Sign Determination in Residue Number Systems

Hervé Brénnimann* [oannis Z. Emiris* Victor Y. Pant Sylvain Pion*

December 19, 1997

Abstract

Sign determination is a fundamental problem in algebraic as well as geometric computing.
It is the critical operation when using real algebraic numbers and exact geometric predi-
cates. We propose an exact and efficient method that determines the sign of a multivariate
polynomial expression with rational coefficients. Exactness is achieved by using modular
computation. Although this usually requires some multiprecision computation, our novel
techniques of recursive relazation of the moduli and their variants enable us to carry out
sign determination and comparisons by using only single precision. Moreover, to exploit
modern day hardware, we exclusively rely on floating point arithmetic, which leads us to a
hybrid symbolic-numeric approach to exact arithmetic. We show how our method can be
used to generate robust and efficient implementations of real algebraic and geometric algo-
rithms including Sturm sequences, algebraic representation of points and curves, convex hull
and Voronoi diagram computations and solid modeling. This method is highly paralleliz-
able, easy to implement, and compares favorably with known multiprecision methods from
a practical complexity point of view. We substantiate these claims by experimental results
and comparisons to other existing approaches.

1 Introduction

Manipulation of real numbers on modern computers is largely done by using fixed-precision floating-
point arithmetic (f.p. arithmetic for short). Consequently, and due to the importance of numerical
computing, f.p. arithmetic has benefited from important infrastructural support, and extremely efficient
hardware implementations are available. F.p. arithmetic is only approximate, however. While this
may be acceptable in performing numerically stable computations, it introduces many limitations and
is unacceptable in algebraic computation and in deciding geometric predicates. The goal of this paper
is to use fixed-precision f.p. arithmetic for performing exact computations, in order to decrease their
complexity. A major application of our algorithms is in manipulating real algebraic numbers exactly,
thus offering an alternative for an exact computation over the reals.

In computer algebra and symbolic computation, exact arithmetic is almost always assumed. When
approximate calculation is not an option, a popular approach is to use big-integer and big-float multipreci-
sion packages. This implies that operands are computed and stored with arbitrary precision, including
intermediate quantities whose magnitude may be significantly larger than that of the output values. To
remedy this problem, a substantial amount of work in the area has focused on modular arithmetic, which
allows most of the computation to be carried over fixed precision integers. However, the modular repre-
sentation of a rational number is typically not sufficient, and most problems require the reconstruction of
the exact number, which means that some arbitrary precision is still required. The main contribution of

*INRIA Sophia-Antipolis, B.P. 93, 2004, Route des Lucioles, 06902 Sophia-Antipolis Cedex, FRANCE. This research was
partially supported by the ESPRIT IV LTR Project No. 21957 (CGAL).

{ Department of Mathematics and Computer Science, Lehman College, City University of New-York, Bronx NY 10468, USA.
Supported by NSF Grant CCR 9625344 and PSC CUNY Award No. 667340.

this paper are algorithms that determine the sign of such a number by using single precision operations
on its moduli, thus removing the need of any high precision computation. Real algebraic numbers are
represented as the unique root of a given polynomial in a given interval. Such a representation can be
computed by applying Sturm theory. Besides the computation of Sturm sequences, finding the isolating
interval requires many computations of signs of polynomial expressions with integer coefficients. The
major drawback of these methods is the slowdown due to the handling of full precision, so our algorithms
are ideally suited to this problem and analyzed in section 6.1.

In computational geometry, computer-aided design (CAD), geometric modeling and computer graph-
ics, on the other hand, f.p. arithmetic is extremely popular because of its speed. Most of geometric
predicates can be expressed as computing the sign of an algebraic expression, which can be computed
by using f.p. arithmetic with a fixed finite precision. Unfortunately, the roundoff errors may easily lead
to the wrong sign, causing the algorithm to fail on the input. This problem is often referred to as the
robustness problem [24]. One solution to the robustness problem is to explicitly handle numerical inac-
curacies, so as to design an algorithm that does not fail even if the numerical part of the computation
is done approximately [25, 37], or to analyze the error due to the f.p. imprecision [19]. Such designs
are extremely involved and have only been done for a few algorithms. The general solution, it has been
widely argued, is to compute certain predicates exactly [11, 15, 17, 20, 41] (see also section 6.2). This is
also the position taken by this paper. This goal can be achieved in many ways: computing the algebraic
expressions with infinite precision [39], with a finite but much higher precision that can be shown to
suffice [21], or by using an algorithm that performs a specific test exactly. In the last category, much
work has focused on computing the sign of the determinant of a matrix with integer entries [3, 10, 13],
which applies to many geometric tests (such as orientation tests, in-circle tests, comparing segment inter-
sections) as well as to algebraic primitives (such as resultants and algebraic representations of curves and
surfaces). Recently, some techniques have been devised for handling arbitrary polynomial expressions
and f.p. representation [36] but their complexity grows rather fast with that of the computation.

This paper proposes a method that determines exactly the sign of a multivariate polynomial with
rational coefficients evaluated at a rational point. It uses no operations other than modular arithmetic and
f.p. computations with a fixed finite (single) precision. We call the new technique the recursive relazation
of the moduli. The key feature is the exact result, combined with the efficiency of f.p. arithmetic on
modern day computers. Our methods can be used in many settings, including the operations in computer
algebra and exact geometric predicates mentioned above, as well as whenever numerical techniques need
an exact test; see section 6 for examples. In short, our methods combine the veracity of exact computation
with the speed of f.p. arithmetic and, therefore, contribute to the current initiative of cross-fertilizing
the areas of numeric and symbolic computing. Moreover, we propose several variants of our techniques
improving some aspects of the algorithm.

More specifically, our algorithms perform rational algebraic computations modulo several primes,
that is, with a lower precision. As shown in section 2, this requires only single-precision f.p. operations.
The Chinese remainder theorem enables us to combine the resulting values together in order to recover
the desired output value. This is not a new trick: such a representation of integers by their moduli
is known as Residue Number Systems (RNS) and is popular because its provides a cheap and highly
parallelizable version of multiprecision arithmetic. It is impossible here to give a fair and full account
on RNS, but [1, 28, 29, 35] provide a good introduction to the topic. From a complexity point of view,
RNS allow to add and multiply numbers in linear time. The latter stage of combining the moduli to
reconstruct the explicit answer, however, was always perceived as the bottleneck of this approach because
higher precision computations were required [35, chap. 4] The recursive relaxation of the moduli enables
us to greatly accelerate this phase, since it only needs some simple single precision computations.

The closest predecessors of our work are apparently [16], [26], and [7]. The algorithm of Hung
and Parhami [26] corresponds to single application of the second stage of our recursive relaxation of the
moduli. Such a single application suffices in the context of the goal of [26], that is, application to divisions
in RNS, but in terms of the sign determination of an integer, this only works for an absolutely larger
input. For smaller inputs, Bajard, Didier and Miiller [7] keep a floating point estimate of the number,
which allows to guess beforehand how many loops of our generalized Lagrange algorithm should be
executed. We note that their technique handles overflows gracefully, but it cannot handle integers larger
than those stored in the floating point representation, which may be quite limiting. The maximum range

of exponents in the IEEE 754 Standard is 2024. Our moduli are on the order of 227. Therefore, Bajard,
Didier and Miiller allow integers representable on 74 moduli only. In contrast, our technique allows for
more than 107 moduli. The article [16] gives probabilistic estimates for early termination of Newton’s
interpolation process, which we apply in our probabilistic analysis of our algorithm 5. Its main subject
is an implementation of an algorithm computing multidimensional convex hulls. The article [16] does
not use our techniques of recursive relaxation of the moduli and does not discuss Lagrange’s approach.
The spirit of the present article is shared by [18], where f.p. computation is used to calculate the most
significant part of the answer, whereas modular arithmetic yields the least significant part. A limited
subset of our results in preliminary form appeared as [8].

Here is the outline of the paper. The next section introduces the different arithmetics and defines
the problem at hand. Sections 3 and 4 correspond to the two algorithms for determining the sign of an
arbitrary rational defined by a set of moduli by performing single precision f.p. operations. Section 5
elaborates some variants of these algorithms. Sections 3-5 constitute our main contribution and propose
deterministic as well as probabilistic algorithms. They are applied to computing over real algebraic
numbers, to determining exact geometric predicates, and to the ubiquitous question of determinant sign,
in section 6. The experimental results of section 7 support our claim that our algorithms are the fastest
today in practice. Our main results are summarized in section 8.

2 Exact sign computation using modular arithmetic

Floating point (f.p.) computations. Our model of a computer is that of a f.p. processor that
performs operations at unit cost by using b-bit precision (e.g., in the IEEE 754 double precision standard,
we have b = 53). It is a realistic model as it covers the case of most workstations used in research and
industry [22, 28, 36]. We will use mainly one basic property of f.p. arithmetic on such a computer: for all
four arithmetic operations, the computed result is always the f.p. representation that best approximates
the exact result. This means that the relative error incurred by an operation returning z is at most
271 and that the absolute error! is at most 211°8121-2=1 n particular, operations performed on pairs
of integers smaller than 2° are performed exactly as long as the result is also smaller than 2°.

To be able to discuss the properties of f.p. arithmetic, it is convenient to introduce the following
notation [36]: given any real number z, it is representable’ over b bits if @ = 0 or if 227 1°8*1+® j5 an
integer; 7 denotes the representable f.p. number closest to = (with any tie-breaking rule if z is right
in-between two representable numbers), and ulp(z) denotes the unit in the last place, that is, 21181215
if z # 0, and 0 otherwise. With this notation, the absolute error in computing an operation that returns
z is ulp(z).

Modular computations. Let m,...,m; be k pairwise relatively prime integers and let m = [T, m;.
For any number z (not necessarily an integer), we let z; = = mod m; be the only number in the range
[—%, %) such that z; —x is a multiple of m;. (This operation is always among the standard operations
because it is needed for reducing the arguments of periodic functions.)

This operation can be extended modulo an f.p. numbers as follows: an f.p. number z is truncated to
a non-null f.p. number y and the result is defined as * — [z/y]y. Therefore, mod m; is the result of
truncating to m;, and the (signed) fractional part frac(z) of z is the result of truncating = to 1. Note
that the result of truncating = to a power of two is always representable if x is representable.

To be able to perform arithmetic modulo m; on integers by using f.p. arithmetic with b-bit precision,

we will assume that m; < 2?1, Performing modular multiplications of two integers from the interval

[—%ﬁ, %L) can be done by multiplying these numbers and returning their product modulo m;. (The

product is smaller than 2° in magnitude and hence is computed exactly.) Performing additions can be
done very much in the same way, but since the result is in the range [— L Tl

i mi) taking the sum modulo
m; can be achieved by adding or subtracting m; if necessary. Modular divisions can be computed using

LAll logarithms in this paper are base 2.

2We systematically ignore underflows and overflows, by assuming that the range of exponent is large enough. A few modern
packages now provide f.p. arithmetic with the exponent stored in a separate integers, which extends the IEEE 754 double
precision standard by quite a lot.

the extended Euclid algorithm; we will need them in this paper only in section 6. Therefore, arithmetic
modulo m; can be performed on integers by using f.p. arithmetic with b-bit precision, provided that
mi < ob/2+1

Exact sign computation. In this paper, we consider the following computational problem.

Problem 1 Let k, b, m1,...,my denote positive integers, mi,...,my being pairwise relatively prime,
such that m; < 2b/2+1, and let m = Hle m;. Let x be an integer whose magnitude is smaller than
|m/2]. Given z; = x mod m;, compute the sign of x by using only modular and floating-point arithmetic
both performed with b-bit precision.

We will solve this problem, even though z can be huge and, therefore, not even representable by us-
ing b bits. In the worst case, our solutions require O(k?) operations and therefore do not improve
asymptotically over the standard multiprecision approach. They are simple, however, and require little
or no overhead. In practice, they only perform O(k) operations. Thus they are very well suited for
implementation.

3 Lagrange’s method

According to the Chinese remainder theorem, z is uniquely determined by its residues z;, that is, Prob-
lem 1 is well defined and admits a unique solution. Moreover, this solution can be derived algorithmically
from a formula due to Lagrange. A comprehensive account of this approach can be found in [28, 29].

3.1 The basic method

This section describes the basic algorithm relying on Lagrange’s approach. If z is an integer in the range
[-2,2), i stands for the residue z mod mi, vi = m/m; = 1,2 m;, and wi = v; ! mod m;, then

k
T = (Z ((ziw;) mod m;) vi> mod m. (1)

i=1

Trying to determine the sign of such an integer, we compute the latter sum approximately in fixed b-bit
precision. Computing a linear combination of large integers v; with its subsequent reduction modulo m
can be difficult, so we prefer to compute the number

x k (z;w;) mod m;
S=" = Ay o
= frac (2 o) ,
where frac(z) is the fractional part of a number z that belongs to [—1,1).

If S were computed exactly, then we would have S = z/m, due to Lagrange’s interpolation formula.
In fact, S is computed with a fixed b-bit precision. Nevertheless, if we compute it by incrementally
adding the ith term and taking fractional part, the error bound follows the induction

e =g +2707 4270

where the term 27°~' accounts for the error on computing the ith term of S, and the term 27 accounts
for the error on computing the incremental sum. Moreover, 1 = 2751 A technical problem can arise if
S'is too close to a half-integer, because the fractional part may not be computed properly. We circumvent
this by assuming that |z| is less than (1 — ;). In this way, we can insure that S approximates z/m
within an absolute error bound ej, = (3k — 2)27°~%.

Therefore, if |S| is greater than e, the sign of x is the same as the sign of S, and we are done.
Otherwise, |z| < 2exm. Since my < 2%/2*1 we can say conservatively that 2exm is smaller than
52— (1—ek_1), for all practical values of k and b, and hence we may recover x already from x; = x mod m;

2my,
fori=1,...,k—1, that is, it suffices to repeat the computation using only k& — 1, rather than k& moduli.

Recursively, we will reduce the solution to the case of a single modulus mi where z = z;. We will call
this technique recursive relazation of the moduli, and we will also apply it in section 3.2.
We will present our resulting algorithm by using additional notation:

m® = I m

1<i<)
Ul(J) = H me,
1<e<y
[
@) @)t
w;”’ = (vij) mod m;, (2)
e ¢ ZJ: xiwl(j) mod m; (3)
= frac)
i=1 i

so that m = m® | v; = vi(k), w; = wl(k) and S = S®. All the computations in this algorithm are

performed by using f.p. arithmetic with b-bit precision. Because this applies also to fractional part
computation, we must assume that z/ m®* is sufficiently far from half-integers, hence we assume that

)

lz| < (1 —ep).
This assumption is not too restrictive since it is violated with very low probability £ for random z;, and
it can be remedied by computing one more residue zj1.

Algorithm 1 : Compute the sign of z knowing z; = z mod m;

Precomputed data: m;, w(j), gj, forall1<i<j<k

3

Input: integers k and x; € [—%, "2”), foralll1<i<k

. . . . () ()
Output: sign of z, the unique solution of x; = x mod m; in [— oy T)

Precondition: |z| < %k)(l — k)

1. Letj —k+1
2. Repeat j «—j—1,
() modmi>

J .
SU) frac (Z Tiw;
m;

i=1
until |SY| > ¢; orj=0
8. Return sign of SU)

The following lemma bounds the number of operations performed by the algorithm in the worst case.

E(k—1)
P)

Lemma 3.1 Algorithm 1 computes the sign of x knowing its residues x; by using at most modular

multiplications, @ f-p. divisions, # f-p. additions, and k + 2 f.p. comparisons. All of these
operations can be implemented in f.p. arithmetic.

Proof. From the preceding discussion, it is clear that the algorithm reports the sign of z. Indeed, upon
m;n
of |z|/m"Y) with a sufficiently small relative error (bounded by ;) so that the sign of SU) is exactly the
sign of z. ‘

The m;’s and the wf])’s are computed once and for all and placed into a table, so they are assumed to
be available to the algorithm at unit cost. In step 2, a total of j modular multiplications, j f.p. divisions,
and j f.p. additions (including taking the fractional part) are performed. O

(1—¢;), or else j = 0. In any case, |SY)| is an approximation

termination we have £;mV ™ < |z| <

In almost all practical instances of the problem, |z| is on the same order of magnitude as m*). If |z]
is not too small compared to m*), then only step k is performed, involving only at most k f.p. operations
of each kind. This is to be contrasted with full reconstruction, which requires ®(k2) operations. Thus
algorithm 1 is of great practical value.

Let us also formalize the latter argument. Since x is chosen independently with m1,...,m; being
fixed, we may assume it corresponds to a random integer in the range [-%(1 — &), (1 — €x)]. Under
the uniform probability distribution in this range, the probability that |z| > 2crm is 1 — 4e /(1 — £4).
Since ¢, is extremely small, this probability is very close to 1 and, therefore, the algorithm most likely
computes the sign of z correctly already at the first stage. The exception is the cases where |z| is biased
to be small as, for instance, when z represents the determinant of a nearly singular matrix. Such cases
are well handled by the algorithms of section 5.

By using parallel implementation of the summation of £ numbers on [k/log k] arithmetic processors
in 2[log k] time (cf. e.g. [5, ch.4]), we may perform algorithm 1 on [k/logk] arithmetic processors
in O(klog k) time, assuming each b-bit f.p. operation takes constant time. Furthermore, if [k:2/log k:]
processors are available, we may compute all the SU) and compare |S(j)| with ¢;, for all j = 1,...,k
concurrently. This would require O(log k) time on [k”/log k| processors. Finally, if [tk/log k] processors
are available for some parameter 1 < ¢ < k, we may perform algorithm 1 in O((klog k)/t) time by batching
[t] consecutive values of j in parallel. In practice, the algorithm terminates well before j reaches k, so
O(log k) time suffices even with [k/log k] processors.

Remark 1. If actually 2 = 0, the algorithm can be greatly sped up by testing if z; = 0 in step 2, in
which case we may directly pass to ;7 — 1. Furthermore, stage 3 is not needed unless z = z; = 0 for all
j, which can be tested beforehand. Of course, if the only answer needed is “z = 0” or “x # 07, then it
suffices to test if all the z;’s are zero.

Remark 2. The costly part of the computation is likely to be the determination of the z;’s. For these
reasons, we should try to minimize the number & of moduli m; involved in the algorithm. This can be
done by getting better upper estimates on the magnitude of the output or by using the probabilistic
technique of section 5.

3.2 A generalization of Lagrange’s method

We will show that Lagrange’s method is in fact a particular case of the following method [7]. Let
k
50 _ gk _ (ziwi) mod m; |
rac ; e

This quantity is computed in the first step of algorithm 1. If the computed value of £ is smaller than
ek, it implies that ¥ < 2¢4. Thus, |2| is smaller than 2me;,. We can then multiply z;w; by

o = F(l—ek)J,

2ep,
to obtain (x;w;ay) mod m; for all ¢ = 1,...,k. This can easily be done by precomputing a; modulo
each m;. We then compute
k
v d m.:
oM ¢ (z;w;op) mod m;
e 3 (Pt)
and more generally,
S0 — frac i (z;w;ar’) mod m;
N i m; ’
where we assume aj mod m; precomputed for all ¢ = 1,..., k. This leads to the following algorithm:

Algorithm 2 : Generalized Lagrange’s method. Compute the sign of « knowing ; = z mod m;.

Precomputed data: m;, w;, i, o, mod m;, for alli=1,...)k
Input: integers k and z; € [—™%L, 28 foralli=1,...,k

Output: sign of =, the unique solution of x; = x mod m; in [—%,

w[3

)

Preconditions: |z| < F(1 —&;) and 2 #0

1. Let j «— —1
2. Repeat j — j+1,

k
G) z;w; mod m;

Y — frac (; D)

if 89| < ey and j < k then z; — xio, mod my for all 1 < i < gk,

until |29 > e or j =k
3. If 1 =k return “x=0"
4. If 29 >0 return “z > 0”
5. If ©9) <0 return “z < 0”

It is easy to see that the number of iterations in step 2 is O(log m/logax) = O(k), because |z| is no
less than 1 and no more than m® < 28¢/2+D 354 is multiplied by oy, at each iteration. Therefore,
algorithm 2 still performs ©(k?) operations in the worst case, but in practice (on most instances) only k
operations of each kind

Remark 3. Algorithm 1 corresponds to a choice of my_; instead of «y in step j. This simplifies the
computation by eliminating one modulus at each iteration, but it performs more iterations. Multiplying
by ar, we perform about twice fewer iterations (. is on the order of two moduli) but each iteration is
done with k£ moduli. This is why we call algorithm 2 a generalization.

It is possible to combine the techniques of both algorithms by replacing oy in the expression for ¢
by the greatest (r,; < ay which is a multiple of mY). This means that Br,; is also precomputed.

Remark 4. To yield the parallel time bounds such as O(log k) using [k2/log k:] processors for algo-
rithm 2, we need to precompute ax’ mod m; for all 7,7 =1,..., k.

4 Newton’s method

An incremental version of Chinese remainder reconstruction, named after Newton, is described in this
section. We recall the method for completeness; see [28, 29] for a comprehensive presentation. Its main
advantage is that it can be adapted to a probabilistic algorithm that does not require an a priori bound
on the magnitude of x. This is the subject of section 5.3.

Let 29 = 2 mod mY, for j=1,...,k, so that M =2 and z = 2™, Let y1 = x1, and for all
j=2,...,k,
t; = wj(-j) = (mY)7 mod m;;,
yj = (ac]- —ac(jfl)) t; mod m; € [—%,%)

Then, for all j =2,...,k,
xﬁ)::(x0*1)+@ﬁnﬁf*”)1nod7n0). (4)

Clearly, this leads to an incremental computation of the solution # = z*) to problem 1. An advantage is
that all computation can be kept modulo m;, and no floating-point computation is required, in contrast
to sections 3.1 and 3.2 where S or &) are computed. The y; define the mixed-radix representation
of z, which would offer an alternative way to perform arithmetic on long integers; see also [28, 35]. It is
obvious, that when y; # 0, then the sign of 2) is the same as the sign of y; since |z~ | < mU=1 /2,
If y; = 0, the sign of 2z is the same as that of 2U~1, for j > 2, whereas the sign of M =2y =y is
known. If y; = 0 for all j, then this is precisely the case when z = 0.
For 1 < < j <k, we introduce integers

-1 -t
ug]_n _ (m(ifl)tj) mod m; = (H ml) mod m;.
=i

Then t; = ugjfl). Unrolling equation (4) in the definition of y; shows that the quantities y; verify the
following equality for all j =2,... k:

j—1
yj = ((ac] — xl)ugjfl) - Zyiu511)> mod m;.
i=2

Therefore, they can be computed by using modular arithmetic with bit-precision given by the maximum
bit-size of the m?. Here it suffices to assume that the absolute value of = is bounded by m®) /2.

Algorithm 3 : Compute the sign of z, knowing # mod m;, by Newton’s incremental method.
Precomputed data: m;, ugjfl), foralll1<i<j<k

Input: integers k and z; € [— o "2“) foralli=1,...)k

: . : . . (}) ()
Output: sign of x, where x is the unique solution of x; = x mod m; in [— s ,mT)

Precondition: None.

1. Let y1 «— z1, j — 1. Set s to —1,0 or 1, if y1 is negalive, zero or positive, respectively.
2. Repeat j — j+1,

j—1
yi— | (@5 —z0)ud ™Y =3 giud Y) mod my,
=2
Set s to 1 or —1, if y; is positive or negative, respectively.
If y; =0 then s does not change.
until j = k.
3. Return sign of s

Remark 5. As in remark 1, we can test beforehand if all z; = 0, which is precisely the case when
z =0.

Lemma 4.1 Algorithm 3 computes the sign of x knowing its residues x; using ezxactly modular

k(k—1)
p)

k(k—1)
2

multiplications, modular additions, and 2k comparisons. All of these operations can be imple-
mented in f.p. arithmetic.

Proof. For every j = 2,...,k, there are j — 1 modular additions and multiplications. There is one
sign computation for each j = 1,...,k, each of which can be implemented by two comparisons. a

Algorithm 3 requires k recursive steps, so its parallel time cannot be decreased below Q(klog k).
Nevertheless the algorithm can be implemented in O(klogk) time on [k/logk] processors, assuming
each b-bit f.p. operation takes constant time.

To compare with algorithm 1, realistically assume that a modular addition is equivalent to 3/2 f.p.
additions and one comparison, on the average. Then, algorithm 1 requires at most @ f.p. divisions

(which are essentially multiplications with precomputed reciprocals) more than algorithm 3, whereas the
k(k—1) q k1)
4 2

latter always requires extra f.p. additions an additional comparisons.

5 Variants

Both methods require precomputed tables whose sizes are quadratic. Using a Horner-like scheme, it is
simple to reduce the sizes of these tables to linear, as we show in the next subsection.

Also, both methods can be adapted to yield probabilistic algorithms. Such an algorithm reports a
wrong answer with a (very small) probability. The advantage of the first algorithm is that it parallelizes
the sign detection method in polylogarithmic time. The advantage of the second algorithm is that it
may require to compute much fewer moduli.

5.1 Reducing the size of precomputed tables

In algorithms 1, 2, and 3, the size of the precomputed tables is quadratic in k. This can clearly be a
limitation for large values of k, for which our algorithms are of highest interest. Below, we indicate how
to reduce the size of the precomputed tables to linear for fixed k for algorithms 1, 2, and to linear for
variable k for algorithm 3.

Assume that & is fixed in the use of the algorithm 1. Under the notation of section 3, we notice that

W™D = @

mj mod m;.
Therefore, if z; = miwl(j) mod m; in step 2 of algorithm 1, we see that at the next iteration of step 2
(before j — j — 1), z; — z; X m; mod m; will update the value of z; correctly. We thus modify the
algorithm as follows:

Algorithm 4 : Lagrange’s method with table of linear size only for fixed &
Precomputed data: m;, wi(k), gj, forall1 <j<kandalll <i<k

Input: integers k and x; € [—%, "2”), foralll1<i<k

Output: sign of =, the unique solution of x; = x mod m; in [— m;k) , m;“)

Precondition: |z| < m;k) (1 —ep)

1. Letj «— k, z; = éL'i’wEk) mod m; for all 1 < <k,

k
S®) — frac (Z =)
m;

i=1
2. While |SY| < ¢; and j >0, do
z; = zim; mod m; for 1 <i<j
J—Jj—1

J
S “i
— frac (; s
8. Return sign of SY) > 0.
For algorithm 3, we notice as indicated in [28, Ex.4.3.2(7)] that UEQ1 = ugj)mi. Since ugj) = t;, this
suggests the use of the following Horner-like scheme:

yi =t (@5 — 21 —ma(y2 —ma (ys — - -mj—2y; — 1)) mod mj.

Replacing this expression in step 2 of algorithm 3 shows that only the precomputed quantity ¢; needs to
be computed for all j in the desired range. Thus the precomputed table for algorithm 3 modified is only
of size linear in the maximum number of moduli.

5.2 A probabilistic variant of Lagrange’s method

This section introduces a probabilistic approach based on Lagrange’s method. In algorithm 2, there can

be at most hworst = [log(2m(k)5k —1)/log ozk-| iterations. The actual number hgctyar Of iterations is

the minimum & that satisfies |zag™| > 2m®ey. In that algorithm, we find this number by repeatedly
incrementing h. In theory we could perform a binary search on h by testing whether |acakh| > 2mMey.
Since the value of z is unknown, however, we can only test if |:vozkh mod m(k)| > 2mFey by using step
2 of the algorithm. If this is detected to hold for some value of h, then necessarily |zai”| > 2m®ey, ie.
hactual < h, and we should try a smaller value of h. Otherwise, it is only a probabilistic indication that
|makh| < 2mMey, ie. hactuar > b, but we may try nevertheless a greater value of h.

We therefore begin with h, and then double the value of A until the condition |zag" mod m®)| >
Zm(k)sk is true. Then the range [0, h] is guaranteed to contain the value hqctuar. We may then perform
a binary search for hgetuar in the range [0, h]. Then for any intervals [h_,h4) computed in the binary
search, hy is a guaranteed upper bound, whereas h_ is a lower bound only with a high probability.

When the interval reduces to [h, h + 1), the sign can be determined by using algorithm 2. We call this
technique binary search in a randomized range.

Since 2¢y, is much smaller than 1, the probability that, for some fixed h, k, i, a random «x in the range
() (k)
T2 T2

nonzero. The speedup is obtained by the fact that only O(log k) iterations are processed. The resulting
algorithm performs only O(klog k) operations. It may be executed on [k/log k] processors in parallel
time O(log? k).

) satisfies [z, mod m™| > 2m® ey but not |zar”| > 2m*ey is extremely small, yet

Remark 6. Tt is possible — although we do not detail it here — to remove the probabilistic aspect
of this technique, that is, to certify whether the lower bound h_ is correct. This method may require, in
the worst case, quadratic time but, with high probability, it has time complexity in O(nlogn), just like
our probabilistic algorithm.

5.3 A probabilistic variant of Newton’s method

We propose below a probabilistic variant of algorithm 3 which, moreover, removes the need of an a prior:
knowledge of k. The principal feature of Newton’s approach is its incremental nature. In our variant, this
may lead to faster termination, before examining all £ moduli. Informally, this should happen whenever
the magnitude of = is significantly smaller than m*) /2, in which case we would save the computation
required to obtain z; for all larger j. This saves a significant amount of computation if termination
occurs earlier than the static bound indicated by k.

This occurs when the method is used in conjunction with some filter that handles the cases of large
absolute value, or when the problem is such that the distribution of = is not uniform but is instead biased
towards smaller values. An example is the construction of the convex hull facet structure, where the gain
due to the probabilistic termination is quantified [16]. For example, the 7-dimensional convex hull of 100
points with integer coordinates of 31 bits is accelerated by more than 5%.

Step 2 is modified to include a test of y; against zero. Clearly, y; = 0 precisely when z() = 20~1,
Then we may deduce that) = 2z = 2, with a very high probability, and terminate the iteration. In
terms of mixed-radix representation, this assumes that when y; = 0 then all more significant y;’s will
also be zero. This is no different from escaping in multiprecision arithmetic when some digit (or sequence
of consecutive digits) turns out to be zero, assuming then that the higher order digits also turn out to
be zero.

Algorithm 5 : Yield earlier termination of algorithm 3 for absolutely smaller input. Algorithm 3 is
modified exactly as shown.

Input: integers x; € [— LR %) fori=1,... as required in the course of the algorithm; no need for k
Output: sign of © with very high probability

2. Terminate the loop also if y; =0

By lemma 3.1 of [16], this algorithm terminates with a failure with probability bounded by (k —
2)/Mmin, Wwhere
Mmin = min{ml, ma,..., mk}

For k < 12, mmin > 225, the error probability is less than 1076 for uniform distributions. This relies more
on the low probability of early termination than on the error probability in case of early termination.
But a more careful analysis can reduce the overall probability by exploiting the correlation of failure at
different stages and, more importantly, accounting for the non-uniform distribution. For experimental
support of this claim, we refer to [16].

6 Applications

Our solutions to problem 1 have many applications. Below we focus on three major areas, namely
computation with real algebraic numbers, exact geometric algorithms, and the ubiquitous question of

10

determinant sign. Additional applications include numeric algorithms for reducing the solution of general
systems of analytic equations to sign evaluation [38], deciding the theory of the reals [12, 4], geometric
theorem proving [34], and manipulating sums of radicals [2].

6.1 Real algebraic numbers

Being able to compute efficiently with algebraic numbers is important but also necessary in a variety of
computer algebra applications, as well as when calculating over the reals. In particular, it is a fundamental
operation when computing with algebraic numbers, which is a robust way to treat real numbers, and in
general when numeric computation does not offer the required guarantees.

The critical operation is deciding the sign of a multivariate polynomial expression with rational
coefficients on a set of points. We will show how our solution can be applied to the manipulation of real
algebraic numbers. We refer to [14, 31] for a comprehensive review of the algebraic concepts involved.

A popular paradigm for manipulating algebraic numbers is the use of Sturm sequences. Given two
polynomials P and @ in Z[X], deg(P) > deg(Q), we consider a Sturm sequence ¥ = (Po, P1,..., Pn)
of polynomials with P, = P, P = @, that is, a sequence such that, for all : = 1,...,m, a; Pip1 =
Bi Pi—1 + Q: P; for some integers a; and 3; and some Q; € Z[X] . This implies that deg(P;) < deg(P;i—1)
for all # =1,...,m and hence that the sequence is finite.

We will assume that P and @ are square-free and do not vanish at a or b. Let Varp g(a) be the
number of sign changes of the sequence X(a) = (FPo(a), Pi(a),..., Pn(a)), and define Varpgla,b) =
Varp,g(a) — Varp,g(b). Sturm sequences have the property that

Varp,gla,b) = Y sign(P'(7)Q(7)),

where v ranges over all roots of P in [a,b). Of special interest is the case where @ is the derivative P' of
P. In this case, we write Varp[a,b) for Varp pr[a,b), and this number equals the number of roots of P
in [a,b).

It turns out that the coefficients of the P;’s grow very fast, even for simple P and). This phenomenon
is well known in computer algebra, and seems to require the computations over very large integers. One
popular alternative is modular arithmetic. The bottleneck of this approach (at least in theory) is the
computation of Varp g[a,b], which involves many sign reconstructions. The recursive relaxation of the
moduli is ideally suited because the exact value of P;(a) is never needed, but only its sign. Therefore,
once the sequence ¥ is computed in the several finite fields, we may evaluate X(a) in each finite field and
apply algorithm 1 to compute the corresponding sign sequence and finally Varp(a).

We examine the complexity of our algorithm for computing the sign sequence corresponding to X (a)
at some rational number a. Let n denote the maximum degree of P and @, L denote the maximum
size of the coefficients of the input polynomials P, @, and ! the sum of the sizes of the numerator and
denominator of a. The degrees are decreasing so the length of the sequence is m < n. As shown in [14],
the time to compute the sequence ¥ is O(n*(L 4+ logn)?, and the coefficient of the P;’s are bounded by
22n(L+legn) Hence Pi(a) is bounded by

|P7, (a)| _ n22n(L+log n)21n,

and therefore O(n(L + [+ logn)) moduli are sufficient. By using algorithm 1, we correctly retrieve the
sign of Pi(a) in time O(n?(L + [+ logn)?), for each i = 0,...,m. If the sequence is known in each
finite field, the computation of the sign sequence corresponding to ¥(a) can therefore be done in time
O(n3(L + [+logn)?) in the worst case. We summarize this in the following theorem:

Theorem 6.1 Knowing the Sturm sequence ¥ modulo each m;, i =1,..., k, where k = O(n(L+Il+logn),
one can compute Varp(a) in time O(n®(L + [+logn)?).
The performance given in the above theorem is in the worst case, however, and in practice, algorithm 1
will run in time O(k) = O(n(L + [+ logn)). This lowers the expected complexity of the computation of
Varp(a) to O(n?(L + [4+ logn)) in practice.

As an application of those ideas, we show how to manipulate algebraic numbers. An algebraic number
a can be represented symbolically by a square-free polynomial P € Z[X] and an interval I = [a, b], such

11

that « is the only root of P in [a,b] (with multiplicity at least but not necessarily 1). Such an interval
can be found by evaluating Varp at O(n(L + logn)) points [14]. Moreover, in this context, separation
bounds imply that { = O(n(L + logn)). The total time of the root isolation procedure is therefore
O(n®(L + logn)®). The expected cost is therefore dominated by the sign computations. Practically,
however, this cost is expected to be O(n*(L +1logn)?), which is the same as the cost of the computation
of the Sturm sequence.

To compare two algebraic numbers o 22 (P, I) and 8 = (Q, J), we may first assume that they both
lie in I N J = [a,b], otherwise the comparison can be performed on the intervals. (This assumption can
be checked by evaluating Varp at the endpoints of J and Varg at the endpoints of I.) Then (see [14]),
a > B if and only if

Varp,gla,b] - (P(a) = P(b)) - (Q(a) — Q(b)) > 0.
The expensive part of this computation is therefore the computation of Varp g[a,b], which can be done
in time O(n*(L 4 logn)? for the computation of the Sturm sequence and O(n®(L + [+ logn)?) for the
sign determinations. Practically, the cost of the sign computation is negligible compared to the cost of
the computation of the Sturm sequence.

Extension to intersections of algebraic curves can be done in much the same fashion, using multivariate
Sturm theory; see [31] and the references thereof. It has been applied in the context of solid modeling
by [27] who use modular arithmetic with a bignum library for the sign reconstruction.

6.2 Exact geometric predicates

Exact geometric predicates is the most general way to provide robust implementations of geometric
algorithms [15, 20, 41, 17]. For instance, orientation and in-circle tests or the comparison of segment
intersections, can all be formulated as deciding the sign of a determinant. Before studying the latter
question in its own right, we survey several problems in computational geometry which can make use of
our algorithms to achieve robustness and efficiency.

Modular arithmetic becomes increasingly interesting when the geometric tests are of higher dimension
and complexity. They are central in, notably, convex hull computations: this is a fundamental problem
of computational geometry and of optimization for larger dimensions. Computing Voronoi diagram of
points reduce to convex hulls in any dimension, but is mostly done in dimensions 2 and 3. Nevertheless,
the sweepline algorithm in 2 dimensions involves tests of degree 20 and modular arithmetic can be of
substantial help, in conjunction with arithmetic filters [21]. For Voronoi diagrams of segments, the tests
become of even higher degree and complexity [11], and f.p. computation is likely to introduce errors, so
exact arithmetic is often a must.

Even for small dimensions, the nature of the data may force the f.p. computation to introduce
inconsistencies, for instance, in planarity testing in geometric tolerancing [40]. Here, one must determine
if a set of points sampling a plane surface can be enclosed in a slab whose width is part of the planarity
requirements. The computation usually goes by computing the width of the convex hull, and the data is
usually very flat, hence prone to numerical inaccuracies.

In geometric and solid modeling, traditional approaches have employed finite precision floating point
arithmetic, based on bounds on the roundoff errors. Although certain basic questions in this domain are
now considered closed, there remain some fundamental open problems, including boundary computa-
tion [24]. Tolerance techniques and symbolic reasoning have been used, but have been mostly restricted
to polyhedral objects; their extension to curved or arbitrary degree sculptured solids would be com-
plicated and expensive. More recently, exact arithmetic has been proposed as a valid alternative for
generating boundary representations of sculptured solids, since it guarantees robustness and precision
even for degenerate inputs at a reasonable or negligible performance penalty [27]. One key component
is the correct manipulation of algebraic numbers (see the previous section).

6.3 Sign of a matrix determinant

Computing the sign of a matrix determinant is a basic operation in computational algebra and geometry,
applied to testing the sign of minors, subresultants as well as several geometric tests [31, 5, 13, 3].

12

To understand the complexity of the problem consider that the entries of the determinant are them-
selves algebraic expressions. For instance, the in-circle test can be reduced to computing a 2 x 2 deter-
minant, whose entries have degree 2 and thus require 2b+ O(1)-bit precision to be computed exactly [3].
Computing these entries by using modular arithmetic enables in-circle tests with b-bit precision while
still computing exactly the sign of a 2 x 2 determinant.

To compute an n x n determinant modulo my, we may use Gaussian elimination with a single final
division. At step ¢ < n of the algorithm, the matrix is

0 ai;

>

0 Qln, g

and we assume that the pivot a;; is invertible modulo mj. Then we change line L; to a;;L; — o L;
for all j =7+ 1,...,n. At step n of the algorithm, we multiply the coefficient o, by the modular
inverse of the product [[/"-,' af';*. This gives us the value of the determinant modulo my. Note that
the same method but with non-modular integers and a final division would have involved exponentially
large integers and several slow divisions at each step. Nevertheless, it is only the range of the final result
that matters for modular computations. This shows a big advantage of modular arithmetic over other
multiprecision approaches.

The pivots should be invertible modulo my. If my is prime, the pivot simply has to be non-zero
modulo myj. The algorithm can be also implemented if m}, is a power of a prime, or if my, is the product
of two primes. This would be desirable mainly for taking my = 2% for which modular arithmetic is
done naturally by integer processors, though here, special care must be taken about even output. Other
choices of mj, do not seem to bring any improvement.

With IEEE double precision (b = 53), we choose moduli smaller than 27, so that 2(%k)? < 2°%
Gaussian elimination intensively uses (ad — bc)-style operations; here we may apply one final modular
reduction, instead of two for each product before subtracting.

This algorithm performs O(n®) operations for each modulus m;. With Hadamard’s determinant
bound and mj, greater than 22, only k = [2nlogn] finite fields need to be considered. Hence the
complexity of finding the sign of the determinant is O(n*logn) single precision operations, when the
entries are b-bits integers.

More generally, when the entries are integers of bit-length L, we have to take into account the
computation of these n” entries modulo m;, for i = 1,..., k. Each computation amounts to dividing
an L-bit integer by a single-precision integer, in time O(L), for a global cost of kn?O(L). In this case,
Hadamard’s bound yields & = [2n(logn + L)]. Hence, the entire computation takes time O(n®(n +
L)(logn+ L)).

To summarize:

Theorem 6.2 The algorithm described above computes the sign of a n X n determinant whose entries
are integers of bit-length by using O(n®(n + L)(logn + L)) single precision operations.

Using the algorithm of Bareiss for this problem yields a bound O(n® M (n(logn + L)), where M (p) is the
number of operations to compute the product of two p-bit integers. In practice, we almost always have
L = O(n). Using multiplication in time M (p) = plog ploglogp yields a slightly worse bound than given
in the theorem, and with a huge overhead. More practically, using multiplication in time M (p) = O(p?)
yields an order of magnitude slower. Our algorithm is easy to implement and entails little overhead.
This is also corroborated by the practical study of section 7.

On a O(n®log n)-processor machine, the time complexity drops to O(n), if we use customary paral-
lelization of the Gaussian elimination routine for matrix triangulation (cf. [23]), which gives us the value
of the determinant. (We apply this routine in modular arithmetic, with simplified pivoting, concurrently
for all m;’s.) Theoretically, substantial additional parallel acceleration can be achieved by using ran-
domization [5, ch. 4], [32], yielding the time bound O(log®n) on [n®logn] arithmetic processors, and
the processor bound can be decreased further to O(n**"®), by applying asymptotically fast algorithms
for matrix multiplication.

13

To have fewer moduli m; involved and thus accelerate the computation, we may try to refine the
Hadamard bound or to make use of known upper bounds. In particular, such a refinement can be
obtained as a by-product of numerical algorithms, which effectively compute the sign of the determinant
unless the determinant has a large absolute value [6, 33]. Another way to get a better upper bound
is to use a filter with certified arithmetic, such as interval arithmetic. Such a filter will not be able to
determine the sign but will return an upper bound which is most of the times much more accurate than
Hadamard’s bound.

7 Experimental results

7.1 Sign reconstruction in RNS

We present several benchmark results of our diverse methods for reconstructing the sign of an integer
T € [— m(;) , %k)) represented by its residues z; = x mod m, ¢ = 1,... k. For the data generation,

m@® (@

5=, T) The first

coordinate is [, the second is k, and the vertical coordinate is the result of the benchmarks, namely the
running times of the algorithms.

In figure 7.1(a), we clearly see the k-quadratic behavior of Newton’s method for all values of [, and the
linear behavior of Lagrange’s method near the diagonal & = [. We also notice that Lagrange’s method
is always more powerful than Newton’s method. In figure 7.1(b), we see the differences in running
times of the standard and the generalized Lagrange methods. They are roughly comparable, except that
the generalized method is faster for [= 0, because we have implemented the method of our remark 1.
This method could have been implemented for all the other methods as well. Finally, we compare the
probabilistic and standard Newton’s method in figure 7.1(c). We observe that the complexity of the
probabilistic method is indeed quadratic in [only, in complementarity with Lagrange’s method, which is
quadratic in k& — I. We have not encountered (with our random generation) even a single case of failure
for the probabilistic routine.

The measurements are performed on a 200MHz Sun Ultra Sparc workstation. We see for instance
that they are negligible with those of the following determinant sign computation, showing that sign
determination in RNS using our methods becomes a negligible portion of the determinant sign compu-
tation.

[< k residues are chosen at random and the others are computed such that z € [—

gen. L

BN
[Sl=r=}
o [=lsl=ls}
[cle]olala)

Figure 1: The running times in us of the different methods, for 0 <1 < k& < 100.

7.2 Determinant sign

We present several benchmark results of the described methods for computing the sign of a determinant
and compare them with different existing packages. This asserts the practical interest of our algorithms.

e Method FP is a straightforward f.p. implementation of Gaussian elimination which, of course,
cannot guarantee correctness of the result. In particular, FP fails for ill-conditioned matrices.

14

e Method MOD is an implementation of modular Gaussian elimination as described in section 6 using
our recursive relaxation of the moduli.

e Method PROB is an implementation of modular Gaussian elimination using the probabilistic New-
ton variant described in section 5.3, where the computation is stopped when the probability of
having a bad result is about 27°%. In all the random matrices we tested, PROB never failed.

e Method CL has been implemented by us based on [13, 10]. As we compare with methods that
handle arbitrary dimensions, we did not specialize the implementation for small dimensions as is
done in [10] (this would provide an additional speedup of approximately 3).

e Method GMP is an implementation of Gaussian elimination using the GNU Multiprecision Package,
for dimension lower than 5, and an implementation of Bareiss’ extension of Gaussian elimination,
for higher dimensions.

e Method LEDA uses the routine sign_of_determinant (integer_matrix) of Leda [11].

All implementations are in C, except LEDA which is in C++. Note that all methods could also be
filtered, which would yield running times comparable to those of FP, on random inputs.

To explain the fact that smaller determinants require more time, keep in mind that no special zero test
is performed and a static deterministic bound is used on the magnitude. Of the other methods available,
the lattice method of [10] has not yet been implemented in dimensions higher than 6; LN [21] provides
a very fast implementation in dimensions up to 5 but was not available to us in higher dimensions.

All tests were carried out on a 200MHz Sun Ultra Sparc workstation. Each program is compiled with
the compiler that gives best results. Each entry in the following tables represents the average time of one
run in microseconds, with a maximum deviation of about 10%. We concentrated on determinant sign
evaluation and considered three classes of matrices: random matrices, whose determinant is typically
away from zero, in table 1, almost-singular matrices with single-precision determinant in table 2, and
lastly singular matrices with zero determinant in table 3. The coefficients are integers of bit-size 53 — n
(due to restrictions of Clarkson’s method).

| n]] FP] MOD | PROB | CL | GMP | LEDA |
2] o1 7.6 8.0 [204 6.0 72.0
3] 08| 161 178 | 855 | 32.8 296
4| 20| 36.0 39.7 | 169 | 136 873
51 39| 125 123 | 393 | 435 | 2020
6| 63| 186 196 | 517 | 1064 | 4290
T 97| 329 327 | 966 | 2280 | 8130
8 || 13.7 | 472 489 | 1192 | 4130 | 13980
9| 193 | 732 TAT | 1894 | 6540 | 23100

10 || 25.8 1021 1038 | 3080 | 10810 35100
11 || 33.8 1400 1423 | 4240 | 16200 51600
12 || 434 1865 1898 | 5530 | 24200 73900
13 || 55.5 2610 2640 | 7570 | 33000 | 102200
14 || 67.3 3330 3370 | 8580 | 44500 | 138100

Table 1: Performance on random determinants.

Among the methods that guarantee exact computation, our implementations are at least as efficient as
the others, and for certain classes of input they significantly outperform all available programs. Further-
more, our approach applies to arbitrary dimensions, whereas methods that compute a f.p. approximation
of the determinant value are doomed to fail in dimensions higher than 15 because of overflow in the f.p.
exponent. The running times are displayed in tables 1-3. (For small dimensions, specialized implemen-
tations can provide an additional speedup for all methods.) Our code is reasonably compact and easy to
maintain. A possible improvement we plan to explore further is parallelization.

Some side effects may occur, due to the way we generate matrices. The code of the modular package
is free, and anyone can benchmark it on the kind of matrices that he uses. It is available via the URL
http://www.inria.fr/prisme/personnel/pion/progs/modular.html

15

[n] FPMOD [PROB| CL [GMP | LEDA |
2 01] 82 80 226] 64 659
3 08| 186| 123 | 606 | 268 | 202
4| 20| 398 | 390 | 1150 | 85.7| 503
51 38| 121| 750 | 2260 | 174 | 1078
6| 63| 195 143 | 3860 | 524 | 2020
71 97| 328 203 | 6200 | 852 | 3680
81 13.9 | 484 | 309 | 8840 | 2150 | 5320
9| 193 | 745 | 420 | 14250 | 2140 | 8460
10 || 26.2 | 1041 613 | 19460 | 3810 | 11690
11 || 33.9 | 1425 789 | 27000 | 4270 | 12960
12 || 43.3 | 1899 | 1199 | 35900 | 8300 | 25000
13 || 54.6 | 2630 | 1365 | 45000 | 9030 | 30600
14 || 68.1 | 3370 | 1986 | 49200 | 17270 | 44200

Table 2: Performance on small determinants.

| »n]| FP]MOD | PROB | CL]| GMP | LEDA]
2 o1 9.1 4.7 250 6.4 58.4
3| 08| 196 74 602 | 241 195
4 20| 425 122 | 1420 | 911 572
5 38| 124 27.9 | 2340 | 216 | 1330
6| 63| 198 40.0 | 3980 | 1095 | 2920
71 97| 331 58.0 | 6170 | 1751 | 5640
8| 13.8 | 491 76.4 | 10900 | 3940 | 10140
9| 193 | 756 102 | 13300 | 5260 | 22500
10 || 26.3 | 1048 133 | 17400 | 10560 | 30600
11 || 344 | 1432 169 | 22600 | 13110 | 42000
12 || 43.6 | 1905 215 | 34900 | 24000 | 68800
13 || 54.8 | 2650 265 | 39400 | 33100 | 80300
14 || 68.0 | 3380 325 | 49400 | 42800 | 110900

Table 3: Performance on zero determinants.

8 Conclusion

Residue Number Systems (RNS) have been used because they provide a highly parallelizable technique
for multiprecision. As parallel and multiprocessor computers are becoming more available, RNS provide
an increasingly desirable implementation of multiprecision. This comes in sharp contrast with other
multiprecision methods that are not easily parallelizable. Perhaps the main problem with RNS is that
comparisons and sign computations seem to require full reconstruction and, therefore, use standard mul-
tiprecision arithmetic. We show that one may in fact use only single precision and still perform these
operations exactly and efficiently. The speed of the proposed algorithms also relies on their implementa-
tion using exclusively f.p. arithmetic.

In some applications, the number of moduli may be large. Our algorithms may be easily implemented
in parallel with a speedup depending almost linearly on the number of processors. Another merit of our
methods is their simplicity, which makes them attractive to an implementor, and their quasi-linear
complexity on the average. Although their worst-case complexity does not achieve the record upper
bounds, in practice they appear as the fastest methods today for certain applications.

A relevant application is to compute the sign of a determinant. This problem has received considerable
attention in computational geometry, CAD, geometric modeling, as well as symbolic algebra, yet the
fastest techniques are usually iterative and do not parallelize easily. Moreover, they usually handle only

16

single precision inputs. Section 7 shows that our techniques are comparable in speed or even faster than
other techniques and can easily handle arbitrarily large inputs.

A central problem we plan to explore further is to design algorithms that compute upper bounds on
the quantities involved to determine how many moduli should be taken. For determinants, the static
bounds we use seem to suffice for applications in computational geometry [21]. They might be overly
pessimistic in other areas (such as tolerancing or symbolic algebra) where the nature of the data or
algebraic techniques might imply much better bounds. In this respect, valid approaches include the
probabilistic variants introduced above.

As an extension of our algorithms, we may also recover the closest f.p. approximation of a rational
number given its modular representation, even though it may not be f.p. representable. This would lead
us to a hybrid symbolic/numeric approach to RNS. Such a filtered RNS is outlined in [7]. Root isolation
as explained in section 6.1 performs this operation for the quite general case of algebraic numbers.

As an application of filtered RNS, there are geometric algorithms whose input is the output of
another algorithm. Exact representation of this output would jeopardize the efficient implementations
of the subsequent algorithm. A common solution is to round the output of the first algorithm. A key
ingredient of these techniques is that every number is rounded to the nearest representable number, so
as to ensure that comparisons will not inadvertently be inverted, even though inequalities might become
equalities. These renormalization techniques [30, 36] may be implemented using a filtered modular
arithmetic and more precisely exact rounding [9].

Acknowledgments

We are thankful to two referees for their suggestions to improve this paper, and to Christoph Burnikel
for numerous comments, and for suggesting the linear precomputed tables of section 5.1.

References

[1] A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and Analysis of Computer Algorithms
(Addison-Wesley, Reading, MA, 1974).

[2] V. Akman and R. Franklin On the Question “Is Y7 \/a; < L?” Bull. EATCS 28 (1986) 16-20.

[3] F. Avnaim, J.-D. Boissonnat, O. Devillers, F. Preparata, and M. Yvinec, Evaluation of a new
method to compute signs of determinants, in: Proc. 11th Annu. ACM Sympos. Comput. Geom.
(1995) C16-C17.

[4] S. Basu, R. Pollack, and M.-F. Roy, On the combinatorial and algebraic complexity of quantifier
elimination, in: Proc. IEEE Symp. Foundations of Comp. Sci. (1994).

[6] D. Bini, V. Y. Pan, Polynomial and Matrix Computations. Vol. 1: Fundamental Algorithms
(Birkhauser, Boston, 1994).

[6] D. Bini, V. Y. Pan, Y. Yu, Certified numerical computation of the sign of matrix determinant,
Preliminary report (1997).

[7] J.-C. Bajard, L. S. Didier, J.-M. Muller, A new Euclidean division algorithm for residue number
systems, in: Proceedings of ASAP (1996) 45-54.

[8] H. Bronnimann, I. Z. Emiris, V. Pan, and S. Pion, Computing exact geometric predicates using
modular arithmetic with single precision, in: Proc. ACM Symp. on Computational Geometry (1997)
174-182.

[9] H. Bronnimann and S. Pion, Exact rounding for geometric constructions, in: Proc. of
GAMM/IMACS Int. Symp. on Scientific Computing, Comput. Arithm. and Validated Numerics
(1997) XIII-1-XIII-3.

[10] H. Brénnimann, M. Yvinec, Efficient exact evaluation of signs of determinants, Research Report
3140 (INRIA Sophia-Antipolis, 1997).

17

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]
[26]

27]

28]

[29]

[30]

C. Burnikel, J. Kénnemann, K. Mehlhorn, S. N&her, S. Schirra, and C. Uhrig, Exact geometric
computation in LEDA, in: Proc. 11th Annu. ACM Sympos. Comput. Geom. (1995) C18-C19.
Package available at http://www.mpi-sb.mpg.de/LEDA/leda.html.

J. F. Canny, An improved sign determination algorithm, in: H.F. Mattson, T. Mora, and T.R.N.
Rao, ed., Proc. Intern. Symp. Applied Algebra, Algebraic Algorithms and Error-Correcting Codes,
Lecture Notes in Computer Science, Vol. 539 (Springer, Berlin) 108-117.

K. L. Clarkson, Safe and effective determinant evaluation, in: Proc. 33rd Annu. IEEE Sympos.
Found. Comput. Sci. (1992) 387-395.

G. E. Collins and R. Loos, Real zeros of polynomials, in: B. Buchberger, G.E. Collins, and R. Loos,
ed., Computer Algebra: Symbolic and Algebraic Computation (Springer, Wien, 2nd edition, 1982)
83-94.

H. Edelsbrunner and E. P. Miicke, Simulation of simplicity: A technique to cope with degenerate
cases in geometric algorithms, ACM Trans. Graphics 9:1 (1990) 67-104.

I. Z. Emiris, A complete implementation for computing general dimensional convex hulls, to appear
in: Internat. J. Comput. Geom. & Appl. (1997). Preliminary version as Research Report 2551
(INRIA Sophia-Antipolis, France, 1995).

I. Z. Emiris and J. F. Canny, A general approach to removing degeneracies, SIAM J. Computing
24:3 (1995) 650-664.

I. Z. Emiris, V. Y. Pan, and Y. Yu, Modular arithmetic for linear algebra computations in the real
field, to appear in: J. Symbolic Computation (1998).

S. Fortune, Numerical stability of algorithms for 2-d Delaunay triangulation, and Voronoi diagrams,
in: Proc. 8th Annu. ACM Sympos. Comput. Geom. (1992) 83-92.

S. Fortune and C. J. Van Wyk, Efficient exact arithmetic for computational geometry, in: Proc.
9th Annu. ACM Sympos. Comput. Geom. (1993) 163-172.

S. Fortune and C. J. Van Wyk, Static analysis yields efficient exact integer arithmetic for compu-
tational geometry, ACM Trans. on Graphics (1996).

D. Goldberg, What Every Computer Scientist Should Know About Floating-Point Arithmetic,
ACM Comput. Surv. 32:1 (1991) 5-48.

G. H. Golub and C. F. van Loan, Matrix computations (Johns Hopkins University Press, Baltimore,
Maryland, 1996).

C. M. Hoffmann, How solid is solid modeling? in: Applied Computational Geometry, Lecture Notes
in Computer Science, Vol. 1148 (Springer, Berlin, 1996) 1-8.

C. M. Hoffmann, J. E. Hopcroft, and M. T. Karasick, Robust set operations on polyhedral solids,
IEEE Comput. Graph. Appl. 9:6 (1989) 50-59.

C. Y. Hung, B. Parhami, An approximate sign detection method for residue numbers and its
application to RNS division, Computers Math. Applic. 27:4 (1994) 23-35.

J. Keyser, S. Krishnan, and D. Manocha, Efficient B-rep generation of low degree sculptured solids
using exact arithmetic, Technical Report 40 (Dept. Computer Science, Univ. N. Carolina, Chapel
Hill, 1996).

D.E. Knuth, The Art of Computer Programming: Seminumerical Algorithms, Vol. 2 (Addison-
Wesley, Reading, Massachusetts, 1981 and 1997).

M. Lauer, Computing by homomorphic images, in: B. Buchberger, G.E. Collins, and R. Loos,
ed., Computer Algebra: Symbolic and Algebraic Computation (Springer, Wien, 2nd edition, 1982)
139-168.

V. Milenkovic, Double precision geometry: a general technique for calculating line and segment
intersections using rounded arithmetic, in: Proc. 30th Annu. IEEE Sympos. Found. Comput. Sci.
(1989) 500-505.

18

31]
32]

[33]
[34]
[35]
[36]
[37]
[38]
[39]

[40]

[41]

B. Mishra, Algorithmic Algebra (Springer, New York, 1993).

V. Y. Pan, Parallel computation of polynomial GCD and some related parallel computations over
abstract fields, Theoret. Comput. Sci. 162:2 (1996) 173-223.

V. Y. Pan, Y. Yu, C. Stewart, Algebraic and numerical techniques for the computation of matrix
determinants, Computers & Math. (with applications) 34:1 (1997) 43-70.

A. Rege, A complete and practical algorithm for geometric theorem proving, in: Proc. ACM Symp.
on Computational Geometry (1995) 277-286.

N. S. Szabo, R. I. Tanaka, Residue arithmetic and its applications to computer technology (McGraw
Hill, 1967).

J.R. Shewchuk, Robust adaptive floating-point geometric predicates, in: Proc. 12th Annu. ACM
Sympos. Comput. Geom. (1996) 141-150. .

K. Sugihara and M. Iri, A robust topology-oriented incremental algorithm for Voronoi diagrams,
Internat. J. Comput. Geom. Appl. 4 (1994) 179-228.

M.N. Vrahatis, Solving systems of nonlinear equations using the nonzero value of the topological
degree, ACM Trans. on Math. Software 14:4 (1998) 312-329.

C. Yap, Towards exact geometric computation, Comput. Geom. Theory Appl. 7 (1997) 3-23.

C. K. Yap, Exact computational geometry and tolerancing metrology, in: D. Avis and J. Bose, ed.,
Snapshots of Computational and Discrete Geometry, Vol. 3, Tech. Rep. SOCS-94.50 (McGill School
of Comp. Sci., 1995).

C. K. Yap and T. Dubhe, The exact computation paradigm, in: D. Du and F. Hwang, ed.,
Computing in Euclidean Geometry (World Scientific Press, 1995).

19

