
PERGAMON Computers and Mathematics with Applications 0 (2005) 1–0
www.elsevier.com/locate/camwa

The Amended DSeSC Power Method
for Polynomial Root-Finding

V. Y. Pan
Department of Mathematics and Computer Science

Lehman College of CUNY, Bronx, NY 10468, U.S.A.
vpan@lehman.cuny.edu

(Received August 2004; accepted September 2004)

Abstract—Cardinal’s matrix version of the Sebastiao e Silva polynomial root-finder rapidly ap-
proximates the roots as the eigenvalues of the associated Frobenius matrix. We preserve rapid con-
vergence to the roots but amend the algorithm to allow input polynomials with multiple roots and
root clusters. As in Cardinal’s algorithm, we repeatedly square the Frobenius matrix in nearly linear
arithmetic time per squaring, which yields dramatic speedup versus the recent effective polynomial
root-finder based on the application of the inverse power method to the Frobenius matrix. c© 2005
Elsevier Science Ltd. All rights reserved.

Keywords—Polynomial roots, Frobenius matrices, Repeated squaring, Root clusters.

1. INTRODUCTION

1.1. The Background and Related Works

Solving a polynomial equation is the oldest computational problem. It has important appli-
cations to computer algebra, algebraic geometric computations, and signal processing (see [1–7],
and the bibliography therein). We wish to cite also the recent progress on the extension to the
solution of the algebraic eigenproblem in [8].

The polynomial root-finder in [9–11] optimizes both arithmetic and Boolean time up to poly-
logarithmic factors, that is, up to these factors the solution involves as many arithmetic and
Boolean operations as are required just to process the input and the output. The algorithm,
however, is not simple to code, has not been implemented yet, and requires computations with
extended precision. The users prefer alternative algorithms, and the design of more efficient
practical polynomial root-finders remains an important research challenge.

Increasingly popular is the reduction to approximating the eigenvalues of the associated Frobe-
nius companion matrix, whose spectrum is made up of the roots of the input polynomial. Such
a root-finder is available from Matlab; it relies on the application of the QR algorithm to the
Frobenius matrix and has been dramatically accelerated in [7,12].

Another matrix approach to polynomial root-finding is a nontrivial extension of the so-called
Graeffe’s iteration. The iteration was proposed by Dandelin, rediscovered by Lobachevsky, and

Supported by NSF Grant CCR 9732206 and PSC CUNY Awards 65393-0034 and 66437-0035.

0898-1221/05/$ - see front matter c© 2005 Elsevier Science Ltd. All rights reserved. Typeset by AMS-TEX
PII:00

2 V. Y. Pan

popularized by Graeffe [13]. It generates the polynomials with recursively squared roots. Sebas-
tiao e Silva in [14] (cf. [15]) complements this process with a nontrivial technique for the recovery
of the roots of the original polynomial, although numerical stability of this recovery is generally
a problem. In Cardinal’s matrix version in [16], the roots are repeatedly squared by means of
squaring the Frobenius matrix; its structure is preserved and exploited to run the computations
fast, in nearly linear time per squaring. Cardinal also proposes a special initialization technique
which simplifies and numerically stabilizes the recovery of the roots.

The resulting D SeS C iteration due to Dandelin, Sebastiao e Silva and Cardinal, however,
shares with the algorithm in [14] (and possibly even aggravates) the severe convergence problems
in the case where the input polynomial has multiple or clustered roots. In this important case
Cardinal suggests shifting from repeated squaring to the matrix sign iteration. This is a distinct
approach; its numerical stability at the recovery stage becomes a problem again.

1.2. The D SeS C Method with Amendments

We complement the D SeS C iteration with two simple but decisive amendments. Our novel
initialization technique removes the problems with multiple and clustered roots. This technique,
however, is not compatible with Cardinal’s simplified and stabilized recovery of the approxima-
tions to the roots, and we propose a distinct recovery technique. Our resulting algorithm is
equivalent to the application of the classical power iteration [17, Section 7.3; 18, Section 2.1] to
the Frobenius matrix except that we repeatedly square this matrix, thus advancing to a root
much faster. Our final recovery of the root/eigenvalue is closely related to its approximation
by the Rayleigh quotients. If we apply our algorithm to the reverse polynomial and shift the
variable, we arrive at the shifted inverse power iteration (with repeated squaring).

We call our algorithm the amended D SeS C power iteration. It is clearly superior to the inverse
power algorithm in [19] (which performs with no repeated squaring). The latter algorithm has
already nearly reached the efficiency level of the best practical root-finders, according to the
results of extensive tests reported in [19]. Thus, the amended D SeS C power iteration has good
chances to become the polynomial root-finder of choice.

1.3. Organization of the Paper

We first recall the relevant parts of the D SeS C algorithm and then specify our amendments. We
introduce some definitions in Section 2, recall some basic facts in Section 3, and recall the relevant
parts of the D SeS C algorithm in Sections 4–6. In Section 7, we cover the initialization techniques
from [16] and their amendment. In Section 8 we recall Cardinal’s results on computations in the
algebra generated by a Frobenius (companion) matrix. In Section 9, we combine the algorithms
in Sections 7 and 8 with the power method. In Section 10, we specify the recipes for multiple
roots and root clusters.

2. SOME DEFINITIONS

t(x) is a polynomial of degree n with n distinct roots z1, . . . , zn,

t(x) =
n∑
i=0

tix
i = tn

n∏
j=1

(x− zj), tn 6= 0. (2.1)

At is the algebra of polynomials reduced modulo t(x).

lj(x) =
t(x)

t′(zj)(x− zj)
, j = 1, . . . , n, (2.2)

are the Lagrange polynomials for the node set {z1, . . . , zn}.

The Amended DSeSC Power Method 3

‖.‖ is a polynomial norm, such that ‖t(x)‖ → 0 as
∑n
i=0 |ti| → 0, e.g., ‖t(x)‖1 =

∑n
i=0 |ti|,

‖t(x)‖2 = (
∑n
i=1 |ti|2)1/2, or ‖t(x)‖2,w = (

∑n
i=1 wi|ti|2)1/2 for fixed positive weights w1, . . . , wn.

For a polynomial p(x) =
∑k
i=0 pix

i, define the reverse polynomial

p̄(x) = xk
k∑
i=0

pkx
−i =

k∑
i=0

pkx
k−i. (2.3)

0 and I denote the null and identity matrices of appropriate sizes, respectively. ei−1 is the ith

column of I. v> and M> are the transposes of a vector v and a matrix M , respectively. T =
(ti,j)n−1

i,j=0 is a Toeplitz matrix if ti+1,j+1 = ti,j wherever i and j are in the range from 0 to n− 2.
The matrix entries represented by the blank space are zeros.

Z =

0
1 0

.
1 0

 (2.4)

is the n× n down-shift matrix, such that Zn = 0, Zv = (vi−1)n−1
i=0 for a vector v = (vi)n−1

i=0 and
v−1 = 0.
L(x) =

∑n−1
i=0 xiZ

i for a vector x = (xi)n−1
i=0 is the lower triangular Toeplitz matrix defined by

its first column given by the vector x.

3. BASIC FACTS

Fact 3.1. Lagrange Interpolation Formula. For any pair of polynomials t(x) in (2.1)

and f(x) ∈ At and for the Lagrange polynomials lj(x) in (2.2), we have f(x) =
∑n
i=1 f(zi)li(x).

Fact 3.2. Lagrange Polynomials as Idempotents or Projectors. For all j and k 6= j

we have

(a) lj(x)lk(x) = 0 mod t(x),
(b) l2j (x) = lj(x) mod t(x),
(c) f(x)lj(x) = f(zj)lj(x) mod t(x).

Proof. Part (a) is immediate by inspection. To prove Part (b), recall that t(zj) = 0, apply the
Lagrange expansion formula to obtain that t(x) = t(x)− t(zj) = t′(zj)(x− zj) mod(x− zj)2, and
deduce that x − zj divides lj(x) − 1. Finally, Part (c) follows when we multiply the Lagrange
interpolation formula by lj(z) and then substitute the equations of Parts (a) and (b).

By combining Facts 3.1 and 3.2, we extend Fact 3.1 as follows.

Corollary 3.1. For any polynomial f(x) ∈ At, we have

(f(x))m =
n∑
j=1

(f(zj))mlj(x) mod t(x), m = 1, 2,

Corollary 3.1 implies the following result.

Corollary 3.2. For f(x) ∈ At and an integer j, 1 ≤ j ≤ n, let

θ = max
k:k 6=j

∣∣∣∣f(zk)
f(zj)

∣∣∣∣ < 1. (3.1)

Then (f(x)/f(zj))m mod t(x) = lj(x) + h(x), where hj,m(x) is a polynomial of degree at most

n− 1, ‖hj,m(x)‖ is in O(θm) as m −→∞.

4 V. Y. Pan

4. THE BASIC ALGORITHM

Corollary 3.2 motivates using the following algorithm.

Algorithm 4.1. Repeated Squaring Modulo a Polynomial. (See [14,15].)

Input. The coefficients of a polynomial t(x) in (2.1) and a polynomial norm ‖.‖.
Output. An approximation to a root zj of t(x) or FAILURE.

Initialization. Fix a polynomial r0(x) = f(x), 0 < deg f(x) < n, a large integer k, and a small
positive ε.

Computations. Recursively compute the polynomials

rh+1(x) =
1
nh

(
(rh(x))2 mod t(x)

)
(4.1)

for the positive scalars nh, such that

‖rh+1(x)‖ = 1 (4.2)

and for h = 0, 1, . . . , k−1. If ‖rh+1(x)−rh(x)‖ < ε, compute the quotient ax−b ≈ t(x)/rh+1(x),
such that ‖(ax − b)rh+1(x) − t(x)‖ is minimum (see [20; 21, Proposition 2.2]), output an ap-
proximation b/a to a root zj of t(x), and stop. If h = k, stop and output FAILURE. (Due to
Corollary 3.2, the algorithm does not output FAILURE if (3.1) holds and k is large enough.)

Let us briefly analyze the algorithm. By virtue of Corollary 3.2, a multiple of the residue poly-
nomial (f(x)m) mod t(x) approximates l(x) within an error norm of the order of θm. The scalar
factors (f(zj))m remain unknown until we compute zj , but this is immaterial in the process (4.1)
of repeated squaring due to the scaling by nh. In h steps of this process an approximation rh(x)
to a scalar multiple of lj(x) is computed within an error norm of the order of θ2h . If (3.1) holds
and h is large enough, the sequence {rh(x)} stabilizes, and we approximate x − zj as a scaled
quotient in the division of t(x) by rh(x) because t(x)/lj(x) = t(zj)(x− zj).

5. ARITHMETIC OPERATIONS IN THE ALGEBRA At

Let us compute products, squares, and reciprocals in the algebra At.
The product u(x)v(x) in At is the polynomial

r(x) = w(x)− q(x)t(x), (5.1)

where

w(x) = u(x)v(x), (5.2)

degw(x) = 2n− h, h > 1, deg r(x) = k < n, deg q(x) = n− h. (5.3)

Let us compute r(x) in (5.1). W. l. o. g. let h ≤ n. Substitute 1/x for x in (5.1), multiply the
resulting equation by x2n−h, and obtain that w̄(x)− t̄(x)q̄(x) = x2n−h−kr̄(x) = 0 modx2n−h−k,
where w̄(x), t̄(x), q̄(x), and r̄(x) denote the reverse polynomials of w(x), t(x), q(x), and r(x),
respectively (cf. (2.3)). Since tn 6= 0, the polynomial t̄(x) has the reciprocal modulo xn−h+1, and
we write

s̄(x) = (t̄(x))−1 modxn−h+1. (5.4)

By multiplying the equation w̄(x) = q̄(x)t̄(x) modxn−h+1 by s̄(x) and recalling from (5.4) that
deg q̄(x) = n− h, we obtain

q̄(x) = s̄(x)w̄(x) modxn−h+1. (5.5)

These observations lead us to the following algorithm, where we write d = dlog2(2n − h + 1)e,
N = 2d.

The Amended DSeSC Power Method 5

Algorithm 5.1. Multiplication of Two Polynomials Modulo a Polynomial.

Input. Three polynomials, t(x), u(x), and v(x) satisfying (2.1), (5.2), and (5.3).

Output. The polynomial r(x) in (5.1).

Preprocessing. Compute the coefficients of the polynomial s̄(x) in (5.4) and the values of the
polynomials t(x) and s̄(x) at the 2d

th
roots of 1.

Computations. Successively compute the coefficients of the polynomials w(x) in (5.2), q̄(x)
in (5.5), and r(x) in (5.1), with the auxiliary transitions to the reverse polynomials defined
by (2.3).

To perform Algorithm 5.1 economically, apply the fundamental evaluation-interpolation tech-
niques introduced by Toom in [22]. Choose the N th roots of 1, N = 2d as the nodes of Toom’s
evaluation and interpolation and write FFT(d) to denote the arithmetic complexity of perform-
ing the FFT on these nodes. Then the arithmetic cost of the preprocessing is given by the sum
of O(n logn) arithmetic operations for computing the coefficients of s̄(x) (see [23, Section 2.5])
and 2 FFT(d) for computing the values of t(x) and s̄(x) at the 2d

th
roots of 1. In addition,

Algorithm 5.1 requires 7 FFT(d)+O(n) arithmetic operations. 4 FFT(d) of them come from per-
forming FFT on the 2d

th
roots of 1 for the polynomials u(x), v(x), w̄(x) modxn−h+1, and q(x),

whereas the other 3 FFT(d) come from performing the inverse FFT on the 2d
th

roots of 1 for the
polynomials w(x), (w̄(x) modxn−h+1)s̄(x), and q(x)t(x). Besides the FFTs and inverse FFTs,
the algorithm involves 3N +n arithmetic operations for the pairwise multiplication of the values
of the polynomials u(x) and v(x), s̄(x) and w̄(x) modxn−h+1, and q(x) and t(x) at the N th roots
of 1 and for substracting modulo xn the polynomial q(x)t(x) from w(x).

In the special case of squaring in At, we save an FFT(d) because u(x) = v(x).
Finally, computing a reciprocal in the algebra At is reduced to application of the Euclidean

algorithm or to solving a Sylvester (resultant) linear system of equations [23, Sections 2.7,2.10].
This can be done by using O(n log2 n) arithmetic operations but with possible numerical stability
problems.

6. HORNER’S BASIS AND THE ARITHMETIC
OPERATIONS IN THE ALGEBRA At

Cardinal in [16] proposes to represent the polynomials in the algebra At by using the basis
{hn−i(x) = (t(x)− (t(x) modxi−1))/xi = tnx

n−i+ tn−1x
n−i−1 + · · ·+ ti, i = 1, . . . , n−1}, which

he calls Horner’s. For a polynomial f(x) =
∑n−1
i=0 fix

i =
∑n−1
i=0 yihn−i(x) in At, its coefficient

vectors in the monomial and Horner’s bases are related via a lower triangular Toeplitz linear
system of equations,

tn
.

t2
. . . tn

t1 t2 tn

y0
...

yn−2

yn−1

 =

fn−1

...
f1

f0

 , (6.1)

that is, L(t′)y = f ′ where y = (yi)n−1
i=0 , f ′ = (fn−i)n−1

i=1 , t′ = (tn−i)n−1
i=0 . For the transition

from the monomial basis representation with the coefficient vector f to the coefficient vector y
in Horner’s basis, we first compute the first column (L(t′))−1e0 of the matrix (L(t′))−1 and then
multiply this matrix by f ′. (The inverse (L(t′))−1 is a lower triangular Toeplitz matrix, completely
defined by its first column [23, Section 2.5].) The computation of the vector (L(t′))−1e0 is the
preprocessing stage; it does not involve the vector f ′.

Cardinal in [16] proposes two algorithms for squaring and multiplication in At in Horner’s
basis. Here is his squaring algorithm.

Algorithm 6.1. Squaring in At With Respect to the Horner Basis.

6 V. Y. Pan

Input. The coefficient vector t of the polynomial t(x) and the vector y defining a polynomial
f(x) ∈ At in the Horner basis.

Output. The vector w defining the polynomial (f(x))2 ∈ At in the Horner basis.

Computations.

Stage 1. Compute the vector c being the convolution of y and t.

Stage 2. Change the sign of the first n components of c; denote the resulting vector c∗.

Stage 3. Compute and output the vector w formed by the n components from the nth to the
(2n− 1)st in the (3n− 1)-dimensional vector z which denotes the convolution of c∗ and y.

Up to n additional sign changes at Stage 2 and selecting n components in the middle of the
(3n − 1)-dimensional vector at Stage 3, the algorithm amounts to computing two convolutions;
the cost of its performance is dominated by the cost of performing three forward and two inverse
FFTs associated with the vectors t, c, c∗, y, and z. The single inverse FFT at Stage 1 and the
three FFTs at Stage 3 (one of them is the inverse FFT) are performed on the 2d

th
and 2D

th
roots

of 1, respectively, for d = dlog2(2n−1)e, D = dlog2(3n−1)e; the FFT for the vector y at Stage 1
is covered by the FFT for the same vector at Stage 3; the FFT for t does not depend on y and
can be precomputed. The overall number of arithmetic operations involved in Algorithm 6.1 (not
counting the cost of precomputing the FFT for t) is slightly below 6 FFT(d), that is, a little
less than in Algorithm 5.1 for the same squaring problem in At. Thus, the repeated squaring
in At can be rapidly performed in both monomial and Horner’s bases. The results of numerical
experiments and a theoretical argument in [16] indicate that this computation is more stable
numerically in the Horner’s than the monomial basis.

For the multiplication of two polynomials u = u(x) and v = v(x) in At with respect to Horner’s
basis, Cardinal specifies an algorithm which in addition to O(n) arithmetic operations involves
six FFTs on the 2D

th
roots of 1 and two FFTs on the 2d

th
roots of 1; then he points out that the

same complexity bound (up to the term in O(n)) can be achieved by combining Algorithm 6.1
with the simple equation 4uv = (u+ v)2 − (u− v)2.

For completeness we next recall Cardinal’s multiplication algorithm. It turns into Algorithm 6.1
wherever both input polynomials coincide with each other.

Algorithm 6.2. Multiplication in At With Respect to the Horner Basis.

Input. The coefficient vector t of the polynomial t(x) and the vectors x and y defining two
polynomials f(x), g(x) ∈ At in the Horner basis.

Output. The vector w defining the polynomial f(x)g(x) ∈ At in the Horner basis.

Computations.

Stage 1. Compute the vectors c and d being the convolutions of x and t and of y and t,
respectively.

Stage 2. Replace the last n components of c and the first n components of d with zeros; denote
the resulting vectors c∗ and d∗.

Stage 3. Compute and output the vector w formed by the n components from the nth to the
(2n− 1)st in the (3n− 1)-dimensional vector z = u− v where u and v denote the convolutions
of c∗ and y and of c∗ and x, respectively.

We call the root-finding approach in this and the previous sections the D SeS C iteration
(cf. [14,16]), where D reflects Dandelin’s initial contribution of the “Graeffe’s” iteration.

7. INITIALIZATION POLICIES

The efficiency of Algorithm 4.1 can be enhanced with an appropriate initial choice of the
polynomial f(x) in At. Let us specify the choices which

(a) simplify the root-finding by relaxing the negative affect from the multiple and clustered
roots,

The Amended DSeSC Power Method 7

(b) enable implicit deflation, and
(c) simplify the final recovery of the root.

(a) By choosing f(x) = t′(x) or, more generally, f(x) = t′(x)g(x) mod t(x) for any polyno-
mial g(x), we ensure that f(zj) = 0 as soon as zj is a multiple root of t(x) and that f(zj) ≈ 0
if zj is in a cluster of the roots of t(x). Then the term (f(zj))mlj(x) is dominated in the sum in
Corollary 3.1, so that the influence of the multiple (and clustered) roots of t(x) on the convergence
of process (4.1) to a simple isolated root of t(x) is suppressed. (For a random polynomial g(x),
property (3.1) is likely to hold provided a polynomial t(x) has a simple isolated root.)

(b) If we have computed a root zj of t(x) and seek the next root, we may repeat the same
process starting with f(x) = ḡ(x)(1− lj(x)) mod t(x) for any fixed ḡ(x) ∈ At because lj(zj) = 1
for all j. As soon as the second root zk of t(x) has been approximated, we may obtain the next
root if we apply the same process starting with f(x) = ḡ(x)(1 − lj(x) − lk(x)) mod t(x) for any
fixed ḡ(x) ∈ At; indeed lj(x) + lk(x) = 1 for x = zj and x = zk for any j and any k 6= j. The
process can be continued recursively. The latter choices of f(x) are compatible with the previous
one in Part (a) because we may choose ḡ(x) = t′(x)g(x) for any fixed or random polynomial g(x).

The explicit deflation of a root z via the division of t(x) by x−z only requires 2n−2 arithmetic
operations, but the implicit deflation may have better numerical stability.

(c) As we mentioned, Cardinal in [16] contends that using Horner’s basis representation im-
proves numerical stability of the computation of (f(x))m mod t(x) with repeated squaring of f(x)
in At. He shows that the element t′(zj)lj(x) of At has the representation (1, zj , z2

j , . . . , z
n−1
j) in

Horner’s basis. Then zj is immediately obtained as the ratio of the first two basis coordinates
of lj(x), and we may spare the division of t(x) by lj(x). Furthermore, we may force convergence to
the simple root zj of t(x) that most closely approximates a fixed complex value c provided all other
roots lie farther from c. To achieve this, one may start with an element f(x) of At represented
by the vector (1, c, c2, . . . , cn−1) in Horner’s basis because in this case f(zj) = t(c)/c− zj [16].

The latter initialization technique simplifies and numerically stabilizes the stage of the final
recovery of the root. Can we simultaneously relax the negative effect of the multiple and clustered
roots? The above techniques are not compatible, not allowing us to yield the two improvements
simultaneously, but in the next sections we achieve this goal by shifting to appropriate matrix
methods for polynomial root-finding.

8. MATRIX REPRESENTATION OF THE ALGEBRA At

The elements f(x) of At can be viewed as linear operators f on At,

f : g(x)→ g(x)f(x), for all g(x) ∈ At.

In [16], the matrix Ft(f) of this linear operator in the monomial basis is called the Frobenius
matrix associated with the operator f . In Horner’s basis this operator has the matrix F>t (f) [16].
In particular, for f(x) = x, we have

Ft(f) = C =

0 · · · 0 −t∗0
1

. . . −t∗1

.
...

0 · · · 1 −t∗n−1

 , (8.1)

t∗i = ti/tn, i = 0, 1, . . . , n − 1, that is, the Frobenius matrix of the operator of multiplication
by x in At is the companion matrix of t(x) in (2.1). The eigenvalues of C coincide with the
roots z1, . . . , zn of t(x). The algebra At has an isomorphic representation AC where a polynomial
f(x) =

∑n−1
i=0 fix

i ∈ At is mapped into the matrix Ft(f) =
∑n−1
i=0 fiC

i with the first column
filled with the coefficients f0, . . . , fn−1.

The following result of [16] is an immediate consequence of the Barnett factorization (see
Proposition 2.9.2 of [24]).

8 V. Y. Pan

Theorem 8.1. For two polynomials, t(x) in (2.1) and f(x) ∈ At, let f and y = [y0, y1, . . . , yn−1]>

denote the coefficient vectors of f(x) in the monomial and Horner’s bases, respectively. Then we

have

Ft(f) = L(f)− L(t)L>(Zy), (8.2)

where t = [t0, . . . , tn−1]>/tn, the matrix L(v) denotes the lower triangular Toeplitz matrix with

the first column given by a vector v, and Z is the down-shift matrix Z of (2.4).

Consequently, one may represent a matrix Ft(f) in the algebra AC by means of any of the
vectors f and y by using the memory space n (cf. (6.1)) not counting the memory space for the
storage of the n + 1 coefficients of the polynomial t(x), which defines the algebra At. Due to
the isomorphism between the algebras At and AC , we immediately extend the algorithms for
squaring and multiplication in At in Sections 5 and 6 to the same operations in AC . Computing
the reciprocal of a polynomial f(x) in At is equivalent to the inversion of the matrix Ft(f) in AC .
We observe that Ft(f) − δI = Ft(f(x) − δ) for a scalar δ and f(x) in At; furthermore, the
representations of f(x)− δ and f(x) in Horner’s basis coincide with one another except that the
coefficient yn−1 for f(x) exceeds the one for f(x)− δ by δ/tn (see (6.1)).

Based on representation (8.2) in the algebra AC , we immediately simplify the final recovery of
the root zj from the scaled Lagrange polynomial clj(x) for a scalar c 6= 0. Indeed (2.2) implies
that clj(F)(F − zjI) = 0. Therefore,

zj =
(lj(F))0,1

(lj(F))0,0
, (8.3)

where (M)i,j denotes the (i, j)th entry of a matrixM , i = 0, 1, . . . , n−1. We may perform repeated
squaring in Horner’s basis and define zj in (8.3) only at the recovery stage, by combining (6.1)
and (8.2). Thus, we solve both problems of the final recovery and handling multiple roots and
root clusters if we apply the initialization rule (a) from Section 7 and apply equation (8.3) for
the recovery.

9. THE POWER METHOD FOR THE MATRIX EIGENVALUES
AND ITS APPLICATION TO POLYNOMIAL ROOTS

The classical power method [17, Section 7.3; 18, Section 2.1] enables us to approximate the
eigenvalues of a matrix M . If M = C = Ft(f) for f(x) = x, we approximate the roots of a
polynomial t(x). Let us recall this method.

Suppose M is a diagonalizable n× n matrix and X = (xi)ni=1 is the matrix of its right eigen-
vectors, so that X−1MX = λ = diag(λi)ni=1, Mxi = λixi, i = 1, . . . , n. Also suppose that
θ = maxi>1 |λi/λ1| < 1, v =

∑n
i=1 bixi, b1 6= 0. Then for large k the vectors b1λk1x1 dominate in

the sums
∑n
i=1 biλ

k
i xi representing the vectors vk = Mkv. One may estimate that the Rayleigh

quotients

rk =
v>kMvk
v>k vk

(9.1)

approximate the dominant eigenvalue λ1 with the error |rk − λ1| in O(θk), whereas the scaled
vectors vk/‖vk‖ approximate the associated dominant eigenvector x1/‖x1‖. Application of this
method to the matrices M − δI and (M − δI)−1 instead of M (where δ is a fixed scalar) yields
the approximations to the dominant eigenvalues λj−δ and (λk−δ)−1 of these matrices as well as
the associated eigenvectors xj and xk (provided the eigenvalues are unique). The pairs (λj ,xj)
and (λk,xk) are the eigenpairs of M , such that λj is the farthest from δ and λk is the closest
to δ among all eigenvalues in the spectrum of M .

Now let M = C for C in (8.1). Then the power iteration should converge to a root of t(x). By
applying explicit or (better) implicit deflation (see the recipe for the latter in Section 7), we may
compute the other roots of t(x) recursively. We accelerate the convergence by applying repeated

The Amended DSeSC Power Method 9

squaring of the initial matrix Ft(f). The Cardinal’s techniques in Section 8 (cf. (8.2)) combined
with Algorithms 4.1, 5.1, and 6.1 enable us to perform each squaring fast, by using O(n logn)
arithmetic operations per squaring. We combine the first two recipes of the initialization in
Section 7 to relax the effect of the multiple and clustered roots on the convergence, to yield
bound (3.1), and to allow implicit deflation. The third initialization recipe in Section 7 is not
compatible with the first two but is not needed anymore because of our alternative recovery
recipe based on (8.3) or (9.1). The proponents of the power method should be pleased to observe
that recipe (8.3) coincides with using the Rayleigh quotient (9.1) for vk = F ke0.

A choice of the normalization scalars nh = trace((Ft(f))H) in (4.1) has been pointed out in [16];
another effective choice is nh = v>Ft(f)Hv/v>v for H = 2h and a vector v which can be fixed
or random and may vary or not vary with h. The computation of nh takes O(n logn) arithmetic
operations for each h.

To apply the shifted or shifted inverse iteration, we may begin with Ft(f)−δI or (Ft(f)−δI)−1,
or we may do this implicitly by replacing the polynomial t(x) with s(x) = t(x− δ) or the reverse
polynomial s̄(x) and applying the same original algorithm to As or As̄ (cf. (2.3)).

If the coefficients of t(x) are real, we automatically yield the dual complex conjugate root for
any nonreal root.

We call the resulting root-finder the amended D SeS C power iteration.

10. TO THE MULTIPLE ROOTS AND ROOT
CLUSTERS VIA THE (HIGHER-ORDER) DERIVATIVES

The amended D SeS C power algorithm recursively approximates simple roots of t(x), beginning
with the better isolated roots at which the derivative takes on the absolutely larger values. For
the remaining multiple roots, one may apply the same algorithm to the derivative t′(x) and then,
recursively, higher-order derivatives t(h)(x), h = 1, 2, . . . , n−1 (cf. [25, Section 9.2]), incorporating
also implicit or explicit deflation. If one has computed an approximation x̃ to a root of the
polynomials t(h)(x) but has chosen not to incorporate deflation, then one should test if x̃ also
approximates a root of t(x). Instead of the customary criteria in the test, one may apply a few
steps of a known root-finder for t(x), e.g., one of such root-finders in [25] or [19] initialized at x̃
or Newton’s iteration x0 = x̃, xi+1 = xi −m(t(xi)/t′(xi)) where i = 0, 1, . . . , and where m is the
guessed multiplicity of the root of t(x).

The latter approach can be applied to approximate the roots of multiplicity exactly m: apply
the algorithm to approximate the roots of t(m−1)(x) with the initial choice of f(x) = t(m)(x)g(x);
then test if the computed approximation is also a root of t(i)(x) for i = 0, 1, . . . ,m − 2 (prob-
abilistically we may just test if it is a root of the polynomial

∑m−2
i=0 hit

(i)(x) for random hi).
Similar tricks enable us to begin with approximating the roots in the clusters made up of exactly,
at least, or at most m roots.

REFERENCES

1. V.Y. Pan, Solving a polynomial equation: Some history and recent progress, SIAM Review 39 (2), 187–220,
(1997).

2. B. Mourrain and V.Y. Pan, Multivariate polynomials, duality and structured matrices, J. of Complexity 16
(1), 110–180, (2000).

3. J.M. McNamee, Bibliography on roots of polynomials, J. Comp. Appl. Math. 47, 391–394, (1993).

4. J.M. McNamee, A supplementary bibliography on roots of polynomials, J. Computational Applied Mathe-
matics 78 (1), (1997); http://www.elsevier.nl/homepage/sac/cam/mcnamee/index.html.

5. J.M. McNamee, An updated supplementary bibliography on roots of polynomials, J. Computational Applied
Mathematics 110, 305–306, (1999).

6. J.M. McNamee, A 2000 updated supplementary bibliography on roots of polynomials, J. Computational
Applied Mathematics 142, 433–434, (2000).

7. D.A. Bini, L. Gemignani and V.Y. Pan, Improved initialization of the accelerated and robust QR-like poly-
nomial root-finding, Electronic Transaction on Numerical Analysis (to appear).

10 V. Y. Pan

8. V.Y. Pan, New reduction of the algebraic eigenproblem to polynomial root-finding via similarity transforms
to generalized companion matrices of the characteristic polynomial, In SIAM Conference on Linear Algebra,
Williamsburg, VA, (July 2003).

9. V.Y. Pan, Optimal (up to polylog factors) sequential and parallel algorithms for approximating complex
polynomial zeros, In Proc. 27th Ann. ACM Symp. on Theory of Computing, pp. 741–750, ACM Press, New
York, (May 1995).

10. V.Y. Pan, Optimal and nearly optimal algorithms for approximating polynomial zeros, Computers Math.
Applic. 31 (12), 97–138, (1996).

11. V.Y. Pan, Univariate polynomials: Nearly optimal algorithms for factorization and rootfinding, Journal of
Symbolic Computations 33 (5), 701–733, (2002).

12. D.A. Bini, L. Gemignani and V.Y. Pan, QR-like algorithms for generalized semiseparable matrices, Technical
Report 1470, Department of Math., University of Pisa, Pisa, Italy, (July 2003).

13. A.S. Householder, The Numerical Treatment of a Single Nonlinear Equation, McGraw-Hill, New York, (1970).
14. J. Sebastiao e Silva, Sur une méthode d’approximation semblable a celle de Graeffe, Portugal Math. 2,

271–279, (1941).
15. A.S. Householder, Generalization of an algorithm by Sebastiao e Silva, Numerische Math. 16, 375–382,

(1971).
16. J.P. Cardinal, On two iterative methods for approximating the roots of a polynomial, In Proceedings of

AMS-SIAM Summer Seminar: Mathematics of Numerical Analysis: Real Number Algorithms, (Edited by
J. Renegar, M. Shub and S. Smale), Park City, UT, 1995; Lectures in Applied Mathematics, Volume 32,
pp. 165–188, American Mathematical Society, Providence, RI, (1996).

17. G.H. Golub and C.F. Van Loan, Matrix Computations, Third Edition, Johns Hopkins University Press,
Baltimore, MD, (1996).

18. G.W. Stewart, Matrix Algorithms, Vol. II, Eigensystems, SIAM, Philadelphia, PA, (1998).
19. D.A. Bini, L. Gemignani and V.Y. Pan, Inverse power and Durand/Kerner iteration for univariate polynomial

root-finding, Computers Math. Applic. 47 (2/3), 447–459, (2004).
20. R.M. Corless, P.M. Gianni, B.M. Trager and S.M. Watt, The singular value decomposition for polynomial

systems, In Proceedings of International Symposium on Symbolic and Algebraic Computation (ISSAC’95),
pp. 195–207, ACM Press, New York, (1995).

21. V.Y. Pan, Computation of approximate polynomial GCDs and an extension, Information and Computation
167, 71–85, (2001).

22. A.L. Toom, The complexity of a scheme of functional elements realizing the multiplication of integers, Soviet
Mathematics Doklady 3, 714–715, (1963).

23. V.Y. Pan, Structured Matrices and Polynomials: Unified Superfast Algorithms, Birkhäuser/Springer, Boston,
MA, (2001).

24. D. Bini and V.Y. Pan, Polynomial and Matrix Computations, Vol. 1: Fundamental Algorithms, Birkhäuser,
Boston, MA, (1994).

25. V.Y. Pan, B. Murphy, R.E. Rosholt, Y. Tang and X. Wang, Root-finding via eigen-solving, perturbations
and realizations, Preprint, (2004).

The following REFERENCES should be changed:

4. J.M. McNamee, ..., {\bf 78}, 1, (1997); http...,
that is, replace "(1)" with ",1"

6. J.M. McNamee, A 2002 updated..., 433-434, (2002).
that is, twice replace 2000 with 2002

7. D.A. Bini,... Analysis, {\bf 17}, 195-205, (2004).

8. V.Y. Pan, B. Murphy, R.E. Rosholt, Y. Tang, X. Wang and X. Yan,
Root-finding via eigen-solving, preprint, (2005).
That is, replace the former reference 8 with the updated reference 25.
This means that the new reference 8 should be cited wherever any of the
former references 8 and 25 were cited.

12. D.A. Bini, L. Gemignani and V.Y. Pan, Fast and stable QR eigenvalue
algorithms for generalized companion matrices and secular equations,
{\em Numericshe Math.}, in print. (Also see Technical Report 1470,
Department of Math., University of Pisa, Pisa, Italy, (July 2003).)

Other Corrections

Page 4, the line between equations (4.1) and (4.2) should be read as
follows:
"for the positive scalar n_h such that"
that is, delete the comma after n_h

Page 4, the next line after equation (4.2) should be read as follows:
"and for $h=0,\ldots,k$. If ..."
that is, replace k-1 with k

Page 4, line 4 from bottom:
replace "(5.4)" with "(5.3)"

Page 5, line 2 should be read as follows:
"INPUT. Three polynomials, $u(x)$ and $v(x)$, both of degrees of at most
$n-1$, and $t(x)$ satisfying (2.1)."

Page 5, line 3 should be read as follows:
"OUTPUT. The polynomial $r(x) in (5.1)-(5.3)."
that is, insert -(5.3) after (5.1)

Page 5, line 7: insert "and from" after "transition to"

Page 5, line 2 in section 6:

replace "i=1,\ldots,n-1}," with "i=1,\ldots,n},"

Page 5, line 3 in section 6:
replace "=\Sum_{i=0}^{n-1}y_i" with "=\Sum_{i=1}^{n}y_i"

Page 5, line 2 from bottom should be read as follows:
"basis. They actually amount to pre-multiplication of equation (8.2) in
our Theorem 8.1 by the respective coefficient vector in Horner's basis.
Here is ..."

Page 6, line 1: replace "the vector {\bf y} defining a polynomial" with
 "the coefficient vector {\bf y} of a polynomial"

Page 6, line 3: replace "The vector {\bf w} defining the polynomial" with
 "The coefficient vector {\bf w} of the polynomial"

Page 6, the INPUT line of Algorithm 6.2 : replace "the vectors {\bf x} and
{\bf y} defining two polynomials" with "the coefficient vectors {\bf x}
and {\bf y} of two polynomials"

Page 6, the OUTPUT line of Algorithm 6.2 : replace "the vector {\bf w}
defining the polynomial" with "the coefficient vector {\bf w} of the
polynomial"

Page 7, line 8: add z_j after "isolated root"

Page 7, in the beginning of line 5 of Part (c):
 replace "of $l_j(x)$, and we may" with
"of $(f(x))^m$, and we can"

Page 7, two lines below: replace "one may" with "we can"

Page 8, line 15: replace "coefficient $y_{n-1}" with "coefficient
$y_{n}"
Then at the end of the line, after "(see (6.1))." add:
"Actually, Algorithms 6.1 and 6.2 just pre-multiply equation (8.2) by the
vector ${\bf y}$."

Page 8, lines 21-22 should be read as follows:
"squaring in Horner's basis and (as soon as the ratio in equation (8.3)
stabilizes) approximate a root with z_j in (8.3). (Here we also apply
equations (6.1) and (8.2) for the transition between the monomial and
Horner's bases). Thus, we solve..."

Page 8, the last line in Section 9 should be read as follows:
"the recovery. The ratio (8.3) can never stabilize if for $k>1$ there are

k distinct absolutely largest roots of the polynomial $t(x)$ (e.g., a
pair of complex conjugate roots where $t(x)$ has real coefficients). The
invariant k-dimensional eigenspace of the matrix $F_t(x)$ associated
with these roots, however, stabilizes; for smaller k we can readily
approximate an orthogonal basis for this eigenspace and then the
eigenvalues/roots themselves (cf. [18, Section 4.4]). For larger k, this
computation becomes expensive, but for any k we have good chances to
yield a unique absolutly largest root if we randomly shift the variable
x. We can improve numerical stability by replacing shifts with
transforms of the unit circle centered in the origin into itself. These
transforms cannot help only if the k largest roots lie on this circle."

Besides,
I wish to replace "may" by "can"
on Page 7, lines 9, 11, 15, 17, and 22 (twice)
on Page 8, lines 7, 20, 33 (12 from bottom), and 47 (second from bottom)
on Page 9, lines 13 and 14

