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Abstract. We apply and extend some well-known and some recent tech-
niques from algebraic residue theory in order to relate to each other two
major subjects of algebraic and numerical computing, that is, computa-
tions with structured matrices and solving a system of polynomial equa-
tions. In the first part of our paper, we extend the Toeplitz and Hankel
structures of matrices and some of their known properties to some new
classes of structured (quasi-Hankel and quasi-Toeplitz) matrices, natu-
rally associated to systems of multivariate polynomial equations. In the
second part of the paper, we apply some results on computations with
matrices of these new classes, together with some techniques from alge-
braic residues theory, in order to devise an algorithm for approximating
a selected solution of a polynomial system of the form

:c‘lil — Ri(z1,...,20) =0,

zdn — Rn(z1,...,2n) =0,

where deg(R;) < d;. The complexity of this algorithm is O(D? log(D)°),
where D = []7_, di is the number of the roots of the system.

1 Introduction

We apply and extend some well-known and some recent techniques from
algebraic residue theory in order to relate to each other two major sub-
jects of algebraic and numerical computing, that is, the computations with
structured matrices and solving a system of polynomial equations. We also
reveal some hidden correlations between these two subjects via the study



of the associated operators of multivariate displacement. The latter opera-
tors naturally extend the univariate displacement operators, which define
Toeplitz and/or Hankel structure of matrices (cf. [1]). In our multivariate
case, we generalize such a matrix structure and arrive at the new classes
of operators and structured matrices, which include operators and matri-
ces associated to the polynomial systems of equations and which we call
quasi-Hankel and quasi-Toeplitz operators and matrices since some well-
known properties of Toeplitz and Hankel operators and matrices can be
extended to them (see section 2). Due to high importance of computations
with structured matrices (see e.g. [1]), our study of these matrix classes
may be of independent technical interest. In section 3, we recall some basic
definitions and facts about algebraic residues and extend them in order
to apply, in section 4, to the solution of polynomial systems of n equa-
tions with n variables. For a special class of such systems (where the i-th
equation has the form P; = x?i — Ri(x1,...,x,) and where R; has a total
degree less than d;), we reduce the solution to computing the associated
residues, where we apply some results on computations with structured
matrices from section 2. This enables us to compute (under some addi-
tional assumptions) a selected solution to the system, by using order of
D?log(D) arithmetic operations, where D = [[! d;. The latter result is a
substantial improvement versus the previously known solutions, requiring
order of D? arithmetic operations. The result may also be of technical
interest as the first example where combined application of structured
matrices and algebraic residues leads to a substantial improvement of the
known methods for solving polynomial systems of equations.

Next, we will state some definitions. R = Clzy,...,z,] will denote
the polynomial ring in variables x1,...,x, over the complex field C, and
L= (C[xlﬂ, ...,x1] will denote the ring of Laurent’s polynomials in the
same variables. We will write x = (z1,...,2,) and x* = - 29",
For a vector o = (aq,..., ), we will write || to denote the 1-norm
of this vector, |a] = >, |a;|. The total degree of a monomial ¢ x?,
with a coefficient ¢, is |a|. The total degree of a polynomial ) cox®,
with coefficients ¢, is the highest total degree of its monomials, for which
co # 0. We will write | S| to denote the cardinality of a set S. ops will
stand for "arithmetic operations". e; will denote the i-th unit coordinate
vector in C".

Our study can be immediately extended from the complex field C to
the case of any number field of constants having characteristic 0. Fur-
thermore, with the exception of the results based on the interpolation



techniques of [3] (cf. proposition 26), our study can be extended to the
case of any field of constants.

2 Structured Matrices

In this section, we propose a generalization of the structure of Toeplitz
and Hankel matrices to the case of matrices associated with multivariate
polynomials having rows and columns indexed by monomials.

2.1 Quasi-Hankel and quasi-Toeplitz matrices, operators, and
the associated generating polynomials: definitions and a
correlation

DEFINITION 21 Let E and F be two subsets of 2" and let M = (mqa.g)ack, geF
be a matriz whose rows are indexed by the elements of E and columns by
the elements of F .

— M is an (E,F) quasi-Hankel matriz iff, for all « € E, 3 € F, the
entries Mmq. 3 = hatp depend only on o + 3, that is, if for every i =
L,...,n, we have Mq_e; g+e; = Ma g provided that o, a—e; € E; 3, B+
e; € F; such a matriz M is associated with the Laurent polynomial
Hy(X) = X yep—phax .

— M is an (E,F) quasi-Toeplitz matriz iff, for oll « € E,3 € F,
the entries mq 3 = toa—p depend only on o — 3, that is, if for every
i =1,...,n, we have Mqe; gre; = Ma,p, provided that o, a0 + e; €
E; 3,8+ e; € F; such a matrix M 1is associated with the polynomial
Tu (%) = Xuepyrtux".

For E=1[0,---,m—1] and F =[0,...,n — 1], definition 21 turns into the

usual definition of Hankel (resp. Toeplitz) matrices [1].

DEFINITION 22 Let Pgp : L — L be the projection map such that
Pr(x*) =x“

if « € E and Pp(x®) =0 otherwise. Let pp = Id — P, where Id denotes
the identity operator, Id(e) = e for all e. For any element Q of L, let
ng : L — L denote the operator of multiplication by Q. For any matriz
M = (mq,8)acE per, let M denote the linear map L — L such that

M(Xﬁ) = Z MasX "

acl



if 3 € F and M(x?) = 0 otherwise. The matriz of this linear operator
coincides with the matriz M on (x~%) x (x%), fora € E, 8 € F, and is
null elsewhere. We will call this operator an (E, F') quasi-Hankel (resp. an
(E, F) quasi-Toeplitz) operator if the matriz M is an (E, F') quasi-Hankel
(resp. an (E, F) quasi- Toeplitz) matriz.

PROPOSITION 23 If M is an (E, F) quasi-Hankel (resp. an (E, F) quasi-
Toeplitz) matriz, then M =P_gopug,, oPr (resp. M =Pgopur,, oPr).

To the end of this of section, we will assume that both sets £ and F
contain 0.

2.2 Multiplication of quasi-Hankel and quasi-Toeplitz
matrices by vectors.

Multiplication of an (E, F) quasi-Hankel matriz by a vector v = [vg] €
CF can be reduced to (Laurent) polynomial multiplication in the following
way. Let M = (mq 3)acE per denote an (E, F) quasi-Hankel matrix, let
Hy(x) =) ,cp_p hux™" denote the associated Laurent polynomial, and
let Vi(x) =3 5cr vsx”. Then, we have

Hy(x)V(x) = Z x P by, vg
ueE—-F,BeF
=2 x| X hassvs )
a=u—BEE—-2F BEF

where we assume that vg = 0ifu ¢ E—F, h, = 0if u ¢ E—F'. Therefore,
for a € F, the coefficient of x~% equals

Z ha+ﬁ vg = Z Ma,p VB,

BEF BEF

which is precisely the coefficient a of M v.
A similar argument reduces multiplication of an (E, F') quasi- Toeplitz
matriz by a vector to multiplication of a pair of Laurent’s polynomials.
The stated reductions enable us to deduce the following result:

PROPOSITION 24 An (E, F) quasi-Hankel (resp. an (E, F) quasi-Toeplitz)
matriz M can be multiplied by a vector in O(N log? N+Cu,n) ops, where
N = |E—-2F] (resp. |E+2F]) and where Cp; n bounds the cost of eval-
uating the polynomial Hyy (resp. Thr) at o fized set of N points.



Proof. To obtain the latter complexity estimate, we reduce the problem
to computing the product of the two polynomials Hys(x) (resp. Tas(x))
and V' (x) and then apply a variant of the well-known techniques of evalu-
ation and interpolation (cf. [1]). Namely, we first evaluate the polynomials
Hy;(x) (resp. Th(x)) and V(x) on a fixed set of N points, then pairwise
multiply their values, to obtain the values of the product Hjys(x)V(x)
(resp. Tas(x) V(x)), and finally, obtain the coefficients of this product by
applying the known interpolation techniques for sparse polynomials (see
e.g. section 1.9 of [1] or [10]).

In some special cases, we have better complexity estimates.

PROPOSITION 25 In the case where E = F = {(aq,...,a,) € N*; 0 <
a; < d;j — 1}, an (E,F) quasi-Hankel (resp. an (E,F) quasi-Toeplitz)
matriz can be multiplied by a vector in O(3™ D log(3™ D)) ops, where D =

[T} d;.

Proof. At first, as in the proof of proposition 24, we reduce the problem to
multiplication of a pair of the associated multivariate polynomials, U(x)
and V(x), so that UV is of degree at most 3d; — 3 in each variable x;.
The latter multiplication can be reduced to multiplication of a pair of
univariate polynomials, by means of application of Kronecker’s map,

rL =y, xk::ka, Dk::]:[(3d@_2), k:]_,‘”,n7
i<k

which turns U(x) V(x) into a univariate polynomial of degree at most

(3dn —3)D, < [[(3d; —2) < 3"D.
=1

By applying fast Fourier transform (FFT), we may multiply such polyno-
mials by using order of 3" D log(3"D) ops [1].

REMARK 1 — For practical implementation where D is very large, it is
better to avoid using Kronecker’s map so as to multiply two multivariate
polynomials U(x) and V(x) of lower degrees, rather than two univariate
polynomials of very high degrees. Then, the number of ops may grow a
little, but FFT involves roots of 1 of a lower order.

PROPOSITION 26 In the case where E = {a € N" |a| < k}, F = {3 €
N",|8| < 1} and where the computations are over a field of constants



containing the field of rational numbers, an (E,F) quasi-Toeplitz matriz
can be multiplied by a vector in (’)(010g3 o) ops, where

)" /V/n), e =2.718....

2l+k‘+n> — o((e 20+ k+n
n n

0 = 02l+kn — (

(The latter equation is implied by Stirling’s formula.)

Proof. Proceed as in the proof of proposition 24 but use the interpolation
technique of [3] for polynomials with bounded total degrees, instead of
using the techniques of section 1.9 of [1] or [10].

2.3 DMultivariate displacement operators and ranks
(definition).

By convention, if 4 : L — L is a linear operator, A will denote its
matrix in a (sub)basis of L. These operators may have infinite dimension,
but in our case, we will only study the finite dimension case. The rank of
the operator A is the rank of the matrix A. For all o, 8 € Z", [Ala3 = Ao
is the coefficient of x in A(x”).

DEFINITION 27 For any subset E of Z", we define the two following unit
E-displacement matrices (operators):

zF =Py 1o, P

and
ZE =Ppu -1 Pp.

In particular, for E = [0,...,n—1] and i = 1, we arrive at the well-known
displacement matrix

Orevevanennn. 0
-

ZF =10
Oeeven- 01 0

and its transpose, ZZ, (cf. [1]) .



DEFINITION 28 Let E and F denote two subsets of Z™ and let A denote
a linear operator L — L. Then, the operators

Hi(A) = A—Z"FPAZF H7(A) = A-27PAZF, TH(A) = A-2PAZF

)

and T, (A) = A—ZF AZT, will be called the (—, +, —E, F,i), (+,—, —E, F, i),
(—,+,E,F,i), and (+,—, E, F,i) displacements of A, respectively). The
ranks of these displacements will be called the (—,+, —E, F,i), (+,—,—FE, F,1i),
(—,+,E,F,i), and (+,—, E, F, i) displacement ranks of A, resp., and will

be denotedr_ 1 _pri(A), r+ B Fi(A), 71— 4 B Fi(A), andry _ pri(A),
resp. The operators transforming A into the above displacements will be
called the (—,+,—FE, F,i), (+,—,—E,F,i), (—,+, E, F,i), and (+,—, E, F,1)
displacement operators, resp.

2.4 Bounds on displacement ranks of quasi-Hankel and
quasi-Toeplitz matrices
DEFINITION 29 Hereafter, we write
bi(E)={a:a€F;a+e ¢ FE}
(resp. _i(E) ={a:a€ E;a—e & E}).

PROPOSITION 210 For an (E, F,) quasi-Hankel operator M, we have the
following bounds on its (—, +, E, F,i) and (+,—, E, F,i) displacement ranks:

4B Fi(M) < [6(=E)] + [6:(F)],

B Ei(M) < [6i(=E)] + [6-4(F)].

For an (E, F) quasi-Toeplitz operator M, we have the following bounds on
its (—,+, E, F,i) and (+,—, E, F,i) displacement ranks:

r—+.8,1i(M) < [6-(E)] + [6:(F)],
T — B Fi(M) < [6(E)] + [6-i(F)].

Proof. The proofs of all the four bounds of this proposition mimic each
other, so we will only prove the first bound. According to proposition 23,
we have

Hif(M) =P g (uU — =P MUPFMxi) Pr,

where U is the polynomial associated with M.



— If 3 ¢ F then H;"(M)(x") = 0.
— If $ lies in &;(F), then ZF(x?) = 0 and H;/(M)(x?) = M(x%) =
ZCMEE ma7ﬁ Xa'
— If 8 lies in F but not in §;(F'), then
t,—1P_guuPrite, (xﬁ) = x;IP,E(U x x;)
and
HIE(M)(xP)=P_g (Uxﬂ — a7 'P_p(UX? xl))
=P 5 (Uxﬁ —Ux?+ x;lp,E(Uxﬁ xl)>
=P_g (xi_lp_E(U x? xl)>

= Z Ma,B x %

aGﬁi(fE)

Therefore, if a ¢ 6;(—FE) and 8 & 6;(H;"), then [H; (M)]as = 0.
Thus, the rank of H;" (M) is at most |86;(—E)] + [6(F)].

In the particular case, where E = F = {(aq,...,a,) EN" ; 0 < oy <
d; — 1}, the displacement rank of H; (M) is bounded by 2 in =2[[;. ;.

2.5 Examples

Quasi-Toeplitz matrices: Let us be given some multivariate polynomials
Py,..., P, and let us consider the matrix associated with the linear map

gﬁ s Wy xooxV, =V,

(QOa"'aQn) HZRQM
1=0

where V; is the vector space generated by the monomials x” for g € Fj,
which is the set of all monomials of the polynomial Q;,7 = 0,...,n, where
E denotes the set of the exponents of the monomials of (PiQ;)i=o,..n,
and where V is generated by the monomials x* for « € E. Such maps
typically appear in the construction of resultant type matrices associated
to the system {P; =0, i =0,...,n}, of polynomial equations [8], [2].
Let M denote the matrix of this linear map in the monomial basis of
Vo X ---x V, and V. The rows of this matrix are indexed by the elements
of the set F and the columns by the elements of the set FyLl--- L F},. Let



rg be a new variable and let us view Z" as the subset of Z"*! consisting
of elements of the form (0,aq,...,a,). Let ey denote the first canonical
vector of Z™t1. Then, the elements of the subset

F={ieg+a; 0<i<n,a€Fj}

index the rows of M.

Note that the («,iey + 3)-th entry of the matrix M is the coefficient
of x® in x? P;. It is also the coefficient of x* 7 in P;. Therefore, it depends
only on oo — 3 — ¢ eg.

REMARK 2 — Resultant type matrices and their transposes are quasi-
Toeplitz matrices.

REMARK 3 — The polynomial associated to the Toeplitz operator ¢ is just
n .
T,=> x,'P.
i=0

Quasi-Hankel matrices: Let \ € L be a linear form on L and consider the
matrix

[/\(XaJrﬂ)]aeEﬂeF-

This is an (E, F') quasi-Hankel matrix. As we will see in the next section,
such matrices appear in algebraic residue theory. If B is a Gorenstein
algebra (for instance, if B is a complete intersection) and has a finite
dimension over C, then any non-degenerating bilinear form ¢ can be rep-
resented as (a,b) — ¢(a,b) = Mab) where A € L is a linear form (see
[6]). Furthermore, any Gramm-Schmidt matrix, (¢(u;, u;)), where (u;) is
a basis of B, is conjugated to a quasi-Hankel matrix.

3 Algebraic residues

In this section, we will recall some basic definitions from algebraic residue
theory, referring the reader to [5], [6] for further details.

3.1 Definitions and basic facts

Let R = C[x| = Clzy,...,x,] be the algebra of polynomials in x; over
the field C. In addition to the vector (set) of variables x, we consider the
vectors y = (y1,...,yn) and write x(0 = x, xN) = (y1,20,...,2,), ...,



x(i—1))

x(") = y. We define 0;(P) = P(X(i)),__—P(,, the discrete differentiation of
Yi—x;

P. For any sequence of n+1 polynomials Py, ..., P, € R, let us construct
the following polynomial in x and y:

PO(X) 91(P0) e 9n(P0)
O(Py, Pr,....Pp)=| : S (1)
P,(x) 01(P,) - 0,(Py)

and let us write Ap = @(1, Py,...,P,) € C[x,y]. Now, we can define the
residue of P = (Py, ..., P,) as a unique linear form 7 in the set of linear
forms on R such that

1. 7 vanishes on (P),
2. Ap(1) — 1€ (P).

Hereafter, I will denote the ideal generated by the polynomials P, ..., Pp;
B = R/I will denote the quotient ring defined in R by I, and = will denote
an equality in B.

If (x*)ack is a basis of B, then we have the following property:

Ap = Z x*w,(y) = Z W (x)y® mod (P(x),P(y)).

aclE aElE

Here, (w4) is the dual basis of (x*) for 7:
T(X* W3) = ba 3,

0a,p is 1 if a = 3 and 0 otherwise. Thus, for any b € B, we have the
relations

b= ZT(bxa)wa = ZT(bWa)Xa. (2)

acl acl

Moreover, for any polynomial Q € R, we have
Ap(x,y) Q(x) = Ap(x,y) Q(y) mod (P(x), P(y)). (3)

Consequently, for any pair of distinct roots, ¢ and 7, of the polynomial
system P = 0, we have

Ap(¢,n) =0. (4)



3.2 Computation of the residues associated to systems of
polynomial equations

We consider a system of polynomial equations of the special form

P1 = .%'Clll — Rl(xl,... ,xn) = 0,

Pn:.’li‘gn _Rn(xla"'axn)zoa

with deg(R;) < d;. Then, the vector space B has dimension D =[]/, d;,
and a basis of B is the set of monomials x“ with « in the set

E:{(al,...,an) eN'; 0< oy Sdi—l}.
In this section, we compute the vector

[T(Xa)]u<\a|§w

where v = 3" | di—nand p > v. Let T} = {av € N" such that |a| < I} and
T® = {a € N such that || = I}. The set Tj contains o7 := 07, := |T}] =

<l —;n) elements. Due to Stirling’s formula, o; = |7;] (the cardinality
of T;) is asymptotically equivalent to

l+n
n

O((e )" /Vn), e=2.718....

Let NV denote the set of all monomials x® for a € T,\T, = {a €
Ty; o € T, }. An element of N is divisible by one of the monomials xf’
Therefore, A/ can be partitioned into n subsets as follows:

N = acclllj\/l U Ut A,

(For instance, 1 A} is the subset of elements of A" divisible by z{*, 232 A5
is the subset of elements of N divisible by xCQlQ and not by xclll, ...). Let
Vi (resp. V) denote the vector space generated by the monomials in N
(resp. ). As in section 2.5, consider the map

¢ Vix.--xV, =V,

(leaQn)HZBQz
=1

For any set S in R, let S© (resp. S(=V)) denote the subset of S formed
by the elements that are homogeneous of a degree [ (resp. of a degree at
most [).



Due to the structure of the polynomials of the system P = 0, the
image of (V=4 x ... x VTEl_d")) is in V(= and the matrix of this map
[in the monomial basis of (V{I~=4) x ... x Vn(l*d")) and V(D] has the
following form:

U, v (£i-1)

I, 4%

l

where U; is a (Tj_1,T®") quasi-Toeplitz matrix, oy = |7;], and I,, is the
o7 X o7 identity matrix. Thus, the complete matrix of ¢ in the monomial
basis is a block upper triangular matrix of the size |T,] x ([T, — [T,]).

Let M be the submatrix of this matrix whose indices of rows and
columns are in N' = T,,\T}, and let v = [v,]aen be the row corresponding

-1

to the monomial x‘lil - xﬁ"il in the matrix of ¢. Then, we can compute

the residues based on the next result:

PROPOSITION 31 (see [6]). The following equations hold:
t = [7(x¥)]aens = —v ML

The matrix M is upper triangular, of size ([T, | — |7, ]) x ([T, = [Tv]).
Therefore, the vector t can be computed in O((|T},] — |7,,])?) ops.

By using the quasi-Toeplitz structure of the matrix M, we can obtain
a better complexity bound.

PROPOSITION 32 The vector of the residues, [T(X“)]aecn, can be computed
in O((n —v)olog® o) ops, where

0= Tgun = (3“ +"> — O3 n ), e = 2718

n n

Proof. Computation of [7(x%)]aecn is essentially reduced to solving the
following linear system of equations:

Io‘,,+1 Ul/—l—l,l/—l—l e Uu,u
0 I IR
[ttt = Vosrseeoovi | T . (5)
: Up—1,u



We immediately obtain from the latter system that t,; = v,41. Substi-
tuting this part of the solution vector into the system yields a subsystem
in [t,42,...,t,], having similar form. We will iterate this process in order
to compute the entire vector v M !, by using p — v iteration steps. At
the k-th iteration step, we multiply the vector t,, by the quasi-Toeplitz
matrix [Uyqkp4ks - - -5 Uptr,) and also perform |T),] — [Tk, | vector sub-
tractions. By applying proposition 26, we multiply the vector t,, by the
matrix U,k vtk - - -, Upyk,p) by using order of

2v4+2k+u+n 2v+2k+pu+n
(st e ()

ops, which dominates the computational cost of performing the k-th it-
eration step. Since k < pu — v, the entire computation of the vector
(Vug1, -+, vyu) only requires

O((u—v)olog® o)

3,u+n>

ops, where 0 = 03,,, = (
n

Hereafter, we will write Hy = [7(x**7)], ger and H; = [17(2;x°)] 4 gep.
Clearly, H; are quasi-Hankel matrices for all i. Since (x%),ck is a basis in
the quotient ring B, we will call Hy a basis residue matriz of B.

ProPOSITION 33 The matrices H;,@ = 0,...,n can be computed by using
O (n*? (6e)" 9" log?(¥))
> idi

ops, where ¥ =

Proof. In order to compute H;, we need to compute 7(x*) for all « such
that |a| < p=23"",d; —2n + 1. By using Stirling formula, we obtain

that ;
O3 pun = @ ((6 6%)”/\/5) , e=2.T18....
Substitution into proposition (32) gives us the desired complexity.

If all the degrees d; are equal to each other, that is,if d; =d, i =1,---,n,
then, the complexity bound of the latter proposition turns into

1
O " d"+' 0P log d) = O(— 6" ¢" D' log(D))

ops, which is asymptotically better than D?.



3.3 Linear solver with the basis residue matrix Hy

PRrOPOSITION 34 The inverse of Wy s the quasi-Hankel matriz Hy.

Proof. We have the equations

T(x*wg) = Z T(Xa+’6)w/37a = 0a,3,
BEE

where 0, 3 = 1 if a = 3 and 0 otherwise, and we have
HyWy = Ip,

where Ip is the D x D identity matrix. Therefore, the inverse of Hy is the
matrix of the coefficients of the dual basis of (x*) in this basis.

PRrROPOSITION 35 The solution vector z to the system Hyz = w can be
computed in O(3" D?1og(3" D)) ops.

Proof. We first compute the values s, = v’ fI(’f u, where u and v are two
random vectors, ﬁg = THy, T is a random square Toeplitz matrix, and
k=0,...,2D+1. We reduce multiplication of the matrix ﬁo by a vector
to multiplication of Hy by a vector, followed by multiplication of T by the
resulting vector. By applying proposition 25, we multiply Hy by a vector
by using O(3"Dlog(3"D)) ops. Multiplication of the Toeplitz matrix T
by a vector takes O(Dlog D) ops (cf. [1]). Therefore, we may evaluate
fNIé“ u, for k = 0,...,2D + 1, by using O(3"D?log(3"D)) ops. Then, the
values sg, ..., s2py1 can be computed by using O(D?) ops.

Due to our random choice of Toeplitz matrix 7', the characteristic and
minimal polynomials of Hy coincide with each other, ci, (@) = mg (2),
with a sufficiently high probability (cf. [7] and regularization 2.13.3 on
page 206 of [1]). Now, assuming that they do coincide and having the
values so, ..., s2 p41 available, we will follow [1] and |7] and will compute
the coefficients of the characteristic polynomial Cﬁo(/\) = Zﬂ 0 Ci AL of

Hy. This computation is reduced to the solution (by using O(Dlog? D)
ops, cf. [1]) of a Toeplitz linear system of D equations. The latter system
is non-singular, with a high probability, due to the equality, with a high
probability, of the minimal polynomial of ﬁo to the characteristic polyno-
mial of Hy and to the random choice of the vectors u and v (cf. [1] or [7]).
Having the coefficients ¢;, ¢ = 0,..., D, of the characteristic polynomial



of the matrix Hy available and applying the Cayley-Hamilton theorem,
we obtain the expression

Z C
HO —_— — _HO 5

where ¢y = (—1)P det(f[o) [co # 0, with a high probability, since so are
det(T) and det(Hp)|. Thus, computing Hy 'w requires D — 1 multiplica-
tions of H, o by vectors and D additions of vectors. According to proposition
25, these operations can be performed in O(3"D?log(3"D)) ops.

3.4 Multiplication in B = R/I

Let us write w,, = Z,BEE wg ox* and Wy = (wa,8)a,pecE-
Let y1; denote the operator of multiplication by z; in B and let M; =
(mg)ﬁ)aﬁeE denote its matrix in the basis (x%). Then, we have

;XY = E mgf’)ax“V

yeE
and
(x; xHF) = Z T(xP+) m(j,)a
VEE
In other words, we have
H;, = Hy M;. (6)

Note that the matrix (ng)ﬂ) of multiplication by x; in the basis (w,) is

MYT | for we have
(4)

my's = <xix5|wa> =7(x; x Wo)

and
(1)

ny5 = (Xiwg|x") = 7(z; wg x?).
PROPOSITION 36 After a precomputation of
(@) (n3'5 (9e)r 9t 10g3(19)) ops

where ¥ = ZTd

, two elements of B can be multiplied in
O (3"D?log(3" D)) + 4" D log*(4" D))

ops.



Proof. We want to compute f g in B where
f= ZaEE fax,
9= acp Ja X

According to the equation (2), we have

fg=> t(fgx")wa

aclE

= X ) g, wa.
a€E BeENEE

Let S := ) capT(xX*)x™" = > c3pTuX “, with the convention that
7w = 0 if w € 3 E. According to (32), this polynomial can be computed
within

O (n*7 (9¢e)" 9" 1og*(¥))

ops. This computation has to be done once. Then,

Sg= Z x ", gy

ueld B, yeE

— —v

= g X E Toty G-
v=u—y€3 F—FE YEE, v+yE3 FE

The support of this polynomial is in 3 £ — E. Therefore, by applying
the known interpolation techniques for sparse polynomials ([1], [10]), the
product of these two polynomials can be computed in O(4™D log?(4" D))
ops. Similarly,

Sfg= Z x 70 Z Toty 9y | [

veE3 E,BeFE YEEv+yE3 E-F

J— —Q

= E : x E : Tat v [5 97
a=v—pFe3E-2F pBeEE,veE

«

Therefore, the coefficients of x™* in S f g for a € E are precisely the
coefficients of f ¢ in the dual basis (w,) of B. Note that these coefficients
only involve the coefficients of x™” in S ¢ for which v € 2 E. Therefore,
the cost of such a computation is O(3"D log?(3" D)) ops.

In order to obtain the coefficients of f ¢ in the basis (x%), we multiply
the vector

t=] Z Ta+B+y [8 97lack
BEE NEE



by the matrix Wy = [W,|acr = HO_I, that is, we solve the linear system
of equations Hys = t. According to proposition (35), this computation
can be done within O(3" D?log(3"D)) ops.

4 Application to solving polynomial systems of equations

4.1 Computing selected roots of a polynomial system.

Let Z denote the set of all common roots of the system P = 0. We will
assume that they are all distinct. Let J be the Jacobian of P. For any
¢ € Z, we have J(¢) # 0.
ProprOSITION 41 If the roots of P are simple, then
1
ec=——
IO

18 a linear basis of orthogonal idempotent of B, of sum 1.

AP(X7C)7 (€ Z,

Proof. According to the equation (3), for any @ € R and for any ¢ € Z,
we have

Ap(x,() Q(x) = Ap(x, () Q(C)
in the quotient ring B. Therefore,
AP (Xv C) AP (Xa C) = J(C)AP (Xa C)a

and e¢ = %C) Ap(x,() is an idempotent (J(¢) # 0, assuming all roots of
the system P = 0 are distinct). Moreover, according to (4), we have

AP (Xa C) AP (X7 77) = AP (Xv C)AP(Cv 77) = 07

for any pair of distinct roots (,n € Z, which shows that e; e, = 0 unless
¢ = n. Now, we recall from the definition of the residue 7 and from the
the Euler-Jacobi identity (cf. [6]) that

Ap(r) =1 (by deﬁnition)

= Z g Arx0) = > " ec (by the Euler—Jacobi identity).
ez (eZ

By decomposing any element h of B in the basis e;, we obtain that

= h(x)ec =) h(()ec

ez (ez



Here, the second equation follows since ech(x) = ech(¢). Squaring h in
the quotient ring B gives us

ht = Z h(¢)% ec.

ez

Here and hereafter, for any element b € B, [b] denotes the vector of
the coefficients of b in the basis (x*),cp. In particular, [1] = (1,0,---,0)
if the basis starts with the monomial 1. Let || - || denote a norm in CP
[say, for the Euclidean norm,

D
vl = (v,v) = (Z |Ui|2)1/27v = (v;),i=1,...,D].

=1

By abuse of notation, for any element b € B, ||b|| will denote ||[b]||. Let
h € R and assume that there is a unique root { € Z, for which the norm
of h(¢) is maximum, so that

[(ON/Ih(m)] =1 > p, (7)

for some fixed positive p and for any n € Z distinct from (. (Since all the
roots in Z are assumed to be distinct, we may, in principle, ensure the
latter relation with a high probability, by means of random linear substi-
tution of the vector of the variables x.) Then, by iteratively computing
and normalizing the squares,

ho = h, hipy = R2/||h2]], i =0,1,... k — 1,

so that we have

hk _ €¢ H< C
1hell - lecll™ ™ (1 + p)**

and ¢, < 27%in k = k(p,b) = O(log(b/p)) recursive steps. Therefore,
squaring and normalizing in B, we will make our process converge to a
multiple of the element e,.

From the previous section, we have the bound of O(3™ Dlog(3™ D) +
D? log D) ops on the computational cost of squaring in B, which means
that

ek = ||

O (3"D*log(3" D) + 4" D log?(4" D))

ops suffice in order to approzimate the element ec/||e¢|| within the error
norm bound 27° assuming the equation (7).

We refer the reader to [9] and [4]| for preceding works on a similar
approach in the univariate case.



4.2 Transition from e; to ¢
By definition, we have

1 1 .
€= mAP(Xao = maezEWa(X)C .

This can be rewritten as

[ec] = %WO [(“lack-

Here, Wy denotes the matrix (W )acp in the monomial basis (x%)acp-
Then, we obtain that

[Clacr = J(C) Ho lec]. (8)

Let f = Hyec. Then according to (8), we have fo = 1/J(¢) and the it"
¢ g

coordinate of ( is J;Z”Oi. According to proposition (35), we arrive at the

following result:

PROPOSITION 42 The transition from e; to the root ¢ of the system P = 0
can be performed by using O(3" D*log(3" D)) ops.

4.3 The closest root

Suppose that we seek a root of the system P = 0 for which x; is the closest
to a given value v € C. Let us assume that « is not a projection of any
root of the system P = 0 and that x1 — u has reciprocal in B. Let p;(x)
denote such a reciprocal. We have p;(x)(z1 —u) = 1 and pi(¢) = C1l—u‘
Therefore, a root for which x; is the closest to u; is a root for which
|p1(¢)] is the largest. Consequently, iterative squaring of p; = p1(¢) shall
converge to this root.

The polynomial p; can be computed in the following way. Let pq
denote multiplication by x; in B. Then p; = (1 —u)~![1], and according
to the matrix equation (6), we have

[p1] = Ho (Hy —u Hy)~'[1],

which can be computed within O(3" D? log(3™ D)) ops.

One may compute several roots of the polynomial system, by applying
the latter computation (successively or concurrently) to several initial
values u.



5 Conclusion

In this paper, we extend the structure of Toeplitz and Hankel matrices to
a new class of structured matrices and operators, which includes matrices
associated to the polynomial systems of equations and which we call quasi-
Hankel and quasi-Toeplitz matrices and operators. Exploiting the fact
that multiplication of such matrices by vectors is "fast", we devise an
algorithm, based on residues computations, for approximating a selected
solution of a polynomial system of the form P, = x;i — Ri(x1,...,2p)
where R; has a total degree less than d;.

The key ingredients of this algorithm are a) the inversion of basis
residue matrices b) fast multiplication of two elements of the quotient
ring B = R/I, and c) an iterative method for approximating a single root
of the system. The complexity analysis shows that our algorithm gives
us a substantial improvement of the known methods for solving polyno-
mial systems of equations. Though we consider a special class of polyno-
mial systems, we expect to extend such an approach to general systems
R; = 0,1t = 1,...,n, by means of the known techniques of homotopic
deformation and the local continuity of the residue.
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