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Abstract� We apply and extend some wellknown and some recent tech
niques from algebraic residue theory in order to relate to each other two
major subjects of algebraic and numerical computing� that is� computa
tions with structured matrices and solving a system of polynomial equa
tions� In the �rst part of our paper� we extend the Toeplitz and Hankel
structures of matrices and some of their known properties to some new
classes of structured 
quasiHankel and quasiToeplitz� matrices� natu
rally associated to systems of multivariate polynomial equations� In the
second part of the paper� we apply some results on computations with
matrices of these new classes� together with some techniques from alge
braic residues theory� in order to devise an algorithm for approximating
a selected solution of a polynomial system of the form

���
��

x
d�
� �R��x�� � � � � xn� � ��

���

xdnn �Rn�x�� � � � � xn� � ��

where deg�Ri� � di� The complexity of this algorithm is O�D� log�D�c��
where D �

Qn

i�� di is the number of the roots of the system�

� Introduction

We apply and extend some well�known and some recent techniques from
algebraic residue theory in order to relate to each other two major sub�
jects of algebraic and numerical computing� that is� the computations with
structured matrices and solving a system of polynomial equations� We also
reveal some hidden correlations between these two subjects via the study



of the associated operators of multivariate displacement� The latter opera�
tors naturally extend the univariate displacement operators� which de�ne
Toeplitz and�or Hankel structure of matrices �cf� ��	
� In our multivariate
case� we generalize such a matrix structure and arrive at the new classes
of operators and structured matrices� which include operators and matri�
ces associated to the polynomial systems of equations and which we call
quasi�Hankel and quasi�Toeplitz operators and matrices since some well�
known properties of Toeplitz and Hankel operators and matrices can be
extended to them �see section �
� Due to high importance of computations
with structured matrices �see e�g� ��	
� our study of these matrix classes
may be of independent technical interest� In section �� we recall some basic
de�nitions and facts about algebraic residues and extend them in order
to apply� in section � to the solution of polynomial systems of n equa�
tions with n variables� For a special class of such systems �where the i�th
equation has the form Pi � xdii �Ri�x�� � � � � xn� and where Ri has a total
degree less than di
� we reduce the solution to computing the associated
residues� where we apply some results on computations with structured
matrices from section �� This enables us to compute �under some addi�
tional assumptions
 a selected solution to the system� by using order of
D� log�D� arithmetic operations� where D �

Qn
i di� The latter result is a

substantial improvement versus the previously known solutions� requiring
order of D� arithmetic operations� The result may also be of technical
interest as the �rst example where combined application of structured
matrices and algebraic residues leads to a substantial improvement of the
known methods for solving polynomial systems of equations�

Next� we will state some de�nitions� R � C �x� � � � � � xn� will denote
the polynomial ring in variables x�� � � � � xn over the complex �eld C � and
L � C �x��� � � � � � x��n � will denote the ring of Laurent�s polynomials in the
same variables� We will write x � �x�� � � � � xn� and x� � x��� � � � x�nn �
For a vector � � ���� � � � � �n�� we will write j�j to denote the ��norm
of this vector� j�j �

Pn
i�� j�ij� The total degree of a monomial c x��

with a coe�cient c� is j�j� The total degree of a polynomial
P

� c�x
��

with coe�cients c�� is the highest total degree of its monomials� for which
c� �� �� We will write bSe to denote the cardinality of a set S� ops will
stand for �arithmetic operations�� ei will denote the i�th unit coordinate
vector in C n �

Our study can be immediately extended from the complex �eld C to
the case of any number �eld of constants having characteristic �� Fur�
thermore� with the exception of the results based on the interpolation



techniques of ��	 �cf� proposition ��
� our study can be extended to the
case of any �eld of constants�

� Structured Matrices

In this section� we propose a generalization of the structure of Toeplitz
and Hankel matrices to the case of matrices associated with multivariate
polynomials having rows and columns indexed by monomials�

��� Quasi�Hankel and quasi�Toeplitz matrices� operators� and
the associated generating polynomials� de�nitions and a

correlation

Definition �� Let E and F be two subsets of Zn and letM � �m������E���F
be a matrix whose rows are indexed by the elements of E and columns by
the elements of F �

� M is an �E�F � quasi�Hankel matrix i�� for all � � E� � � F � the
entries m��� � h��� depend only on � � �� that is� if for every i �
�� � � � � n� we have m��ei���ei � m��� provided that �� ��ei � E��� ��
ei � F � such a matrix M is associated with the Laurent polynomial
HM �x� �

P
u�E�F hux

�u�

� M is an �E�F � quasi�Toeplitz matrix i�� for all � � E� � � F �
the entries m��� � t��� depend only on � � �� that is� if for every
i � �� � � � � n� we have m��ei���ei � m���� provided that �� � � ei �
E��� � � ei � F � such a matrix M is associated with the polynomial
TM �x� �

P
u�E�F tux

u�

For E � ��� � � � �m� �� and F � ��� � � � � n� ��� de�nition �� turns into the
usual de�nition of Hankel �resp� Toeplitz
 matrices ��	�

Definition �� Let PE 	 L� L be the projection map such that

PE�x�� � x�

if � � E and PE�x�� � � otherwise� Let �E � Id�PE� where Id denotes
the identity operator� Id�e� � e for all e� For any element Q of L� let
�Q 	 L� L denote the operator of multiplication by Q� For any matrix
M � �m������E���F � let M denote the linear map L� L such that

M�x�� �
X
��E

m���x
��



if � � F and M�x�� � � otherwise� The matrix of this linear operator
coincides with the matrix M on �x���� �x��� for � � E� � � F � and is
null elsewhere� We will call this operator an �E�F � quasi�Hankel �resp� an
�E�F � quasi�Toeplitz� operator if the matrix M is an �E�F � quasi�Hankel
�resp� an �E�F � quasi�Toeplitz� matrix�

Proposition �� If M is an �E�F � quasi�Hankel �resp� an �E�F � quasi�
Toeplitz� matrix� then M � P�E ��HM

�PF �resp� M � PE ��TM �PF ��
To the end of this of section� we will assume that both sets E and F

contain ��

��� Multiplication of quasi�Hankel and quasi�Toeplitz

matrices by vectors�

Multiplication of an �E�F � quasi�Hankel matrix by a vector v � �v� � �
C
F can be reduced to �Laurent� polynomial multiplication in the following

way� Let M � �m������E���F denote an �E�F � quasi�Hankel matrix� let
HM �x� �

P
u�E�F hux

�u denote the associated Laurent polynomial� and

let V �x� �
P

��F v�x
�� Then� we have

HM�x�V �x� �
X

u�E�F���F

x�u�� hu v�

�
X

��u���E��F

x��

�
�X
��F

h��� v�

�
A �

where we assume that v� � � if u �� E�F � hu � � if u �� E�F � Therefore�
for � � E� the coe�cient of x�� equalsX

��F

h��� v� �
X
��F

m��� v��

which is precisely the coe�cient � of M v�
A similar argument reduces multiplication of an �E�F � quasi�Toeplitz

matrix by a vector to multiplication of a pair of Laurent�s polynomials�
The stated reductions enable us to deduce the following result�

Proposition �� An �E�F � quasi�Hankel �resp� an �E�F � quasi�Toeplitz�
matrix M can be multiplied by a vector in O�N log�N�CM�N� ops� where
N � bE�
F e �resp� bE�
F e� and where CM�N bounds the cost of eval�
uating the polynomial HM �resp� TM� at a �xed set of N points�



Proof� To obtain the latter complexity estimate� we reduce the problem
to computing the product of the two polynomials HM �x� �resp� TM �x�

and V �x� and then apply a variant of the well�known techniques of evalu�
ation and interpolation �cf� ��	
� Namely� we �rst evaluate the polynomials
HM �x� �resp� TM �x�
 and V �x� on a �xed set of N points� then pairwise
multiply their values� to obtain the values of the product HM �x�V �x�
�resp� TM �x�V �x�
� and �nally� obtain the coe�cients of this product by
applying the known interpolation techniques for sparse polynomials �see
e�g� section ��� of ��	 or ���	
�

In some special cases� we have better complexity estimates�

Proposition �� In the case where E � F � f���� � � � � �n� � Nn � � �
�i � di � �g� an �E�F � quasi�Hankel �resp� an �E�F � quasi�Toeplitz�
matrix can be multiplied by a vector in O��nD log��nD�� ops� where D �Qn

i di�

Proof� At �rst� as in the proof of proposition �� we reduce the problem to
multiplication of a pair of the associated multivariate polynomials� U�x�
and V �x�� so that U V is of degree at most �di � � in each variable xi�
The latter multiplication can be reduced to multiplication of a pair of
univariate polynomials� by means of application of Kronecker�s map�

x� � y� xk � yDk � Dk �
Y
i�k

��di � 
�� k � �� � � � � n�

which turns U�x�V�x� into a univariate polynomial of degree at most

��dn � ��Dn �
nY
i��

��di � 
� � �nD�

By applying fast Fourier transform �FFT
� we may multiply such polyno�
mials by using order of �nD log��nD� ops ��	�

Remark � 	 For practical implementation where D is very large� it is
better to avoid using Kronecker�s map so as to multiply two multivariate
polynomials U�x� and V �x� of lower degrees� rather than two univariate
polynomials of very high degrees� Then� the number of ops may grow a
little� but FFT involves roots of 
 of a lower order�

Proposition �� In the case where E � f� � Nn � j�j � kg� F � f� �
Nn � j�j � lg and where the computations are over a �eld of constants



containing the �eld of rational numbers� an �E�F � quasi�Toeplitz matrix
can be multiplied by a vector in O�� log� �� ops� where

� � ��l�k�n �

�

l � k � n

n

�
� O��e


l � k � n

n
�n�

p
n�� e � 
��� � � � �

�The latter equation is implied by Stirling�s formula��

Proof� Proceed as in the proof of proposition � but use the interpolation
technique of ��	 for polynomials with bounded total degrees� instead of
using the techniques of section ��� of ��	 or ���	�

��� Multivariate displacement operators and ranks

	de�nition
�

By convention� if A 	 L � L is a linear operator� A will denote its
matrix in a �sub
basis of L� These operators may have in�nite dimension�
but in our case� we will only study the �nite dimension case� The rank of
the operator A is the rank of the matrix A� For all �� � � Zn� �A���� � A���

is the coe�cient of x� in A�x���

Definition �� For any subset E of Zn� we de�ne the two following unit
E�displacement matrices �operators��

ZE
i � PE �xiPE

and

ZE
�i � PE �x��i PE�

In particular� for E � ��� � � � � n��� and i � �� we arrive at the well�known
displacement matrix

ZE
� �

�
BBBBBBB�

� � � � � � � � � � � � � �

�
� � �

���

�
� � �

� � �
���

���
� � �

� � �
� � �

���
� � � � � � � � � �

�
CCCCCCCA

and its transpose� ZE
�� �cf� ��	
 �



Definition �� Let E and F denote two subsets of Zn and let A denote
a linear operator L� L� Then� the operators

H�
i �A� � A�Z�E�i AZF

i � H�
i �A� � A�Z�Ei AZF

�i� T
�
i �A� � A�ZE

�iAZF
i �

and T�i �A� � A�ZE
i AZF

�i will be called the ������E�F� i�� ������E�F� i��
����� E� F� i�� and ����� E� F� i� displacements of A� respectively�� The
ranks of these displacements will be called the ������E�F� i�� ������E�F� i��
����� E� F� i�� and ����� E� F� i� displacement ranks of A� resp�� and will
be denoted r�����E�F�i�A�� r�����E�F�i�A�� r����E�F�i�A�� and r����E�F�i�A��
resp� The operators transforming A into the above displacements will be
called the ������E�F� i�� ������E�F� i�� ����� E� F� i�� and ����� E� F� i�
displacement operators� resp�

��� Bounds on displacement ranks of quasi�Hankel and

quasi�Toeplitz matrices

Definition �� Hereafter� we write

	i�E� � f� 	 � � E � �� ei �� Eg

�resp� 	�i�E� � f� 	 � � E � �� ei �� Eg��

Proposition ��	 For an �E�F� � quasi�Hankel operator M� we have the
following bounds on its ����� E� F� i� and ����� E� F� i� displacement ranks�

r�����E�F�i�M� � b	i��E�e � b	i�F �e�

r�����E�F�i�M� � b	�i��E�e � b	�i�F �e�
For an �E�F � quasi�Toeplitz operator M� we have the following bounds on
its ����� E� F� i� and ����� E� F� i� displacement ranks�

r����E�F�i�M� � b	�i�E�e� b	i�F �e�

r����E�F�i�M� � b	i�E�e� b	�i�F �e�

Proof� The proofs of all the four bounds of this proposition mimic each
other� so we will only prove the �rst bound� According to proposition ���
we have

H�
i �M� � P�E

�
�U � �x��i

P�E �UPF�xi
�
PF �

where U is the polynomial associated with M�



� If � �� F then H�
i �M��x�� � ��

� If � lies in 	i�F �� then ZF
i �x�� � � and H�

i �M��x�� � M�x�� �P
��Em��� x

��

� If � lies in F but not in 	i�F �� then

�x��i
P�E�UPF�xi�x�� � x��i P�E�U x� xi�

and

H�
i �M��x�� � P�E

�
U x� � x��i P�E�U x� xi�

�
� P�E

�
U x� � U x� � x��i ��E�U x� xi�

�
� P�E

�
x��i ��E�U x� xi�

�
�

X
���i��E�

m��� x
���

Therefore� if � �� 	i��E� and � �� 	i�H�
i �� then �H�

i �M����� � ��
Thus� the rank of H�

i �M� is at most b	i��E�e� b	i�F �e�

In the particular case� where E � F � f���� � � � � �n� � Nn � � � �i �
di��g� the displacement rank of H�

i �M� is bounded by 
 D
di

� 

Q

j ��i dj �

��� Examples

Quasi�Toeplitz matrices� Let us be given some multivariate polynomials
P�� � � � � Pn and let us consider the matrix associated with the linear map


 	 V� � � � � � Vn � V�

�Q�� � � � � Qn� ��
nX
i��

PiQi�

where Vi is the vector space generated by the monomials x� for � � Fi�
which is the set of all monomials of the polynomial Qi� i � �� � � � � n� where
E denotes the set of the exponents of the monomials of �PiQi�i�������n�
and where V is generated by the monomials x� for � � E� Such maps
typically appear in the construction of resultant type matrices associated
to the system fPi � �� i � �� � � � � ng� of polynomial equations ��	� ��	�

Let M denote the matrix of this linear map in the monomial basis of
V�� � � � �Vn and V � The rows of this matrix are indexed by the elements
of the set E and the columns by the elements of the set F� t � � � tFn� Let



x� be a new variable and let us view Z
n as the subset of Zn�� consisting

of elements of the form ��� a�� � � � � an�� Let e� denote the �rst canonical
vector of Zn��� Then� the elements of the subset

F � fi e� � � � � � i � n� � � Fi��g

index the rows of M �
Note that the ��� i e� � ���th entry of the matrix M is the coe�cient

of x� in x�Pi� It is also the coe�cient of x��� in Pi� Therefore� it depends
only on �� � � i e��

Remark � 	 Resultant type matrices and their transposes are quasi�
Toeplitz matrices�

Remark � 	 The polynomial associated to the Toeplitz operator 
 is just

T� �
nX
i��

x�i� Pi�

Quasi�Hankel matrices� Let � � �L be a linear form on L and consider the
matrix

���x�������E���F �

This is an �E�F � quasi�Hankel matrix� As we will see in the next section�
such matrices appear in algebraic residue theory� If B is a Gorenstein
algebra �for instance� if B is a complete intersection
 and has a �nite
dimension over C � then any non�degenerating bilinear form q can be rep�
resented as �a� b� �� q�a� b� � ��a b� where � � �L is a linear form �see
��	
� Furthermore� any Gramm�Schmidt matrix� �q�ui�uj��� where �ui� is
a basis of B� is conjugated to a quasi�Hankel matrix�

� Algebraic residues

In this section� we will recall some basic de�nitions from algebraic residue
theory� referring the reader to ��	� ��	 for further details�

��� De�nitions and basic facts

Let R � C �x� � C �x� � � � � � xn� be the algebra of polynomials in xi over
the �eld C � In addition to the vector �set
 of variables x� we consider the
vectors y � �y�� � � � � yn� and write x��� � x� x��� � �y�� x�� � � � � xn�� � � � �



x�n� � y� We de�ne �i�P � � P �x�i���P �x�i����
yi�xi

� the discrete di�erentiation of
P � For any sequence of n�� polynomials P�� � � � � Pn � R� let us construct
the following polynomial in x and y�

�P�� P�� � � � � Pn� �

�������
P��x� ���P�� � � � �n�P��

���
���

���
Pn�x� ���Pn� � � � �n�Pn�

������� � ��


and let us write �P � ��� P�� � � � � Pn� � C �x�y�� Now� we can de�ne the
residue of P � �P�� � � � � Pn� as a unique linear form � in the set of linear
forms on R such that

�� � vanishes on �P��

�� �P���� � � �P��

Hereafter� I will denote the ideal generated by the polynomials P�� � � � � Pn�
B � R�I will denote the quotient ring de�ned in R by I� and 	 will denote
an equality in B�

If �x����E is a basis of B� then we have the following property�

�P 	
X
��E

x�w��y� 	
X
��E

w��x�y
� mod �P�x��P�y���

Here� �w�� is the dual basis of �x
�� for � �

��x�w�� � 	��� �

	��� is � if � � � and � otherwise� Thus� for any b � B� we have the
relations

b 	
X
��E

��bx��w� 	
X
��E

��bw��x
�� ��


Moreover� for any polynomial Q � R� we have

�P�x�y�Q�x� 	 �P�x�y�Q�y� mod �P�x��P�y��� ��


Consequently� for any pair of distinct roots� � and �� of the polynomial
system P � �� we have

�P��� �� � �� �




��� Computation of the residues associated to systems of

polynomial equations

We consider a system of polynomial equations of the special form�	

	�
P� � xd�� �R��x�� � � � � xn� � ��
���
Pn � xdnn �Rn�x�� � � � � xn� � ��

with deg�Ri� � di� Then� the vector space B has dimension D �
Qn

i�� di�
and a basis of B is the set of monomials x� with � in the set

E � f���� � � � � �n� � N
n � � � �i � di � �g�

In this section� we compute the vector

���x�����j�j���

where � �
Pn

i�� di�n and � � �� Let Tl � f� � Nn such that j�j � lg and
T �l� � f� � Nn such that j�j � lg� The set Tl contains �l 	� �l�n 	� bTle ��
l � n
n

�
elements� Due to Stirling�s formula� �l � bTle �the cardinality

of Tl
 is asymptotically equivalent to

O��e
l � n

n
�n�

p
n�� e � 
��� � � � �

Let N denote the set of all monomials x� for � � T�nT� � f� �
T�� � �� T�g� An element of N is divisible by one of the monomials xdii �
Therefore� N can be partitioned into n subsets as follows�

N � xd�� N� t � � � t xdnn Nn�

�For instance� xd�� N� is the subset of elements ofN divisible by xd�� � xd�� N�

is the subset of elements of N divisible by xd�� and not by xd�� � � � � 
� Let
Vi �resp� V 
 denote the vector space generated by the monomials in Ni

�resp� N 
� As in section ���� consider the map


 	 V� � � � � � Vn � V�

�Q�� � � � � Qn� ��
nX
i��

PiQi�

For any set S in R� let S�l� �resp� S��l�
 denote the subset of S formed
by the elements that are homogeneous of a degree l �resp� of a degree at
most l
�



Due to the structure of the polynomials of the system P � �� the

image of �V �l�d�� � � � � � V
�l�dn�
n � is in V ��l�� and the matrix of this map

�in the monomial basis of �V �l�d�� � � � � � V
�l�dn�
n � and V ��l�	 has the

following form� �
BBBBBB�

Ul

I	l

�
CCCCCCA

�
�V ��l���

�
�V �l�

�

where Ul is a �Tl��� T
�l�� quasi�Toeplitz matrix� �l � bTle� and I	l is the

�l � �l identity matrix� Thus� the complete matrix of 
 in the monomial
basis is a block upper triangular matrix of the size bT�e � �bT�e � bT�e��

Let M be the submatrix of this matrix whose indices of rows and
columns are in N � T�nT� and let v � �v����N be the row corresponding

to the monomial xd���� � � � xdn��n in the matrix of 
� Then� we can compute
the residues based on the next result�

Proposition �� �see ���� The following equations hold�

t � ���x�����N � �vM���

The matrixM is upper triangular� of size �bT�e�bT�e���bT�e�bT�e��
Therefore� the vector t can be computed in O��bT�e � bT�e��� ops�

By using the quasi�Toeplitz structure of the matrix M � we can obtain
a better complexity bound�

Proposition �� The vector of the residues� ���x�����N � can be computed
in O���� ��� log� �� ops� where

� � ����n �

�
��� n

n

�
� O��e

��� n

n
�n�

p
n�� e � 
��� � � � �

Proof� Computation of ���x�����N is essentially reduced to solving the
following linear system of equations�

�t���� � � � � t�� � �v���� � � � �v��

�
�����
I	��� U������� � � � U���

� I	���
� � �

���
���

� � �
� � � U�����

� � � � � I	�

�
����� � ��




We immediately obtain from the latter system that t��� � v���� Substi�
tuting this part of the solution vector into the system yields a subsystem
in �t���� � � � � t��� having similar form� We will iterate this process in order
to compute the entire vector v M��� by using � � � iteration steps� At
the k�th iteration step� we multiply the vector t��k by the quasi�Toeplitz
matrix �U��k���k� � � � � U��k��� and also perform bT�e�bTk��e vector sub�
tractions� By applying proposition ��� we multiply the vector t��k by the
matrix �U��k���k� � � �� U��k��� by using order of�


 � � 
 k � �� n
n

�
log��

�

 � � 
 k � �� n

n

�
�

ops� which dominates the computational cost of performing the k�th it�
eration step� Since k � � � �� the entire computation of the vector
�v���� � � � �v�� only requires

O���� ��� log� ��

ops� where � � ����n �

�
��� n

n

�
�

Hereafter� we will writeH� � ���x���������E andHi � ���xix
���������E �

Clearly� Hi are quasi�Hankel matrices for all i� Since �x����E is a basis in
the quotient ring B� we will call H� a basis residue matrix of B�

Proposition �� The matrices Hi� i � �� � � � � n can be computed by using

O �n��� �� e�n�n�� log�����
ops� where � �

P
i di
n �

Proof� In order to compute Hi� we need to compute ��x�� for all � such
that j�j � � � 


Pn
i�� di � 
n� �� By using Stirling formula� we obtain

that

����n � O
�
�� e

P
i di
n

�n�
p
n

�
� e � 
��� � � � �

Substitution into proposition ���
 gives us the desired complexity�

If all the degrees di are equal to each other� that is� if di � d� i � �� � � � � n�
then� the complexity bound of the latter proposition turns into

O��n en dn�� n��� log� d� � O�
�

n�
�n enD�� �

n log�D��

ops� which is asymptotically better than D��



��� Linear solver with the basis residue matrix H�

Proposition �� The inverse of W� is the quasi�Hankel matrix H��

Proof� We have the equations

��x�w�� �
X
��E

��x����w��� � 	����

where 	��� � � if � � � and � otherwise� and we have

H�W� � ID�

where ID is the D�D identity matrix� Therefore� the inverse of H� is the
matrix of the coe�cients of the dual basis of �x�� in this basis�

Proposition �� The solution vector z to the system H� z � w can be
computed in O��nD� log��nD�� ops�

Proof� We �rst compute the values sk � vT eHk
� u� where u and v are two

random vectors� eH� � TH�� T is a random square Toeplitz matrix� and
k � �� � � � � 
D��� We reduce multiplication of the matrix eH� by a vector
to multiplication of H� by a vector� followed by multiplication of T by the
resulting vector� By applying proposition ��� we multiply H� by a vector
by using O��nD log��nD�� ops� Multiplication of the Toeplitz matrix T
by a vector takes O�D logD� ops �cf� ��	
� Therefore� we may evaluateeHk

� u� for k � �� � � � � 
D � �� by using O��nD� log��nD�� ops� Then� the
values s�� � � � � s�D�� can be computed by using O�D�� ops�

Due to our random choice of Toeplitz matrix T � the characteristic and
minimal polynomials of eH� coincide with each other� c eH�

�x� � m eH�
�x��

with a su�ciently high probability �cf� ��	 and regularization ������ on
page ��� of ��	
� Now� assuming that they do coincide and having the
values s�� � � � � s�D�� available� we will follow ��	 and ��	 and will compute
the coe�cients of the characteristic polynomial c eH�

��� �
PD

i�� ci �
i ofeH�� This computation is reduced to the solution �by using O�D log�D�

ops� cf� ��	
 of a Toeplitz linear system of D equations� The latter system
is non�singular� with a high probability� due to the equality� with a high
probability� of the minimal polynomial of eH� to the characteristic polyno�
mial of eH� and to the random choice of the vectors u and v �cf� ��	 or ��	
�
Having the coe�cients ci� i � �� � � � �D� of the characteristic polynomial



of the matrix eH� available and applying the Cayley�Hamilton theorem�
we obtain the expression

eH��
� � �

DX
i��

ci
c�
eHi��
� �

where c� � ����D det� eH�� �c� �� �� with a high probability� since so are
det�T � and det�H��	� Thus� computing H��

� w requires D � � multiplica�

tions of eH� by vectors andD additions of vectors� According to proposition
��� these operations can be performed in O��nD� log��nD�� ops�

��� Multiplication in B � R�I

Let us write w� �
P

��E w���x
� and W� � �w��������E �

Let �i denote the operator of multiplication by xi in B and let Mi �

�m
�i�
��������E denote its matrix in the basis �x��� Then� we have

xi x
� 	

X

�E

m�i�

�� x




and
��xi x

���� �
X

�E

��x��
�m�i�

���

In other words� we have
Hi � H�Mi� ��


Note that the matrix �n
�i�
���� of multiplication by xi in the basis �w�� is

MT
i � for we have

m
�i�
��� � hxix� jw�i � ��xi x

� w��

and
n
�i�
��� � hxiw�jx�i � ��xiw� x

���

Proposition �� After a precomputation of

O �n��� �� e�n �n�� log����� ops

where � �
P

i di
n � two elements of B can be multiplied in

O ��nD� log��nD�� � �nD log���nD�
�

ops�



Proof� We want to compute f g in B where

f 	�
P

��E f� x
��

g 	�
P

��E g� x
��

According to the equation ��
� we have

f g �
X
��E

��f g x��w�

�
X

��E���E�
�E

��x����
�f� g
 w��

Let S 	�
P

u��E ��x
u�x�u �

P
u��E �ux

�u� with the convention that
�u � � if u �� �E� According to ���
� this polynomial can be computed
within

O �n��� �� e�n �n�� log�����
ops� This computation has to be done once� Then�

S g �
X

u��E�
�E

x�u�
 �u g


�
X

v�u�
��E�E

x�v
X


�E� v�
��E

�v�
 g
 �

The support of this polynomial is in �E � E� Therefore� by applying
the known interpolation techniques for sparse polynomials ���	� ���	
� the
product of these two polynomials can be computed in O��nD log���nD��
ops� Similarly�

S f g �
X

v��E���E

x�v��

�
� X

�E�v�
��E�E

�v�
 g


�
A f�

�
X

��v����E��E

x��
X

��E�
�E

�����
 f� g
 �

Therefore� the coe�cients of x�� in S f g for � � E are precisely the
coe�cients of f g in the dual basis �w�� of B� Note that these coe�cients
only involve the coe�cients of x�v in S g for which v � 
E� Therefore�
the cost of such a computation is O��nD log���nD�� ops�

In order to obtain the coe�cients of f g in the basis �x��� we multiply
the vector

t � �
X

��E�
�E

�����
 f� g
 ���E



by the matrix W� � �w����E � H��
� � that is� we solve the linear system

of equations H� s � t� According to proposition ���
� this computation
can be done within O��nD� log��nD�� ops�

� Application to solving polynomial systems of equations

��� Computing selected roots of a polynomial system�

Let Z denote the set of all common roots of the system P � �� We will
assume that they are all distinct� Let J be the Jacobian of P� For any
� � Z� we have J��� �� ��

Proposition �� If the roots of P are simple� then

e� �
�

J���
�P�x� ��� � � Z�

is a linear basis of orthogonal idempotent of B� of sum ��

Proof� According to the equation ��
� for any Q � R and for any � � Z�
we have

�P�x� ��Q�x� 	 �P�x� ��Q���

in the quotient ring B� Therefore�

�P�x� ���P�x� �� 	 J����P�x� ���

and e� � �
J��� �P�x� �� is an idempotent �J��� �� �� assuming all roots of

the system P � � are distinct
� Moreover� according to �
� we have

�P�x� ���P�x� �� 	 �P�x� ���P��� �� 	 ��

for any pair of distinct roots �� � � Z� which shows that e� e� 	 � unless
� � �� Now� we recall from the de�nition of the residue � and from the
the Euler�Jacobi identity �cf� ��	
 that

�P��� � � �by de�nition�

�
X
��Z

�

J���
�P�x� �� �

X
��Z

e� �by the Euler�Jacobi identity��

By decomposing any element h of B in the basis e� � we obtain that

h�x� �
X
��Z

h�x� e� 	
X
��Z

h��� e� �



Here� the second equation follows since e�h�x� 	 e�h���� Squaring h in
the quotient ring B gives us

h� 	
X
��Z

h���� e� �

Here and hereafter� for any element b � B� �b� denotes the vector of
the coe�cients of b in the basis �x����E � In particular� ��� � ��� �� � � � � ��
if the basis starts with the monomial �� Let jj � jj denote a norm in C

D

�say� for the Euclidean norm�

jjvjj � �v�v� � �
DX
i��

jvij�����v � �vi�� i � �� � � � �D��

By abuse of notation� for any element b � B� jjbjj will denote jj�b�jj� Let
h � R and assume that there is a unique root � � Z� for which the norm
of h��� is maximum� so that

jh���j�jh���j � � 
 �� ��


for some �xed positive � and for any � � Z distinct from �� �Since all the
roots in Z are assumed to be distinct� we may� in principle� ensure the
latter relation with a high probability� by means of random linear substi�
tution of the vector of the variables x�
 Then� by iteratively computing
and normalizing the squares�

h� � h� hi�� 	 h�i �jjh�i jj� i � �� �� � � � � k � ��

so that we have

�k 	� k hk
jjhkjj �

e�
jje� jj k �

c

�� � ���
k

and �k � 
�b in k � k��� b� � O�log�b���� recursive steps� Therefore�
squaring and normalizing in B� we will make our process converge to a
multiple of the element e� �

From the previous section� we have the bound of O��nD log��nD� �
D� log D� ops on the computational cost of squaring in B� which means
that

O ��nD� log��nD� � �nD log���nD�
�

ops su�ce in order to approximate the element e��jje� jj within the error
norm bound 
�b� assuming the equation ��
�

We refer the reader to ��	 and �	 for preceding works on a similar
approach in the univariate case�



��� Transition from e� to �

By de�nition� we have

e� �
�

J���
�P�x� �� �

�

J���

X
��E

w��x� �
��

This can be rewritten as

�e� � �
�

J���
W� ��

����E �

Here� W� denotes the matrix �w����E in the monomial basis �x����E �
Then� we obtain that

������E � J���H� �e� �� ��


Let f � H�e� � Then according to ��
� we have f� � ��J��� and the ith

coordinate of � is
fxi
f�
� According to proposition ���
� we arrive at the

following result�

Proposition �� The transition from e� to the root � of the system P � �

can be performed by using O��nD� log��nD�� ops�

��� The closest root

Suppose that we seek a root of the system P � � for which x� is the closest
to a given value u � C � Let us assume that u is not a projection of any
root of the system P � � and that x� � u has reciprocal in B� Let ���x�
denote such a reciprocal� We have ���x��x� � u� 	 � and ����� � �

���u
�

Therefore� a root for which x� is the closest to u� is a root for which
j�����j is the largest� Consequently� iterative squaring of �� � ����� shall
converge to this root�

The polynomial �� can be computed in the following way� Let ��
denote multiplication by x� in B� Then �� � ����u������� and according
to the matrix equation ��
� we have

���� � H� �H� � uH��
������

which can be computed within O��nD� log��nD�� ops�
One may compute several roots of the polynomial system� by applying

the latter computation �successively or concurrently
 to several initial
values u�



� Conclusion

In this paper� we extend the structure of Toeplitz and Hankel matrices to
a new class of structured matrices and operators� which includes matrices
associated to the polynomial systems of equations and which we call quasi�
Hankel and quasi�Toeplitz matrices and operators� Exploiting the fact
that multiplication of such matrices by vectors is �fast�� we devise an
algorithm� based on residues computations� for approximating a selected
solution of a polynomial system of the form Pi � xdii � Ri�x�� � � � � xn�
where Ri has a total degree less than di�

The key ingredients of this algorithm are a
 the inversion of basis
residue matrices b
 fast multiplication of two elements of the quotient
ring B � R�I� and c
 an iterative method for approximating a single root
of the system� The complexity analysis shows that our algorithm gives
us a substantial improvement of the known methods for solving polyno�
mial systems of equations� Though we consider a special class of polyno�
mial systems� we expect to extend such an approach to general systems
Ri � �� i � �� � � � � n� by means of the known techniques of homotopic
deformation and the local continuity of the residue�
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