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Abstract. We propose new Las Vegas randomized algorithms for the solution of a square nonde-
generate system of equations, with well-separated roots. The algorithms use O(δ 3nD2 log(D) log(b))
arithmetic operations (in addition to the operations required to compute the normal form of the
boundary monomials modulo the ideal) to approximate all real roots of the system as well as all
roots lying in a fixed n-dimensional box or disc. Here D is an upper bound on the number of all
complex roots of the system (e.g., Bezout or Bernshtein bound), δ is the number of real roots or
the roots lying in the box or disc, and ε = 2−b is the required upper bound on the output errors.
For computing the normal form modulo the ideal, the efficient practical algorithms of [B. Mourrain
and P. Trébuchet, in Proceedings of the International Symposium on Symbolic and Algebraic Com-
putation, ACM, New York, 2000, pp. 231–238] or [J. C. Faugère, J. Pure Appl. Algebra, 139 (1999),
pp. 61–88] can be applied. We also yield the bound O(3nD2 log(D)) on the complexity of counting
the numbers of all roots in a fixed box (disc) and all real roots. For a large class of inputs and
typically in practical computations, the factor δ is much smaller than D, δ = o(D). This improves
by the order of magnitude the known complexity estimates of the order of at least 3nD4 +D3 log(b)
or D4, which so far are the record estimates even for the approximation of a single root of a system
and for each of the cited counting problems, respectively. Our progress relies on proposing several
novel techniques. In particular, we exploit the structure of matrices associated to a given polynomial
system and relate it to the associated linear operators, dual space of linear forms, and normal forms
of polynomials in the quotient algebra; furthermore, our techniques support the new nontrivial exten-
sion of the matrix sign and quadratic inverse power iterations to the case of multivariate polynomial
systems, where we emulate the recursive splitting of a univariate polynomial into factors of smaller
degree.
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1. Introduction. The classical problem of solving a multivariate polynomial
system of equations is presently the subject of intensive research and one of the central
practical and theoretical problems in the area of algebraic computation (see [21], [5],
[32], [15].) It has major applications, for instance, to robotics, computer modelling
and graphics, molecular biology, and computational algebraic geometry.

The oldest approach to the solution is the elimination method, reducing the prob-
lem to the computation of the associated resultant or its multiples. This classical
method evolved in the old works by Bezout, Dixon, and Macaulay (see, e.g., [21],
[45]) but later remained largely ignored by the researchers and algorithm designers
until it was resurrected first by Chistov and Grigoriev [8], who designed a determin-
istic solution algorithm, then in a randomized approach by Canny [4], and later by
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Giusti and Heintz [18] and has since become a very popular approach. One of the
major further steps was the reduction of the solution of a multivariate polynomial
system to matrix operations, in particular, by rational transformation of the original
problem into a matrix eigenproblem (cf. [1], [16], [15], [27], [25], [10]).

The approach has been explored and extended by many researchers, has been
exploited in the practice of algebraic computing, and has also supported the record
asymptotic upper bound O∗(D4) on the arithmetic computational complexity of the
solution of a nondegenerate polynomial system having a finite number of roots [40].
Here and hereafter, O∗(s) stands for O(s logc s), c denoting a constant independent of
s, and D is an upper bound on the number of roots of the given polynomial system.
(For D, one may choose either the Bezout bound,

∏
i di, di denoting the maximum

degree in the ith variable in all monomials of the system, or the Bernshtein bound,
which is much smaller for sparse systems and equals the mixed volume of the associ-
ated Newton polytope, defined by the exponents of the monomials.) Even for many
subproblems and related problems, no known algorithms support any better bound
than O(D4). This includes approximation of all real roots of a polynomial system
(which is highly important due to applications to robotic and computer graphics), all
its roots lying in a fixed n-dimensional box or disc, counting all roots in such a box
or disc or all real roots, and even approximation of a single root. Some progress was
achieved in [30], where a single root was approximated in O∗(3nD2) time, but under
a strong restriction on the input polynomials.

Against this background, our new algorithms support the computational cost
estimate of O∗(3nD2) for all of the subproblems listed above, that is, for both of the
counting problems, the computation of a single root, all real roots, and all roots in
a fixed box or disc. More precisely, our bound is O∗(δ 3nD2) in the latter two cases,
where δ is the number of real roots or roots in the selected box or disc, respectively.
In practical applications, such a number is typically much less than D. The number
of real roots grows as

√
D for a large class of input systems [41]. See also the sparse

case [24]. Thus, for all listed problems, we improve the known complexity estimates
by an order of magnitude.

We have a reservation from a theoretical point of view; that is, our main algorithm
relies on the known effective algorithms for the computation of the normal form of
monomials on the boundary of the monomial basis (see section 4). These algorithms
exploit structured matrices and in practice appear to run faster than our subsequent
computations (see [17], [33]), but their known theoretical cost bounds are greater than
the order of e3nD3 (see [22]).

Our paper addresses the problem of the asymptotic acceleration of the resolution
stage, where the structure of the quotient algebra A (associated with the polynomial
system) is already described by using the minimal number of parameters, that is, via
the normal form of the monomials on the boundary of the basis. From a purely the-
oretical point of view, we have an alternative approach that avoids the normal-form
algorithms at the price of using the order of O(12nD2) additional arithmetic opera-
tions [31]. This should be technically interesting because no other known approach
yields this bound, but in this paper, we prefer to stay with our present, practically
promising version, referring the reader to [31] on the cited theoretical approach. Our
practically promising solution relies on fast computation of normal forms of poly-
nomials modulo the ideal, based on the algorithm of [33]. Some limited amount of
experimental evidence to the efficiency of this algorithm has been reported in [33],
and further experimentation is ongoing.
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Our algorithms approximate the roots numerically, and in terms of the required
upper bound 2−b (b is the bit precision) on the output errors of the computed solution,
we obtain the running time estimate O(log b) due to quadratic convergence of our
algorithms. Within a constant factor, such an estimate matches the lower bound
of [39] and enables us to yield a high output precision at relatively low cost; this
gives us a substantial practical advantage versus the algorithms that reach only O(b)
because the solution of a polynomial system is usually needed with a high precision.
We achieve this by using the matrix sign iteration and the inverse quadratic iteration,
both of which converge at a quadratic rate right from the start. All techniques and
results can be extended to the case of sparse input polynomials (see Remark 3.16).
In this case, the computation cost bounds become O(DCPolMult), where CPolMult is
the cost of polynomial multiplication, which is small when the polynomials are sparse.
(This cost depends on the degree of the polynomials and not only on an upper bound
D on the number of roots.)

The factor 3n is a substantial deficiency, of course, but it is still much less than
D for the large and important class of input polynomials of degree higher than 3.

Our results require some other restrictions. First, we consider systems with sim-
ple roots or well-separated roots. In the presence of a cluster, a specific analysis is
needed [43] and deserves additional work, which is not in the scope of this paper.
Second, we need the existence of a nondegenerate linear form, which implies that the
quotient algebra A is a Gorenstein algebra [12], [14]. This is the case in which the
solution set is 0-dimensional and is defined by n equations. If we have more than n
equations defining a 0-dimensional variety, we may take their n-random linear com-
bination (see, e.g., [13]), which yields the required Gorenstein property, but this may
introduce extra solutions that we will have to remove at the end. Finally, for approx-
imation, our algorithms converge quadratically (using O(log(b)) steps) but require
certain nondegeneracy assumptions (such as uniqueness of the minimum of the value
of |h(ζ)|, where ζ is a root and h(x) is a polynomial). The latter assumptions can be
ensured with a high probability by a random linear transformation of the variables.
Even if these assumptions are barely satisfied, the slowdown of the convergence is not
dramatic because the convergence is quadratic right from the start.

Similarly, we apply randomization to regularize the computations at the counting
stages and for the auxiliary computation of the nondegenerate linear form in the dual
space Â. Then again, nondegeneracy is ensured probabilistically and is verified in the
subsequent computation. (That is, we stay under the Las Vegas probabilistic model,
where failure may occur, with a small probability, but otherwise the correctness of
the output is ensured.)

Some of our techniques should be of independent interest. In particular, we extend
the theory of structured matrices to the ones associated to multivariate polynomials
and show correlation among computations with such matrices and dual spaces of linear
forms. We show some new nontrivial applications of the normal forms of polynomials
of the quotient algebra. Furthermore, we establish new reduction from multivariate
polynomial computations to some fundamental operations of linear algebra (such as
the matrix sign iteration, the quadratic inverse power iteration, and the computation
of Schur’s complements).

Our progress has some technical similarity to the acceleration of the solution of
linear systems of equations via fast matrix multiplication (in particular, we also rely
on faster multiplication in the quotient algebra defined by the input polynomials)
but even more so to the recent progress in the univariate polynomial rootfinding
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via recursive splitting of the input polynomial into factors (cf. [6], [34], [36], [37]).
Although recursive splitting into factors may be hard to even comprehend in the
case of multivariate polynomial systems, this is exactly the basic step of our novel
recursive process, which finally reduces our original problem to ones of small sizes.
Of course, we could not achieve splitting in the original space of the variables, but
we yield it in terms of idempotent elements of the associated quotient algebra (such
elements represent the roots), and for this purpose we have to apply all of our advanced
techniques. This approach generalizes the methods of [6] and [36] to the multivariate
case. The only missing technical point of our extension of the univariate splitting
construction of [36] is the balancing of the splitting, which was the most recent and
elusive step in the univariate case (cf. [36], [37]). It is a major challenge to advance
our approach to achieve balancing in our recursive splitting process even in the worst
case (possibly by using the geometry of discriminant varieties) and, consequently,
to approximate all of the roots of any specific polynomial system in O∗(3nD2 log b)
arithmetic time. Another goal is the computations in the dual space, as well as with
structured matrices. The latter subject is of independent interest as well [44], [32].

Let us conclude this section with a high-level description of our approach. Our
solution of polynomial systems consists of the following stages:

1. Compute a basic nondegenerate linear form on the quotient algebra A associ-
ated to a given system of polynomial equations.

2. Compute nontrivial idempotent elements of A.

3. Recover the roots of the given polynomial system from the associated idempo-
tents.

The quotient algebra A and the dual space of linear forms on it are defined and
initially studied in section 2. Stage 1 is elaborated in section 4. Idempotents are
computed by iterative algorithms of section 6. Section 7 shows how to recover or to
count the roots efficiently when the idempotents are available. The computations are
performed in the quotient algebra, and they are reduced to operations in the dual space
by using the associated structured (quasi-Toeplitz and quasi-Hankel) matrices. In
section 3, we define the classes of such matrices, show their correlation to polynomial
computations, and exploit it to operate with such matrices faster. In section 5, we
show how the combined power of the latter techniques and the ones developed for
working in the dual space enable us to rapidly perform the basic operations in the
quotient algebra and, consequently, the computations of sections 6 and 7.

Stage 1 contributes O(3nD2 logD) ops to the overall complexity bound, assum-
ing that the normal form of the monomials on the boundary of a basis is known.
The computation of a nontrivial idempotent at stage 2 has cost O(3nD2 logD log b),
which dominates the cost of the subsequent root counting or their recovery from the
idempotents. The overall complexity depends on the number of idempotents that one
has to compute, which in turn depends on the number δ of roots of interest. So far,
we cannot utilize here the effective tools of balanced splitting, available in the similar
situation for the univariate polynomial rootfinding. Thus, in the worst case, in each
step we split out only a single root from the set of all roots, and then we need δ
idempotents.

2. Definitions and preliminaries. Hereafter, R = C[x1, . . . , xn] is the ring of
multivariate polynomials in the variables x1, . . . , xn, with coefficients in the complex
field C. Z is the set of integers, N is its subset of nonnegative integers, and L =
C[x±1 , . . . , x

±
n ] is the set of Laurent polynomials with monomial exponents in Z

n. For
any a = (a1, . . . , an) ∈ Z

n, xa is the monomial xa = xa1
1 · · ·xan

n . �E� is the cardinality



MULTIVARIATE POLYNOMIAL SYSTEMS 439

(that is, the number of elements) of a finite subset E of Z
n. “ops” will stand for

“arithmetic operations” in the underlying coefficient ring or field.

2.1. Quotient algebra. To motivate and to demonstrate our study, we will
next consider the univariate case, where we have a fixed polynomial f ∈ C[x] of

degree d with d simple roots: f(x) = fd
∏d

i=1(x−ζi). The quotient algebra of residue
polynomials modulo f , denoted by A = C[x]/(f), is a vector space of dimension d.
Its basis is (1, x, . . . , xd−1). Consider the Lagrange polynomials

ei =
∏
j �=i

x− ζj
ζi − ζj

.

One immediately sees that
∑

i ei = 1 and eiej ≡ ei(ei − 1) ≡ 0 (for these two
polynomials vanish at the roots of f). In other words, the Lagrange polynomials
ei are orthogonal idempotents in A, and we have A =

∑
i C ei. Moreover, for any

polynomial a ∈ A, we also have (a− a(ζi))ei ≡ 0, so that ei is an eigenvector for the
operator of multiplication by a in A, for the eigenvalue a(ζi). These multiplication
operators have a diagonal form in the basis (ei) of A. According to a basic property
of Lagrange polynomials, we have a ≡ ∑

i a(ζi) ei(x) for any a ∈ A. Therefore, the
dual basis of (ei) (formed by the coefficients of the ei in this decomposition) consists
of the linear forms associating to a its values at the points ζi. We will extend this
approach to the case of multivariate polynomial systems, which, of course, will require
substantial further elaboration and algebraic formalism. We refer the reader to [26],
[27], [32], [42] for further details.

Let f1, . . . , fm be m polynomials of R, defining the polynomial system f1(x) =
0, . . . , fm(x) = 0. Let I be the ideal generated by these polynomials, that is, the set
of polynomial combinations

∑
i fiqi of these elements. A = R/I denotes the quotient

ring (algebra) defined in R by I, and ≡ denotes the equality in A. We consider the
case in which the quotient algebra A = R/I is of finite dimension D over C. This
implies that the set of roots or solutions Z(I) = {ζ ∈ C

n; f1(ζ) = · · · = fm(ζ) = 0} is
finite: Z(I) = {ζ1, . . . , ζd} with d ≤ D. Then we have a decomposition of the form

A = A1 ⊕ · · · ⊕ Ad,(1)

where Ai is a local algebra, for the maximal ideal mζi defining the root ζi. From
decomposition (1), we deduce that there exist orthogonal idempotents e1, . . . , ed sat-
isfying

e1 + · · ·+ ed ≡ 1 and ei ej ≡
{

0 if i �= j,
ei if i = j.

If I = Q1∩ · · ·∩Qd is the minimal primary decomposition of I, we have eiA ∼ R/Qi,
where Ai = eiA is a local algebra, for the maximal ideal mζi defining the root ζi.
Thus, to any root ζ ∈ Z, we associate an idempotent eζ .

2.2. Dual space. Let R̂ denote the dual of the C-vector space R, that is, the
space of linear forms

Λ : R→ C,

p �→ Λ(p).
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(R will be the primal space for R̂.) Let us recall two celebrated examples, that is, the
evaluation at a fixed point ζ,

1ζ : R→ C,

p �→ p(ζ),

and the map

(da = (d1)a1 · · · (dn)an) : R→ C

p �→ 1∏n
i=1 ai!

(dx1
)
a1 · · · (dxn

)
an (p)(0),(2)

where a = (a1, . . . , an) is any vector from N
n and dxi is the partial derivative with

respect to the variable xi. For any b = (b1, . . . , bn) ∈ N
n, we have

da(xb) =

{
1 if ∀i, ai = bi,
0 otherwise.

Therefore, (da)a∈Nn is the dual basis of the primal monomial basis. Thus we decom-

pose any linear form Λ ∈ R̂ as

Λ =
∑
a∈Nn

Λ(xa)da.(3)

Hereafter, we will identify R̂ with C[[d1, . . . ,dn]]. The map Λ → ∑
a∈Nn Λ(xa)da

defines a one-to-one correspondence between the set of linear forms Λ and the set
C[[d1, . . .dn]] = C[[d]] = {∑a∈Nn λad

a1
1 · · ·dan

n } of polynomials in the variables
d1, . . . ,dn.

The evaluation at 0 corresponds to the constant 1 under this definition. It will
also be denoted by δ0 = d0.

We will denote by Â and also by I⊥ the subspace of R̂ made of those linear forms
that vanish on the ideal I.

We now define multiplication of a linear form by a polynomial (R̂ is an R-module)

as follows. For any p ∈ R and Λ ∈ R̂, we write

p � Λ : R→ C,

q �→ Λ(p q).

For any pair of elements p ∈ R and a ∈ N, a > 1, we have

(dxi)
a

(xi p)(0) = a (dxi)
a−1

p(0).

Consequently, for any pair (p,a), p ∈ R, a = (a1, . . . , an) ∈ N
n (where ai �= 0 for a

fixed i), we obtain

xi � da(p) = da(xi p)

= da1
1 · · ·dai−1

i−1 dai−1
i d

ai+1

i+1 · · ·dan
n (p);

that is, xi acts as the inverse of di in C[[d]]. For this reason, such a representation is
referred to as the inverse systems (see, for instance, [23]). If ai = 0, then xi�d

a(p) = 0,
which allows us to redefine the product p � Λ as follows.
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Proposition 2.1. For any pair p, q ∈ R and any Λ(d) ∈ C[[d]], we have

p � Λ(q) = Λ(p q) = π+(p(d−1) Λ(d))(q),

where π+ is the projection mapping Laurent series onto the space generated by the
monomials in d with positive exponents.

This yields the following algorithm.
Algorithm 2.2. For any polynomial p ∈ 〈xα〉α∈E and a vector [Λ(xβ)]β∈E+F ,

compute the vector [p � Λ(xβ)]β∈F as follows:
• Write Λ̃(d) =

∑
β∈E+F Λ(xβ)dβ.

• Compute the product ρ(d) = p(d−1)Λ̃(d) in C[d,d−1].
• Keep the coefficients ρα of dα for α ∈ F .

3. Quasi-Toeplitz and quasi-Hankel matrices. In this section, we describe
the structure of the matrices and some tools that we will use for our algorithm design.

Let us recall first the known arithmetic complexity bounds for polynomial mul-
tiplication (see [2, pp. 56–64]), which is the basic step of our subsequent algorithms.
Let CPolMult(E,F ) denote the number of ops (that is, of arithmetic operations) re-
quired for the multiplication of a polynomial with support in E by a polynomial with
support in F .

Theorem 3.1. Let E + F = {αi = (α
(i)
1 , . . . , α

(i)
n ), i = 1, . . . , N} with |α(i)| =∑

j α
(i)
j = di for i = 1, . . . , N and d = maxi(di). Let CK;Eval(G) ops suffice to

evaluate a polynomial with a support G on a set of K points. Then we have

CPolMut(E,F ) = O (
CN ;Eval(E) + CN ;Eval(F ) + N (log2(N) + log(d))

)
.

Proof. Apply the evaluation-interpolation techniques to multiply the two polyno-
mials (cf. [2]). That is, first evaluate the input polynomials on a fixed set of N points,
then multiply pairwise the computed values to obtain the values of the product on
the same set, and finally interpolate from these values and compute the coefficients
of the product by applying the (sparse) polynomial interpolation algorithm (cf. [2]).
By summarizing the computational cost estimates, we obtain the theorem.

For special sets E and F , we have better bounds.
Theorem 3.2. Let Ed = [0, . . . , d− 1] ⊂ N. Then

CPolMult(Ed, Ed) = O(d log(d)).

Theorem 3.3. Let Ec = {(α1, . . . , αn) ; 0 ≤ αi ≤ ci−1}, Ed = {(β1, . . . , βn) ; 0
≤ βi ≤ di − 1}, c = max{c1, . . . , cn}, and d = max{d1, . . . , dn}. Then we have

CPolMult(Ec, Ed) = O(M log(M)),

where M = fn and f = c + d + 1.
Theorem 3.4. Let Ef,n be the set of exponents having total degree at most f in

n variables. Then

CPolMult(Ec,n, Ed,n) = O(T log2(T )),

where T =
(
n+c+d

n

)
is the number of monomials of degree at most c+d in n variables.

Remark 3.5. Theorems 3.1 and 3.3 correspond, respectively, to lattice points
in a product of intervals and in the scaled standard simplex and can be extended to
the computations over any ring of constants (rather than over the complex field) at
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the expense of increasing their complexity bounds by at most the factors of log log(N)
or log log(M), respectively [2]. Theorem 3.4 can be extended similarly to any field of
constants having characteristic 0.

Next, by following [32], [31], we will extend the definitions of Toeplitz and Hankel
matrices to the multivariate case. As we will see, these structures are omnipresent
when we solve polynomial systems.

Definition 3.6. Let E and F be two finite subsets of N
n, and let M =

(mα,β)α∈E,β∈F be a matrix whose rows are indexed by the elements of E and columns
by the elements of F . Let i denote the ith basis coordinate vector of N

n.

• M = [mα,β ]α∈E,β∈F is an (E,F ) quasi-Toeplitz matrix if and only if, for
all α ∈ E, β ∈ F , the entries mα,β = tα−β depend only on α − β, that is,
if and only if, for i = 1, . . . , n, we have mα+i,β+i = mα,β, provided that
α, α+i ∈ E;β, β+i ∈ F ; such a matrix M is associated with the polynomial
TM (x) =

∑
u∈E+F tu xu.

• M is an (E,F ) quasi-Hankel matrix if and only if, for all α ∈ E, β ∈ F ,
the entries mα,β = hα+β depend only on α + β, that is, if and only if, for
i = 1, . . . , n, we have mα−i,β+i = mα,β provided that α, α− i ∈ E;β, β + i ∈
F ; such a matrix M is associated with the Laurent polynomial HM (d) =∑

u∈E−F hud
u.

For E = [0, . . . ,m − 1] and F = [0, . . . , n − 1] (resp., F = [−n + 1, . . . , 0]),
Definition 3.6 turns into the usual definition of Toeplitz (resp., Hankel) matrices (see
[2]). Quasi-Toeplitz matrices have also been studied under the name of multilevel
Toeplitz matrices (see, e.g., [44]) in the restricted special case, where the sets E and
F are rectangular (i.e., a product of intervals). For our study of polynomial systems
of equations, using the latter restricted case is not sufficient, and our more general
definitions are required.

The definitions can be extended immediately to all subsets E,F of Z
n if we work

with the Laurent polynomials.

The classes of quasi-Toeplitz and quasi-Hankel matrices can be transformed into
each other by means of multiplication by the reflection matrix, having ones on its
antidiagonal and zeros elsewhere.

Definition 3.7. Let πE : L→ L be the projection map such that πE(xα) = xα

if α ∈ E and πE(xα) = 0 otherwise. Also let πE : C[[d]] → C[[d]] denote the
projection map such that πE(dα) = dα if α ∈ E and πE(dα) = 0 otherwise.

We can describe the quasi-Toeplitz and quasi-Hankel operators in terms of poly-
nomial multiplication (see [30], [29]), and the next proposition reduces multiplication
of an (E,F ) quasi-Toeplitz (resp., quasi-Hankel) matrix by a vector v = [vβ ] ∈ C

F to
(Laurent’s) polynomial multiplication.

Proposition 3.8. The matrix M is an (E,F ) quasi-Toeplitz (resp., an (E,F )
quasi-Hankel) matrix if and only if it is the matrix of the operator πE ◦µTM

◦πF (resp.,
πE ◦ µHM

◦ πF ), where, for any p ∈ L, µp : q �→ p q is the operator of multiplication
by p in L.

Proof (see [29]). We will give a proof only for an (E,F ) quasi-Toeplitz matrix
M = (Mα,β)α∈E,β∈F . (The proof is similar for a quasi-Hankel matrix.) The associated
polynomial is TM (x) =

∑
u∈E+F tux

u. For any vector v = [vβ ] ∈ C
F , let v(x) denote
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the polynomial
∑

β∈F vβx
β . Then

TM (x) v(x) =
∑

u∈E+F,β∈F
xu+β tu vβ

=
∑

α=u+β∈E+2F

xα


∑
β∈F

tα−β vβ


 ,

where we assume that tu = 0 if u �∈ E + F . Therefore, for α ∈ E, the coefficient of
xα equals ∑

β∈F
tα−β vβ =

∑
β∈F

Mα,β vβ ,

which is precisely the coefficient α of Mv.
Algorithm 3.9. Multiplication of the (E,F ) quasi-Toeplitz (resp., quasi-Hankel)

matrix M = (Mα,β)α∈E,β∈F by a vector v = [vβ ] ∈ C
F :

• multiply the polynomials TM =
∑

u∈E+F tu xu (resp., HM (d) =
∑

u∈E−F hud
u)

by v(x) =
∑

β∈F vβx
β (resp., v(d−1) =

∑
β∈F vβd

−β),
• and output the projection of the product on xE (resp., dE).

Definition 3.10. CPolMult(E,F ) denotes the number of ops required to multiply
a polynomial with a support in E by a polynomial with a support in F .

Clearly, Algorithm 3.9 uses CPolMult(E+F, F ) (resp., CPolMult(E−F,−F )) ops.
Proposition 3.11.
(a) An (E,F ) quasi-Hankel (resp., an (E,F ) quasi-Toeplitz) matrix M can be

multiplied by a vector by using O(N log2(N) + N log(d) + CM,N ) ops, where
d = degHM (resp., deg TM ) , N = �E − 2F � (resp., �E + 2F �), and CM,N

denotes the cost of the evaluation of all monomials of the polynomial HM

(resp., TM ) on a fixed set of N points.
(b) In particular, the ops bound becomes O(M log(M)), where E + F = Ec, F =

Ed and Ec, Ed and M = (c+ d+ 1)n are defined as in Theorem 3.3, whereas
(c) the bound turns into O(T log2(T )), where E + F = Ec,n, F = Ed,n and

Ec,n, Ed,n, and T =
(
n+c+d

n

)
are defined as in Theorem 3.4.

Proof. Reduce the problem to computing the product of the two polynomials
HM (x) (resp., TM (x)) and V (x), and then apply Theorems 3.1–3.4.

Applying these results, we can bound the number of ops in Algorithm 2.2 as
follows.

Proposition 3.12. For any polynomial p ∈ R with support in E and any vector
[Λ(xα)]α∈E+F (with Λ ∈ R̂), the vector [p � Λ(xβ)]β∈F can be computed in O(�E +
F � log2(�E + F �)) ops.

Once we have a fast matrix-by-vector multiplication, a nonsingular linear system
of equations can also be solved quickly by means of the conjugate gradient algorithm,
which is based on the following theorem [19, section 10.2].

Theorem 3.13. Let W v = w be a nonsingular linear system of N equations.
Then N multiplications of each of the matrices W and WT by vectors and O(N2)
additional ops suffice to compute the solution v to this linear system.

Note that WT is a quasi-Toeplitz (resp., quasi-Hankel) matrix if W is, and then
both matrices can be multiplied by a vector quickly (see Proposition 3.11). Therefore,
in the cases of quasi-Toeplitz and quasi-Hankel matrices W , Theorem 3.13 yields a
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fast algorithm for solving the linear system W v = w. We will also need the following
related result.

Theorem 3.14 (see [32]). Let W be an N × N real symmetric or Hermitian
matrix. Let S be a fixed finite set of complex numbers. Then there is a randomized
algorithm that selects N random parameters from the set S independently of each
other (under uniform probability distribution on S) and either fails with a probability

of at most (N+1)N
2�S	 or performs O(N) multiplications of the matrix W by vectors and

O(N2 log(N)) other ops to compute the rank and the signature of W .

Hereafter, random selection of elements of a set S as in Theorem 3.14 will be
called sampling.

Proof. To support the claimed estimate, we first tridiagonalize the matrix W by
the Lanczos randomized algorithm [2, pp. 118–119], which involves an initial vector

of dimension N and fails with a probability of (N+1)N
2�S	 if the N coordinates of the

vector have been sampled at random from the set S. The above bound on the failure
probability and the cost bound of O(N) multiplications of the matrix W by vectors
and O(N2 log(N)) other ops of this stage have been proved in [38]. Then, in O(N)
ops, we compute the Sturm sequence of the N values of the determinants of all of
the k × k northwestern (leading principal) submatrices of W for k = 1, . . . , N and
obtain the numbers N+ and N− of positive and negative eigenvalues of W from the
Sturm sequence (cf., e.g., [3]). These two numbers immediately define the rank and
the signature of W .

Combining Proposition 3.11 with Theorems 3.13 and 3.14 gives us the next corol-
lary.

Corollary 3.15. For an N ×N quasi-Toeplitz or quasi-Hankel matrix W , the
estimates of Theorems 3.13 and 3.14 turn into O(N2 log(N)) ops if the matrix has a
maximal (c, d) support where c + d = N . They turn into O(N2 log2(N)) ops if the
matrix has a total degree (c, d) support where c + d = O(N) and into O((log2(N) +
log(d))N2 + CW,N ) otherwise, where d and CW,N are defined as in Proposition 3.11
(a) for M = W .

Remark 3.16. Hereafter, we will refer to the matrices of case (b) in Proposition
3.11 as the matrices with support of the maximal degree (c, d) and to the matrices
of case (c) as the ones with support of the total degree (c, d). Furthermore, stating
our estimates for the arithmetic complexity of computations, we will assume that
the input polynomials have the maximal degree (c, d) support. That is, we will rely on
Theorem 3.3 and Proposition 3.11 (b), and we will express the estimates in terms of the
cardinality of the supports E and/or F or in terms of an upper bound D on the number
of common roots of the input polynomials. The estimates can be easily extended to
the other cases based on Theorem 3.1 or 3.4 and Proposition 3.11 (a) or (c) instead of
Theorem 3.3 and Proposition 3.11 (b). In the latter case (Theorem 3.4 and Proposition
3.11 (c)), the cost estimates increase by the factors log(D), log(�E�), or log(�F �),
respectively. In case Theorems 3.1 and Proposition 3.11 (a) are used, the estimates
are expressed in terms of the bounds CPolMult(G,H) or CM,N for appropriate sets G
and H, matrix M , and integer N . The latter case covers sparse input polynomials for
which the respective bounds CPolMult(G,H) and CM,N are smaller than for the general
(or dense) input, although they are not expressed solely in terms of the cardinality D.
(They also depend on the degree of the monomials or the cardinality of the supports
of the input polynomial system.)
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4. Computation of a nondegenerate linear form. In this section, we will
compute a nondegenerate linear form on A provided that we are given a basis (xα)α∈E
of A and the normal form of the elements on the boundary of this basis. This is the
case, for instance, when we have computed a Gröbner basis of our ideal I for any
monomial ordering [9] or when we apply any other normal-form algorithm [28], [33].

Definition 4.1.
• Let υi = (δi,1, . . . , δi,n) ∈ N

n, where δi,j is the Kronecker symbol.
• For all A ⊂ N

n, Ω (A) = {α ∈ N
n : α ∈ A or ∃i ∈ {1, . . . , n} , α− υi ∈ A}.

• Nα for α ∈ Ω(E) is the normal form of the monomial xα mod I, i.e., the
canonical representative of its class modulo the ideal I. Nα = xα if α ∈ E,
and

Nα =
∑
β∈E

nα,βx
β

if α ∈ Ω(E)− E.

Our goal is to obtain the coefficients τ(xα) for α ∈ E+E+E, where τ ∈ Â = I⊥

is a generic linear form. We will compute them, by induction, under the following
hypothesis.

Hypothesis 4.2.
• (xα)α∈E is stable under derivation, that is, α = α′ + vi ∈ E implies that
α′ ∈ E.

• Nα, the normal form of xα, is available for every α ∈ Ω (E).
• The values τα = τ (xα) are available for all α ∈ E, where τ is not degenerate

∈ Â = I⊥.
For the third part, we can remark that a random choice of τ(xα) will imply with a

high probability that τ does not degenerate. Our procedure is based on the following
property.

Proposition 4.3. For each α ∈ Ω (E), we have τα = τ (Nα) =
∑

β∈E nα,βτβ.
This value can be computed by applying O (D) ops, where D = �E�. More generally,
for all γ ∈ E we have the following inductive relation:

τα+γ =
∑
β∈E

nα,βτβ+γ .

Now assume that we have computed all of the values τβ for β ∈ Ω (E), and let
α = α0 + υi ∈ Ω (Ω (E)) with α0 ∈ Ω (E). Then

τ (xα) = τ (xiNα0) =
∑
β∈E

nα0,βτ
(
xix

β
)
.

We know all of the nα0,β and all of the τ
(
xix

β
)

because β + υi ∈ Ω (E). Therefore,
we obtain τα =

∑
β∈E nα0,βτβ+υi by computing a scalar product. Recursively, this

leads us to the following inductive definition of the “levels” Ωi.
Definition 4.4. Write Ω0 = E, Ω1 = Ω (E) and Ωi = Ω (Ωi−1) ∩ (E + E +

E), i = 2, 3, . . . , and write h = max {|α| : α ∈ E} so that E + E + E = Ω2h.
Proposition 4.5. For every α ∈ Ωi, there is α

′ ∈ N
n and α1 ∈ Ω1 − Ω0 such

that α = α1 + α′ with |α′| ≤ i− 1 and for all β ∈ E we have β + α′ ∈ Ωi−1.
Proof. Assume that i > 0. Let α ∈ Ωi ⊂ E +E +E. Then α can be decomposed

as follows: α = γ0 +γ1 +γ2 with γ0, γ1, γ2 ∈ E and |γ1 +γ2| = i. As i > 1, there exists
α′ = γ1 + γ2 − υj ∈ N

n, and because (xα)α∈E is stable by Hypothesis 4.2, we have
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α′ ∈ E + E. It follows that α = α1 + α′, where α1 = γ0 + υj ∈ Ω1 and |α′| ≤ i − 1.
Therefore, for all β ∈ E, β + α′ ∈ Ωi−1, which completes the proof.

Assume now that we have already computed all of the values τβ for β ∈ Ωi−1.
Then, according to Proposition 4.5, for any α ∈ Ωi, we have α = α1+α′, with α1 ∈ Ω1

and |α′| ≤ i− 1. Thus, if α1 ∈ Ω1 − Ω0, we have

τ(xα) = τ(xα1 xα
′
) =

∑
β∈E

nα1,βτ(xβ+α′
)

with β+α′ ∈ Ωi−1; otherwise, if α1 ∈ Ω0, we have α = α1+α′ ∈ Ωi−1. In other words,
we can compute by induction the values of τ on Ωi from its values on Ωi−1. This yields
the following recursive algorithm for the computation of τ(xα) with α ∈ E + E + E.

Algorithm 4.6. Compute the first coefficients of the series associated with a
linear form τ of I⊥ as follows:

1. For i from 1 to 2h do for each α = α0 + α1 ∈ Ωi with α0 and α1 as in
Proposition 4.5 compute τα =

∑
β∈E nα1,βτα0+β

End for
2. Compute and output the polynomial S =

∑
α∈E+E+E ταd

α.

Proposition 4.7. The arithmetic complexity of Algorithm 4.6 is O (
3nD2

)
.

Proof. For each element α ∈ E + E + E, we compute τα in O (D) arithmetic
operations, and there are at most O (3nD) elements in E +E +E, which gives us the
claimed arithmetic complexity estimate.

5. Arithmetic in the algebra A. Our algorithms in the next sections perform
computations in A efficiently based on the knowledge of a certain linear form on A
(such as the one computed in the previous section), which induces a nondegenerate
inner product. More precisely, we assume that the following items are available.

Basic set of items:

• a linear form τ ∈ Â = I⊥, such that the bilinear form τ(a b) from A×A to
C is nondegenerate,

• a monomial basis (xα)α∈E of A,
• the coefficients (τ(xα))α∈F , where F = E + E + E.

The number of elements in E is the dimension D of A over C. We describe basic
operations in the quotient ring A in terms of the following quasi-Hankel matrix.

Definition 5.1. For any Λ in Â and for any subset F of N
n, let HFΛ denote the

quasi-Hankel matrix, HFΛ = (Λ(xα+β))α,β∈F .
By default we will assume we are dealing with the maximal degree support when-

ever we state our arithmetic complexity estimates (see Remark 3.16).

Proposition 5.2. The matrix HFΛ can be multiplied by a vector by using O(3n�F �
log(3n�F �)) ops.

Proof. Apply Proposition 3.11 (b) to the (F, F ) quasi-Hankel matrix HFΛ , and
observe that �F + F + F � = 3n�F �.

Combining Corollary 3.15 and Proposition 5.2 implies the following result.

Proposition 5.3. Check if the linear system HFΛu = v has a unique solution,
and, if so, computing the solution requires O(3n�F �2 log(3n�F �)) ops. The same
cost estimate applies to the computation of the rank of the matrix HFΛ , which involves
randomization with �F � random parameters and has a failure probability of at most
(�F �+ 1) �F �/ (2�S�) provided that the parameters have been sampled from a fixed
finite set S.
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5.1. Dual basis. As τ defines a nondegenerate bilinear form, there exists a set
of polynomials (wα)α∈E such that τ(xαwβ) = δα,β , δα,β being Kronecker’s symbol,
δα,α = 1, and δα,β = 0 if α �= β . The set (wα)α∈E is called the dual basis of (xα)α∈E
for τ .

Proposition 5.4 (projection formula). For any p ∈ R, we have

p ≡
∑
α∈E

τ(pwα)xα ≡
∑
α∈E

τ(pxα)wα.(4)

Proof. See [7], [11].
Definition 5.5. For any p ∈ A, denote by [p]x and [p]w the coordinate vectors

of p in the bases (xα)α∈E and (wα)α∈E, respectively.
Let wα =

∑
β∈E wβ,α xβ , and let Wτ = (wα,β)α,β∈E be the coefficient matrix. By

the definition of the dual basis,

τ(wα xγ) =
∑
β∈E

wα,β τ(xβ+γ)(5)

is 1 if α = γ and 0 elsewhere. In terms of matrices, (5) implies that

Hτ Wτ = ID,(6)

where Hτ = HEτ = (τ(xβ+γ))β,γ∈E . From the definition of Wτ and (6), we deduce that

[p]x = Wτ [p]w, [p]w = Hτ [p]x.(7)

The next result follows from Proposition 5.3.
Proposition 5.6. For any p ∈ A, the coordinates [p]x of p in the monomial basis

can be computed from its coordinates [p]w in the dual basis by using O(3nD2 log(3nD))
ops.

5.2. Product in A. We apply projection formula (4) and, for any f ∈ R, deduce
that f ≡∑

α∈E τ(f xα)wα =
∑

α∈E f � τ(xα)wα in A. Furthermore, by expressing
the linear form f � τ as a formal power series, we obtain f � τ =

∑
α∈Nn f � τ(xα)dα

so that the coefficients of (dα)α∈E in the expansion of f � τ are the coefficients [f ]w
of f in the dual basis (wα)α∈E .

Similarly, for any f, g ∈ A, the coefficients of (dα)α∈E in fg�τ are the coefficients
[fg]w of f g in the dual basis (wα)α∈E . This leads to the following algorithm for
computing the product in A.

Algorithm 5.7. For any pair f, g ∈ 〈xα〉α∈E, compute the product fg in the
basis 〈xα〉α∈E of A as follows:

1. Compute the coefficients of (dα)α∈E in the product f g � τ .
2. Obtain the coefficients [f g]w from the first coefficients of fg � τ .
3. Solve in u the linear system [f g]w = Hτ u.

Output the vector u, which is the coordinate vector [f g]x of f g in the monomial basis
of A.

Proposition 5.8. The product f g can be computed in O(3nD2 log(3nD)) ops.
Proof. f g � τ is the product of polynomials with supports in −E or E + E + E.

Such a product can be computed in O(3nD log2(3nD)) ops (see Proposition 3.11 and
Remark 3.16 and observe that �E + E + E� = O (3n�E�)). The complexity of the
third step is bounded according to Proposition 5.3 (with F = E).
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5.3. Inversion in A. The projection formula of Proposition 5.4 implies that
f xα =

∑
β∈E f � τ(xα+β)wβ , which means that [f xα]w is the coordinate vector

[f � τ(xα+β)]β∈E , that is, the column of the matrix Hf$τ indexed by α. In other
words, [f xα]w = Hf$τ [xα]x. By linearity, for any g ∈ A, we have

[f g]w = Hf$τ [g]x = Hτ [f g]x,

according to (7). Thus, if fg = 1, that is, if g = f−1, we have Hf$τ [g]x = Hτ [1]x. This
leads to the following algorithm for computing the inverses (reciprocals) in A.

Algorithm 5.9. For any f ∈ 〈xα〉α∈E, verify whether there exists the inverse
(reciprocal) of f ∈ A, and, if so, compute it.

1. Compute v = Hτ [1]x.
2. Solve in u the linear system Hf$τu = v or output Failure if the matrix Hτ
is not invertible.

Output the vector u, which is the coordinate vector [f−1]x of f
−1 in the monomial

basis of A.
By combining Propositions 5.2 and 5.3 and Remark 3.16, we obtain the following

proposition.
Proposition 5.10. The inverse (reciprocal) f−1 of an element f of A can be

computed by using O(3nD2 log(3nD)) ops.

6. Iterative methods. Our algorithms for the root approximation will essen-
tially amount to computing nontrivial idempotents in the quotient algebra A by itera-
tive processes with the subsequent simple recovery of the roots from the idempotents.
The algorithms work in C

D, and we will write i =
√−1. More rudimentary univariate

versions of such algorithms were studied in [6]. We will use the basic operations in
the quotient algebra A in order to devise two iterative methods, which will converge
to nontrivial idempotents. We will first consider an iteration associated to a slight
modification of the so-called Joukovski map (see [20], [6]): z �→ 1

2 (z + 1
z ) and its

variant z �→ 1
2 (z− 1

z ). The two attractive fixed points of this map are 1 and −1; for
its variant, they turn into i and −i.

Algorithm 6.1. Sign iteration. Choose u0 = h ∈ 〈xα〉α∈E, and recursively
compute uk+1 ≡ 1

2 (uk − 1
uk

) ∈ A, k = 0, 1, . . . .
By applying Proposition 5.10 and Remark 3.16, we obtain the following result.
Proposition 6.2. Each iteration of Algorithm 6.1 requires O(3nD2 log(3nD))

ops.
Proof. Apply Proposition 5.3 and Remark 3.16 to estimate the arithmetic cost of

the computation of the inverse (reciprocal) of an element of A. To yield the claimed
cost bound of Proposition 6.2, it remains to compute a linear combination of un and
u−1
n in O(D) ops by direct operations on vectors of size D.

Hereafter, �(h) and  (h) denote the real and the imaginary parts of a complex
number h, respectively. Recall that we write ζ to denote the common roots ζ ∈ Z (I)
of given polynomials f1, . . . , fm.

Remark 6.3. In Proposition 6.4, we will assume that J (h (ζ)) �= 0 for all ζ ∈
Z (I) and, in Proposition 6.6, that |h (ζ) | is minimized for a unique root ζ ∈ Z (I).
These assumptions are satisfied for a generic system of polynomials or a generic
polynomial h.

Proposition 6.4. The sequence (u0, u1, . . . ) of Algorithm 6.1 converges quadrat-
ically to σ =

∑
�(h(ζ))>0 eζ −

∑
�(h(ζ))<0 eζ , and we have

‖un − σ‖ ≤ K × ρ2n
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(for some constant K), where

ρ+ = max�(h(ζ))>0,ζ∈Z(I)

∣∣∣∣h(ζ)− i

h(ζ) + i

∣∣∣∣ ,

ρ− = max�(h(ζ))<0,ζ∈Z(I)

∣∣∣∣h(ζ) + i

h(ζ)− i

∣∣∣∣ ,
i =

√−1, and ρ = max{ρ+, ρ−}.
Proof. Apply the classical convergence analysis of the Joukovski map (see [20])

to the matrices of multiplication by un in A, whose eigenvalues are {un(ζ),
ζ ∈ Z(I)}.

Let

e+ =
∑

�(h(ζ))>0

eζ =
1

2
(1 + σ), e− =

∑
�(h(ζ))≤0

eζ =
1

2
(1− σ)

denote the two sums of the idempotents associated to the roots ζ ∈ Z such that
 (h(ζ)) > 0 and  (h(ζ)) < 0, respectively.

If h(x) is a linear function in x, then each of the idempotents e+ and e− is asso-
ciated with all of the roots lying in a fixed half-space of C

n defined by the inequalities
 (h(ζ)) > 0 or  (h(ζ)) < 0. Conversely, an appropriate linear function h(x) defines
the idempotents e+ and e− associated with any fixed half-space of C

n. Furthermore,
for any fixed polytope in C

n defined as the intersection of half-spaces, we may com-
pute the family of the associated idempotents whose product will be associated with
the polytope. In particular, any bounded box is the intersection of 4n half-spaces,
and the associated idempotent can be computed in 4n applications of Algorithm 6.1.
Let us specify the case in which the polytope is the almost flat unbounded box ap-
proximating the real manifold Rn = {x :  (xi) = 0, i = 1, . . . , n}. In this case, the
choices of h = xi − ε and h = xi + ε allow us to approximate the two idempotents

e−i,ε =
∑

�(ζi)<ε

eζ , e+
i,ε =

∑
�(ζi)>−ε

eζ .

Their product can be computed in O(3nD2 log(3nD)) ops to yield ri,ε =
∑

|�(ζi)|<ε eζ ,

and the product rε ≡ r1,ε · · · rn,ε can be computed in O(3nD2 log(3nD)) ops to yield
the sum of the fundamental idempotents whose associated roots of the polynomial
system are nearly real.

Algorithm 6.5. Computing the sum of the fundamental (nearly real) idempo-
tents.

• For i from 1 to n do
u0 = xi ± ε; u1 :≡ 1

2 (u0 − 1
u0

) in A; k := 1;

while ‖uk − uk−1‖ < 2−b do { uk+1 := 1
2 (uk − 1

uk
); k := k + 1 }

Compute e±i,e and ri,ε.
• Compute and output the product rε ≡ r1,ε · · · rn,ε in A.

According to Propositions 6.2 and 6.4 and Remark 3.16, we have the following
proposition.

Proposition 6.6. An approximation of rε (within the error bound ε = 2−b) can
be computed in O(µ 3nD2 log(3nD)) ops, where

µ = µ(b, ρ) = log |b/ log (ρ) |(8)
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and

ρ = maxi{ max�(ζi)>0,ζ∈Z(I) | ζi−i
ζi+i |,

max�(ζi)<0,ζ∈Z(I) | ζi+i
ζi−i | }.(9)

The second iterative method is the quadratic power method.
Algorithm 6.7. Quadratic power iteration. Choose u0 = h ∈ 〈xα〉α∈E, and

recursively compute un+1 ≡ u2
n ∈ A, n = 0, 1, . . . .

Each step of this iteration requires at most O (
3nD2 log (3nD)

)
ops, and we have

the following property.
Proposition 6.8. An approximation (within the error bound ε = 2−b) of the

idempotent eζ such that a unique simple root ζ minimizes |h| on Z(I) can be computed
in O (

ν3nD2 log (3nD)
)
ops, where

ν = ν (b, γ) = log (b/| log (γ) |) ,(10)

γ =

∣∣∣∣ h(ζ)

h(ζ ′)

∣∣∣∣ ,(11)

and |h(ζ ′)| is the second smallest value of |h| over Z(I).
Proof. We rely on the convergence analysis of the quadratic power method

applied to the matrices of multiplication by un in A, whose eigenvalues are {un(ζ),
ζ ∈ Z(I)}.

7. Counting and approximating the roots and the real roots. In this
section, we will apply the techniques and algorithms of the previous sections to the
problems of counting and approximation of the roots of the system p = 0.

In the algorithms for counting roots, we will use the randomization required to
apply Theorem 3.13. The resulting randomized algorithms and the computational
complexity estimates for counting (excluding the preprocessing stage of subsection
7.5) will apply to any 0-dimensional polynomial system.

In the approximation algorithms, we do not need randomization except for the
ensurance of the assumption of Propositions 6.4 (cf. Remark 6.3), but the estimates
for the computational cost depend on the parameters ρ and γ of the two latter propo-
sitions (cf. (8), (11)) and remain meaningful unless these parameters are extremely
close to 1.

7.1. Counting the roots and the real roots.
Theorem 7.1 (see [29]). The number of the roots (resp., real roots) of the system

p = 0 is given by the rank (resp., the signature) of the quasi-Hankel matrix HE
τ .

Theorem 7.1, Corollary 3.15, and Remark 3.16 together imply the following result.
Corollary 7.2. The numbers of the roots and of the real roots of the poly-

nomial system p = 0 can be computed by a randomized algorithm that generates D
random parameters and, in addition, performs O(3nD2 log(3nD)) ops. If the random
parameters are sampled from a fixed finite set S, then the algorithm may fail with a
probability at most (3nD + 1) 3nD/ (2�S�).

7.2. Approximation of a root. Application of Algorithm 6.7 in A yields the
following theorem.

Theorem 7.3. The idempotent corresponding to a root ζ that maximizes the
absolute values |h(ζ)| of a fixed polynomial h(x) can be approximated (within an error
bound ε = 2−b) by using O(3nD2ν log(3nD)) ops, where ν is defined in (10) and (11).
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The latter cost bound dominates the cost of the subsequent transition from the
idempotent to a root.

Theorem 7.4. The n coordinates of a simple root ζ can be determined from the
idempotent eζ in O(3nD2 log(3nD)) ops. This bound increases by the factor of n if
the root is multiple.

Proof. We compute Jeζ in A (where J is the Jacobian of the n equations) by
Algorithm 5.7. According to [29], [32], in the case of a simple root, we have

HEτ [J eζ ]x = λ [ζα]α∈E , λ ∈ C.

This vector is computed at the arithmetic cost within the complexity bound of Propo-
sition 5.2 (cf. [32]), and this immediately gives us the coordinates of the root ζ if xE

contains 1, x1, . . . , xn, which is generically the case. If the root is not simple, then,
according to the relation

xi J eζ ≡ ζi J eζ

(see [29], [32], [11]), we recover the coordinates of ζ by computing n + 1 products in
A (by Algorithm 5.7).

7.3. Approximation of a selected root. In view of Theorem 7.4, it is suffi-
cient to approximate the idempotents associated to the roots.

Suppose that we seek a root of the system p = 0 whose coordinate x1 is the
closest to a given value u ∈ C. Let us assume that u is not a projection of any root
of the system p = 0 so that x1− u has the inverse (reciprocal) in A. Let h(x) denote
such an inverse (reciprocal). We have h (x)(x1 − u) ≡ 1 and h(ζ) = 1

ζ1−u . Therefore,

a root whose coordinate x1 is the closest to u1 is a root for which |h(ζ)| is the largest.
Consequently, iterative squaring of h = h(x) shall converge to this root.

The polynomial h can be computed by using O(3nD2ν log(3nD)) ops for ν of (10)
and (11) (see [32, section 3.3.4]).

One may compute several roots of the polynomial system by applying the latter
computation (successively or concurrently) to several initial values u.

7.4. Counting nearly real roots and the roots in a polytope. As long as
we have (a close approximation to) the idempotent r associated with a fixed polytope,
we may restrict our counting and approximation algorithms to such a polytope simply
by moving from the basic nondegenerate linear form τ to the form r � τ (by using
O(3nD2 log(3nD)) ops). Let us specify this in the case in which the polytope is the
nearly flat box approximating the real space R

n (cf. Algorithm 6.5 and Proposition
6.6).

Let AR
ε = rεA denote the subalgebra of A corresponding to the (nearly) real

idempotents for a fixed ε = 2−b.
We may restrict our computation on AR

ε by computing the linear form τ ′ = rε � τ
(in O(3nD2 log(D)) ops, according to Proposition 3.12), and we have the following
properties.

Proposition 7.5.
• The linear form τ ′ = rε � τ defines a nondegenerate inner product on AR

ε .
• The number of nearly real roots (counted with their multiplicities) is the rank
of the matrix HE

rε$τ = (rε � τ(xβ+γ))β,γ ∈ F .

• Let E′ be a subset of E such that the submatrix HE′
τ ′ is of the maximal rank.

Then E′ is a basis of Aε.
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Proof. See [32].

We thus require an algorithm for computing the rank of HE
τ ′ (see [35] on fast

computation of the rank). Assuming (8) and (9), we deduce the following result from
Theorem 3.14.

Proposition 7.6. The number of all nearly real roots can be computed by using
O(µ 3nD2 log(3nD)) ops (for µ of (8) and (9)).

7.5. Approximation of nearly real roots and the roots in a box.. To
compute a nearly real root as well as a root lying in a fixed box in C

n maximizing a
given function |h|, we may apply Algorithm 6.7 in A (or AR

ε ) and Proposition 6.8 and
obtain the following theorem.

Theorem 7.7. A nearly real root (as well as a root lying in a fixed box) that
maximizes a function |h| can be computed (up to an error ε = 2−b) by using
O((µ + ν) 3nD2 log(3nD)) ops for µ and ν of (8)–(11).

This process can be extended to compute the other roots via deflation. That is,
we replace rε by r′ε = rε − eζ , compute τ ′′ = r′ε � τ , and apply the same iteration
to compute the next (real) root, where |h| takes on its second smallest value over
Z(I). We can also restrict our computation to a fixed box by using the algorithm
of subsection 7.4 to compute the sum of the idempotents corresponding to the roots
lying inside the box. The complexity of each step is bounded in Theorem 7.7, leading
to the following result for δ (real) roots in a given box.

Theorem 7.8. The δ (real) roots ζ lying in a given box can be computed (up
to an error ε = 2−b) by using O((µ + ν)n3nδ D2 log(D) log(b)) ops for µ and ν of
(8)–(11).
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