
Asymptotic Acceleration of Solving Multivariate Polynomial
Systems of Equations

Bernard Mourrain Victor Y. Pan

INRIA, SAGA
BP 93, 06902 Sophia-Antipolis
France
mourrain@sophia.inria.fr

Department of Mathematics and Computer Science
Lehman College, City University of New York
Bronx, NY 10468
VPAN@LCVAX.LEHMAN.CUNY.EDU
(Supported by NSF Grant CCR 9625344 and PSC CUNY
Award 668365)

Abstract

We propose new Las Vegas randomized algorithms for the
solution of a multivariate generic or sparse polynomial sys-
tem of equations. The algorithms useO������n��nD� log b�
arithmetic operations to approximate all real roots of the sys-
tem as well as all roots lying in a fixed n-dimensional box or
disc. Here D is an upper bound on the number of all the
roots of the system, � is the number of real roots or the roots
lying in the box or disc, � � ��b is the required upper bound
on the output errors, and O��s� stands for O�s logc s�, c be-
ing a constant independent of s. We also yield the bounds
O����nD�� for the complexity of counting the numbers of
all roots in a fixed box (disc) and all real roots andO ����nD� log b�
for the complete solution of generic system. For a large class
of inputs and typically in practical computations, the factor
� is much smaller than D� � � o�D�. This improves by or-
der of magnitude the known complexity estimates of order at
least D� log b or D�, which so far are the record ones even
for approximating a single root of a system and for each of
the cited counting problems, respectively. Our progress re-
lies on proposing several novel techniques. In particular, we
exploit the structure of matrices associated to a given poly-
nomial system and relate it to the associated linear operators,
dual space of linear forms, and algebraic residues; further-
more, our techniques support the new nontrivial extension of
the matrix sign and quadratic inverse power iterations to the
case of multivariate polynomial systems, where we emulate
the recursive splitting of a univariate polynomial into factors
of smaller degree.

1 Introduction.

The classical problem of solving a multivariate polynomial
system of equations is presently the subject of intensive re-

search and one of the central practical and theoretical prob-
lems in the area of algebraic computation (see some bibli-
ography in [11], [3], [16], [8].) It has major applications,
for instance, to robotics, computer modeling and graphics,
molecular biology, and computational algebraic geometry.

The oldest approach to the solution is the elimination
method, reducing the problem to the computation of the as-
sociated resultant or its multiples. This classical method has
evolved in the old works by Bezout, Dixon, and Macaulay
(see e.g. [11], [24]), then remained largely ignored by the
researchers and algorithm designers but was resurrected by
Canny in the 80s to become a very popular approach since
then. One of the major further steps was the reduction of the
solution of a multivariate polynomial system to matrix opera-
tions, in particular, by rational transformation of the original
problem into a matrix eigenproblem (cf. [1], [7], [14]).

The approach has been explored and extended by many
researchers, has been exploited in practice of algebraic com-
puting, and also supported the record asymptotic upper bound
O��D�� on the arithmetic computational complexity of the
solution of a polynomial system having a finite number of
roots. Here and hereafter,O��s� stands forO�s logc s�, c de-
noting a constant independent of s, and D is an upper bound
on the number of roots of the given polynomial system. (For
D we may choose either the Bezout bound,

Q
i di� di de-

noting the maximum degree in the i-th variable in all mono-
mials of the system, or the Bernstein bound, which is much
smaller for sparse systems and equals the mixed volume of
the associated Newton polytope, defined by the exponents
of the monomials.) The cited record bound O ��D�� is due
to [22] but also has several other derivations and has been
staying as a stable landmark for the multivariate polynomial
system solving, somewhat similarly to the complexity bound
O��N�� for solving a nonsingular linear system of N equa-
tions, which was supported by Gaussian elimination and stayed
as a landmark and a record until Strassen’s result of 1969. In
fact, even in the case of solving generic polynomial system
(including no degeneracy) as well as for many subproblems
and related problems, no known algorithms support any bet-
ter bound than O��D��. This includes approximation of all

real roots of a polynomial system (which is highly important
due to applications to robotic and computer graphics), all its
roots lying in a fixed n-dimensional box or disc, counting all
roots in such a box or disc or all real roots, and even approx-
imating a single root. Some progress was achieved in [16],
where a single root was approximated in O���nD�� time,
but under a certain strong restriction on the input polynomi-
als.

In the light of this background, the main result of our pa-
per should be quite surprising: our new algorithms support
the computational cost estimate of O����nD��, for all the
listed above subproblems, including the complete solution of
generic system, both of the counting problems, the computa-
tion of a single root, all real roots, and all roots in a fixed box
or disc. More precisely, our bound is O���� � �n��nD��
in the latter two cases, where � is at most the number d of
real roots or roots in the selected box or disc, respectively.
In practical applications, such a number d is typically much
less than D, and furthermore, � grows as logD for a large
class of input systems. Thus, for all listed problems, we im-
prove the known complexity estimates by the order of mag-
nitude. Furthermore, the factor �n�� � �n� can be replaced
by �n� � �nM , where M is the overall number of mono-
mials of the input polynomials, which for sparse systems is
dominated by �n.

Our algorithms approximate the roots numerically, and in
terms of the required upper bound ��b on the output errors
of the computed solution, we obtain the estimate O�log b�.
Within a constant factor, such an estimate matches the lower
bound of [23] and enables us to yield a high output precision
at relatively low cost; this gives us a substantial practical ad-
vantage versus the algorithms that only reach O�b�, because
the solution of a polynomial system is usually needed with a
high precision. We achieve this by using the matrix sign and
inverse quadratic iterations, which converge with quadratic
rate right from the start.

Some of our techniques should be of independent inter-
est. In particular, we extend the theory of structured matrices
to ones associated to multivariate polynomials and show var-
ious correlations among computations with such matrices,
dual spaces of linear forms and algebraic residues. Further-
more, we establish new reduction from multivariate polyno-
mial computations to some fundamental operations of linear
algebra (such as computing Schur’s complements, the matrix
sign iteration and the quadratic inverse power iteration).

Our progress has some technical similarity to accelerat-
ing the solution of linear systems of equations via fast matrix
multiplication (in particular, we also rely on faster multipli-
cation in the quotient algebra defined by the input polyno-
mials) and, even more so, with the recent progress in the
univariate polynomial rootfinding via recursive splitting of
the input polynomial into factors (cf. [4], [18], [19], [20]).
Although recursive splitting into factors may be hard even
to comprehend in the case of multivariate polynomial sys-
tems, this is exactly the basic step of our novel recursive pro-

cess, which finally reduces our original problem to ones of
small sizes. Of course, we could not achieve splitting in the
original space of the variables, but we yielded it in terms of
idempotent elements of the associated quotient algebra (such
elements represent the roots), and for this purpose we had to
apply all our sophisticated and advanced techniques. This
approach generalizes the methods of [4] and [19] to the mul-
tivariate case. The only missing technical point of our ex-
tension of the univariate splitting construction of [19] is the
balancing of the splitting, which was the most recent and
elusive step in the univariate case (cf. [19], [20]). It is a
major challenge to advance our approach to achieve balanc-
ing in our recursive splitting process even in the worst case
(possibly by using the geometry of discriminant varieties)
and, consequently, to approximate all the roots of any spe-
cific polynomial system inO����nD� log b� arithmetic time.
Another major goal is to decrease or remove the factor ��n

from our complexity bounds, perhaps by means of improv-
ing our entire construction or its blocks of computations with
structured matrices.

Let us conclude this section with a high level description
of our approach. (For further details, we refer the reader to
the next sections andS to our full paper). Our solution of
polynomial systems consists of the following stages:

1. Compute a basic non-degenerate linear form on the
quotient algebraA associated to the given system of polyno-
mial equations.

2. Compute non-trivial idempotent elements of A.
3. Recover the roots of the given polynomial system from

the associated idempotents.
The quotient algebraA and the dual space of linear forms

on it are defined and initially studied in section 2. Stage 1 is
elaborated in section 4. Idempotents are computed by iter-
ative algorithms of section 6. Section 7 shows how to re-
cover or to count the roots efficiently when the idempotents
are available. The computations are performed in the quo-
tient algebra, and they are reduced to operations in the dual
space by using the associated structured (quasi-Toeplitz and
quasi-Hankel) matrices. In section 3 we define the classes of
such matrices, show their correlations to polynomial compu-
tations and exploit some of these correlations to operate with
such matrices faster. In section 5 we show how the com-
bined power of the latter techniques and ones developed for
working in the dual space enables us to perform rapidly the
basic operations in the quotient algebra and, consequently,
the computations of sections 6 and 7.

In terms of the complexity bounds, stage 1 contributes
the terms O���nD� logD�. The computation of a nontrivial
idempotent at stage 2 has cost O��nD� logD log b�, which
dominates the cost of the subsequent root counting or their
recovery from the idempotents. The overall complexity de-
pends on the number of idempotents that one has to compute,
which in turn depends on the number � of roots of interest.
So far, we cannot utilize here the effective tools of balanced
splitting, available in the similar situation for the univariate

polynomial rootfinding. Thus, in the worst case, in each step
we split out only a single root from the set of all roots, and
then we need � idempotents.

2 Definitions and preliminaries

Hereafter, R � C �x� � � � � � xn	 is the ring of multivariate
polynomials in the variables x�� � � � � xn, with coefficients in
the complex field C . Z is the set of integers, N is its sub-
set of nonnegative integers, L � C �x�� � � � � � x

�
n 	 is the set of

Laurent polynomials with monomial exponents in Z
n. For

any a � �a�� � � � � an� � Zn, xa is the monomial xa �
xa�� � � �xann . bEe is the number of the elements of a finite
subset E of Zn.

2.1 Quotient algebra

Hereafter, I � �f�� � � � � fm� is the ideal of R � C �x	 gen-
erated by the elements f�� � � � � fm, that is, the set of poly-
nomial combinations

P
i fiqi of these elements. A � R�I

denotes the quotient ring (algebra) defined in R by I , and �
denotes the equality in A. We will consider polynomial sys-
tems f� �
� � � � � fn �
 of n equations in n variables with
finite sets of common roots Z � Z�I� � f� � C

n � f���� �
� � � � fn��� �
g. In this case of complete intersection, the
vector space A has a finite dimension D, D � d (D is the
number of roots counted with their multiplicities). Then we
have a decomposition of the form

A � A� � � � � � Ad� (1)

whereAi is a local algebra, for the maximal ideal m�i defin-
ing the root �i. From decomposition (1), we deduce that
there exists orthogonal idempotents �ei�i�������d such that � �
e� � � � � � ed, ei ej �
 if i �� j, e�i � ei and Ai � eiA.
To any root � � Z , we associate an idempotent e� .

2.2 Dual space

Let bR denote the dual of the C -vector space R, that is, the
space of linear forms � � p �� ��p�� p � R� ��p� � C . (R
will be the primal space for bR.) Let us recall two celebrated
examples, that is, �� � p �� p���, the evaluation at a fixed
point �, and the map

�da � �d��
a� � � � �dn�an� � (2)

p �� �Qn
i�� ai

�dx��
a� � � � �dxn�an �p��
��

where a � �a�� � � � � an� � Nn is any vector, and dxi is
the derivative with respect to the variable xi. For any b �
�b�� � � � � bn� � Nn , we have

d
a�xb� �

�
� if �i� ai � bi�

 otherwise�

Therefore, �da�a�Nn is the dual basis of the primal mono-
mial basis. Thus, we decompose any linear form � � bR
as

� �
X
a�Nn

��xa�da� (3)

Hereafter, we will identify bR with C ��d� � � � � �dn		 and will
also write "f.p.s." to abbreviate "formal power series". The
map � � P

a�Nn ��xa�da defines a one-to-one corre-
spondence between the set of linear forms � and the set
C ��d� � � � �dn		 � C ��d		 � fP

a�Nn �ad
a�
� � � �dann g of poly-

nomials in the variables d�� � � � �dn.
The evaluation at
 corresponds to the constant �, under

this definition. It will also be denoted �� � d
�. We can

multiply a linear form by a polynomial (bR is an R-module)
as follows. For any p � R and � � bR, we define p �
� � q �� ��p q�, q � R, ��p� q� � C . For any pair of
elements p � R and a � N� a � �, we have

�dxi�
a �xi p��
� � a �dxi�

a�� p�
��

Consequently, for any pair p � R� a � �a�� � � � � an� � Nn

(where ai ��
 for a fixed i), we obtain

xi � d
a�p� � d

a�xi p�

� d
a�
� � � �dai��i�� d

ai��
i d

ai��
i�� � � �dann �p��

that is, xi acts as the inverse of di in C ��d		. For this reason
such a representation is referred to as the inverse systems
(see, for instance, [13]). If ai �
, then xi � d

a�p� �
,
which allows us to redefine the product p � � as follows:

Proposition 2.1 For any p� q � R and any ��d� � C ��d		,
we have

p � ��q� � ��p q� � 	��p�d
��� ��d���q��

where 	� is the projection on the space generated by the
monomials in d with positive exponents.

This yields the following algorithm:

Algorithm 2.2 FOR ANY POLYNOMIAL p � hx�i��E AND

A VECTOR ���x��	��E�F , COMPUTE THE VECTOR �p �
��x��	��F :

1. Let ���d� �
P

��E�F ��x��d� .

2. Compute the product
�d� � p�d������d� in C �d�d�� 	.

3. Keep the coefficients
� of d� for � � F .

3 Quasi-Toeplitz and quasi-Hankel matrices

In this section we describe the structure of the matrices and
some tools that we will use for our algorithm design.

Definition 3.1 Let E and F be two finite subsets of Nn and
let M � �m������E���F be a matrix whose rows are in-
dexed by the elements of E and columns by the elements of
F . Let i be the ith canonical vector of Nn .

	 M is an �E�F � quasi-Toeplitz matrix if and only if, for
all � � E� � � F , the entries m��� � t��� depend
only on �
 �, that is, if and only if, for i � �� � � � � n,
we have m��i���i � m���, provided that �� � � i �
E��� � � i � F ; such a matrix M is associated with
the polynomial TM �x� �

P
u�E�F tu x

u.

	 M is an �E�F � quasi-Hankel matrix if and only if, for
all � � E� � � F , the entries m��� � h��� depend
only on � � �, that is, if and only if, for i � �� � � � � n,
we have m��i���i � m��� provided that �� �
 i �
E��� � � i � F ; such a matrix M is associated with
the Laurent polynomial HM �d� �

P
u�E�F hud

u.

These definitions can be immediately extended to subsets
E�F of Zn, if we work with the Laurent polynomials.

For E � �
� � � � �m
 �	 and F � �
� � � � � n
 �	 (resp.
F � �
n � �� � � � �
), definition 3.1 turns into the usual
definition of Hankel (resp. Toeplitz) matrices (see [2]).

Definition 3.2 Let 	E � L� L be the projection map such
that 	E�x�� � x

� if � � E and 	E�x
�� �
 otherwise.

We also let 	E � C ��d		 � C ��d		 denote the projection
map such that 	E�d�� � d

� if � � E and 	E�d
�� �

otherwise.

We can describe the quasi-Toeplitz and quasi-Hankel op-
erators in terms of polynomial multiplication (see [16], [15]),
and the next proposition reduces multiplication of an �E�F �
quasi-Toeplitz (resp. quasi-Hankel) matrix by a vector v �
�v� 	 � C F to (Laurent’s) polynomial multiplication.

Proposition 3.3 The matrix M is an �E�F � quasi-Toeplitz
(resp. an �E�F � quasi-Hankel) matrix, if and only if it is the
matrix of the operator 	E �
TM � 	F (resp. 	E � �HM

�
	F), where for any p � L,
p � q �� p q is the operator of
multiplication by p in L.

Proof. We will give a proof only for an �E�F � quasi-Toeplitz
matrix M � �M������E���F . (The proof is similar for a
quasi-Hankel matrix.) The associated polynomial is TM �x� �P

u�E�F tux
u. For any vector v � �v� 	 � C F , let v�x� de-

note the polynomial v�x� �
P

��F v�x
� . Then

TM �x� v�x� �
X

u�E�F���F

x
u�� tu v�

�
X

��u���E��F

x
�

�
�X
��F

t��� v�

�
A �

where we assume that tu �
 if u �� E � F . Therefore, for
� � E, the coefficient of x� equalsX

��F

t��� v� �
X
��F

M��� v� �

which is precisely the coefficient � of Mv (see [16]). �

Algorithm 3.4 MULTIPLY THE �E�F � QUASI-TOEPLITZ (RESP.
QUASI-HANKEL) MATRIX M � �M������E���F BY A VEC-
TOR v � �v� 	 � C F ,

	 multiply the polynomial TM �
P

u�E�F tu x
u (resp.

HM �d� �
P

u�E�F hud
u) by v�x� �

P
��F v�x

�

(resp. v�d��� �
P

��F v�d
��)

	 and project the product on xE (resp. dE).

Definition 3.5 Hereafter, "ops" stand for "arithmetic oper-
ations", and CPolMult�E�F � denotes the number of ops re-
quired to multiply a polynomial with a support in E by a
polynomial with a support in F .

Now, we estimate that algorithm 3.4 can be performed by
using CPolMult�E � F� F �, resp. CPolMult�E
 F�
F �
ops. This cost is bounded in the following proposition:

Proposition 3.6 An �E�F � quasi-Hankel (resp. an �E�F �
quasi-Toeplitz) matrix M can be multiplied by a vector in
O�N log�N � CM�N � ops, where N � bE
 �F e (resp.
bE � �F e) and where CM�N bounds the cost of the evalu-
ation of the polynomial HM (resp. TM) on a fixed set of N
points.

Proof. See [16]. �

In the same spirit, we can bound the number of ops in algo-
rithm 2.2:

Proposition 3.7 For any fixed pair of a linear form � and
a vector ���x��	��E�F , the vector �p � ��x��	��F can be
computed in O�bE � F e log��bE � F e�� ops.

Once we have a fast matrix-by-vector multiplication, solv-
ing a linear system can also be performed efficiently using
the the following result (cf. e.g. [2]).

Theorem 3.8 Let S be a finite set with jSj elements and
let Wv � w be a non-singular linear system of N equa-
tions. Then choosing �N random parameters from S (inde-
pendently of each other and under the uniform probability
distribution on S) and performing �N multiplications of W
by vectors andO�N �� other arithmetic operations suffice ei-
ther to compute the solution v to the linear system Wv � w

with a probability at most �
 �N
jSj or to output FAILURE with

a probability at most �N
jSj .

This method involves �N multiplications of W by a vector.
In the case of structured matrices, it yields a fast algorithm
for solving the linear system W v � w.

Theorem 3.9 [17]. Under the notation of theorem 3.8, let
W be an N -by-N real symmetric matrix. Then O�N� mul-
tiplications of W by vectors and O�N �� other ops suffice to
compute the rank and the signature of W .

Sketch of proof. Tridiagonalize the matrix W by the Lanc-
zos randomized algorithm. Then obtain the numbers n� and
n� of positive and negative eigenvalues ofW from the Sturm
sequences of the values of the characteristic polynomials of
all leading principal submatrices of W . These two numbers
immediately define the rank and signature of W . Apply the
estimates of [2] for the complexity of all steps of this com-
putation. �

4 Computing a non-degenerate linear form

Our algorithms of the next sections perform computations in
A efficiently based on the knowledge of a certain linear form
on A, which induces a non-degenerate inner product. More
precisely, we assume the following items available:

Basic Set of Items.

	 a linear form � � bA � I�, such that the bilinear form
��a b� from A�A to C is non-degenerate,

	 a monomial basis �x����E of A,

	 the coefficients ���x�����F where F � E �E �E.

The number of elements in E is the dimension D of A
over C .

We construct this linear form in the case of a system of
n equations in n unknowns having finite number of isolated
roots (that is, in the case of complete intersection); further-
more, we assume some genericity conditions. Our construc-
tion is based on the resultant matrix approach to the solution
(either using the classical or sparse resultant), and we assume
that the input system is generic for this resultant construc-
tion. Our construction can be generalized to other resultant
matrices in the complete intersection case (see [5]). We can
also obtain our basic linear form from a normal form algo-
rithm (e.g. if a Groebner basis is available) in the case of
complete intersection.

We denote by Ei the support of the polynomial fi and
by E� a given set of monomials. Next, we construct a non-
degenerate linear form � on A, and the set ���x��	��F for
F � E� �E� � � � ��En. This construction is based on the
resultant matrix computations.

Let f� be a random polynomial with support in xE� . To
construct resultants, as in the work of Macaulay [12] (see
also [9]), we may use matrices associated to maps of the
form:

� � V� � � � � � Vn � V (4)

�q�� � � � � qn� ��
nX
i��

fi qi�

where Vi � hxFii is a vector space generated by a finite
number of monomials. We denote by F i the set of the expo-
nents of these monomials: Fi � f�i��� �i��� � � �g. The vec-
tor space V � hxF i is also a vector space generated by the
monomials, whose exponents are in the set F . The matrix of
� can be divided into blocks �N�� N�� � � � � Nn	. The columns
of the blocks correspond to the multiples of f i expressed in
the monomial basis xF . The matrix generalizes the Sylvester
matrix of two univariate polynomials to the case of multi-
variate polynomials. It belongs to the class of quasi-Toeplitz
matrices (see section 3). >From the matrix of this map, it is
possible to extract a maximal square submatrix S, which is
generically of maximal rank (see [12],[3], for more details).

The latter submatrix can be partitioned into four blocks as
follows:

S �

�
U V
Z W

�

where W is invertible, and all blocks are quasi-Toeplitz ma-
trices.

Proposition 4.1 For any vector �� � ���	��E�
, the vector

�t

�

�
ID
V W��

�
� ���	��F

is the vector of the coefficients �d����F of an element � ofbA. For a random choice of ��, the linear form � defines a
non-degenerate inner product on A.

Proof. The rows of the matrix
�
ID
VW��

�
are or-

thogonal to the columns of the matrix

�
V
W

�
� representing

multiples of the polynomials f�� � � � � fn. Therefore, these
rows are the coefficients vectors of the elements of bA � I�

in the dual basis �d��. Taking a random combination ��

of these rows yields, with a high probability, the coordinate
vector of the linear form on A that induces a non-degenerate
bilinear form. �

This computation involves the solution of a linear system of
equations defined by the quasi-Toeplitz matrix W . Using
proposition 3.6, we have the following property:

Proposition 4.2 The coefficients ���x��	��E�E�E where xE

is a basis of A can be computed in O���nD� log�D�� ops.

Proof. The set E� � � � ��En contains a set E such that xE

is a basis ofA (see [7], [21], [17]). If we letE� � E�E, the
previous computation yields the coefficients ���x��	��E�E�E ,
We observe that the size of the matrix W that we need to in-
vert is a �E�� E��quasi-Toeplitz where E � � E � E (with
jE�j
 �njDj) and we apply proposition 3.6 and theorem
3.8 to W . �

We also refer the reader to the definitions of section 3.
Remark. Our alternative algorithm computes all the coeffi-
cients ���x���	� in O�M�nD� log�D�� ops, where M is the
overall number of all monomials in the polynomials of the
input system, M is relatively small for sparse systems.

5 Arithmetic in A
In this section, we assume that we have a basic set of items
(including linear form �) defined in the previous section. We
describe basic operations in the quotient ring A, in terms of
the following quasi-Hankel matrix:

Definition 5.1 For any � in bA and for any subset F of Nn ,
letHF

� denote the quasi-Hankel matrix, HF� � ���x���������F .

Proposition 5.2 H
F
� can be multiplied by a vector by using

O��nbF e log�bF e�� ops.

Proof. We apply proposition 3.4 to the �F� F � quasi-Hankel
matrix H

F
� . �

Combining theorem 3.8 and proposition 5.2 implies the fol-
lowing result:

Proposition 5.3 Checking if the linear system H
F
�u � v has

a unique solution and computing its solution (resp. comput-
ing its rank) requires O��nbF e� log�bF e�� ops.

5.1 Dual basis

As � defines a non-degenerate bilinear form, there exists a
family �w����E such that ��x�w�� � ���� , ���� being
Kronecker’s symbol, ���� � �, ���� �
 if � �� � . The
family �w����E is called the dual basis of �x����E for � .

Proposition 5.4 (Projection formula). For any p � R, we
have

p �
X
��E

��pw��x
� �

X
��E

��px��w�� (5)

Proof. See [5], [6]. �

Definition 5.5 For any p � A, denote by �p	x and �p	w the
coordinate vectors of p in the bases �x����E and �w����E ,
respectively.

Let w� �
P

��E w��� x
� , let W� � �w��������E be the

coefficient matrix. By the definition of the dual basis,

��w� x
�� �

X
��E

w��� ��x
���� (6)

is � if � � � and
 elsewhere. In terms of matrices, equation
(6) implies that

H� W� � ID (7)

where H� � H
E
� � ���x���������E . >From the definition

of W� and relation (7), we deduce that

�p	x � W� �p	w� �p	w � H� �p	x� (8)

The next result follows from proposition 5.3.

Proposition 5.6 For any p � A, the coordinates �p	x of p
in the monomial basis can be computed from its coordinates
�p	w in the dual basis by using O��nD� log�D�� ops.

5.2 Product in A
We apply the projection formula (5) and for any f � R de-
duce that f � P

��E ��f x��w� �
P

��E f � ��x��w�

in A. Furthermore, by expressing the linear form f � � as
an f.p.s., we obtain f � � �

P
��Nn f � ��x��d�� so that

the coefficients of �d����E in the expansion of f � � are the
coefficients �f 	w of f in the dual basis �w����E .

Similarly, for any f� g � A, the coefficients of �d����E
in fg � � are the coefficients �fg	w of f g in the dual basis
�w����E . This leads to the following algorithm for comput-
ing the product in A:

Algorithm 5.7 FOR ANY f� g � hx�i��E , COMPUTE THE

PRODUCT fg IN THE BASIS hx�i��E OF A.

1. Compute the coefficients of �d����E in the product f g�
� .

2. Obtain the coefficients �f g	w from the first coefficient
of fg � � .

3. Solve the system �f g	w � H� u.

The vector u is the coordinate vector �f g	x of f g in the
monomial basis of A.

Proposition 5.8 The product f g can be computed inO��nD� log�D��
ops.

Proof. f g � � is the product of polynomials with supports
in
E or E � E � E. Such a product can be computed
in O���nD� ops (see proposition 3.6). The complexity of
the third step is bounded according to proposition 5.3 (with
F � E). �

5.3 Inverse in A
The projection formula of proposition 5.4 also implies that
f x� �

P
��E f � ��x����w� � which means that �f x�	w

is the coordinate vector �f���x����	��E , that is, the column
of the matrix Hf�� indexed by �. In other words, �f x�	w �
Hf�� �x

�	x. By linearity, for any g � A, we have

�f g	w � Hf�� �g	x � H� �f g	x�

according to (8). Thus, if fg � �, that is, if g � f ��,
we have Hf�� �g	x � H� ��	x. This leads to the following
algorithm for computing the inverse in A:

Algorithm 5.9 FOR ANY f � hx�i��E , COMPUTE THE

INVERSE OF f � A IF IT EXISTS.

1. Compute v � H� ��	x.

2. Solve the system Hf��u � v or output FAILURE if the
matrix is not invertible.

The vector u is the coordinate vector �f��	x of f�� in the
monomial basis of A.

By combining propositions 5.2, 5.3, and 3.7, we obtain

Proposition 5.10 The inverse f�� can be computed by us-
ing O��nD� log�D�� ops.

6 Iterative methods

Our algorithms will amount to computing non-trivial idem-
potents by iterative processes. The algorithms work in C , and
we write i �

p
�. More rudimentary univariate versions of
these algorithms were studied in [4]. We will use the basic
operations in the quotient algebra A in order to devise two

iterative methods, which eventually yield non-trivial idem-
potents. We will first consider iteration associated to a slight
modification of the so-called Joukovski map (see [10],[4]):
z �� �

� �z � �
z
� and its variant z �� �

� �z
 �
z
�. The two at-

tractive fixed points of this map are � and
�; for its variant,
they turn into i and
i.
Algorithm 6.1 SIGN ITERATION. u� � h � hx�i��E .
un�� � �

� �un
 �
un

� � A� n �
� �� � � � �

By proposition 5.10, we have

Proposition 6.2 Each iteration of algorithm 6.1 requires
O��nD� log�D�� ops.

Proof. By Proposition 5.3, an element of A can be inverted
in O��nD� log�D�� ops. A linear combination of un and
u��n can be computed in D ops, which yields the required
bound. �

Proposition 6.3 Assume that for any root � � Z ,��h���� ��

. Then the sequence �un� converges quadratically to � �P

��h������ e�

P

��h����	� e� (� is the imaginary part),
and we have

kun
 �k
 K �
�
n

(for some constant K), where

� � max��h���������Z�I�

����h���
 i

h��� � i

���� �

� � max��h����	����Z�I�

����h��� � i

h���
 i

���� �
and
 � maxf
��
�g.

Proof. We apply the classical convergence analysis of the
Joukovski map (see [10]) to the matrices of multiplication
by un in A, whose eigenvalues are fun���� � � Z�I�g. �

e
� �

X
��h������

e� �
�

�
������ e� �

X
��h������

e� �
�

�
��
��

denote the idempotents associated to the roots � � Z such
that��h���� �
 and��h���� �
, respectively. The choice
of h � xi
 � and h � xi � � allows us to recover the two
idempotents,

e
�
i�
 �

X
���i�	

e� � e
�
i�
 �

X
���i���

e� �

Their product can be computed in O���nD�� ops to yield
ri�
 �

P
j���i�j	

e� , and the product r
 � r��
 � � � rn�
 can

be computed in O���nD�� ops, to yield the sum of the fun-
damental idempotents, whose roots are nearly real.

Algorithm 6.4 COMPUTING THE SUM OF THE FUNDAMEN-
TAL (NEARLY REAL) IDEMPOTENTS.

	 for i from 1 to n do

u� � xi � �; u� �� �
� �u�
 �

u�
� in A; k �� �;

while kuk
 uk��k � ��b do f uk�� �� �
� �uk

�
uk

�; k �� k � � g
Compute e�i�e and ri�
.

	 Compute the product r
 � r��
 � � � rn�
 in A.

According to propositions 6.2 and 6.3, we have

Proposition 6.5 An approximation of r
 (with the error � �
��b) can be computed inO��nD� log�D� log�j b

log��� j�� ops,
where

 � maxif max���i������Z�I�j �i�i�i�i
j�

max���i�	����Z�I�j �i�i�i�i
j g�

The second iterative method is the quadratic inverse power
method:

Algorithm 6.6 QUADRATIC INVERSE POWER ITERATION.
u� � h � hx�i��E . un�� � �

u�
n

� A� n �
� �� � � � �

Each step of this iteration requires at most O���nD�� ops,
and we have the following property:

Proposition 6.7 An approximation (up to the error �) of the
idempotent e� such that a simple root � minimizes jhj on
Z�I� can be computed inO��nD� log�D� log�j�

b
j�� ops, where

 � j h���
h���� j and jh�� ��j is the second smallest value of jhj

over Z�I�.

Proof. We rely on the convergence analysis of the quadratic
inverse power method applied to the matrices of multiplica-
tion by un in A, whose eigenvalues are fun���� � � Z�I�g.
�

7 Computing the (real) roots

Let AR
 � r
A denote the subalgebra of A corresponding to
the (nearly) real idempotents.

We may restrict our computation on AR

 by computing

the linear form � � � r
 � � (in O���nD�� ops, according to
proposition 3.7), and we have the following properties:

Proposition 7.1 The linear form � � � r
 � � defines a non-
degenerate inner product on AR

 .
The number of nearly real roots (counted with multiplic-

ities) is the rank of HE
r���

.

Let E� be a subset of E such that the submatrix HE�

� � is
of maximal rank. Then E � is a basis of A
.

Proof. See [17]. �

This leads to an algorithm for computing the rank of H E
� �

and, by theorem 3.9, we have:

Proposition 7.2 The number of real roots can be computed
in O��nD� log�D�� ops.

To compute (real) root minimizing a given function jhj, we
may apply algorithm 6.6 inA (orAR

) and obtain the follow-
ing theorem:

Theorem 7.3 The idempotent corresponding to the (real) root
�, which minimizes a function jhj, can be computed (up to an
error � � ��b) in O��nD� log�D� log�b�� ops.

This process can be used to compute the other roots via de-
flation. We replace r
 by r�
 � r

 e� , compute � �� � r

�

 � �

and apply the same iteration to compute the next (real) root,
where jhj takes on its second smallest value over Z�I�. We
can also restrict our computation to a fixed box by using al-
gorithm 6.1 to compute the sum of idempotents correspond-
ing to the roots inside the box. The complexity of each step
beeing bounded in theorem 7.3, this leads to the following
result for � real roots in a given box:

Theorem 7.4 The idempotent corresponding to the � (real)
roots � in a given box can be computed (up to an error � �
��b) by using O��n� D� log�D� log�b�� ops.

The final step of our algorithms determines a root � from the
idempotent e� .

Proposition 7.5 The n coordinates of the root � can be de-
termined from the idempotent e� in O���nD�� ops.

Proof. We compute Je� in A (where J is the Jacobian of
the n equations) by algorithm 5.7. According to [15], [17],
in the case of a simple root, we have

H
E
� �J e� 	x � � ���	��E � � � C �

This vector is computed within the complexity bound of propo-
sition 5.2 and immediately gives us the coordinates of the
root � if xE contains �� x�� � � � � xn, which is generically the
case. If the root is not simple, then, according to the relation

xi J e� � �i J e�

(see [15], [17], [6]), we recover the coordinates of �, by com-
puting n� � products in A (by algorithm 5.7). �

References

[1] W. Auzinger and H.J. Stetter. An elimination algorithm for
the computation of all zeros of a system of multivariate poly-
nomial equations. In Proc. Intern. Conf. on Numerical Math.,
volume 86 of Int. Series of Numerical Math, pages 11–30.
Birkhäuser, 1988.

[2] D. Bini and V. Pan. Polynomial and Matrix Computations,
Volume 1 : Fundamental Algorithms. Birkhäuser, Boston,
1994.

[3] J. Canny and I. Emiris. An efficient algorithm for the sparse
mixed resultant. In G. Cohen, T. Mora, and O. Moreno, ed-
itors, Proc. Intern. Symp. Applied Algebra, Algebraic Algor.
and Error-Corr. Codes (Puerto Rico), volume 263 of Lect.
Notes in Comp. Science, pages 89–104. Springer, 1993.

[4] J.P. Cardinal. On two iterative methods for approximating the
roots of a polynomial. In J. Renegar, M. Shub, and S. Smale,
editors, Proc. AMS-SIAM Summer Seminar on Math. of Nu-
merical Analysis, (Park City, Utah, 1995), volume 32 of Lec-
tures in Applied Math., pages 165–188. Am. Math. Soc. Press,
1996.

[5] J.P. Cardinal and B. Mourrain. Algebraic approach of residues
and applications. In J. Renegar, M. Shub, and S. Smale, edi-
tors, Proc. AMS-SIAM Summer Seminar on Math. of Numer-
ical Analysis, (Park City, Utah, 1995), volume 32 of Lec-
tures in Applied Math., pages 189–210. Am. Math. Soc. Press,
1996.

[6] M. Elkadi and B. Mourrain. Approche Effective des Résidus
Algébriques. Rapport de Recherche 2884, INRIA, 1996.

[7] I. Emiris and A. Rege. Monomial bases and polynomial sys-
tem solving. In Proc. ACM Intern. Symp. on Symbolic and
Algebraic Computation, Oxford, pages 114–122, 1994.

[8] I.Z. Emiris and V.Y. Pan. The structure of sparse resultant
matrices. In Proc. ACM Intern. Symp. Symbolic Algebraic
Comput. (ISSAC), pages 189–196, Maui, Hawaii, July 1997.

[9] I.M. Gelfand, M.M. Kapranov, and A.V. Zelevinsky. Dis-
criminants, Resultants and Multidimensional Determinants.
Birkhäuser, Boston-Basel-Berlin, 1994.

[10] P. Henrici. Applied and Computational Complex Analysis,
volume I. Wiley, 1988.

[11] D.Kapur and Y.N. Lakshman. Elimination methods: an intro-
ducton. In B. Donald, D. Kapur, and J. Mundy, editors, Sym-
bolic and Numerical Computation for Artifitial Intellingence,
pages 45–89. Academic Press, New York, 1992.

[12] F.S. Macaulay. Some formulae in elimination. Proc. London
Math. Soc., 1(33):3–27, 1902.

[13] F.S. Macaulay. The Algebraic Theory of Modular Systems.
Cambridge Univ. Press, 1916.

[14] B. Mourrain. Solving polynomial systems by matrix compu-
tations. Preprint, submitted, 1997.

[15] B. Mourrain and V. Y. Pan. Multidimensional structured ma-
trices and polynomial systems. Calcolo, (Special Issue, Work-
shop on Toeplitz Matrices: Structure, Algorithms and Appli-
cations), 33:389–401, 1997.

[16] B. Mourrain and V. Y. Pan. Solving special polynomial sys-
tems by using structured matrices and algebraic residues. In
F. Cucker and M. Shub, editors, Proc. of the Workshop on
Foundations of Computational Mathematics (Rio de Janeiro.
1997), pages 287–304. Springer, 1997.

[17] B. Mourrain and V.Y. Pan. Multivariate polynomials, duality
and structured matrices. Preprint, submitted for publication,
1997.

[18] V. Y. Pan. Optimal (up to polylog factors) sequential and par-
allel algorithms for approximating complex polynomial zeros.
In Proceedings, 27th Annual ACM Symp. on Theory of Com-
puting, 741-750, ACM Press, New York, 1995.

[19] V. Y. Pan. Optimal and nearly optimal algorithms for approxi-
mating complex polynomial zeros. Computers and Math. Ap-
pls., 31(12):97–138, 1996.

[20] V. Y. Pan. Solving a polynomial equation: some history and
recent progress. SIAM Review, 39(2):187–220, 1997.

[21] P. S. Pedersen and B. Sturmfels. Product formulas for resul-
tants and Chow forms. Math. Zeitschrift, 214:377–396, 1993.

[22] J. Renegar, On the worst-case arithmetic complexity of ap-
proximating zeros of systems of polynomials, SIAM J. Com-

put. , 18, 350-370, 1989.
[23] J. Renegar. On the worst-case arithmetic complexity of ap-

proximating zeros of polynomials, J. Complexity, 3, 90-113,
1987.

[24] B.L. Van der Waerden. Modern Algebra, Vol. II. Frederick
Ungar Publishing Co, 1948.

