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The aim of this work is to decrease the bit precision required in computations without
a�ecting the precision of the answer� whether this is computed exactly or within some
tolerance� By precision we understand the number of bits in the binary representation of
the values involved in the computation� hence a smaller precision requirement leads to a
smaller complexity� We achieve this by combining the customary numerical techniques
of rounding the least signi�cant bits with the algebraic technique of reduction modulo an
integer� which we extend to the reduction modulo a positive number� In particular� we
show that if the sum of several numbers has small magnitude� relative to the magnitude of
the summands� then the precision used in the computation of this sum can be decreased
without a�ecting the precision of the answer� Furthermore� if the magnitude of the inner
product of two vectors is small and if one of them is �lled with �short� binary numbers�
then again we may decrease the precision of the computation� The method is applied to
the iterative improvement algorithm for a linear system of equations whose coe�cients
are represented by �short� binary numbers� as well as to the solution of PDEs by means of
multigrid methods� Some results of numerical experiments are presented to demonstrate
the power of the method�

�� Introduction

This article combines an algebraic and a numeric approach in order to decrease the
required precision of some important computations in linear algebra� thus improving the
time and space complexity of the computations without a�ecting the output precision�
This work may be regarded as an e�ort to exploit the interaction between computer
algebra and numerical computation� which is nowadays an area of strong interest�
We rely on the observation that some major computations in linear algebra involve

inner products whose magnitude is substantially less than the magnitudes of some coor�
dinates of the two input vectors� Such examples include the iterative improvement of an
approximate solution to a linear system of equations and the solution of discretized par�
tial di�erential equations �PDEs� by means of multigrid methods �compare Pan and Reif
������� Pan and Reif ����	��� Then� in many cases� we may ignore the most signi
cant
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digits in the representation of these coordinates and thus decrease the precision of the
computations without a�ecting the output errors� Such an idea must be counter�intuitive
for a numerical analyst� who views the loss of the most signi
cant digits of the operands
as a major disaster of numerical computing� because of the implied contamination of
the output� In particular� many numerical analysts believe that the usual scheme for
iterative improvement of approximate solution to the linear system of equations cannot
produce correct output without investment of substantial additional computer resources�
unless the residual vector is computed with double precision� According to the classical
numerical analysis of matrix computations� the convergence of the iterative improvement
algorithm is ensured if the coe�cient matrix is well�conditioned and if the residual vector
is computed with double precision in each iteration step �Golub and Van Loan� ������
A more recent study �Higham� ���� p� �	�� supplies an estimate for the deterioration
of the convergence when the single precision is used throughout the entire computation�
The deterioration factor� for an n� n matrix A with condition number �� is �n�� which
is substantial unless A is very well�conditioned� Higham considers this limitation on pro�
ceeding with single precision as a major obstacle for the practical use of the algorithm�
Our techniques� however� enable us to compute the correct solution by performing the
computations of this algorithm with a precision that is substantially smaller than the
single machine precision�

On the other hand� the power of our approach should be less surprising to the designers
of algebraic algorithms� who are familiar with using reduction modulo an integer as a
common means of decreasing the precision of computations �Aho� Hopcroft and Ullman�
����� Gregory� ����� Davenport� Siret and Tournier� ������ Unlike the previous works�
however� we were able to utilize modular �residue� arithmetic within some customary
schemes of numerical computing�

The main idea is to combine the numerical technique of rounding o�� which trun�
cates the least signi
cant digits� with reduction modulo a noninteger positive m� To
achieve this� we have introduced new techniques which we call backward modular reduc�
tion �b�m�r�� and backward binary segmentation �b�b�s��� The b�b�s� combines the algebraic
techniques of b�m�r� with the customary numerical techniques of truncation of the least
signi
cant bits� Both b�m�r� and b�b�s� require to estimate the range in which we may
truncate the operands depending on the estimated magnitudes of the output values and
of their allowed approximation errors� The analysis goes from the output values back to
the operands� thus motivating the adjectives �backward��

Besides applications to linear algebra� our modular reduction techniques can be useful
in some other numerical computations� for instance� in calculating certain special func�
tions to a limited precision� as suggested by an anonymous referee� In general� our method
applies to computations where bounds exist on the size of the answers� Alternatively� it
may be useful when we seek an answer to some limited precision� for example when this
answer is to be combined with data of limited precision� such as those obtained from
experiments� We return to the issue of applicability of our method in section ��

To take advantage of these techniques we need a computer �such as the MasPar parallel
computer� that performs lower precision computations faster than higher precision ones�
Due to the recent progress in the data compression area� one may expect that more
computers of this kind will be available in the future� We also recall the recent speci
c
progress in data compression for basic matrix operations �Pan� ����� Pan� ����� Pan�
���	� Bini and Pan� ������ which implies a possible acceleration of computations by a
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factor of order P�b� where P is the the number of bits in the machine�s single precision
and b is the actual number of bits required�
We organize our presentation as follows� In the next two sections� we apply the alge�

braic techniques of backward modular reduction to summation and the computation of
the inner product of two vectors� In section �� we complement these techniques with the
numerical techniques of truncation and apply the resulting b�b�s� process to the com�
putation of the inner product� We combine b�b�s� with a modi
cation of the iterative
improvement algorithm in section �� where we also apply brie�y b�b�s� to the classi�
cal iterative algorithm� Section  presents two more sample applications� namely to the
Gauss�Seidel iteration and to the solution of PDEs by means of multigrid algorithms�
Section � contains the results of our numerical experiments� We conclude with future
work in section ��
The third author has performed numerical tests whose results have been reported in

section �� The other sections were written by the 
rst two authors� who revised �Pan�
����a� and its modular unpublished version of �����

�� Backward modular reduction for summation

This section introduces our modular method for limiting the precision needed in sum�
ming real inputs� This discussion extends the classical context of modular �or residue�
arithmetic from the rational setting �Aho� Hopcroft and Ullman� ����� Bini and Pan�
����� to the real numbers�

Definition ���� For a positive m and any real r� de�ne the unique real number r mod m
such that � � r mod m � m� r � r mod m� jm� for some integer j�

It is easy to show that the setR�m of real numbers reduced modulom has the structure
of an additive group� and actually of a ring� Indeed� � � r�i� � m if r�i� � R�m� i � �� ��
and in R�m the sum of r��� and r��� equals �r��� � r���� mod m�

Lemma ���� For any pair of a positive m and a real r � ��m���m���� r � r mod m� if
r mod m � m��� otherwise r � �r mod m��m�

Remark ���� This lemma also allows us to choose between two equivalent represen�
tations of R�m� namely by the set ���m� and by the set ��m���m���� The latter is
preferable� for instance� in testing the sign of algebraic expressions� as in �Br�nnimann�
Emiris� Pan and Pion� ����	�

For the sake of simplicity we assume the binary representation of real numbers� as in
most modern computers� and apply modular reduction for m � �� and integer �� In
particular� we concentrate on binary rationals of 
nite length� Thus all results are stated
in the context of binary rationals� and all logarithms� denoted log���� are binary� The
only exceptions are examples ��� 	��� ��� and section �� where a decimal representation
is used in order to illustrate that the decimal case� and more generally� the b�ary case for
any integer b � �� can be treated similarly�
Now suppose that we are given a bound on the output magnitude� when the sum

r �
Pk

i�� r
�i� of k integers r���� � � � � r�k� is to be computed� Hence� the output precision
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can be bounded� Let

jrj � �h and �jrj � m � �� for integers h� �� �����

With a binary number representation� � � h��� but in general this does not hold� Even
if jr�i�j � m for some i� � � i � k� we still obtain r by computing modulo m� In other
words� a precision of h� � bits is su�cient� It is straightforward to extend this method
to the case of binary rational summands�

Lemma ���� Assume that we wish to compute the sum r of k binary rationals r���� � � � �
r�k�� where

jrj � �h and r�i� � �g�i�z�i�� i � �� � � � � k�

for integers h� g�i� and z�i� and g�i� maximum� Then we can obtain r exactly by a com�
putation modulo m � �h��� with a precision of h� �� g bits� where g � minifg�i�g� If
the numbers are represented in some base b� then m is an integer power of b such that
�jrj � � bh � m � b��

The two examples that follow illustrate this technique� for which we will use the name
backward modular reduction �b�m�r��� since it extends the reduction modulo m backward�
from the sum r to the summands r�i��

Example ���� Let k � ��

r��� � ������������������ � r��� � ������������������ � r��� � ��������������������

Then computing with the full precision gives r � ���������
���� On the other hand� if

we know in advance that �jrj � ���� we may set m � ��� and compute in R�m� Since
h � ��� and g � ���� the precision� given by lemma ���� is h��� g � �������� � 	
bits�

r���mod m � ����������
�� � r���mod m � ���������

�� � r���mod m � ����������
��

and the computation is

r mod m � ��r���mod m� � �r���mod m� � �r���mod m�� mod m �

� ���������
��mod m � ���������

�� �

Lemma ��� implies that r � �m� r mod m � ���������
��� �

Example ���� This example uses the decimal representation� Let

k � �� r��� � ���	�
�	�� r��� � ���������� r��� � ���	�����
�

Then computing with the full precision of � decimals gives us r � ����	�����	� However�
knowing in advance that jrj � �������	� we may set m � ���	 and h � �� Moreover
g � ��� Hence we can perform the computation modulom with a precision of ����� �
� decimals�

r���mod m � ���	�����	� r���mod m � ��������	� r���mod m � ����	����	

and the computation is

r mod m � ��r���mod m� � �r���mod m� � �r���mod m��mod m �

� ���������	�mod m � ��������	�
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Apply lemma ��� and obtain r � �m� �r mod m� � ����	�����	�

�� Backward modular reduction for the inner product

This section extends the backward modular reduction from sums to the inner product
of two real vectors� which is a fundamental operation in linear algebra�
We denote the inner product of two vectors by

r �

kX
i��

r�i�� r�i� � u�i�v�i��

where the two vectors are

�u � �u�i��� �v � �v�i��� i � �� � � � � k�

To compute r� we may 
rst multiply u�i� and v�i� pairwise� for all i� and then sum
the products� Knowing in advance a bound on jrj as in the hypothesis of lemma ���� we
may apply b�m�r� at the summation stage� Let us extend b�m�r� also to the multiplication
stage� Let

u�i� � �c�i�z�i� � v�i� � �d�i�w�i� � �	���

where c�i�� d�i�� z�i�� and w�i� are given integers� and c�i�� d�i� are the maximum possible�
for i � �� � � � � k�

Definition ���� For any real x and positive m�

x trunc m �

��
�

x mod m if x � �

����x� mod m� otherwise�

Thus� x trunc �g denotes the value of x with its leftmost bits truncated up to and
including the bit corresponding to �g�

Lemma ���� With the above notation� if � � c�i� � d�i� for some i� then

r�i� mod �� � u�i�v�i� mod �� � ��u�i� trunc ���d�i���v�i�trunc ���c�i��� mod ���

If � � c�i� � d�i� then r�i� mod �� � ��

Proof� The case � � c�i� � d�i� is obvious� Let sgn��� � f��� �� �g represent the sign
function� Then

�u�i� trunc ���d�i���v�i� trunc ���c�i�� �

� sgn�u�i��sgn�v�i���ju�i�j mod ���d�i���jv�i�j mod ���c�i���

So the general case reduces to the case u�i�� v�i� � �� Then u�i� trunc ���d�i� � z�i��c�i��
lu�

��d�i� and v�i� trunc ���c�i� � w�i��d�i�� lv�
��c�i�� for some integers lu� lv� Therefore�

�u�i� trunc ���d�i���v�i� trunc ���c�i�� � z�i�w�i��c�i��d�i� mod ���

and the lemma is established� �

Due to lemma 	��� we may reduce u�i� or �u�i� modulo ���d�i� and v�i� or �v�i� modulo
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���c�i� when we compute r�i� mod ��� In other words� we again extend the modular
reduction backwards� this time from the product r�i� to the multiplicands u�i� and v�i�� If
ju�i�j � ���d�i� and�or jv�i�j � ���c�i�� then such a backward modular reduction decreases
the binary lengths of u�i� and�or v�i�� Applying lemma 	�� with h � � � � we arrive at
the main result of this section�

Lemma ���� Given k�dimensional vectors �u and �v with binary rational entries as in
expression �
��	� assume that their inner product r satis�es jrj � �h for some integer
h� Then using a precision of h� g � � bits� where g � minifc�i�� d�i�g� coupled with the
reduction modulo �h�� su�ces to compute exactly each summand r�i�� i � �� � � � � k� as
well as r�

Example ���� This example demonstrates the above techniques in the decimal case� Let

k � �� �u � �u�i�� � ���	��
� ������� ���	��� �v � �v�i�� � ���������		����������

Then r���� r���� r���� and r take on the same values as in example ��� so that m � ���	�
We next represent u�i� and v�i� as in expression �	����

�u � ����
	��
� ���
������ ������	��� �v � ���������������		�����
������

so that c��� � �	� c��� � �	� c��� � ��� d��� � ��� d��� � ��� d��� � �	� In lemma 	���
� � � and� replacing the powers of � by powers of ��� we obtain that

u��� trunc ���� � ����
������ v��� trunc ���� � ����������� r��� mod ���	 � ���	�����	�

u��� trunc ���� � ���������� v��� trunc ���� � ����	������ r��� mod ���	 � ��������	�

u��� trunc���� � ���	������� v��� trunc ���� � ����������� r��� mod ���	 � ����	����	�

This gives us the same values of r�i� mod m� i � �� �� �� as in example ���

�� Backward binary segmentation for the inner product

The algebraic technique of b�m�r� has enabled us to get rid of the most signi
cant bits
of the input and intermediate values in the computation of the inner products� Next� we
will combine this approach with the customary numerical technique of truncating the
least signi
cant bits �Atkinson� ����� Conte and de Boor� ������ also known as chopping�
in order to further decrease the precision of computing� We start with an example that
motivates our approach and illustrates the subtlety of the issue�

Example ���� Assume that� for the same input as in example 	��� we should compute
the inner product r on a computer that chops all values to � �oating point decimal digits�
If we apply the straightforward numerical algorithm� we arrive at the following� where
f���� denotes rounding o� and r�i�� denotes the obtained approximate result�

r���� � f�����	��
�������� � �����	�
�����

r���� � �f�������������		�� � ��������������

r���� � �f������	����������� � ���	�����

r� � f��r���� � r���� � r����� � ��������
�

Here� the rounding errors have completely contaminated the correct output value r �
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����	�����	� which� however� can be correctly computed if we operate with the same
number of bits but apply the b�m�r�� as described in sections � and 	�

Definition ���� �binary segments� Let g and h denote two integers� g � h� let qi de�
note  or � for all i� let S�g� h� denote the binary segment of real numbers representable as

�
h��P
i�g

qi�
i and let Sg�h�q� denote the projection of a real number q � �

h��P
i���

qi�
i� jqj � �h�

into the binary segment S�g� h�� that is� Sg�h�q� � �
h��P
i�g

qi�
i with sgn�q� �sgn�Sg�h�q���

Note that� for any real q� q trunc �h � q trunc �g �Sg�h�q�� If q � �� then q mod �� �
S���� ��� Writing jrj � �h and r � �gz where h� g� z are integers� is equivalent to
assuming r � S�g� h�� Below we seek r with limited precision such that jrj � �h� in other
words we seek projection Sg�h�r��

Theorem ���� Suppose that the sum r of k binary rationals is sought with absolute
output error bounded by �t and that jrj � �h� for integers t and h� Then it su�ces to
compute modulo m � �h�� on the projections of the summands into binary segment
S�t� dlog ke� h� ��� hence computing with a precision of h� �� t� dlog ke bits�

Proof� The modulo operation is justi
ed by lemma ���� The error bound implies that
the bit at position t in the computed answer must be correct� hence we should use all
bits up to position t� dlog ke in the summands� provided that we perform additions in
a tree fashion� �

Adopting the notation of equations �	���� assume

jw�i�j � �a�i�� i � �� � � � � k� �����

for some 
xed integers a�i�� This hypothesis is used by the algorithm below� the cor�
responding hypothesis on the jz�i�j would lead to an analogous algorithm� Moreover�

suppose that r �
Pk

i�� u
�i�v�i� satis
es the bound

jrj� �t � �h� �����

for 
xed integers h and t� where t expresses the numerical tolerance and h expresses the
output magnitude bound as in previous sections� Then consider the following algorithm
for the inner product�

Algorithm ���� This algorithm applies b�m�r� to the u�i� but not the v�i� values�
Input� integers a�i�� d�i�� � � h � �� and t� a natural number k� and real u�i�� v�i��

i � �� � � � � k� these quantities satisfy v�i� � �d�i�w�i�� for some integers w�i� so that the
d�i� are maximized� and equations ����� and ������
Output� an approximation r� to the inner product r of �u and �v� such that jr��rj � �t�
Computations� To simplify notation� let Sg�q� denote the projection of some real q

into binary segment S�g� ��� where � is 
xed and given in the input� Successively compute
the following quantities�

�� g � blog��t�k�c � t� dlog ke�

�� �u�i� � Sg�a�i��d�i��u
�i� mod ���d�i��� i � �� � � � � k�
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�� �r�i� � Sg���u
�i�v�i�� mod ���� i � �� � � � � k�

	� �r �

�
kX

i��

�r�i�

�
mod ���

� r� � �r� if j�rj � ����� otherwise r� � �r � ���

Input integers a�i� and d�i�� i � �� � � � � k� can be computed from the vector entries
v�i�� To draw the parallel with the previous sections� note that the last steps compute
modulo m � ��� The computation of �u�i� is performed with a precision of �� g� a�i� �
h��� t� dlog ke�a�i� bits at stage �� for i � �� � � � � k� Stages 	 and � compute in R���

with a precision of �� g � h� �� t� dlog ke bits� Step � applies lemma ����

Lemma ���� Assuming jrj��t � �h� for h � ���� the above algorithm correctly computes
r� such that jr� � rj � �t�

Proof� We would have had �r � r mod ��� due to lemma 	��� if we excluded chopping
by replacing g by �� in stages � and 	� and then we would have had r� � r� based on
lemma ��� and the bound jr�j � �h� This bound follows from bound ����� and the output
condition� It remains to deduce the latter by estimating the errors due to chopping�
For completeness we will supply these simple routine estimates� In stage �� chopping

errors are less than �g�a�i��d�i�� This bound turns into �g after multiplication of �u�i� by
the integer v�i� since jv�i�j � �a�i��d�i� due to equations �	��� and ������ In stage 	 the
latter error bound grows to �g��� due to chopping� In stage �� the k errors� each having
magnitude bounded by �g��� are added with each other� which gives the overall error
bound k�g�� for the approximation of r mod �� by �r� and we observe that �t � k�g���
for g de
ned at stage �� �

We will call this technique the backward binary segmentation �b�b�s�� process since
it extends the output bound ����� backward� to the operands� restricting their binary
values to certain segments� The discussion above proves our main result� by recalling
that � � h� ��

Theorem ���� Given k�dimensional vectors �u and �v with binary rational entries� assume
that the entries of �v can be written v�i� � �d�i�w�i�� with jw�i�j � �a�i�� where d�i�� w�i�

and a�i�� for i � �� � � � � k� are integers� Suppose that the inner product r of the two
vectors is bounded by jrj � �t � �h and that we seek an approximation r� such that
jr� � rj � �t� Then� we may take appropriately rounded o� moduli of the vector entries�
as in algorithm ���� and reduce the computation modulo �h��� with the following precision�
h��� t� dlog ke� a�i� bits in step �� for each i� and h��� t� dlog ke bits in the rest
of the algorithm�

�� Application of b�b�s� to the iterative improvement algorithm

This section applies b�b�s� in order to bound the precision of computations in the
well known algorithm �Atkinson� ����� Wilkinson� ���� for iterative improvement of
a solution to a nonsingular linear system of equations� First� we consider a generalized
version of the algorithm� and then we outline the application of b�b�s� to the classical
algorithm�
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Hereafter� we will assume the matrix and vector norm k�k � k�k�� Consider the non�
singular system of n equations

A�x � �f�

The input to the iterative algorithm consists of a vector �f � some initial vector �x���� say
�x��� � ��� and a pair of n � n matrices A and C� where the latter approximates A�� so
that

kI � CAk � ��b � �� �����

for some 
xed positive scalar b� Then the iterative improvement algorithm successively
computes the vectors

�r�p� � �f �A�x�p� ��� �e�p� � C�r�p�� �x�p� � �x�p� �� � �e�p�� for p � �� �� � � � � �����

It can be easily shown that� for p � �� �� � � �� we have

�x� �x�p� � �I � CA���x � �x�p� ��� � �I � CA�p��x� �x�����

�r�p� � A��x� �x�p� ����

�e�p� � CA��x� �x�p� ����

Therefore� if bound ����� holds� then �r�p� and �e�p� converge to �� with the speed of a
geometric progression� as p��� It is customary to use the double precision in computing
�r�p� for all p in iteration ����� in order to ensure such a rapid convergence� see Golub and
Van Loan ������� pp� ������� or Atkinson ������� pp� ������� However� we observe
that the precision of computing can be controlled and decreased by means of using the
b�b�s� process� Indeed� apart from an addition and a subtraction of two pairs of vectors�
the computation of ����� amounts to two multiplications of n� n matrices A and C by
vectors� that is� to the evaluation of �n inner products of �n pairs of vectors� Two issues
are encountered in decreasing precision�
First� to show that the convergence of iteration ����� with the speed of geometric

progression will be preserved even if the vectors �r�p� and �e�p� are replaced by their
numerical approximations �r��p� � �r�p� � ��r�p�� �e��p� � �e�p� � ��e�p�� for p � �� �� � � � �
Second� to bound the norm kA�x��p�k of the vector approximating vector A�x�p� in this
process� for p � �� �� � � ��
Routine error analysis shows that log k��r�p�k � g� � bp and log k��e�p�k � g � bp�

p � �� �� � � �� where b is de
ned in bound ����� and g and g� are some 
xed scalars�

Lemma ���� There exist two �xed scalars h and h�� independent of p� such that

log k�r��p�k � h� � dlog pe � bp� log k�e��p�k � h� dlog pe � bp� p � �� �� � � � �

Proof� Replace �e�p� by �e��p� and �r�p� by �r��p� in equations ����� and obtain that

�x� �x�p� � �x� �x�p� ��� C�r�p�� C��r�p����e�p�

� �I � CA���x � �x�p� ���� C��r�p����e�p�

� �I � CA�p��x� �x�����

pX
i��

�I � CA�p�i�C��r�i� � ��e�i���
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The bounds on k��r�p�k and k��e�p�k yield

k�x� �x�p�k � kI � CAkpk�x� �x���k�

pX
i��

kI � CAkp�i�kCk�g
�

� �g���bi�

Write N � kCk�g
�

� �g� E� � k�x � �x���k� substitute bound ������ and obtain that
k�x� �x�p�k � ��bp�E� � pN�� Now� apply �r�p� � A��x� �x�p�� and �e�p� � C�r�p� � ��r�p�
to establish the lemma� Clearly� since h and h� depend on N and E�� they also depend
on g and g�� �

The lemma implies rapid convergence of k�x� �x��p�k to �� with the speed of a geometric
progression� This immediately implies that both requirements are satis
ed� Note that
kA�xk is bounded since A and �x are 
xed� and that kA� �x��p�� �x�k � kAk k �x��p�� �xk �
kAk k�e��p�k tends to zero with the speed of a geometric progression as p tends to in
nity�
Next� we will assume that b� g� g�� h and h� have been precomputed� and that ev�

ery entry aij of the input matrix A lies in a 
xed binary segment S�gij�A�� hij�A�� of
moderately small length�

Remark ���� The latter assumption about aij is needed in order to bound the precision
of computing the product of A by �x�p� �� in iteration ����	� This assumption holds� for
instance� for many linear systems obtained by means of the discretization of linear PDEs
with constant coe�cients� Generally� if A is a well�conditioned matrix� we may decrease
hij�A��gij�A� by chopping the entries of A and�or by applying the standard technique of
algebraic segmentation �Aho� Hopcroft and Ullman� ����� Duhamel� ����� Nussbaumer�
���� Winograd� ���	�

By applying the results of sections ���� whose tedious but straightforward elaboration
we omit� we arrive at the following bounds�

Corollary ���� Let 	i�W � denote the number of nonzero entries of row i of a matrix
W and let �i�A� � maxj jhij�A� � gij�A�j� where each matrix entry aij lies in a �xed
binary segment of moderately small length� namely S�gij�A�� hij�A��� Then� with the above
notation and p � �� �� � � �� we can apply b�b�s� in iteration ����	� implying that it su�ces
to use the following bit�precision in the corresponding operations�

d�i �p� � h� � g� � log p� dlog 	i�A�e

bits in the representation of each operand in the computation of the i�th entry of �r�p��
d�i �p� � �i�A� bits in the representation of each entry of �x�p � �� when this entry is
multiplied by an entry of row i of A�

di�p� � h� g � dlog pe� dlog 	i�C�e

bits in the representation of each operand in computing the i�th component of �e��p�� and

di�p� � h� � g� � dlog pe

bits in the representation of any entry of row i of C when this entry is multiplied by a
component of �r�p��

Thus� the b�b�s� process enables us to compute the solution vector �x� within error
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norm of the order of ��p� after p calls to the loop ������ even though only an order of
log i bits of precision are needed in the computations in the p�th call for this loop� for
p � �� �� � � �� In particular� even if p � 
� �which is much greater than what is usually
needed in practice�� then� still log p � 
� whereas over � bits of single machine precision
are usually allowed on modern computers performing matrix computations�
For comparison� if we perform the iteration based on iteration ����� but do not use the

b�b�s� process� then we generally must increase the precision of the computations in the

rst two stages of ������ Let cij denote an entry of matrix C� let xj�p � �� denote the
j�th entry of �x�p��� and r�j �p� the respective entry of �r

��p�� Then the required precision
must increase at least to H��p�� g�p� and H�p�� g�p�� where

H��p� � logmax

�
k�fk� max

i�j
jaijxj�p� ��j

�
� H�p� � logmax

i�j
jcijr

�
j �p�j�

for i� j � �� � � � � n� p � �� �� � � � � This represents an increase of at least H� � bp � log p
and logmax

i�j
jcij j�H bits� for constants H� and H �

In the classical iterative improvement algorithm C � �PLU��� where P is a permu�
tation matrix� L is unit lower triangular� U � D �U� with U� proper upper triangular�
D is a nonsingular diagonal matrix� and every entry of L has absolute value bounded
by �� In this case� the computation of �e�p� is replaced by the successive solution of two
triangular linear systems of equations�

L�y�p� � P���r�p�� U�e�p� � �y�p�� ���	�

Then we can bound k�y�p�k � kU�e�p�k � �h�p�kUk� Since we seek �e�p� within the bound
�g�p� on the error vector norm� we only need to compute the components of �y�p� within
the error bound kU��k�g�p�� assuming that a su�ciently good upper estimate for kU��k

is available� Let �h and �g be two 
xed integers such that kUk � �
�h� kU��k � ��g� Then

k�y�p�k � �
�h�h�p��

Corollary ���� If we apply of the b�b�s� process to the evaluation of every inner prod�
uct in the classical iterative improvement algorithm� the precision of the computations
substantially decreases against the usual solution except possibly for small values of p� In
particular� it su�ces to use the following bit�precision in the corresponding operations�
h� g��h� �g� dlog pe� dlog 	i�L�e bits in the representation of each operand of any ad�
dition or subtraction involved in the evaluation of the i�th component of the vector �y�p��
and ��h� g��h� �g� dlog pe�� dlog 	i�L�e bits in the representation of any entry of row
i of L when this entry is multiplied by a component of �y�p�� h� g� dlog pe� dlog 	i�U�e
bits in the representation of each operand of any addition or subtraction involved in the
evaluation of the i�th component of the vector �e��p�� ��h � g � dlog pe� � dlog 	i�U�e
bits in the representation of any entry of row i of the matrix D��U� when this entry is
multiplied by the components of �e�p��

�� Two further applications of the b�b�s� process

This section presents two further examples of the b�b�s� process� applied to important
linear algebra problems� The 
rst example considers linear systems whose matrix is real
and symmetric� the analysis and results can be easily extended to several other well�
known iterative techniques� such as Jacobi�s� SOR and SSOR �Varga� ���� Young ������
The second example is on piecewise linear PDEs solved by multigrid methods�
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Let A denote a real symmetric matrix 
lled with �short� binary numbers so that
A � L � I � U� with L � UT being a proper lower triangular matrix� Gauss�Seidel�s
iteration for A�x � �f takes the following form �Golub and Van Loan� ����� Isaacson and
Keller� ����

�x�p� �� � �f � L�x�p� ��� U�x�p�� p � �� �� � � � �

If �x�p� �
Pp

i����x�i�� for p � �� �� � � �� then ��x�p � �� � �L��x�p � �� � U��x�p�� The
iteration converges to the solution if and only if A is positive de
nite �Isaacson and Keller�
��� pp� ������ Golub and Van Loan� ����� p� ����� In this case� k��x�p�k � �g�bp�
p � �� �� � � � � where g is a 
xed constant and ��b is the spectral radius of the matrix
B � �L� I���U � ��b �k B k� b � �� Estimating b generally takes a substantial amount
of work� but for some important classes of the input matrix� a good positive lower bound
on b is readily available� Then due to the rapid decrease of the error norm k��x�p�k� an
application of the b�b�s� process enables us to decrease the precision of the computations�
The second application refers to solving di�erential equations� In particular� we are

able to apply the b�b�s� technique in the solution of piecewise linear partial di�erential
equations �PDEs� by means of multigrid methods �compare Pan and Reif ������� Pan
and Reif ����	���
Let us show this� by outlining the multigrid approach and by observing its similarity

to the iterations of section � and above� For a given PDE and for a 
xed sequence of
d�dimensional grids G� 	 G� 	 G� � � � 	 Gn� de
ne n � � linear systems of di�erence
equations�

Di�ui � �bi� ����

by discretizing the PDE over the grids Gi� i � �� �� � � � � n� Vector �ui that satis
es equa�
tion ���� approximates the solution to the given PDE on the grid Gi� hence its dimension
equals the number of vertices on the grid Gi� for i � �� �� � � � � n� Let vi��x� for �x � Gi de�
note the respective component of any vector �vi de
ned on Gi� De
ne the operators Pi of
prolongation of ui����x� from Gi�� to Gi �such operators usually amount to interpolation
by averaging��
We now recall the customary loop �V �cycle� of the multigrid algorithm for solving

system ����� for i � n� Starting with� say� u���x� � � for �x � G�� we successively evaluate�

for i � �� � � � � n and all �x � Gi� the following values� First� we compute �ri � �bi�DiPi�ui���
then we 
nd �ei by solving linear system Di�ei � �ri� and� 
nally� we compute ui��x� from
identity ei��x� � ui��x�� Piui����x��
In the case of a piecewise�linear PDE with constant coe�cients� the entries of the

matrix Di are �short� binary values� each represented with O��� bits� The only di�erence
with the usual application of the iterative improvement scheme is in solving the linear
system by means of iterative methods �say� of Gauss�Seidel�s or of SSOR type in the
symmetric case�� Furthermore� the number of iterations required in order to solve this
linear system is typically bounded from above by a 
xed constant� which corresponds
to setting p � O��� in section �� Thus� by applying techniques exempli
ed earlier we
decrease the precision of these computation to O��� bits�

�� Numerical tests

In this section we present the results of some numerical experiments designed in order to
compare the performance of two implementations of the generalized algorithm of section �
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for the iterative improvement of the solution of a linear system of equations� That is� we
tested a customary implementation and one using the b�m�r��b�b�s� techniques�
We have run our experiments on a general purpose computer that relies on 
xed pre�

cision representation of �oating point numbers and uses �oating point hardware logic
for acceleration of numerical computations� Since the b�m�r��b�b�s� techniques rely on
using variable precision representation of numbers� we could not directly compare the
CPU time� executable size or run�time memory consumption of the b�m�r��b�b�s� algo�
rithm with that of the customary algorithm� Instead� we emulated both algorithms with
a high level language using special data structures and then approximately measured the
bit�complexity as follows�

Definition 	��� For �oating point numbers r� and r� represented with the precision
of p� and p� bits� respectively� we de�ne the bit�complexity of their addition c� and
multiplication c�� as follows�

c��r�� r�� � maxfp�� p�g� c��r�� r�� � p� � p��

In our experiments� the input to the algorithm consists of an n�n matrix A� a matrix
C that approximates A��� an n�dimensional vector �f � and an error bound 
 � �� The
program calculates and outputs �x�p� such that jj�x�p� � �xjj � 
� where �x is the solution

of the linear system A�x � �f �
We have implemented the algorithm in the ANSI C language and the program was

compiled� linked and run on a SUN Sparc station running SUN OS version ��
We store �oating point numbers in a C structure consisting of a sign� a mantissa�

an exponent� and a precision value� All the input� output and intermediate results have
been stored in this format� and all the arithmetic operations needed for the experiments
�such as addition� multiplication and modular reduction� have been implemented with C
functions� The approximate inverse matrices have been calculated by using PLU decom�
position with partial pivoting�
In the remainder of this section� we show only the input and output of our experiments�

with complexity estimates based on the above de
nition� These results con
rm the the�
ory by showing a consistent decrease of the bit�complexity in the transition from the
customary implementation to the b�m�r��b�b�s� implementation� In particular� we report
a decrease of ����� This is shown in the respective tables by the ratio of the additive
and multiplicative complexities� respectively� between the two algorithms� We use the
decimal representation for the sake of clarity�

Example 	��� This example is from Dahlquist and Bj�rck ������� pp� �������� and has
input�
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Table �� Complexity of example ���

iteration customary b�m�r�b�b�s�
i c

�

i
c
�
i

c
�

i
c
�
i

� ��� ���� �� ���	
� ��	 ���� 
�� �
��
� ��� 
��� �� �		

 �	 ��� �	� 
���

total �
�	 �

		 ��
� ����	
ratio � � 	�� 	��


The initial and 
nal approximations to �x are

�x��� � ������������� � ��� ������������ � ��� ������������ � ��� �
T
�

�x�	� � ������������� � ��� ������������ � ��� ������������ � ��� �T �

Both the customary as well as the b�m�r��b�b�s� algorithms produce the same output
after � iterations� However� the second method has lower additive and multiplicative
complexity at every iteration� as shown in table ��

Example 	��� This example is from Johnston ������� p� ��� and has input�


 � ��������� � �����

A �

�
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�����
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������ � ��� ����������� � ���

����������� � ��� ����������� � ��� �����	���� � ���

	
A �

C �

�
������	���� � ���� ����	
����� � ���� ���������� � ����

����������� � ��� ��������� � ��� ������
���� � ���

��������� � ��� �����	����� � ��� ����	������ � ���

	
A �

�f � �����	������ � ��� �����	���� � ��� �����
���� � ��� �T �

The initial and 
nal approximations to �x are

�x��� � �����		����� � ��� ����	�	���� � ��� �����

��� � ��� �
T
�

�x�	� � �����		����� � ��� ����	�	���� � ��� �����

��� � ��� �T �

where the same output is obtained by both customary and b�m�r��b�b�s� algorithms�
Again� the second algorithm is faster at every iteration� as seen in table ��

Example 	��� This example is from Golub and Van Loan ������� p� ���� and has the
input�
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Table �� Complexity of example ��	

iteration customary b�m�r�b�b�s�
i c

�

i
c
�
i

c
�

i
c
�
i

� ��� �		� ��� �

� 
	� ���� ��� ���

� ��� ��� ��	 ��	


 �� �		 �� �	�


total ���� ��� ���� ���
ratio � � 	��� 	��


Table �� Complexity of example ���

iteration customary b�m�r�b�b�s�
i c

�

i
c
�
i

c
�

i
c
�
i

� �	 ��� �	 ��
� �� 
� ��� ��
� ��
 �
 �	� ��

total 
� �
	
 


 ���
ratio � � 	��� 	���

�f � ���������� � ��� ���������� � ��� �
T
�

The initial and 
nal approximations to solution �x are�

�x��� � ����������� � ��� ���������� � ��� �
T
�

�x��� � ����������� � ��� ���������� � ��� �
T
�

where the same output is obtained by both algorithms� The savings due to the b�m�r��b�b�s�
algorithm are reported in table 	�

Example 	��� Here is a random input�


 � ��������� � �����

A �

�
�����
������ � ��� ����������� � ��� ����������� � ���

���������� � ��� ����
������ � ��� ����������� � ���

�����
����� � ��� ���������� � ��� ����������� � ��


	
A �

C �

�
�����
���� � ��� ��������� � ��� �������� � ���

���������� � ��� ���������� � ��� ���������� � ���

����������� � ��� ���������� � ��� ����������� � ���

	
A �

�f � ������		���� � ��� ���������� � ��� ����������� � ��� �
T
�

The initial and 
nal approximations to solution �x are as follows� obtained by the cus�
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Table �� Complexity of example ���

iteration customary b�m�r�b�b�s�
i c

�

i
c
�
i

c
�

i
c
�
i

� ��	 �	� ��	 ���
� 
�� ��� ��� ��	
� ��� ���	 ��� �

�

 ��� ���� �	� ����

total �		 �� ��� ����
ratio � � 	��
 	���

tomary and b�m�r��b�b�s� algorithms respectively�

�x��� � �����	����� � ��� ����	����� � ��� ������������ � ��� �
T
�

�x�	� � �����	����� � ��� ����	����� � ��� ������������ � ��� �
T
�

�x�	� � �����	����� � ��� ����	����� � ��� ������������ � ��� �
T
�

Note that the two outputs are di�erent� though within the same error bound� The com�
plexities do di�er� as seen in table ��

	� Further work

An immediate extension of this work would be to computing products of k binary
rationals� when a bound is known on the product� However� it is not obvious how to
ignore the most signi
cant digits in this case�
Clearly� the main issue is to extend applicability of the method� in other words obtain

tight bounds on the size of the answer� A general technique that would circumvent this
question may be based on probabilistic methods used in exact modular arithmetic on the
rationals� such as those by Emiris �������
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