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Abstract

Sign determination is a fundamental problem in algebraic as well as geometric computing�
It is the critical operation when using real algebraic numbers and exact geometric predi�
cates� We propose an exact and e�cient method that determines the sign of a multivariate
polynomial expression with rational coe�cients� Exactness is achieved by using modular
computation� Although this usually requires some multiprecision computation� our novel
techniques of recursive relaxation of the moduli and their variants enable us to carry out
sign determination and comparisons by using only single precision� Moreover� to exploit
modern day hardware� we exclusively rely on �oating point arithmetic� which leads us to a
hybrid symbolic�numeric approach to exact arithmetic� We show how our method can be
used to generate robust and e�cient implementations of real algebraic and geometric algo�
rithms including Sturm sequences� algebraic representation of points and curves� convex hull
and Voronoi diagram computations and solid modeling� This method is highly paralleliz�
able� easy to implement� and compares favorably with known multiprecision methods from
a practical complexity point of view� We substantiate these claims by experimental results
and comparisons to other existing approaches�

� Introduction

Manipulation of real numbers on modern computers is largely done by using �xed�precision �oating�
point arithmetic �f�p� arithmetic for short�� Consequently� and due to the importance of numerical
computing� f�p� arithmetic has bene�ted from important infrastructural support� and extremely e�cient
hardware implementations are available� F�p� arithmetic is only approximate� however� While this
may be acceptable in performing numerically stable computations� it introduces many limitations and
is unacceptable in algebraic computation and in deciding geometric predicates� The goal of this paper
is to use �xed�precision f�p� arithmetic for performing exact computations� in order to decrease their
complexity� A major application of our algorithms is in manipulating real algebraic numbers exactly�
thus o�ering an alternative for an exact computation over the reals�

In computer algebra and symbolic computation� exact arithmetic is almost always assumed� When
approximate calculation is not an option� a popular approach is to use big�integer and big��oat multipreci�
sion packages� This implies that operands are computed and stored with arbitrary precision� including
intermediate quantities whose magnitude may be signi�cantly larger than that of the output values� To
remedy this problem� a substantial amount of work in the area has focused on modular arithmetic� which
allows most of the computation to be carried over �xed precision integers� However� the modular repre�
sentation of a rational number is typically not su�cient� and most problems require the reconstruction of
the exact number� which means that some arbitrary precision is still required� The main contribution of
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this paper are algorithms that determine the sign of such a number by using single precision operations
on its moduli� thus removing the need of any high precision computation� Real algebraic numbers are
represented as the unique root of a given polynomial in a given interval� Such a representation can be
computed by applying Sturm theory� Besides the computation of Sturm sequences� �nding the isolating
interval requires many computations of signs of polynomial expressions with integer coe�cients� The
major drawback of these methods is the slowdown due to the handling of full precision� so our algorithms
are ideally suited to this problem and analyzed in section 	�
�

In computational geometry� computer�aided design �CAD�� geometric modeling and computer graph�
ics� on the other hand� f�p� arithmetic is extremely popular because of its speed� Most of geometric
predicates can be expressed as computing the sign of an algebraic expression� which can be computed
by using f�p� arithmetic with a �xed �nite precision� Unfortunately� the roundo� errors may easily lead
to the wrong sign� causing the algorithm to fail on the input� This problem is often referred to as the
robustness problem ���� One solution to the robustness problem is to explicitly handle numerical inac�
curacies� so as to design an algorithm that does not fail even if the numerical part of the computation
is done approximately ���� ���� or to analyze the error due to the f�p� imprecision �
��� Such designs
are extremely involved and have only been done for a few algorithms� The general solution� it has been
widely argued� is to compute certain predicates exactly �

� 
�� 
�� ��� 
� �see also section 	���� This is
also the position taken by this paper� This goal can be achieved in many ways� computing the algebraic
expressions with in�nite precision ����� with a �nite but much higher precision that can be shown to
su�ce ��
�� or by using an algorithm that performs a speci�c test exactly� In the last category� much
work has focused on computing the sign of the determinant of a matrix with integer entries ��� 
�� 
���
which applies to many geometric tests �such as orientation tests� in�circle tests� comparing segment inter�
sections� as well as to algebraic primitives �such as resultants and algebraic representations of curves and
surfaces�� Recently� some techniques have been devised for handling arbitrary polynomial expressions
and f�p� representation ��	� but their complexity grows rather fast with that of the computation�

This paper proposes a method that determines exactly the sign of a multivariate polynomial with
rational coe�cients evaluated at a rational point� It uses no operations other than modular arithmetic and
f�p� computations with a �xed �nite �single� precision� We call the new technique the recursive relaxation
of the moduli� The key feature is the exact result� combined with the e�ciency of f�p� arithmetic on
modern day computers� Our methods can be used in many settings� including the operations in computer
algebra and exact geometric predicates mentioned above� as well as whenever numerical techniques need
an exact test� see section 	 for examples� In short� our methods combine the veracity of exact computation
with the speed of f�p� arithmetic and� therefore� contribute to the current initiative of cross�fertilizing
the areas of numeric and symbolic computing� Moreover� we propose several variants of our techniques
improving some aspects of the algorithm�

More speci�cally� our algorithms perform rational algebraic computations modulo several primes�
that is� with a lower precision� As shown in section �� this requires only single�precision f�p� operations�
The Chinese remainder theorem enables us to combine the resulting values together in order to recover
the desired output value� This is not a new trick� such a representation of integers by their moduli
is known as Residue Number Systems �RNS� and is popular because its provides a cheap and highly
parallelizable version of multiprecision arithmetic� It is impossible here to give a fair and full account
on RNS� but �
� ��� ��� ��� provide a good introduction to the topic� From a complexity point of view�
RNS allow to add and multiply numbers in linear time� The latter stage of combining the moduli to
reconstruct the explicit answer� however� was always perceived as the bottleneck of this approach because
higher precision computations were required ���� chap� � The recursive relaxation of the moduli enables
us to greatly accelerate this phase� since it only needs some simple single precision computations�

The closest predecessors of our work are apparently �
	�� ��	�� and ���� The algorithm of Hung
and Parhami ��	� corresponds to single application of the second stage of our recursive relaxation of the
moduli� Such a single application su�ces in the context of the goal of ��	�� that is� application to divisions
in RNS� but in terms of the sign determination of an integer� this only works for an absolutely larger
input� For smaller inputs� Bajard� Didier and M�ller ��� keep a �oating point estimate of the number�
which allows to guess beforehand how many loops of our generalized Lagrange algorithm should be
executed� We note that their technique handles over�ows gracefully� but it cannot handle integers larger
than those stored in the �oating point representation� which may be quite limiting� The maximum range
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of exponents in the IEEE �� Standard is ���� Our moduli are on the order of ���� Therefore� Bajard�
Didier and M�ller allow integers representable on � moduli only� In contrast� our technique allows for
more than ��� moduli� The article �
	� gives probabilistic estimates for early termination of Newton�s
interpolation process� which we apply in our probabilistic analysis of our algorithm �� Its main subject
is an implementation of an algorithm computing multidimensional convex hulls� The article �
	� does
not use our techniques of recursive relaxation of the moduli and does not discuss Lagrange�s approach�
The spirit of the present article is shared by �
��� where f�p� computation is used to calculate the most
signi�cant part of the answer� whereas modular arithmetic yields the least signi�cant part� A limited
subset of our results in preliminary form appeared as ����

Here is the outline of the paper� The next section introduces the di�erent arithmetics and de�nes
the problem at hand� Sections � and  correspond to the two algorithms for determining the sign of an
arbitrary rational de�ned by a set of moduli by performing single precision f�p� operations� Section �
elaborates some variants of these algorithms� Sections ��� constitute our main contribution and propose
deterministic as well as probabilistic algorithms� They are applied to computing over real algebraic
numbers� to determining exact geometric predicates� and to the ubiquitous question of determinant sign�
in section 	� The experimental results of section � support our claim that our algorithms are the fastest
today in practice� Our main results are summarized in section ��

� Exact sign computation using modular arithmetic

Floating point �f�p�� computations� Our model of a computer is that of a f�p� processor that
performs operations at unit cost by using b�bit precision �e�g�� in the IEEE �� double precision standard�
we have b � ���� It is a realistic model as it covers the case of most workstations used in research and
industry ���� ��� �	�� We will use mainly one basic property of f�p� arithmetic on such a computer� for all
four arithmetic operations� the computed result is always the f�p� representation that best approximates
the exact result� This means that the relative error incurred by an operation returning x is at most
��b��� and that the absolute error� is at most �blog jxj�b��c� In particular� operations performed on pairs
of integers smaller than �b are performed exactly as long as the result is also smaller than �b�

To be able to discuss the properties of f�p� arithmetic� it is convenient to introduce the following
notation ��	�� given any real number x� it is representable� over b bits if x � � or if x��blog xc�b is an
integer� ex denotes the representable f�p� number closest to x �with any tie�breaking rule if x is right
in�between two representable numbers�� and ulp�x� denotes the unit in the last place� that is� �blog jxj�bc

if x �� �� and � otherwise� With this notation� the absolute error in computing an operation that returns
x is �

�
ulp�x��

Modular computations� Letm�� � � � � mk be k pairwise relatively prime integers and letm �
Q

imi�
For any number x �not necessarily an integer�� we let xi � x modmi be the only number in the range��mi

�
� mi

�

�
such that xi�x is a multiple of mi� �This operation is always among the standard operations

because it is needed for reducing the arguments of periodic functions��
This operation can be extended modulo an f�p� numbers as follows� an f�p� number x is truncated to

a non�null f�p� number y and the result is de�ned as x � dx�ycy� Therefore� x mod mi is the result of
truncating x to mi� and the �signed� fractional part frac�x� of x is the result of truncating x to 
� Note
that the result of truncating x to a power of two is always representable if x is representable�

To be able to perform arithmetic modulo mi on integers by using f�p� arithmetic with b�bit precision�
we will assume that mi � �b����� Performing modular multiplications of two integers from the interval��mi

�
� mi

�

�
can be done by multiplying these numbers and returning their product modulo mi� �The

product is smaller than �b in magnitude and hence is computed exactly�� Performing additions can be
done very much in the same way� but since the result is in the range

��mi

�
� mi

�

�
� taking the sum modulo

mi can be achieved by adding or subtracting mi if necessary� Modular divisions can be computed using

�All logarithms in this paper are base ��
�We systematically ignore under�ows and over�ows� by assuming that the range of exponent is large enough� A few modern

packages now provide f�p� arithmetic with the exponent stored in a separate integers� which extends the IEEE �
� double
precision standard by quite a lot�
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the extended Euclid algorithm� we will need them in this paper only in section 	� Therefore� arithmetic
modulo mi can be performed on integers by using f�p� arithmetic with b�bit precision� provided that
mi � �b�����

Exact sign computation� In this paper� we consider the following computational problem�

Problem � Let k� b� m�� � � � � mk denote positive integers� m�� � � � �mk being pairwise relatively prime�

such that mi � �b����� and let m �
Qk

i��mi� Let x be an integer whose magnitude is smaller than

bm��c� Given xi � x mod mi� compute the sign of x by using only modular and �oating�point arithmetic

both performed with b�bit precision�

We will solve this problem� even though x can be huge and� therefore� not even representable by us�
ing b bits� In the worst case� our solutions require O�k�� operations and therefore do not improve
asymptotically over the standard multiprecision approach� They are simple� however� and require little
or no overhead� In practice� they only perform O�k� operations� Thus they are very well suited for
implementation�

� Lagrange�s method

According to the Chinese remainder theorem� x is uniquely determined by its residues xi� that is� Prob�
lem 
 is well de�ned and admits a unique solution� Moreover� this solution can be derived algorithmically
from a formula due to Lagrange� A comprehensive account of this approach can be found in ���� ����

��� The basic method

This section describes the basic algorithm relying on Lagrange�s approach� If x is an integer in the range��m
�
� m
�

�
� xi stands for the residue x modmi� vi � m�mi �

Q
j ��imj � and wi � v��

i modmi� then

x �

�
kX

i��

��xiwi� mod mi� vi

�
mod m� �
�

Trying to determine the sign of such an integer� we compute the latter sum approximately in �xed b�bit
precision� Computing a linear combination of large integers vi with its subsequent reduction modulo m
can be di�cult� so we prefer to compute the number

S �
x

m
� frac

�
kX
i��

�xiwi� modmi

mi

�
�

where frac�z� is the fractional part of a number x that belongs to
�� �

�
� �
�

�
�

If S were computed exactly� then we would have S � x�m� due to Lagrange�s interpolation formula�
In fact� S is computed with a �xed b�bit precision� Nevertheless� if we compute it by incrementally
adding the ith term and taking fractional part� the error bound follows the induction

�i � �i�� � ��b�� � ��b�

where the term ��b�� accounts for the error on computing the ith term of S� and the term ��b accounts
for the error on computing the incremental sum� Moreover� �� � ��b��� A technical problem can arise if
S is too close to a half�integer� because the fractional part may not be computed properly� We circumvent
this by assuming that jxj is less than m

�
�� � �k�� In this way� we can insure that S approximates x�m

within an absolute error bound �k � ��k � ����b���
Therefore� if jSj is greater than �k� the sign of x is the same as the sign of S� and we are done�

Otherwise� jxj � ��km� Since mk � �b����� we can say conservatively that ��km is smaller than
m

�mk
����k���� for all practical values of k and b� and hence we may recover x already from xi � x modmi

for i � �� � � � � k� �� that is� it su�ces to repeat the computation using only k� �� rather than k moduli�
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Recursively� we will reduce the solution to the case of a single modulus m� where x � x�� We will call
this technique recursive relaxation of the moduli� and we will also apply it in section ����

We will present our resulting algorithm by using additional notation�

m�j� �
Y

��i�j

mi�

v
�j�
i �

Y
����j
���i

m��

w
�j�
i �

�
v
�j�
i

���

mod mi� ���

S�j� � frac

�
jX

i��

xiw
�j�
i mod mi

mi

�
� ���

so that m � m�k�� vi � v
�k�
i � wi � w

�k�
i and S � S�k�� All the computations in this algorithm are

performed by using f�p� arithmetic with b�bit precision� Because this applies also to fractional part
computation� we must assume that x�m�k� is su�ciently far from half�integers� hence we assume that

jxj � m�k�

�
��� �k��

This assumption is not too restrictive since it is violated with very low probability �k for random xi� and
it can be remedied by computing one more residue xk���

Algorithm � � Compute the sign of x knowing xi � x mod mi

Precomputed data� mj� w
�j�
i � �j� for all � � i � j � k

Input� integers k and xi �
��mi

�
� mi

�

�
� for all � � i � k

Output� sign of x� the unique solution of xi � x mod mi in
h
�m�k�

�
� m

�k�

�

�
Precondition� jxj � m�k�

�
��� �k�

�� Let j � k � �
�� Repeat j � j � ��

S�j� � frac

�
jX

i��

xiw
�j�
i modmi

mi

�
until jS�j�j � �j or j � �

�� Return sign of S�j�

The following lemma bounds the number of operations performed by the algorithm in the worst case�

Lemma ��� Algorithm � computes the sign of x knowing its residues xi by using at most
k�k���

�
modular

multiplications�
k�k���

�
f�p� divisions�

k�k���
�

f�p� additions� and k � � f�p� comparisons� All of these

operations can be implemented in f�p� arithmetic�

Proof� From the preceding discussion� it is clear that the algorithm reports the sign of x� Indeed� upon

termination we have �jm
�j��� � jxj � m�j�

�
��� �j�� or else j � �� In any case� jS�j�j is an approximation

of jxj�m�j� with a su�ciently small relative error �bounded by �j� so that the sign of S�j� is exactly the
sign of x�

The mi�s and the w
�j�
i �s are computed once and for all and placed into a table� so they are assumed to

be available to the algorithm at unit cost� In step �� a total of j modular multiplications� j f�p� divisions�
and j f�p� additions �including taking the fractional part� are performed� �

In almost all practical instances of the problem� jxj is on the same order of magnitude as m�k�� If jxj
is not too small compared to m�k�� then only step k is performed� involving only at most k f�p� operations
of each kind� This is to be contrasted with full reconstruction� which requires 	�k�� operations� Thus
algorithm 
 is of great practical value�
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Let us also formalize the latter argument� Since x is chosen independently with m�� � � � �mk being
�xed� we may assume it corresponds to a random integer in the range 
�m

�
��� �k��

m
�
�� � �k��� Under

the uniform probability distribution in this range� the probability that jxj � ��km is � � ��k��� � �k��
Since �k is extremely small� this probability is very close to 
 and� therefore� the algorithm most likely
computes the sign of x correctly already at the �rst stage� The exception is the cases where jxj is biased
to be small as� for instance� when x represents the determinant of a nearly singular matrix� Such cases
are well handled by the algorithms of section ��

By using parallel implementation of the summation of k numbers on dk� log ke arithmetic processors
in �dlog ke time �cf� e�g� ��� ch���� we may perform algorithm 
 on dk� log ke arithmetic processors
in O�k log k� time� assuming each b�bit f�p� operation takes constant time� Furthermore� if

�
k�� log k

�
processors are available� we may compute all the S�j� and compare jS�j�j with �j � for all j � �� � � � � k
concurrently� This would require O�log k� time on

�
k�� log k

�
processors� Finally� if dtk� log ke processors

are available for some parameter � � t � k� we may perform algorithm 
 in O��k log k��t� time by batching
dte consecutive values of j in parallel� In practice� the algorithm terminates well before j reaches k� so
O�log k� time su�ces even with dk� log ke processors�

Remark �� If actually x � �� the algorithm can be greatly sped up by testing if xj � � in step �� in
which case we may directly pass to j � �� Furthermore� stage � is not needed unless x � xj � � for all
j� which can be tested beforehand� Of course� if the only answer needed is �x � �� or �x �� ��� then it
su�ces to test if all the xi�s are zero�

Remark �� The costly part of the computation is likely to be the determination of the xi�s� For these
reasons� we should try to minimize the number k of moduli mi involved in the algorithm� This can be
done by getting better upper estimates on the magnitude of the output or by using the probabilistic
technique of section ��

��� A generalization of Lagrange�s method

We will show that Lagrange�s method is in fact a particular case of the following method ���� Let

��� � S�k� � frac

�
kX
i��

�xiwi� modmi

mi

�
�

This quantity is computed in the �rst step of algorithm 
� If the computed value of ��� is smaller than
�k� it implies that ��� � ��k� Thus� jxj is smaller than �m�k� We can then multiply xiwi by

�k �

� �
�
��� �k�

��k

	
�

to obtain �xiwi�k� mod mi for all i � �� � � � � k� This can easily be done by precomputing �k modulo
each mi� We then compute

��� � frac

�
kX

i��

�xiwi�k� modmi

mi

�
�

and more generally�

�j� � frac

�
kX

i��

�xiwi�k
j� mod mi

mi

�
�

where we assume �k modmi precomputed for all i � �� � � � � k� This leads to the following algorithm�

Algorithm � � Generalized Lagrange�s method� Compute the sign of x knowing xi � x mod mi�

Precomputed data� mi� wi� �k� �k modmi� for all i � �� � � � � k
Input� integers k and xi �

��mi

�
� mi

�

�
for all i � �� � � � � k

Output� sign of x� the unique solution of xi � x mod mi in
��m

�
� m
�

�

�



Preconditions� jxj � m
�
��� �k� and x �� �

�� Let j � ��
�� Repeat j � j � ��

�j� � frac

�
kX

i��

xiwi modmi

mi

�
if j�j�j � �k and j � k then xi � xi�k modmi for all � � i � qk�
until j�j�j � �k or j � k

�� If j � k return �x � ��
	� If �j� � � return �x � ��

� If �j� � � return �x � ��

It is easy to see that the number of iterations in step � is O�logm� log�k� � O�k�� because jxj is no
less than 
 and no more than m�k� � �k�b������ and is multiplied by �k at each iteration� Therefore�
algorithm � still performs 	�k�� operations in the worst case� but in practice �on most instances� only k
operations of each kind

Remark �� Algorithm 
 corresponds to a choice of mk�j instead of �k in step j� This simpli�es the
computation by eliminating one modulus at each iteration� but it performs more iterations� Multiplying
by �k� we perform about twice fewer iterations ��k is on the order of two moduli� but each iteration is
done with k moduli� This is why we call algorithm � a generalization�

It is possible to combine the techniques of both algorithms by replacing �k in the expression for �j�

by the greatest �k�j � �k which is a multiple of m�j�� This means that �k�j is also precomputed�

Remark �� To yield the parallel time bounds such as O�log k� using
�
k�� log k

�
processors for algo�

rithm �� we need to precompute �k
j modmi for all i� j � �� � � � � k�

� Newton�s method

An incremental version of Chinese remainder reconstruction� named after Newton� is described in this
section� We recall the method for completeness� see ���� ��� for a comprehensive presentation� Its main
advantage is that it can be adapted to a probabilistic algorithm that does not require an a priori bound
on the magnitude of x� This is the subject of section ����

Let x�j� � x modm�j�� for j � �� � � � � k� so that x��� � x� and x � x�k�� Let y� � x�� and for all
j � �� � � � � k�

tj � w
�j�
j � �m�j������ mod mj �

yj �
�
xj � x�j���

�
tj mod mj �

h
�mj

�
�
mj

�

�
�

Then� for all j � �� � � � � k�

x�j� �
�
x�j��� � yjm

�j���
�
mod m�j�� ��

Clearly� this leads to an incremental computation of the solution x � x�k� to problem 
� An advantage is
that all computation can be kept modulo mj � and no �oating�point computation is required� in contrast
to sections ��
 and ��� where S�j� or �j� are computed� The yj de�ne the mixed�radix representation
of x� which would o�er an alternative way to perform arithmetic on long integers� see also ���� ���� It is
obvious� that when yj �� �� then the sign of x�j� is the same as the sign of yj since jx�j���j � m�j������
If yj � �� the sign of x�j� is the same as that of x�j���� for j � �� whereas the sign of x��� � x� � y� is
known� If yj � � for all j� then this is precisely the case when x � ��

For � � i � j � k� we introduce integers

u
�j���
i �

�
m�i���tj

�
mod mj �

�
j��Y
l�i

ml

���

mod mj �

�



Then tj � u
�j���
� � Unrolling equation �� in the de�nition of yj shows that the quantities yj verify the

following equality for all j � �� � � � � k�

yj �

�
�xj � x��u

�j���
� �

j��X
i��

yiu
�j���
i

�
mod mj �

Therefore� they can be computed by using modular arithmetic with bit�precision given by the maximum
bit�size of the m�

j � Here it su�ces to assume that the absolute value of x is bounded by m�k����

Algorithm � � Compute the sign of x� knowing x modmi� by Newton�s incremental method�

Precomputed data� mj� u
�j���
i � for all � � i � j � k

Input� integers k and xi �
��mi

�
� mi

�

�
for all i � �� � � � � k

Output� sign of x� where x is the unique solution of xi � x modmi in
h
�m�k�

�
� m

�k�

�

�
Precondition� None�

�� Let y� � x�� j � �� Set s to ��� � or �� if y� is negative� zero or positive� respectively�

�� Repeat j � j � ��

yj �
�
�xj � x��u

�j���
� �

j��X
i��

yiu
�j���
i

�
modmj �

Set s to � or ��� if yj is positive or negative� respectively�

If yj � � then s does not change�

until j � k�
�� Return sign of s

Remark �� As in remark 
� we can test beforehand if all xi � �� which is precisely the case when
x � ��

Lemma ��� Algorithm � computes the sign of x knowing its residues xi using exactly
k�k���

�
modular

multiplications�
k�k���

�
modular additions� and �k comparisons� All of these operations can be imple�

mented in f�p� arithmetic�

Proof� For every j � �� � � � � k� there are j � � modular additions and multiplications� There is one
sign computation for each j � �� � � � � k� each of which can be implemented by two comparisons� �

Algorithm � requires k recursive steps� so its parallel time cannot be decreased below ��k log k��
Nevertheless the algorithm can be implemented in O�k log k� time on dk� log ke processors� assuming
each b�bit f�p� operation takes constant time�

To compare with algorithm 
� realistically assume that a modular addition is equivalent to ��� f�p�

additions and one comparison� on the average� Then� algorithm 
 requires at most k�k���
�

f�p� divisions
�which are essentially multiplications with precomputed reciprocals� more than algorithm �� whereas the

latter always requires k�k���
�

extra f�p� additions and k�k���
�

additional comparisons�

� Variants

Both methods require precomputed tables whose sizes are quadratic� Using a Horner�like scheme� it is
simple to reduce the sizes of these tables to linear� as we show in the next subsection�

Also� both methods can be adapted to yield probabilistic algorithms� Such an algorithm reports a
wrong answer with a �very small� probability� The advantage of the �rst algorithm is that it parallelizes
the sign detection method in polylogarithmic time� The advantage of the second algorithm is that it
may require to compute much fewer moduli�

�



��� Reducing the size of precomputed tables

In algorithms 
� �� and �� the size of the precomputed tables is quadratic in k� This can clearly be a
limitation for large values of k� for which our algorithms are of highest interest� Below� we indicate how
to reduce the size of the precomputed tables to linear for �xed k for algorithms 
� �� and to linear for
variable k for algorithm ��

Assume that k is �xed in the use of the algorithm 
� Under the notation of section �� we notice that

w
�j���
i � w

�j�
i mj modmi�

Therefore� if zi � xiw
�j�
i mod mi in step � of algorithm 
� we see that at the next iteration of step �

�before j � j � ��� zi � zi � mj modmi will update the value of zi correctly� We thus modify the
algorithm as follows�

Algorithm � � Lagrange�s method with table of linear size only for �xed k

Precomputed data� mj� w
�k�
i � �j � for all � � j � k and all � � i � k

Input� integers k and xi �
��mi

�
� mi

�

�
� for all � � i � k

Output� sign of x� the unique solution of xi � x mod mi in
h
�m�k�

�
� m

�k�

�

�
Precondition� jxj � m�k�

�
��� �k�

�� Let j � k� zi � xiw
�k�
i modmi for all � � i � k�

S�k� � frac

�
kX
i��

zi
mi

�
�� While jS�j�j � �j and j � �� do

zi � zimj mod mi for � � i � j
j � j � �

S�j� � frac

�
jX

i��

zi
mi

�
�� Return sign of S�j� � ��

For algorithm �� we notice as indicated in ���� Ex��������� that u
�j�
i�� � u

�j�
i mi� Since u

�j�
� � tj � this

suggests the use of the following Horner�like scheme�

yj � tj �xj � x� �m� �y� �m� �y	 � � � �mj��yj � �� � � ��� mod mj �

Replacing this expression in step � of algorithm � shows that only the precomputed quantity tj needs to
be computed for all j in the desired range� Thus the precomputed table for algorithm � modi�ed is only
of size linear in the maximum number of moduli�

��� A probabilistic variant of Lagrange�s method

This section introduces a probabilistic approach based on Lagrange�s method� In algorithm �� there can

be at most hworst �
l
log��m�k��k � ��� log �k

m
iterations� The actual number hactual of iterations is

the minimum h that satis�es jx�khj � �m�k��k� In that algorithm� we �nd this number by repeatedly
incrementing h� In theory we could perform a binary search on h by testing whether jx�khj � �m�k��k�
Since the value of x is unknown� however� we can only test if jx�kh modm�k�j � �m�k��k by using step
� of the algorithm� If this is detected to hold for some value of h� then necessarily jx�khj � �m�k��k� i�e�
hactual � h� and we should try a smaller value of h� Otherwise� it is only a probabilistic indication that
jx�khj � �m�k��k� i�e� hactual � h� but we may try nevertheless a greater value of h�

We therefore begin with h� and then double the value of h until the condition jx�kh mod m�k�j �
�m�k��k is true� Then the range 
�� h� is guaranteed to contain the value hactual� We may then perform
a binary search for hactual in the range 
�� h�� Then for any intervals 
h�� h�� computed in the binary
search� h� is a guaranteed upper bound� whereas h� is a lower bound only with a high probability�

�



When the interval reduces to 
h� h � ��� the sign can be determined by using algorithm �� We call this
technique binary search in a randomized range�

Since ��k is much smaller than �� the probability that� for some �xed h� k� �k� a random x in the rangeh
�m�k�

�
� m

�k�

�

�
satis�es jx�kh modm�k�j � �m�k��k but not jx�khj � �m�k��k is extremely small� yet

nonzero� The speedup is obtained by the fact that only O�log k� iterations are processed� The resulting
algorithm performs only O�k log k� operations� It may be executed on dk� log ke processors in parallel
time O�log� k��

Remark �� It is possible � although we do not detail it here � to remove the probabilistic aspect
of this technique� that is� to certify whether the lower bound h� is correct� This method may require� in
the worst case� quadratic time but� with high probability� it has time complexity in O�n log n�� just like
our probabilistic algorithm�

��� A probabilistic variant of Newton�s method

We propose below a probabilistic variant of algorithm � which� moreover� removes the need of an a priori

knowledge of k� The principal feature of Newton�s approach is its incremental nature� In our variant� this
may lead to faster termination� before examining all k moduli� Informally� this should happen whenever
the magnitude of x is signi�cantly smaller than m�k���� in which case we would save the computation
required to obtain xj for all larger j� This saves a signi�cant amount of computation if termination
occurs earlier than the static bound indicated by k�

This occurs when the method is used in conjunction with some �lter that handles the cases of large
absolute value� or when the problem is such that the distribution of x is not uniform but is instead biased
towards smaller values� An example is the construction of the convex hull facet structure� where the gain
due to the probabilistic termination is quanti�ed �
	�� For example� the ��dimensional convex hull of 
��
points with integer coordinates of �
 bits is accelerated by more than ���

Step � is modi�ed to include a test of yj against zero� Clearly� yj � � precisely when x�j� � x�j����
Then we may deduce that x�j� � x�k� � x� with a very high probability� and terminate the iteration� In
terms of mixed�radix representation� this assumes that when yj � � then all more signi�cant yi�s will
also be zero� This is no di�erent from escaping in multiprecision arithmetic when some digit �or sequence
of consecutive digits� turns out to be zero� assuming then that the higher order digits also turn out to
be zero�

Algorithm � � Yield earlier termination of algorithm � for absolutely smaller input� Algorithm � is
modi�ed exactly as shown�

Input� integers xi �
��mi

�
� mi

�

�
for i � �� � � � as required in the course of the algorithm� no need for k

Output� sign of x with very high probability

�� Terminate the loop also if yj � �

By lemma ��
 of �
	�� this algorithm terminates with a failure with probability bounded by �k �
���mmin� where

mmin � minfm�� m�� � � � � mkg�
For k � ��� mmin � ��
� the error probability is less than ���� for uniform distributions� This relies more
on the low probability of early termination than on the error probability in case of early termination�
But a more careful analysis can reduce the overall probability by exploiting the correlation of failure at
di�erent stages and� more importantly� accounting for the non�uniform distribution� For experimental
support of this claim� we refer to �
	��

� Applications

Our solutions to problem 
 have many applications� Below we focus on three major areas� namely
computation with real algebraic numbers� exact geometric algorithms� and the ubiquitous question of

�	



determinant sign� Additional applications include numeric algorithms for reducing the solution of general
systems of analytic equations to sign evaluation ����� deciding the theory of the reals �
�� �� geometric
theorem proving ���� and manipulating sums of radicals ����

��� Real algebraic numbers

Being able to compute e�ciently with algebraic numbers is important but also necessary in a variety of
computer algebra applications� as well as when calculating over the reals� In particular� it is a fundamental
operation when computing with algebraic numbers� which is a robust way to treat real numbers� and in
general when numeric computation does not o�er the required guarantees�

The critical operation is deciding the sign of a multivariate polynomial expression with rational
coe�cients on a set of points� We will show how our solution can be applied to the manipulation of real
algebraic numbers� We refer to �
� �
� for a comprehensive review of the algebraic concepts involved�

A popular paradigm for manipulating algebraic numbers is the use of Sturm sequences� Given two
polynomials P and Q in Z
X�� deg�P � � deg�Q�� we consider a Sturm sequence  � �P�� P�� � � � � Pm�
of polynomials with P� � P � P� � Q� that is� a sequence such that� for all i � �� � � � �m� �iPi�� �
�iPi�� �QiPi for some integers �i and �i and some Qi � Z
X� � This implies that deg�Pi� � deg�Pi���
for all i � �� � � � �m and hence that the sequence is �nite�

We will assume that P and Q are square�free and do not vanish at a or b� Let VarP�Q�a� be the
number of sign changes of the sequence �a� � �P��a�� P��a�� � � � � Pm�a��� and de�ne VarP�Q
a� b� �
VarP�Q�a��VarP�Q�b�� Sturm sequences have the property that

VarP�Q
a� b� �
X
�

sign�P ����Q�����

where � ranges over all roots of P in 
a� b�� Of special interest is the case where Q is the derivative P � of
P � In this case� we write VarP 
a� b� for VarP�P � 
a� b�� and this number equals the number of roots of P
in 
a� b��

It turns out that the coe�cients of the Pi�s grow very fast� even for simple P and Q� This phenomenon
is well known in computer algebra� and seems to require the computations over very large integers� One
popular alternative is modular arithmetic� The bottleneck of this approach �at least in theory� is the
computation of VarP�Q
a� b�� which involves many sign reconstructions� The recursive relaxation of the
moduli is ideally suited because the exact value of Pi�a� is never needed� but only its sign� Therefore�
once the sequence  is computed in the several �nite �elds� we may evaluate �a� in each �nite �eld and
apply algorithm 
 to compute the corresponding sign sequence and �nally VarP �a��

We examine the complexity of our algorithm for computing the sign sequence corresponding to �a�
at some rational number a� Let n denote the maximum degree of P and Q� L denote the maximum
size of the coe�cients of the input polynomials P � Q� and l the sum of the sizes of the numerator and
denominator of a� The degrees are decreasing so the length of the sequence is m � n� As shown in �
��
the time to compute the sequence  is O�n��L � log n��� and the coe�cient of the Pi�s are bounded by
��n�L�log n�� Hence Pi�a� is bounded by

jPi�a�j � n��n�L�log n��ln�

and therefore O�n�L � l � log n�� moduli are su�cient� By using algorithm 
� we correctly retrieve the
sign of Pi�a� in time O�n��L � l � log n���� for each i � �� � � � � m� If the sequence is known in each
�nite �eld� the computation of the sign sequence corresponding to �a� can therefore be done in time
O�n	�L� l� log n��� in the worst case� We summarize this in the following theorem�

Theorem ��� Knowing the Sturm sequence  modulo each mi� i � �� � � � � k� where k � O�n�L�l�log n��
one can compute VarP �a� in time O�n	�L� l� log n����

The performance given in the above theorem is in the worst case� however� and in practice� algorithm 

will run in time O�k� � O�n�L� l� log n��� This lowers the expected complexity of the computation of
VarP �a� to O�n��L� l � log n�� in practice�

As an application of those ideas� we show how to manipulate algebraic numbers� An algebraic number
� can be represented symbolically by a square�free polynomial P � Z
X� and an interval I � 
a� b�� such

��



that � is the only root of P in 
a� b� �with multiplicity at least but not necessarily 
�� Such an interval
can be found by evaluating VarP at O�n�L � log n�� points �
�� Moreover� in this context� separation
bounds imply that l � O�n�L � log n��� The total time of the root isolation procedure is therefore
O�n��L � log n�	�� The expected cost is therefore dominated by the sign computations� Practically�
however� this cost is expected to be O�n��L� log n���� which is the same as the cost of the computation
of the Sturm sequence�

To compare two algebraic numbers � �� �P� I� and � �� �Q� J�� we may �rst assume that they both
lie in I 	 J � 
a� b�� otherwise the comparison can be performed on the intervals� �This assumption can
be checked by evaluating VarP at the endpoints of J and VarQ at the endpoints of I�� Then �see �
���
� � � if and only if

VarP�Q
a� b� � �P �a�� P �b�� � �Q�a��Q�b�� � ��

The expensive part of this computation is therefore the computation of VarP�Q
a� b�� which can be done
in time O�n��L � log n�� for the computation of the Sturm sequence and O�n	�L � l � log n��� for the
sign determinations� Practically� the cost of the sign computation is negligible compared to the cost of
the computation of the Sturm sequence�

Extension to intersections of algebraic curves can be done in much the same fashion� using multivariate
Sturm theory� see ��
� and the references thereof� It has been applied in the context of solid modeling
by ���� who use modular arithmetic with a bignum library for the sign reconstruction�

��� Exact geometric predicates

Exact geometric predicates is the most general way to provide robust implementations of geometric
algorithms �
�� ��� 
� 
��� For instance� orientation and in�circle tests or the comparison of segment
intersections� can all be formulated as deciding the sign of a determinant� Before studying the latter
question in its own right� we survey several problems in computational geometry which can make use of
our algorithms to achieve robustness and e�ciency�

Modular arithmetic becomes increasingly interesting when the geometric tests are of higher dimension
and complexity� They are central in� notably� convex hull computations� this is a fundamental problem
of computational geometry and of optimization for larger dimensions� Computing Voronoi diagram of
points reduce to convex hulls in any dimension� but is mostly done in dimensions � and �� Nevertheless�
the sweepline algorithm in � dimensions involves tests of degree �� and modular arithmetic can be of
substantial help� in conjunction with arithmetic �lters ��
�� For Voronoi diagrams of segments� the tests
become of even higher degree and complexity �

�� and f�p� computation is likely to introduce errors� so
exact arithmetic is often a must�

Even for small dimensions� the nature of the data may force the f�p� computation to introduce
inconsistencies� for instance� in planarity testing in geometric tolerancing ���� Here� one must determine
if a set of points sampling a plane surface can be enclosed in a slab whose width is part of the planarity
requirements� The computation usually goes by computing the width of the convex hull� and the data is
usually very �at� hence prone to numerical inaccuracies�

In geometric and solid modeling� traditional approaches have employed �nite precision �oating point
arithmetic� based on bounds on the roundo� errors� Although certain basic questions in this domain are
now considered closed� there remain some fundamental open problems� including boundary computa�
tion ���� Tolerance techniques and symbolic reasoning have been used� but have been mostly restricted
to polyhedral objects� their extension to curved or arbitrary degree sculptured solids would be com�
plicated and expensive� More recently� exact arithmetic has been proposed as a valid alternative for
generating boundary representations of sculptured solids� since it guarantees robustness and precision
even for degenerate inputs at a reasonable or negligible performance penalty ����� One key component
is the correct manipulation of algebraic numbers �see the previous section��

��� Sign of a matrix determinant

Computing the sign of a matrix determinant is a basic operation in computational algebra and geometry�
applied to testing the sign of minors� subresultants as well as several geometric tests ��
� �� 
�� ���

��



To understand the complexity of the problem consider that the entries of the determinant are them�
selves algebraic expressions� For instance� the in�circle test can be reduced to computing a �� � deter�
minant� whose entries have degree � and thus require �b�O����bit precision to be computed exactly ����
Computing these entries by using modular arithmetic enables in�circle tests with b�bit precision while
still computing exactly the sign of a �� � determinant�

To compute an n� n determinant modulo mk� we may use Gaussian elimination with a single �nal
division� At step i � n of the algorithm� the matrix is
BBBB�

��� � � � � � �
� �i�i � � �
���

���
���

� �n�i � � �

�CCCCA
and we assume that the pivot �i�i is invertible modulo mk� Then we change line Lj to �i�iLj � �j�iLi

for all j � i � �� � � � � n� At step n of the algorithm� we multiply the coe�cient �n�n by the modular
inverse of the product

Qn��
i�� �n�ii�i � This gives us the value of the determinant modulo mk� Note that

the same method but with non�modular integers and a �nal division would have involved exponentially
large integers and several slow divisions at each step� Nevertheless� it is only the range of the �nal result
that matters for modular computations� This shows a big advantage of modular arithmetic over other
multiprecision approaches�

The pivots should be invertible modulo mk� If mk is prime� the pivot simply has to be non�zero
modulo mk� The algorithm can be also implemented if mk is a power of a prime� or if mk is the product
of two primes� This would be desirable mainly for taking mk � �bk for which modular arithmetic is
done naturally by integer processors� though here� special care must be taken about even output� Other
choices of mk do not seem to bring any improvement�

With IEEE double precision �b � ���� we choose moduli smaller than ���� so that ��mk

�
�� � �
	�

Gaussian elimination intensively uses �ad � bc��style operations� here we may apply one �nal modular
reduction� instead of two for each product before subtracting�

This algorithm performs O�n	� operations for each modulus mi� With Hadamard�s determinant
bound and mk greater than �b��� only k � d�n log ne �nite �elds need to be considered� Hence the
complexity of �nding the sign of the determinant is O�n� log n� single precision operations� when the
entries are b�bits integers�

More generally� when the entries are integers of bit�length L� we have to take into account the
computation of these n� entries modulo mi� for i � �� � � � � k� Each computation amounts to dividing
an L�bit integer by a single�precision integer� in time O�L�� for a global cost of kn�O�L�� In this case�
Hadamard�s bound yields k � d�n�log n� L�e� Hence� the entire computation takes time O�n	�n �
L��log n� L���

To summarize�

Theorem ��� The algorithm described above computes the sign of a n � n determinant whose entries

are integers of bit�length by using O�n	�n � L��log n� L�� single precision operations�

Using the algorithm of Bareiss for this problem yields a bound O�n	M�n�log n�L��� where M�p� is the
number of operations to compute the product of two p�bit integers� In practice� we almost always have
L � O�n�� Using multiplication in time M�p� � p log p log log p yields a slightly worse bound than given
in the theorem� and with a huge overhead� More practically� using multiplication in time M�p� � O�p��
yields an order of magnitude slower� Our algorithm is easy to implement and entails little overhead�
This is also corroborated by the practical study of section ��

On a O�n	 log n��processor machine� the time complexity drops to O�n�� if we use customary paral�
lelization of the Gaussian elimination routine for matrix triangulation �cf� ������ which gives us the value
of the determinant� �We apply this routine in modular arithmetic� with simpli�ed pivoting� concurrently
for all mi�s�� Theoretically� substantial additional parallel acceleration can be achieved by using ran�
domization ��� ch� �� ����� yielding the time bound O�log� n� on

�
n	 log n

�
arithmetic processors� and

the processor bound can be decreased further to O�n��	���� by applying asymptotically fast algorithms
for matrix multiplication�

��



To have fewer moduli mi involved and thus accelerate the computation� we may try to re�ne the
Hadamard bound or to make use of known upper bounds� In particular� such a re�nement can be
obtained as a by�product of numerical algorithms� which e�ectively compute the sign of the determinant
unless the determinant has a large absolute value �	� ���� Another way to get a better upper bound
is to use a �lter with certi�ed arithmetic� such as interval arithmetic� Such a �lter will not be able to
determine the sign but will return an upper bound which is most of the times much more accurate than
Hadamard�s bound�

� Experimental results

��� Sign reconstruction in RNS

We present several benchmark results of our diverse methods for reconstructing the sign of an integer

x �
h
�m�k�

�
� m

�k�

�

�
represented by its residues xi � x mod mk� i � �� � � � k� For the data generation�

l � k residues are chosen at random and the others are computed such that x �
h
�m�l�

�
� m

�l�

�

�
� The �rst

coordinate is l� the second is k� and the vertical coordinate is the result of the benchmarks� namely the
running times of the algorithms�

In �gure ��
�a�� we clearly see the k�quadratic behavior of Newton�s method for all values of l� and the
linear behavior of Lagrange�s method near the diagonal k � l� We also notice that Lagrange�s method
is always more powerful than Newton�s method� In �gure ��
�b�� we see the di�erences in running
times of the standard and the generalized Lagrange methods� They are roughly comparable� except that
the generalized method is faster for l � �� because we have implemented the method of our remark 
�
This method could have been implemented for all the other methods as well� Finally� we compare the
probabilistic and standard Newton�s method in �gure ��
�c�� We observe that the complexity of the
probabilistic method is indeed quadratic in l only� in complementarity with Lagrange�s method� which is
quadratic in k � l� We have not encountered �with our random generation� even a single case of failure
for the probabilistic routine�

The measurements are performed on a ���MHz Sun Ultra Sparc workstation� We see for instance
that they are negligible with those of the following determinant sign computation� showing that sign
determination in RNS using our methods becomes a negligible portion of the determinant sign compu�
tation�
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Figure �� The running times in �s of the dierent methods� for � � l � k � ����

��� Determinant sign

We present several benchmark results of the described methods for computing the sign of a determinant
and compare them with di�erent existing packages� This asserts the practical interest of our algorithms�


 Method FP is a straightforward f�p� implementation of Gaussian elimination which� of course�
cannot guarantee correctness of the result� In particular� FP fails for ill�conditioned matrices�

��




 Method MOD is an implementation of modular Gaussian elimination as described in section 	 using
our recursive relaxation of the moduli�


 Method PROB is an implementation of modular Gaussian elimination using the probabilistic New�
ton variant described in section ���� where the computation is stopped when the probability of
having a bad result is about ��
	� In all the random matrices we tested� PROB never failed�


 Method CL has been implemented by us based on �
�� 
��� As we compare with methods that
handle arbitrary dimensions� we did not specialize the implementation for small dimensions as is
done in �
�� �this would provide an additional speedup of approximately ���


 Method GMP is an implementation of Gaussian elimination using the GNU Multiprecision Package�
for dimension lower than �� and an implementation of Bareiss� extension of Gaussian elimination�
for higher dimensions�


 Method LEDA uses the routine sign�of�determinant�integer�matrix� of Leda �

��

All implementations are in C� except LEDA which is in C��� Note that all methods could also be
�ltered� which would yield running times comparable to those of FP� on random inputs�

To explain the fact that smaller determinants require more time� keep in mind that no special zero test
is performed and a static deterministic bound is used on the magnitude� Of the other methods available�
the lattice method of �
�� has not yet been implemented in dimensions higher than 	� LN ��
� provides
a very fast implementation in dimensions up to � but was not available to us in higher dimensions�

All tests were carried out on a ���MHz Sun Ultra Sparc workstation� Each program is compiled with
the compiler that gives best results� Each entry in the following tables represents the average time of one
run in microseconds� with a maximum deviation of about ���� We concentrated on determinant sign
evaluation and considered three classes of matrices� random matrices� whose determinant is typically
away from zero� in table 
� almost�singular matrices with single�precision determinant in table �� and
lastly singular matrices with zero determinant in table �� The coe�cients are integers of bit�size ��� n
�due to restrictions of Clarkson�s method��
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Table �� Performance on random determinants�

Among the methods that guarantee exact computation� our implementations are at least as e�cient as
the others� and for certain classes of input they signi�cantly outperform all available programs� Further�
more� our approach applies to arbitrary dimensions� whereas methods that compute a f�p� approximation
of the determinant value are doomed to fail in dimensions higher than 
� because of over�ow in the f�p�
exponent� The running times are displayed in tables 
��� �For small dimensions� specialized implemen�
tations can provide an additional speedup for all methods�� Our code is reasonably compact and easy to
maintain� A possible improvement we plan to explore further is parallelization�

Some side e�ects may occur� due to the way we generate matrices� The code of the modular package
is free� and anyone can benchmark it on the kind of matrices that he uses� It is available via the URL
http���www�inria�fr�prisme�personnel�pion�progs�modular�html
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Table �� Performance on small determinants�
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Table �� Performance on zero determinants�

� Conclusion

Residue Number Systems �RNS� have been used because they provide a highly parallelizable technique
for multiprecision� As parallel and multiprocessor computers are becoming more available� RNS provide
an increasingly desirable implementation of multiprecision� This comes in sharp contrast with other
multiprecision methods that are not easily parallelizable� Perhaps the main problem with RNS is that
comparisons and sign computations seem to require full reconstruction and� therefore� use standard mul�
tiprecision arithmetic� We show that one may in fact use only single precision and still perform these
operations exactly and e�ciently� The speed of the proposed algorithms also relies on their implementa�
tion using exclusively f�p� arithmetic�

In some applications� the number of moduli may be large� Our algorithms may be easily implemented
in parallel with a speedup depending almost linearly on the number of processors� Another merit of our
methods is their simplicity� which makes them attractive to an implementor� and their quasi�linear
complexity on the average� Although their worst�case complexity does not achieve the record upper
bounds� in practice they appear as the fastest methods today for certain applications�

A relevant application is to compute the sign of a determinant� This problem has received considerable
attention in computational geometry� CAD� geometric modeling� as well as symbolic algebra� yet the
fastest techniques are usually iterative and do not parallelize easily� Moreover� they usually handle only
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single precision inputs� Section � shows that our techniques are comparable in speed or even faster than
other techniques and can easily handle arbitrarily large inputs�

A central problem we plan to explore further is to design algorithms that compute upper bounds on
the quantities involved to determine how many moduli should be taken� For determinants� the static
bounds we use seem to su�ce for applications in computational geometry ��
�� They might be overly
pessimistic in other areas �such as tolerancing or symbolic algebra� where the nature of the data or
algebraic techniques might imply much better bounds� In this respect� valid approaches include the
probabilistic variants introduced above�

As an extension of our algorithms� we may also recover the closest f�p� approximation of a rational
number given its modular representation� even though it may not be f�p� representable� This would lead
us to a hybrid symbolic�numeric approach to RNS� Such a �ltered RNS is outlined in ���� Root isolation
as explained in section 	�
 performs this operation for the quite general case of algebraic numbers�

As an application of �ltered RNS� there are geometric algorithms whose input is the output of
another algorithm� Exact representation of this output would jeopardize the e�cient implementations
of the subsequent algorithm� A common solution is to round the output of the �rst algorithm� A key
ingredient of these techniques is that every number is rounded to the nearest representable number� so
as to ensure that comparisons will not inadvertently be inverted� even though inequalities might become
equalities� These renormalization techniques ���� �	� may be implemented using a �ltered modular
arithmetic and more precisely exact rounding ����
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