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Abstract

Resultants characterize the existence of roots of systems
of multivariate nonlinear polynomial equations� while their
matrices reduce the computation of all common zeros to a
problem in linear algebra� Sparse elimination theory has in�
troduced the sparse resultant� which takes into account the
sparse structure of the polynomials� The construction of
sparse resultant� or Newton� matrices is a critical step in the
computation of the resultant and the solution of the system�
We exploit the matrix structure and decrease the time com�
plexity of constructing such matrices to roughly quadratic
in the matrix dimension� whereas the previous methods had
cubic complexity� The space complexity is also decreased
by one order of magnitude� These results imply similar im�
provements in the complexity of computing the resultant
itself and of solving zero�dimensional systems� We apply
some novel techniques for determining the rank of rectangu�
lar matrices by an exact or numerical computation� Finally�
we improve the existing complexity for polynomial multipli�
cation under our model of sparseness� o�ering bounds linear
in the number of variables and the number of nonzero terms�

� Introduction

Resultants characterize the solvability of zero�dimensional
systems of multivariate nonlinear polynomial equations� and
their matrix formulae reduce the computation of all common
solutions to a matrix eigenproblem� Resultants have a long
and rich history in the context of classical elimination� More
recently� sparse elimination theory introduced the sparse re�
sultant� which generalizes the classical resultant and whose
degree depends on the monomial structure of the polynomi�
als� thus leading to tighter bounds and faster algorithms for
systems encountered in application areas� section � gives a
formal introduction� Sparse resultant matrices� also known
as Newton matrices� generalize Sylvester and Macaulay ma�
trices� and from their determinant the sparse resultant can
be computed� This paper identi�es and exploits the struc�
ture of Newton matrices� thus deriving better time and space
complexity bounds for their construction� the computation

of the sparse resultant and the solution of polynomial sys�
tems�

Construction and manipulation of Newton matrices is a
critical operation in some of the most e�cient known algo�
rithms for solving zero�dimensional systems of equations �	�

�� �� 
	�� Our practical motivation is the real�time solution
of systems with� say� up to 

 variables� or the computa�
tion of the resultant polynomial� for instance in graphics
and modeling applications where the implicit expression of
a curve or surface is precisely the resultant� Such systems
may give rise to matrices with dimension in the hundreds or
even higher� as illustrated by speci�c examples in table ��
By palliating the e�ects of matrix size� our work deals with
what is probably the Achille�s heel of Newton�s matrices� in
comparison to the B�zout�Dixon matrix� which is typically
smaller�

The main contribution of the present paper is to con�
struct Newton matrices in time complexity quasi�quadratic
in the matrix dimension� which constitutes an improvement
of one order of magnitude� The same improvement for space
complexity yields a quasi�linear bound� Analogous improve�
ments are then obtained for computing the sparse resultant
and� eventually� for solving systems of polynomial equations�
These bounds ultimately rely on the Fast Fourier Transform
�FFT�� Yet� other polynomial multiplication methods� such
as Karatsuba�s� may o�er simpler though asymptotically
slower alternatives� the latter may be advantageous in cer�
tain circumstances� as discussed in section �� Table 
 com�
pares the existing and the achieved complexities� in terms
of matrix row and column dimension� respectively denoted
a and c and the number of variables n� as explained in sec�
tion �� Note that a � c and typically a� c� n�

Table 
� Asymptotic complexity for matrix construction
method time space

previous a�c ac
Karatsuba alg�cn cn

FFT c�n cn

There are certain auxiliary results of independent inter�
est� The reduction of vector�by�matrix multiplication to po�
lynomial multiplication calls for e�cient sparse polynomial
evaluation and interpolation� The proposed algorithms have
linear time and space complexity in terms of n and the cardi�
nality of the supports� i�e�� the sets of nonzero terms� This
improves the known algorithms for polynomial evaluation
and interpolation under our model of sparseness�

Furthermore� we sketch fast algorithms for computing
the rank of a rectangular matrix� We refer to an exact�






arithmetic randomized method as well as a numerical ap�
proximative method� both exploiting matrix structure� in
particular� fast matrix�vector multiplication�

It shall become clear that our results make use of a vari�
ety of techniques for polynomial arithmetic and structured
matrix computation� This allows us to improve the existing
straightforward bounds� thus contributing to the develop�
ment of resultant�based methods� a �eld of active research�
The most relevant work is that on Macaulay matrices �	��
which our results generalize� and the related and alternative
viewpoint adopted in �
	��

This paper is organized as follows� The next section ex�
pands on related work� Section 	 indicates two e�cient rank
determination algorithms� and section � considers e�cient
sparse polynomial arithmetic� Certain important properties
of the Newton matrix are investigated in section �� includ�
ing its premultiplication by a vector� Section � improves the
complexity of a known algorithm for constructing such ma�
trices by exploiting their structure� Computing the sparse
resultant itself is investigated in section �� We conclude with
extensions of our results in section ��

� Related work

Resultant�based approaches to studying and solving systems
of polynomial equations have a long history� a more compre�
hensive account of which is in ���� This article also includes
several important references to other related work that had
to be omitted here because of space restrictions�

Recent interest in matrix�based methods is supported
by certain practical results that have established resultants�
along with Gr�bner bases and continuation techniques� as
the method of choice in solving zero�dimensional polynomial
systems �
�� 	� 
�� �� 
	�� A generalization of the classical
resultant was introduced in the context of sparse elimina�
tion theory �outlined in section ��� Two main algorithms�
generalizing Sylvester�s as well as Macaulay�s constructions�
have been proposed for constructing Newton� or sparse re�
sultant� matrices� The subdivision�based algorithm of ���
�subsequently improved and generalized in ��� 
��� and the
incremental algorithm of ���� which constructs a rectangular
matrix and then obtains a square nonsingular submatrix�

Canny� Kaltofen and Lakshman �	� studied the struc�
ture of Macaulay matrices Our results generalize their ap�
proach� Independently� Mourrain and Pan �
	� formalized
the Toeplitz� or Hankel�like structure of general resultant
matrices� including Macaulay� B�zout and Newton matrices�
Their work provides a related and alternative viewpoint to
our approach�

An auxiliary issue �also important on its own right� is to
devise algorithms for multiplying sparse multivariate poly�
nomials within the computational complexity bounds ex�
pressed via the support cardinality or the Newton polytope�
The existing general bounds are interesting only in the dense
case �
�� Sparse interpolation has received a lot of attention�
see the algorithms in �
�� ��� supporting complexity linear
in the product of n� the maximum degree in any single vari�
able and a bound on the number of monomials� Section �
improves these bounds by exploiting the structure of nonzero
terms� and generalizes �	� from completely dense supports to
arbitrary supports�

� Fast rank tests

We describe an exact�arithmetic probabilistic method� as
well as a rational approximative method for testing whether

a rectangular matrix has full rank� These results are impor�
tant for improving the known algorithms for solving polyno�
mial systems of equations as well as of independent interest�
Here we o�er an outline of the main properties and refer the
reader to ��� for further discussion� including the description
of the algorithms and all proofs�

All time complexity bounds are in terms of arithmetic
complexity� hereafter �ops� stands for �arithmetic operations��
Space complexity includes the input and output storage� un�
less when we explicitly refer to �additional� storage space�
We let O��c� stand for O�c logv c� for any �xed constant v
independent of c�

Let W T denote the transpose of a matrix or of a vector
W � Ik denote the k � k identity matrix� O the rectangular
null matrix of an appropriate size� and �A� B� the � � �
block matrix with A and B as its blocks� This paper makes
heavy use of dense structured matrices� for a comprehensive
account of their de�nitions and properties� the reader may
consult �
�� We recall that a k � k Toeplitz matrix can be
multiplied by a vector in O�k log k� ops �
� sect� ���� and in
O�k� storage space� based on the FFT�

Lemma ��� �
�� fact ���� Let M be an a � c matrix of a
rank r with entries in any �eld� Let L and UT denote two
unit lower triangular Toeplitz matrices of sizes a � a and
c � c� respectively� de�ned by the a � � and c � � entries
in each of the matrices� �rst column� Suppose that these
a� c� � entries are random� chosen independently of each
other from a �xed �nite subset T of the base �eld or of its
extension� assuming the uniform probability distribution on
T � Then the r� r trailing principal submatrix of the matrix
LMU is nonsingular with a probability at least � � �r�jT j�
which increases at least to � � r�jT j if r � min�a� c��

Theorem ��� �
�� thm� 
�� �

� lem� �� The determinant of
a c� c matrix W �de�ned over any �eld of constants having
a �nite subset T of at least jT j � �	c� log� c elements� can
be computed in O�c� multiplications of O�c� vectors by W
and� in addition� in O��c�� ops requiring O�c� additional
storage space� by means of a randomized algorithm� using
c random parameters and having a failure probability of at
most �c�jT j�
Theorem ��� Let C and G be the time and space comple�
xities� respectively� of multiplying an ��a vector by an a� c
matrix M � with a � c� over any �eld of constants having at
least �	c� log� c elements� Then there exists a randomized al�
gorithm that tests whether M has full rank in O�cC�ac log c�
ops using O�G � a� storage space� not including the cost of
generating the a� c� � required random parameters�

Proof We apply the construction of lemma 	�
 and then
the algorithm implied by theorem 	��� The full algorithm is
detailed in ���� �

Over the complex �eld C or its sub�elds� we may test
by a �oating point computation whether matrix M has full
rank� that is� whetherM has c singular values whose moduli
exceed a �xed small positive tolerance value �� This can be
achieved by means of any black box algorithm for computing
the Singular Value Decomposition �SVD� ofM � A much less
costly algorithm of �
�� exploits the structure of M � The
algorithm avoids computing SVD and is rational� that is�
only involves �eld operations� which can also be performed
in exact arithmetic�

�



Theorem ��� Let C and G be the time and space complexi�
ties� respectively� of multiplying an ��a vector by a complex
a � c matrix M � with a � c� Then there exists a rational
randomized algorithm that tests numerically� in O�aC � a��
ops and O�G � a� storage� whether M has full rank within
a given tolerance � � 	�

Proof The algorithm applies Lanczos� algorithm �
� alg�
��	�
� to reduce M to a tridiagonal form T � then computes
the sequence of the signs of det�Ii � ��Ti�� for i � �� � � � � a�
where Ti is the i� i leading principal submatrix of T � This
sign sequence determines the rank within �� The full algo�
rithm is detailed in �
�� ��� �

Corollary ��� The algorithm of theorem 	�	 yields as by�
product the determinant of a square matrix and can be modi�
�ed in a straightforward way to yield an algorithm that �nds
the rank of a rectangular matrix in O�cC log c�ac log� c� ops
and O�G � a� storage� The algorithm of theorem 	�
 com�
putes the rank of a rectangular matrix as a by�product� For
both algorithms� the input rectangular matrix can be rank
de�cient�

� Support evaluation and sparse polynomial multiplication

We examine polynomial multiplication in the setting of sparse
elimination theory� where polynomials are de�ned by their
supports� Certain results of this section improve upon the
corresponding results in ���� the latter article also contains
the proofs and algorithms that are omitted here�

We will work in the ring of Laurent polynomials P �
K�x�� x

��
� � � � � � xn� x

��
n �� whereK is any given �eld of charac�

teristic zero� The support of f � P is a subset of Zn denoted
supp�f� and containing all the exponent vectors of monomi�
als with nonzero coe�cients in f � If S � supp�f� � Z

n�
then

f �
X
a�S

cax
a� xa �

nY
i��

xaii �

where a � �a�� � � � � an� � Zn� ca � K� In dealing with sup�
ports� we slightly abuse terminology and speak of a mono�
mial in a support� referring to the monomial de�ned by the
integer point representing its exponent� In the sequel� we
assume� without loss of generality� that all polynomial sup�
ports contain the origin� this can be achieved by a transla�
tion of the supports�

For every polynomial� there is an associated Newton poly�
tope� which is the convex hull of the support� Newton poly�
tope generalizes the classical notion of total degree of an n�
variate polynomial� for a completely dense polynomial� the
Newton polytope is the n�dimensional unit simplex� De�ne
the Minkowski sum A�B of two point sets A and B in Rn

as the point set A�B � fa� b j a � A� b � Bg� If A�B are
convex polytopes� then so is A�B� For further information
on sparse elimination see �
�� �� �� and their references�

The following algorithms and their complexity analysis
are of independent interest as they demonstrate that the
complexity of polynomial multiplication� evaluation and in�
terpolation on some special sets of points depends on the
corresponding support cardinalities and Newton polytope
volumes� these two are asymptotically equivalent� This dis�
cussion complements the known results on sparse evaluation
and interpolation by settling the case where sparseness is
measured by the support�

To simplify the notation� we assume when we discuss
evaluation that all monomials have non�negative exponents�

Lemma ��� Consider a set S of s positive integers� such
that S � N � �	� d�� for some positive integer d� If we are
given a value p� we may evaluate all powers of p with expo�
nents in S by using O��s�

p
d� ops and O�s� storage space�

Lemma ��� Consider a set S of s monomials in n vari�
ables� such that the exponent of every monomial in the ith
variable lies in �	� d�� for i � �� �� � � � � n� Given n scalar val�
ues p�� p�� � � � � pn� one may evaluate all the monomials of S
at these values in O��sn�n

p
d� ops and O�sn� space by the

corresponding algorithm of ��
�

Storage space can be reduced to O�s� under the hypoth�
esis that the exponent vectors representing monomials have
�short� entries so that they can be stored in constant space�

The following multiplication algorithm extends the ap�
proach of �	� sect� 	�� based on the widely used evaluation�
interpolation scheme� with node sets from a special custom�
ary class� also used in ��� 
�� 
�� We will focus on multi�
plication� but our algorithm improves sparse evaluation and
interpolation as by�product�

Algorithm ��� �Sparse polynomial multiplication�
Input� n�variate polynomials f� g � P with supports A�B
� Z

n� respectively� Also given is a set of points S � Z
n

such that A�B � S� so that S contains the support of fg�
Output� The product fg�

Computations�


� Let A � fa�� � � � � ajAjg� with each ak � A written as
�ak�� � � � � akn�� Let S � fm�� � � � �msg � Zn� where s
is the set cardinality� Pick n distinct primes p�� � � � � pn�
supposed to be readily available�

�� Compute the values vk �
Qn

i��
p
aki
i of the monomi�

als in A at the point �p�� � � � � pn�� for k � �� �� � � � � jAj�
Note that vjk �

Qn

i��
�pji �

aki is the value of xak at

�pj�� � � � � p
j
n�� Therefore� multiplication of the row vec�

tor of the coe�cients of f by the jAj � s matrix

�
��

� v� � � � vs��
�

���
���

���
� vjAj � � � vs��

jAj

�
��

expresses the evaluation of f at the points �pj�� � � � � pjn�
for j � 	� �� � � � � s � �� We append rows of powers
�� vi� � � � � vs��

i � for distinct vi� i � jAj��� � � � � s� to the
matrix above in order to obtain an s�s Vandermonde
matrix V �

	� Let cf be the s�� column vector whose �rst jAj entries
are the coe�cients of f � in the order de�ned by an
arbitrary but �xed monomial sequence �a�� � � � � ajAj��
let the last s� jAj entries be zeros� Then the column
vector of the values of f at v�� � � � � vjAj is expressed

as V T cf � �V TV ��V ��cf �� Compute V TV � V ��cf
and their product as discussed in �	� sect� 	a� or �
�
ch� ��� Analogously evaluate the polynomial g at the
same points� Then multiply the values of f and g
pointwise� thus computing the values of fg at every
point �pj�� � � � � p

j
n�� j � 	� � � � � s� ��

�� Let lfg and cfg denote the vectors of the product val�
ues and of the unknown coe�cients fg ordered� re�
spectively� by �pj�� � � � � p

j
n� for j � 	� � � � � s � � and by

	



a �xed monomial sequence �m�� � � � �ms�� Compute
wi as the value of mi at �p�� � � � � pn� and let W be

the s� s Vandermonde matrix �wj��
i �� analogous to V

in step �� Solve the transposed Vandermonde system
W T cfg � lfg� e�g� by applying the algorithm of ����
The solution cfg de�nes fg� some coe�cients are zero
if and only if the support of the product is a proper
subset of S�

Theorem ��� Given n�variate polynomials f� g � P with
supports A�B � Zn� respectively� and given a point set S �
Z
n such that A�B � S� the product fg can be computed by

algorithm 
�	 by using O��sn� n
p
d� ops and O�sn� space�

where d is the maximum degree of each input polynomial in
any variable and s � jSj�

Proof In steps � and �� the Vandermonde matrices are
de�ned by at most s values vi and wi� respectively� These
are the values of all monomials from the set A at a point
�p�� � � � � p��� according to lemma ���� such values can be com�

puted in O��sn�n
p
d� ops since the maximum degree of the

product polynomial in each variable is bounded by �d� For
interpolation� note that all monomials in fg belong to S�
The storage requirement is O�sn�� Steps 	 and � take each
O�s log� s� ops and O�s� storage space� due to the techniques
of ��� 	� �also see �
� sect� ������ Both estimates exploit the
structure of the Hankel matrix V TV � �

Remark ��� The entries of V TV equal the power sums of
some polynomial roots� These entries are computed via the
identities involving the symmetric functions of the corre�
sponding coe�cients� by solving a Toeplitz linear system of
equations� In fact� this Toeplitz linear system is triangular�
so its solution is substantially simpler than that stated in �	�
sect� 	a
�

With the notation of the previous theorem� let fi� gi be
polynomials in P � i � �� � � � � k� and Ai� Bi � Z

n be the
respective supports� If S � Zn is given so that �i�Ai�Bi� 	
S� then computing

Pk

i��
figi has time complexityO��sn k�

nk
p
d� and space complexity O�sn�� This straightforward

corollary can be improved when k is bounded with respect to
n� by the approach of �
	� prop� ���� Moreover� by choosing
a special set of points� the following algorithm and theorem
arrive at a small improvement upon �
	� prop� ����

We modify algorithm ��	 �and use its notation�� in order
to compute part of product FG� where

F �

n��X
i��

xn���i
n�� fi� G �

n��X
i��

xn���i
n�� gi

are �n� ���variate polynomials and xn�� is a new variable�
If we consider FG as a polynomial in xn��� the coe�cient

of x�nn�� equals
Pn��

i��
figi�

Algorithm ��	 �Sum of polynomial products�
Input� n�variate polynomials fi� gi � P i � �� � � � � n � ��
with respective supports Ai� Bi � Z

n� S � Z
n is given�

such that �i�Ai �Bi� 	 S�

Output�
Pn��

i��
figi�

Computations�


� Pick primes p�� � � � � pn� pn�� and compute the values
wk �

Qn

i��
pmki

i � k � �� � � � � s�

�� Let A�
i � f�a� n � � � i� 
 a � Aig � Zn��� Evaluate

all A�
i monomials� for i � �� � � � � n� �� by multiplying

the appropriate wk by pn���i
n�� � The new values de�ne

Vandermonde matrix VF expressing evaluation of F �
Construct the coe�cient vector cF and compute the
evaluation vector lF � V T

F cF � Analogously proceed
for polynomial G� Then multiply pointwise the two
evaluation vectors in order to obtain lFG�

	� Let l be the leading s�subvector of lFG� after dividing
the jth entry� j � 	� � � � � s � �� by �p�nn���

j � Let W be
the s� s Vandermonde matrix de�ned by the wk and

solveW T c � l for the coe�cient vector c of
Pn��

i��
figi�

Theorem ��
 Consider polynomials fi� gi � P � i � �� � � � �
n � �� Let Ai� Bi � Z

n be the respective supports and let
S � Z

n be such that �i�Ai � Bi� 	 S� Then computingPn��

i��
figi by algorithm 
�� has time complexity O��sn �

n
p
d� and space complexity O�sn�� where d is the maximum

degree of fi� gi in any variable�

Proof Step 
 is within the complexity bounds by lemma ����
Step � takes O��s� per polynomial and total space O�sn�
to compute all necessary values� Matrix VF has dimension
equal to the cardinality of supp�F �� which is at most sn be�
cause supp�F � � �iA�

i and Ai � S� Hence� computing lF
and� subsequently� lG and lFG� all have complexity O��sn�
by the proof of theorem ���� Step 	 has complexity O��s�� �

Observe that the computation of lF � V T
F cF can be

simpli�ed to computing �Is� 	�V
T
F cF � since only a leading

s�subvector of lF is needed�
This theorem is instrumental in accelerating multiplica�

tion of a vector by sparse resultant matrixM constructed by
our algorithms� S can be taken to be precisely �i�Ai �Bi��
Typically� the exact computation of support S is expensive�
so we can bound it by the integer lattice points lying in the
Minkowski sum of the Newton polytopes of the fi� In the
dense context� s � jSj was bounded simply as a function of
the degrees� thus yielding a quite loose bound�

� The Newton matrix and its premultiplication by a vector

In this section� we �rst recall some major concepts and re�
sults of sparse elimination theory and brie�y describe the
general problem of constructing Newton matrices� which
express sparse resultants� we refer the reader to �
�� �� ��
and their references for a comprehensive presentation� We
specify a simple randomized transformation of a rectangular
Newton matrix into a square one� then show how to premul�
tiply Newton matrices by vectors fast�

Consider a well�constrained polynomial system f�� � � � � fn
� P � Given convex polytopes A�� � � � � An � Rn� there is a
real�valued function MV �A�� � � � � An�� called the mixed vol�
ume of A�� � � � � An� See ��� for a number of equivalent de�
�nitions of mixed volume and an e�cient algorithm for its
computation� Bernstein�s theorem states that the mixed vol�
ume of the Newton polytopes associated to the polynomial
system of equations f� � � � � � fn � 	 bounds the number
of isolated roots of this system in �K

�
�n � �Knf	g�n� where

K is the algebraic closure of the base �eld� The mixed vol�
ume is typically much less than B�zout�s bound for sparse
polynomial systems� We recall that B�zout�s bound on the
number of �projective� roots is

Q
i
di� where di is the total

degree of the polynomial fi� for � 
 i 
 n�

�



Now we pass to the context of overconstrained systems
f�� � � � � fn�� � P � The sparse resultant R of polynomials
f�� � � � � fn�� is an irreducible polynomial in the fi coe��
cients� which provides a necessary condition for solvability
of the overconstrained system f� � � � � � fn�� � 	 over

�K
�
�n� i�e�� it vanishes whenever there exists a solution in

�K
�
�n� R is a homogeneous polynomial in the coe�cients

of each fi whose degree� denoted degfi R� is given by the
following mixed volume�

degfi R � MV �f�� � � � � fi��� fi��� � � � � fn���� �
�

The algorithmic problem of computing R is typically
solved by constructing square matrices� called resultant ma�
trices� whose determinant is ideally R or� more generally� a
nontrivial multiple of R� Even in the second case� the re�
sultant matrix su�ces for reducing the computation of all
roots of f� � � � � � fn�� � 	 to a problem in linear algebra�
see� for instance� ����

For a nonempty set of monomials S � Zn� let
P �S� � ff � P 
 supp�f� � Sg � P

be the vector space over some monomial basis in S� of dimen�
sion equal to the cardinality s � jSj� Hence a polynomial
is represented by a vector� and a list of polynomials by a
concatenation of vectors�

De�nition ��� Let n�� polynomials f�� � � � � fn�� � P have
supports A�� � � � � An�� � Zn� Let B�� � � � � Bn�� � Zn be the
supports of polynomials g�� � � � � gn�� � P such that the linear
transformation

� 
 P �B��� � � � � P �Bn���� P
�Sn��

i��
�Ai �Bi�

�
� ���

�g�� � � � � gn��� �� �g�� � � � � gn���M �
�Pn��

i��
gifi

	

is surjective for generic coe�cients of the fi and� moreover�
the dimension of the domain of � is at least as large as
the dimension of the range� in other words�

P
i
jBij � j �i

�Ai � Bi�j� Then the matrix M of this transformation has
entries in K and has at least as many rows as columns�
This is a sparse resultant� or Newton� matrix for the system
f�� � � � � fn���

Observe that the coe�cients of gi in this de�nition are
immaterial� Each entry of M is either zero or equal to a
coe�cient of some fi� The rows of M are indexed by the
points in Bi� so that the row corresponding to b � Bi ex�
presses the polynomial xbfi� The columns of M are indexed
by the points in �i�Ai �Bi�� which is precisely the support
of
P

i
gifi� In short� Newton matrices are constructed in

the same way as Sylvester and Macaulay matrices �
���
However� keeping with the philosophy of this paper� we

store a Newton matrix by storing only the Bi and fi� i �
�� � � � � n � �� hence using O�cn� space� where c denotes the
number of matrix columns and bounds the cardinality of
any Bi� This space bound relies on the hypothesis that
a multi�index representing an integer exponent vector or�
equivalently� a monomial takes O��� space� This is assumed
in the rest of the paper and is justi�ed by the observation
that� typically� the list of nmaximum degrees in any variable
�denoted d� can be stored in constant space� The following
well known theorem is the basis for computing nontrivial
multiples of the resultant �
�� �� ���

Theorem ��� Consider any maximal nonzero minor �de�
terminant of a maximal submatrix� D of a Newton matrix
M � Then D is a nontrivial multiple of the sparse resultant
R�

Proposition ��� Let an a� c matrix M be a Newton ma�
trix� a � c� and assume that L is a unit a� a lower trian�
gular Toeplitz matrix� with its subdiagonal entries randomly
chosen from a �xed �nite set T � as in lemma 	��� Then
the matrix W � �O� Ic�LM is nonsingular and detW is a
nonzero multiple of the sparse resultant R with a probability
at least �� c�jT j�
Proof Since M has full rank� it follows� by lemma 	�
�
that detW 
� 	 with probability at least � � c�jT j� Let
L � �lij � for i� j � �� � � � � a �where lii � � and lij � 	 if
i � j�� Suppose that the ith row of M expresses polynomial

xb�i�ft�i�� where b�i� lies in Bt�i� and t�i� � f�� � � � � n��g� for
i � �� � � � � a� Then the kth row of LM for k � a�c��� � � � � a
expresses the polynomial

xb�k�ft�k� �

k��X
j��

lkjx
b�j�ft�j��

where t�j� � f�� � � � � n � �g� b�j� � Bt�j�� Now the proof of
theorem ��� applies to W � �

Another important property of Newton matrixM is that
its premultiplication by a vector reduces to computing the
sum of polynomial products� Refer to expression ���� both
vectors �g�� � � � � gn��� and �

P
i
gifi� are understood with re�

spect to the �xed monomial basis de�ned by the sequence
of monomials indexing the columns� Moreover� any vec�
tor can be decomposed into subvectors of length jBij� i �
�� � � � � n��� and the respective entries can be thought of as
the coe�cients of a polynomial gi� Then the premultiplica�
tion by any vector is reduced to computing

P
i
gifi�

Example ��� Let f� � c��c�x��c�x�x�� with ordered sup�
port A� � ��	� 	�� ��� 	�� ��� ���� let B� � ��	� 	�� ��� 	�� and
consider the subsequence ��	� 	�� ��� 	�� ��� ��� ��� 	�� ��� ���
of S� For an arbitrary row vector �s�� s�� � � ��� the �rst en�
tries can be thought of as the coe�cients of polynomial g� �
s� � s�x�� Then� premultiplication by this vector starts as
follows�

� x�
� s� s� � � � �

� x� x�x� x�� x��x��
�

c� c� c� 	 	
	 c� 	 c� c�

���

�
�

f�
x�f�
���

�

� x� x�x� x�� x��x�
� � s�c� s�c� � s�c� s�c� s�c� s�c� � � � � � �

To the right of the matrix� we mark the polynomials �lling
in the rows� and above the matrix and the vectors� we show
the monomials indexing the columns or entries� respectively�

Proposition ��� Let M be an a� c Newton matrix of the
transformation of ��� where a � c� and let v be a ��a vector�
both with constant entries� Then computing the vector vM
takes O��cn � n

p
d� ops and O�cn� storage space� where d

is the maximum degree of f�� � � � � fn�� in any one variable�

Proof Consider v as expressing the coe�cients of the
polynomials gi whose supports Bi de�ne the rows of M �
i � �� � � � � n � �� Then vM is the row vector express�
ing

P
i
figi� whose support is S � �i�Ai � Bi�� where

Ai � supp�fi�� Moreover� S is precisely the set of the mono�
mials indexing the columns of M � hence c � jSj� By the�

orem ���� we can compute
P

i
figi in O��cn � n

p
d� ops�

�



Since each product requires O�cn� space� and the sum can
be stored and updated in O�c� memory locations� the overall
storage needed is O�cn�� �

An interesting extension for polynomial system solving
is when the matrix entries are univariate polynomials in a
�xed indeterminate �
�� ��� This means that in the course
of performing the computations above� a typical vector by
whichM is premultiplied has entries that are polynomials in
this indeterminate� This would increase the time complexity
by an additional quasi�linear factor in the maximum degree
of the input polynomials in this indeterminate�

� Incremental matrix construction

In this section we sketch the incremental algorithm for con�
structing a Newton matrix proposed in ��� and reduce its
time complexity to quasi�quadratic in the matrix dimension�
whereas the original algorithm had cubic complexity� The
incremental construction yields the smallest Newton matri�
ces among all existing algorithms and� moreover� constructs
optimal matrices in several cases� including all cases where
optimal matrices provably exist� An implementation is avail�
able at the http address of the �rst author� Experiments
have shown that the matrix dimension is typically within a
factor of three of the optimal�

The matrix is constructed by adding integer points to
the candidate sets Bi� until a Newton matrix is found� For
every intermediate candidate matrix with at least as many
rows as columns� the algorithm tests whether it has full rank�
To formalize� let Qi denote the Newton polytope of fi and
de�ne Minkowski sums Q�i �

P
j ��i

Qj � i � �� � � � � n � ��

and Q �
P

j
Qj � Then the set of row monomials is the

disjoint union of sets Bi � Q�i � Zn� The set of column
monomials always lies in Q and� at any stage of the algo�
rithm� it is de�ned to be �i�Ai�Bi� for the Bi at this stage�
The algorithm linearly orders all points in each Q�i� so that
there is a well�de�ned rule for incrementing the sets Bi for
i � �� � � � � n � �� As the Bi are incremented� the algorithm
constructs successively larger matrices until a Newton ma�
trix is found�

Initially Bi contains the optimal number of points� namely
degfi R� given by identity �
�� i � �� � � � � n��� The number
of incremental steps is bounded by the �nal number of rows�
because every step adds at least one point to some Bi� In
practice� every step adds more than one point� in this regard�
computing the matrix rank provides useful information and
can be done within the same complexity� by corollary 	���
Most values for the number of tests are smaller than c��	�

The matrix obtained at each step is characterized by the
same structure as the Newton matrix� The idea is� therefore�
to exploit the structure of the rectangular matrix in order
to accelerate each rank test�

Lemma 	�� Let polynomial system f�� � � � � fn�� � P and
let M be an a � c matrix constructed in the course of the
incremental algorithm� with numeric entries� such that a �
c� Testing whether M has full rank by an exact�arithmetic
randomized computation requires O��c�n� cn

p
d� ac� ops�

where d is the maximum degree of the fi in any variable�
and O�cn�a� storage� The same test performed numerically

within some given tolerance value requires O��acn�an
p
d�

a�� ops and has space complexity O�cn � a��

Proof The proof follows from theorems 	�	 and 	�� if
we apply proposition ��� to bound the cost of a vector�by�

matrix multiplication� �

The following theorem gives an output�sensitive upper
bound on the worst�case complexity of the incremental al�
gorithm� In the rest of this section� we ignore the cost of
computing the monomial set indexing the columns of the
Newton matrix� For the sake of simplicity� we make the hy�
pothesis that a � O��cn�� which is validated experimentally�

Theorem 	�� Assume that the given n � � polynomials in
n variables have numeric coe�cients and let t be the num�
ber of rank tests required by the incremental algorithm of ��

in order to construct M � Assume that the maximum de�
gree in any variable is d � O�c��� Then� using the ran�
domized algorithm of theorem 	�	� the time complexity is
O��c�nt�� and using the numerical algorithm of theorem 	�

with some given tolerance� it is O��acnt�� The space com�
plexity is O��cn� for both approaches�

The previous time complexity bound was O�a�c� from ���
lem� ���� and the space complexity was O�ac�� These bounds
follow from the fact that the algorithm tests the nonsingular�
ity of several matrix candidates� by applying an incremental
version of LU�decomposition� which is performed in place�
Table � shows the various parameters in examples studied
in ��� ��� The �rst three are multihomogeneous systems with
	 groups of �� 
 and 
 variables respectively� where the cor�
responding degrees are given in the table� the following two
are di�erent expressions of the cyclic ��root problem� and
the last example is the Stewart platform from robot kine�
matics�

Table �� Performance of the incremental algorithm
type n degR c a t

��� �� �� �� �� �� � ��
 ��
 ��
 �
��� �� �� �� �� �� � ��
 ��� ��
 �	
��� �� �� �� �� �� � ��
 

�
 
�

 
 
�
original cyclic � ��
 ��� 
��� ��	
improved cyclic � �� 

� 
�
 ��
Stewart platform � �
� �
� ��� ��

Clearly� an important issue concerns a formal bound on
the number of singularity tests t�

Lemma 	�� Consider the incremental algorithm described
above and suppose that a valid Newton matrix is de�ned by
point sets Bi� i � �� � � � � n � �� If any or all of the Bi are
incremented �by following the ordering on the respective set
Q�i � Zn�� then the new matrix is again a valid Newton
matrix�

This lemma suggests the following heuristic rule to min�
imize t� At every incremental step� the algorithm adds at
least degR new rows� by adding as many points in the cor�
responding sets Bi� Let a� denote the number of rows in the
�rst full�rank matrix encountered by the algorithm� and let
a� � a� be the number of rows in the last �hence largest�
rejected candidate matrix� The algorithm tries to optimize
the number of rows by performing a binary search in the
heuristic range �a�� a��� Hence� the total number of tests
is roughly a�� degR � log degR� We applied the new algo�
rithm to the 
st� �th and �th inputs in table � and obtained
a matrix with the same number of columns after �� 
� and
� tests respectively� Based on experimental evidence we can
bound a� in terms of degR�

Corollary 	�� In the context of theorem ���� assume that
the number of rows a in a Newton matrix constructed by the

�



incremental algorithm is bounded by a constant multiple of
degR� Then� with the binary search in the heuristic range
just described� the time complexity of the algorithm for �nd�
ing this matrix becomes O��c�n� or O��acn�� depending on
the rank�test algorithm used�

There are two main reasons for constructing Newton ma�
trices� The �rst is for solving systems of nonlinear polyno�
mial equations� We have examined the phase of matrix con�
struction� which is comparatively costly� Once this is over�
certain matrix operations are applied to simplify the linear
algebra problem ���� here� the matrix structure comes very
handy� The �nal problem is an eigenvalue�eigenvector com�
putation� for which strong results exploiting matrix struc�
ture are desirable�

The second major application is in computing the exact
sparse resultant polynomial� which divides the determinant
of the Newton matrix� In this context� the coe�cients are
typically polynomials in a single variable� denoted u� This
may be the same situation as in the u�resultant approach �
��
or when u has been chosen among the input variables to be
�hidden� in the coe�cient �eld ���� In both cases� the �rst
question is to compute detM�u� as a univariate polynomial�
the rest of the problem is considered in the next section�

Corollary 	�� We are given a� c Newton matrix with uni�
variate entries M of degree d� Under the hypotheses of theo�
rem ���� we can compute the univariate determinant of c�c
matrix W � �	� Ic�LM by using O�c�nd� ops and O�cn� cd�
storage space�

Proof This can be achieved by the well�known evaluation�
interpolation technique� Since the degree of detW in u is
bounded by cd� the number of evaluations is cd� By corol�
lary 	��� one determinant computation of the specialized ma�
trix requires O��c�n� ops� The needed space is O�cn� in
addition to O�cd� needed for storing the determinant values
and interpolating from them to the polynomial coe�cients�
�

For the u�resultant construction� d � � and the number
of columns containing u equals the degree of resultant R in
the coe�cients of the u�polynomial� If the latter is fn���
then the time complexity becomes O��c�n degfn�� R��

� Sparse resultant computation

This section focuses on computing the sparse resultant from
a set of Newton matrices� when all input coe�cients are
given speci�c numeric values� Then� it is straightforward to
extend our algorithms to the case where some polynomial
coe�cients remain indeterminate or are expressed in terms
of parameters� just as at the end of the previous section�
Exploiting the matrix structure enables us to decrease the
overall complexity by about a linear factor in matrix size�

We shall require an additional property for the Newton
matrices used� Associate each matrix with one of the given
polynomials fi� so that the number of rows of M containing
multiples of fi is precisely degfi R� hence the degree of detM
in the coe�cients of fi equals the corresponding degree of
the resultant� This property can be guaranteed in the case
of the incremental algorithm if we �x set Bi to its initial
size ���� and is also satis�ed in the case of the subdivision�
based algorithm of ���� Thus� either algorithm can be used
in the discussion that follows�

The naive way to compute R as the Greatest Common
Divisor �GCD� of n� � determinants is known not to work

for arbitrary coe�cient specializations �
��� For this� two
probabilistic methods have been proposed in ��� sect� ���

Let Mi be the Newton matrix associated to fi� for � 

i 
 n��� Recall that the fi have indeterminate coe�cients
and let gi be the specialization of fi and hi be a random

polynomial with the same support� Denote by D
�j�
i � 	 


j 
 n � � the determinant of matrix Mi for the system
obtained after specializing fk �� gk � �hk� for k 
 j and
fk �� hk� for k � j� where � is an indeterminate that will go
to zero�

The division method determines the resultant of the sys�
tem gi � �hi �within a scalar factor� by

R�gi � �hi� �
D

�n���
n��

D
�n�
n��

� � � D
���
�

D
���
�

�

The desired resultant R�gi� can then be obtained by setting
� � 	� provided that the choice of hi is su�ciently generic�
This happens with very high probability� Note that R may
be computed by using less than n� � matrix determinants�
if at least one of them happens to have the same degree as
R in the coe�cients of more than one polynomial�

Theorem 
�� Suppose that we have already computed all
�and at most n� �� necessary Newton matrices for polyno�
mial system g�� � � � � gn�� � P � with matrix size c � c� The
sparse resultant of the specialized system can be computed by
the division method in O��c�n� degR� ops� using O�cn� ad�
ditional storage space� where degR denotes the total degree
of the sparse resultant in the input coe�cients�

Proof The evaluation�interpolation scheme is used with
��degR di�erent values for �� since the degree of R�gi��hi�
in � is bounded by degR� The dominant complexity is that
of evaluating the �n determinants� Since degR 
 c� the
storage for the interpolation phase is in O�cn� by setting
d � � in corollary ���� �

The previous time complexity bound was O��M�c� degR��
whereM�c� is the arithmetic complexity of c�c matrix mul�
tiplication� Observe that only the constant term of R�gi �
�hi� is needed�

The following method uses only two Newton matrix de�
terminants by distinguishing an exponent vector a � A� and
imposing a related technical constrain on B� �for details�

see ��� sect� ���� The �rst determinant� denotedD�� isD
�n���
�

under the above notation� The second� denoted D�
�� is the

determinant of M� for specialized system f� �� xa� � �h��
fi �� gi � �hi� for i � �� Then� the GCD method computes

R�gi � �hi� �
D�

gcd�D�� D�
��
�

and the desired resultant is again obtained by setting � � 	�

Theorem 
�� With the above notation� the sparse resultant
of g�� � � � � gn�� � P can be computed by the GCD method in
O��c�n� ops� using O�cn� total space�

Proof The dominant step is the computation of D�� D
�
� as

univariate polynomials in �� with degree bounded by c� By
the evaluation�interpolation scheme� this takes O��c�n� ops
and O�cn� storage� Computing the GCD� then evaluating
the fraction and� lastly� interpolating to the least signi�cant
coe�cient of R�gi��hi�� all have dominated complexities� �

�



The previous time complexity bound was O��M�c�c��
Note that the univariate GCD computation can be reduced
to a branch�free computation of subresultants because the
degree of the GCD� which is precisely the extraneous factor
in D�� is known in advance� Moreover� this computation can
be enhanced by probabilistic interpolation techniques �
��
ch� 
���

Both the division and the GCD method are readily ex�
tended to computing the sparse resultant polynomial� if the
coe�cients are specialized in terms of one or more indeter�
minates� This covers also the case of the u�resultant�

� Conclusion

Most complexity bounds rely on the e�ciency of FFT� i�e��
its quasi�linear time complexity and linear space complexity�
Yet� it is known that the latter algorithm is truly advanta�
geous only for rather large inputs� due to its high constant
factor� Our methods can be adapted to other basic algo�
rithms for polynomial multiplication of intermediate speed�
namely the so�called Karatsuba�s method �

�� which may be
preferable for inputs of moderate size� Karatsuba�s multipli�
cation algorithm has linear space complexity and time com�
plexity O�klg�� for k�degree polynomials� where lg denotes
the logarithm in base �� See table 
 for some rami�cations�

Resultant matrices reduce polynomial system solving in
the zero�dimensional case to a linear algebra problem� in�
cluding an eigenvalue�eigenvector computation� Here strong
results exploiting matrix structure are desirable� This is an
important open question� so far settled only for symmet�
ric Toeplitz matrices� We may try to combine other ways
of exploiting structure and� in particular� the large number
of zero entries which usually constitute the great majority�
Last but not least� we would like to use information between
successive rank tests since every rejected candidate is a sub�
matrix of the next�
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