomial.

Theorem 7.1 Suppose that we have already computed all
(and at most n + 1) necessary Newton matrices for polyno-
mial system gi,...,gn+1 € P, with matriz size ¢ X c. The
sparse resultant of the specialized system can be computed by
the division method in O*(c>n? deg R) ops, using O(cn) ad-
ditional storage space, where deg R denotes the total degree
of the sparse resultant in the input coefficients.

Proof The evaluation-interpolation scheme is used with
1+deg R different values for ¢, since the degree of R(g;+¢h;)
in € is bounded by deg R. The dominant complexity is that
of evaluating the 2n determinants. Since deg R < ¢, the
storage for the interpolation phase is in O(cn) by setting
d =1 in corollary 6.5. O

The previous time complexity bound was O* (M (c) deg R)
where M (c) is the arithmetic complexity of ¢ X ¢ matrix mul-
tiplication. Observe that only the constant term of R(g; +
eh;) is needed.

The following method uses only two Newton matrix de-
terminants by distinguishing an exponent vector a € A; and
imposing a related technical constrain on B; (for details,
see [2, sect. 5]). The first determinant, denoted D , is D{"*"
under the above notation. The second, denoted Dj, is the
determinant of M, for specialized system fi1 — z7 + ¢ehq,
fi — gi + €hy, for i > 2. Then, the GCD method computes

Dy
R(gi + eh;) = ——=+
(g + hi) ged(Dy, DY)

and the desired resultant is again obtained by setting ¢ = 0.

Theorem 7.2 With the above notation, the sparse resultant
of g1, ..., 9n+1 € P can be computed by the GCD method in
O*(c®*n) ops, using O(cn) total space.

Proof The dominant step is the computation of D1, D} as
univariate polynomials in €, with degree bounded by c¢. By
the evaluation-interpolation scheme, this takes O*(c®n) ops
and O(cn) storage. Computing the GCD, then evaluating
the fraction and, lastly, interpolating to the least significant
coefficient of R(g;+e¢h;), all have dominated complexities. O

)

The previous time complexity bound was O*(M(c)c).
Note that the univariate GCD computation can be reduced
to a branch-free computation of subresultants because the
degree of the GCD, which is precisely the extraneous factor
in Dy, is known in advance. Moreover, this computation can
be enhanced by probabilistic interpolation techniques [19,
ch. 15].

Both the division and the GCD method are readily ex-
tended to computing the sparse resultant polynomial, if the
coefficients are specialized in terms of one or more indeter-
minates. This covers also the case of the u-resultant.

8 Conclusion

Most complexity bounds rely on the efficiency of FFT, i.e.,
its quasi-linear time complexity and linear space complexity.
Yet, it is known that the latter algorithm is truly advanta-
geous only for rather large inputs, due to its high constant
factor. Our methods can be adapted to other basic algo-
rithms for polynomial multiplication of intermediate speed,
namely the so-called Karatsuba’s method [11], which may be
preferable for inputs of moderate size. Karatsuba’s multipli-
cation algorithm has linear space complexity and time com-
plexity O(k'8%) for k-degree polynomials, where lg denotes
the logarithm in base 2. See table 1 for some ramifications.

Resultant matrices reduce polynomial system solving in
the zero-dimensional case to a linear algebra problem, in-
cluding an eigenvalue/eigenvector computation. Here strong
results exploiting matrix structure are desirable. This is an
important open question, so far settled only for symmet-
ric Toeplitz matrices. We may try to combine other ways
of exploiting structure and, in particular, the large number
of zero entries which usually constitute the great majority.
Last but not least, we would like to use information between
successive rank tests since every rejected candidate is a sub-
matrix of the next.

Acknowledgments

The first author was partially supported by European ESPRIT
project FRISCO (LTR 21.024) and acknowledges enlightening car
commutes with Bernard Mourrain. The second author was sup-
ported by NSF Grants CCR 9020690 and CCR 9625344, and
PSC-CUNY Awards Nos. 666327 and 667340. Work partially
conducted while the second author was on sabbatical at INRIA
Sophia-Antipolis.

References

[1] Bini, D., aAND PaAN, V. Polynomial and Matriz Com-
putations, vol. 1: Fundamental Algorithms. Birkh&user,
Boston, 1994.

[2] CanNy, J., aNnD EMiris, I. An efficient algorithm
for the sparse mixed resultant. In Proc. Intern. Symp.
on Applied Algebra, Algebraic Algor. and Error-Corr.
Codes, Lect. Notes in Comp. Science 263 (Puerto Rico,
1993), G. Cohen, T. Mora, and O. Moreno, Eds.,
Springer, pp. 89-104.

[3] Canny, J., KALTOFEN, E.; AND LAKSHMAN, Y. Solv-
ing systems of non-linear polynomial equations faster.
In Proc. ACM Intern. Symp. on Symbolic and Algebraic
Computation (1989), pp. 121-128.

[4] CanNy, J., AND PEDERSEN, P. An algorithm for
the Newton resultant. Tech. Rep. 1394, Comp. Science
Dept., Cornell University, 1993.

[6] Emiris, I. On the complexity of sparse elimination. J.
Complezity 12 (1996), 134-166.

[6] Emiris, I. A general solver based on sparse resultants:
Numerical issues and kinematic applications. Tech.
Rep. 3110, INRIA Sophia-Antipolis, France, Jan. 1997.

[7] Emiris, I., AND CaNNY, J. Efficient incremental algo-
rithms for the sparse resultant and the mixed volume.
J. Symbolic Computation 20, 2 (Aug. 1995), 117-149.

[8] Emiris, 1., AND PAN, V. Techniques for exploiting
structure in matrix formulae of the sparse resultant.
Calcolo, Spec. Issue on Workshop on Toeplitz Matrices,
Cortona (1997). To appear.

[9] KaLToFEN, E., AND LAKSHMAN, Y. Improved sparse
multivariate polynomial interpolation algorithms. In
Proc. ACM Intern. Symp. on Symbolic and Algebraic
Computation (1988), vol. 358 of Lect. Notes in Comp.
Science, Springer, pp. 467-474.

[10] KaLTOFEN, E.; AND PAN, V. Processor efficient par-
allel solution of linear systems over an abstract field. In
Proc. 3rd Ann. ACM Symp. on Parallel Algorithms and
Architectures (New York, 1991), ACM Press, pp. 180—
191.

[11] KARATSUBA, A., AND OFMAN, Y. Multiplication of
multidigit numbers on automata. Soviet Physics Dokl.
7 (1963), 595-596.

[12] MaNocHA, D. Solving systems of polynomial equa-
tions. IEEE Comp. Graphics and Appl., Special Issue
on Solid Modeling (1994), 46-55.

[13] MoURRAIN, B., aAND PaN, V. Solving special polyno-
mial systems by using structured matrices and algebraic
residues. In Proc. Workshop on Foundations of Compu-
tational Mathematics (1997), F. Cucker and M. Shub,
Eds., Springer, pp. 287-304.

[14] PaN, V. Numerical computation of a polynomial GCD
and extensions. Tech. Rep. 2969, INRIA, Sophia-
Antipolis, France, Aug. 1996.

[15] PaN, V. Parallel computation of polynomial GCD and
some related parallel computations over abstract fields.
Theor. Comp. Science 162, 2 (1996), 173-223.

[16] STURMFELS, B. On the Newton polytope of the resul-
tant. J. of Algebr. Combinatorics 3 (1994), 207-236.

[17] vaN DER WAERDEN, B. Modern Algebra, 3rd ed. F. Un-
gar Publishing Co., New York, 1950.

[18] WIEDEMANN, D. Solving sparse linear equations over
finite fields. TEEE Trans. Inf. Theory 32, 1 (1986), 54—
62.

[19] ZipPEL, R. Effective Polynomial Computation. Kluwer
Academic Publishers, Boston, 1993.

