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Abstract

Our first contribution is a substantial acceleration of randomized computation of scalar,

univariate, and multivariate matrix determinants, in terms of the output-sensitive bit

operation complexity bounds, including computation modulo a product of random primes

from a fixed range. This acceleration is dramatic in a critical application, namely solving

polynomial systems and related studies, via computing the resultant. This is achieved by

combining our techniques with the primitive-element method, which leads to an effective

implicit representation of the roots. We systematically examine quotient formulae of Sylvester-

type resultant matrices, including matrix polynomials and the u-resultant. We reduce the

known bit operation complexity bounds by almost an order of magnitude, in terms of the

resultant matrix dimension. Our theoretical and practical improvements cover the highly

important cases of sparse and degenerate systems.
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1. Introduction

1.1. Our subjects and techniques

The classical problem of computing matrix determinants witnessed dramatic
recent progress [EGV00,KV01,Sto03]. Our first step is to adapt the algorithm of
Kaltofen and Villard [KV01] to the case of modular computation, where the input is
generally a multivariate matrix. This shall be an important block for our algorithms,
based on Chinese remaindering. We also contribute a new randomized output-

sensitive algorithm, which improves the known bounds when the output is away
from the available upper bounds. Such upper bounds (like Hadamard’s) are
notorious for being excessively high in general, as discussed later. These results are of
independent interest, but become more important because of their application to
polynomial system solving by the method of resultants and their matrices. Our focus
on the block Wiedemann approach of Kaltofen and Villard [KV01] is motivated by
this application where it is currently superior over the others in [EGV00,Sto03].

Computing the resultant R of a polynomial system, including the cases of scalar R

and univariate or multivariate polynomial RðxÞ or Rðu1;y; unÞ is a central practical
and theoretical problem in the field of symbolic computation, leading to efficient
methods for solving 0-dimensional systems, quantifier elimination, and deciding the
theory of the reals. Our practical motivation is the real-time solution of systems in
CAD, vision or robotics (which may give rise to matrices with dimension in the
hundreds or even higher). Equally useful is the computation of the resultant
polynomial, e.g., in modeling applications where an implicit representation of a
curve or surface is obtained from the (perturbed) resultant, even in the presence of
base points [DE01,MC93]. Resultant values and signs also capture important tests in
computational geometry, including the case of infinitesimal perturbations of the
input. These diverse applications are discussed in [BEPP99,Can88,CLO98,DE01,
Man93].

A polynomial system has a solution iff R ¼ 0; whereas computing isolated roots of
the system can be reduced to factoring the polynomial Rðu1;y; unÞ into the product
of linear factors. Moreover, solving the univariate polynomial equation RðxÞ ¼ 0
projects all common isolated roots to one of their coordinates and is critical in
several applications. Thus we arrive at our task of computing the resultants R;RðxÞ;
and Rðu1;y; unÞ; and in our approach we largely unify this computation. For
computing the resultant, we exploit a recent major advance in the field, which
generalizes the Macaulay formula to the toric case by expressing the (toric) resultant
by a quotient formula det M=det S; where M is a Sylvester-type resultant matrix of a
polynomial system, and S is one of its submatrices [DA02]. We also apply our
methods to the perturbations for handling degenerate systems [Can90,DE01], as well
as to Bézout-type matrices.

We focus on bit operation complexity; the computational model is the (Boolean, or
logarithmic-cost) random access machine, unless otherwise stated [AHU74,BCS97].
Section 7 examines briefly straight-line programs and linear-complexity models,
which we apply to capture a specific notion of sparseness. Our estimates do not
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include the cost of generating the random quantities required in the algorithms, but
this complexity is practically dominated at other stages. Randomized algorithms
shall be of two types, namely Las Vegas or Monte Carlo depending on whether the
estimated computational cost covers or not the cost of certifying correctness of the
output. In the latter case, randomization may lead to a superset of the roots; in
system solving applications, certification is very fast since it amounts to evaluating
the input polynomials at the computed root values.

Since, we deal with highly important and long and well-studied problems, our
progress had to employ and combine various known advanced techniques of
algebraic computing as well as our novel techniques. In particular, the latter include
multivariate output sensitive version of the recent block Wiedemann approach of
Kaltofen and Villard [KV01] to the structured determinant evaluation (where we
incorporate the Chinese remainder algorithm, and randomized Newton’s interpola-
tion to speed up the computation in the case where the determinant nearly vanishes,
that is exactly in the case we need, although our progress should also have general
appeal and independent importance) and acceleration of the resultant computation
by exploiting quasi-Toeplitz matrix structure, rational formulae for the toric
resultant (in order to bound the output size), and evaluation/interpolation
techniques [Too63] (cf. also [Ber03b]).

1.2. The known and new results

Previous work on integer determinant evaluation includes [ABM99,EGV00,-
Kal02,KV01,Pan02b]; other works such as [BEPP99,PY01] focus on sign determina-
tion but do not improve upon the current record complexity bounds (although the
output-sensitive approach in [BEPP99, Section 4] was instrumental in improving
these bounds). The best complexities for a general scalar matrix are due to the
algorithms in [EGV00,KV01]; cf. also Theorem 2.1. Let O�ð f Þ indicate that the
factors polylogarithmic in f are omitted. Then the known randomized bit cost

bounds are in O�ðm3þ1=5LÞ; implicit in [KV01] (see Appendix A), and O�ðm2g2=3LÞ;
where m denotes the dimension of integer matrix M; L its maximum 2-norm or
column (infinity) norm (our choice), and g the number of arithmetic operations for
multiplying M by a vector of scalars. We bound the bit complexity of computing
ðdet MÞmod s; for s being the product of random primes, by O�ðmgqÞ; where q ¼
log s; zand by O�ðm5=3L2=3g2=3q1=3Þ: The recent works [Kal02] (which yields a bound

of the order of m3q) and [Sto03] do not apply efficiently to the quasi-Toeplitz
structure and thus are not sufficient to support our improvements. In particular,
[Sto03] considers univariate matrices and proposes a Las Vegas algorithm for their
determinant computation with arithmetic complexity in O�ðmd1Þ; where OðmÞ bounds
the arithmetic complexity of matrix multiplication and d1 bounds the degree of the
entries. Then again our estimates using structure are superior for resultant matrices.
Similar comments apply to the algorithm in [EGV00], which yields the bound in

O�ðm3L2Þ for an average integer matrix but does not perform much faster for
structured matrices.
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For s42jdet Mj we can immediately recover det M from its value modulo s; so
our bit cost bounds turn into the new bit cost record output sensitive bounds for
computing det M: We also derive the bit cost bounds in terms of L;m; s only
(without g); this improves the record bounds of Kaltofen [Kal02] by the factor of

ðq=LÞ3=10; where q :¼ lgðjdet Mj þ 2Þ denotes the bit size of the computed integer
determinant. We extend all our results and new record bit cost estimates to uni- and
multivariate matrices.

Regarding resultant operations, we reduce bit complexity by almost an order of
magnitude in terms of the resultant matrix dimension, which is the largest quantity
involved in the bounds. Roughly speaking, the bit complexity of existing approaches

is proportional to m3: These results, unbeaten for years, remained a clear challenge
to the algorithm designers. In the present paper, we finally make a decisive step
forward.

For evaluating a scalar resultant, the existing approaches exploit matrix structure

[CKL89,EP02b] to arrive at bit complexities in O�ðm3n2DLÞ; where n is the number
of eliminated variables and D denotes the total degree of the resultant R thought of

as a polynomial in the input coefficients. We derive the bound O�ðm2nDLÞ; where L

is the bit length of these coefficients when specialized. Alternatively, a Monte Carlo

bound depending on the bit size q of the resultant’s value is O�ðm2nqÞ: Analogous
improvements are obtained in the harder and highly important case where the input
degenerates and a perturbation is applied. This improves upon available approaches.
We mention only one of those, because it uses a different and more direct method:
The problem is reduced to computing a characteristic polynomial with Monte Carlo

bit complexity proportional to m3þ1=5; up to polylog factors for a general m � m

matrix [Pan02b]. Even an improvement to m3 would not beat our estimate in the
quasi-Toeplitz case.

For expanding a univariate resultant RðxÞ; the algorithm of [Man93] is based on

Kronecker canonical forms. It yields a bit cost bound in Oððm þ degðdet MðxÞÞÞ3Þ;
under the condition that M is nonsingular as a matrix polynomial in x: Otherwise,

the algorithm has complexity proportional to m4: The fastest general algorithms

have bit complexity in O�ðm3n degðdet MðxÞÞÞ; typically relying on interpolation and
matrix structure [CKL89,EP02b]. Our algorithms support a bit cost bound, for

arbitrary inputs, in O�ðm2nDVLÞ where V is the actual degree of the univariate
resultant. They also dramatically improve the known algorithms in the case of
perturbed resultants. Similar improvements are obtained for expanding the n-variate

u-resultant RðuÞ: This task has bit complexity proportional to m2h; where h denotes
the number of nonzero terms in RðuÞ: Previous methods have complexity cubic in m

[CKL89,EP02b,Man93].
These results on resultant evaluation and expansion, coupled with the quotient

formula of the (toric) resultant, immediately yield an improvement on the bit
complexity of numerically approximating all isolated roots of a well-constrained
algebraic system to a prescribed precision. Existing methods based on resultant
formulations have arithmetic complexity cubic in m [CKL89,EP02b,Mou98]. We
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employ the primitive-element method of Canny [Can88] (also known as rational
univariate representation [Rou99]) leading to an implicit representation of the
output and, by combining all our techniques, we obtain bit operation complexity

bounds which are roughly cubic in m: The same complexity bounds hold when we
wish to approximate the root projections to a single coordinate axis. In this context,
all real roots are isolated with complexity quadratic in m multiplied by the fourth
power of the resultant polynomial’s degree.

The results of this paper appeared in preliminary form in [EP02a,EP03].

1.3. Paper organization

Besides the previous section, existing work is also covered in the sequel, in
particular in Section 2 and the appendix. Sections 2 and 3 focus on computing the
determinants of integer and polynomial matrices and improve the known complexity
bounds for structured matrices and in the cases of the computation modulo a
product of random primes and output-sensitive algorithms. Section 4 formalizes the
notion of resultant matrices by supplying the necessary background information,
and Section 5 accelerates their evaluation. Section 6 improves upon the existing
algorithms for expanding univariate and multivariate resultants, and Section 7 does
the same for polynomial system solving. The appendix provides some background to
make the paper self-sufficient. Appendix A presents the main approach for integer
matrix determinant computation, and Appendix B discusses random prime number
generation.

2. Multivariate determinants preliminaries

This section introduces notation and details of the main algorithms for
determinant evaluation on which our improvements shall be based. Our second
base for improvement, concerning rational formulae for the resultant, shall be
introduced later.

The algorithms for determinant evaluation use block Wiedemann’s algorithm with

structured preconditioning [Cop94,KP91,KS91,KV01,Wie86]; see the appendix. Our
complexity bounds rely on fast univariate polynomial multiplication and/or on the
fast Fourier transform (FFT), which is truly advantageous only for large inputs;
otherwise, the classical or the Karatsuba divide-and-conquer algorithm may be
preferable. On the other hand, none of the stated bounds relies on fast matrix
multiplication, i.e., methods with complexity smaller than cubic in the dimension,
which are hard to exploit in practice. Still, both the existing and our methods can be
coupled with fast matrix multiplication in order to reduce the asymptotic bounds.

Let us fix notation for the entire paper. We assume integer matrices or matrix

polynomials. We also assume Euclidean norms jj
P

i cix
ijj2 ¼ jjðciÞijj2 ¼ ð

P
ijjcijj2Þ1=2

for polynomials and vectors, and the consistent 2-norm jjðMi; jÞi; jjj2 ¼
maxv:jjvjj¼1fjjMvjj2g for matrices, so
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jjMjjiXjjMijj: ð1Þ

Here jjtjj ¼ jtj for a scalar t: Alternatively, we may use the maximum or infinity norm

for polynomials and vectors with jj
P

i cix
ijj

N
¼ jjðciÞijjN ¼ maxifjcijg and the

consistent column norm for matrices jjMjj
N

¼ maxv:jjvjj¼1fjjMi; jvjjNg ¼
maxi

P
j jMi; jj: Yet another possibility is the 1-norm for polynomials and vectors,

and the consistent row norm for matrices.
Let gðMÞ or g denote the number of arithmetic operations required for multiplying

a scalar vector by the matrix M: Unless otherwise stated, it suffices that g bounds the
complexity of vector multiplication on one side of the matrix. For a matrix
polynomial M ¼ MðxÞ; x denoting a variable or a set of variables, let gðMÞ denote
the maximum gðMðaÞÞ over the set of all values a of the variable(s) x: For an m � m

matrix M; mpgp2m2 � m and g ¼ oðm2Þ for sparse and/or structured matrices.
We next present the known randomized algorithms and bit complexity bounds.

Theorem 2.1 (Pan [Pan02b, Theorem 5.1], cf. Kaltofen [KV01]). (a) Let M be an

m � m matrix whose entries are polynomials in k variables with respective degrees less

than d1;y; dk; kX0; and with integer coefficients. Let L :¼ logjjMjj;D :¼ d1?dk; g :

¼ 2=ðk2 þ 4k þ 5Þ: Then det M can be computed by a Las Vegas algorithm with bit

operation complexity bounded by

O�ðmkþ2þðkþ3ÞgDLÞ

and

O�ðmkþ2g2=ðkþ3ÞDLÞ:

In particular, for scalar determinants we have the bounds O�ðm16=5LÞ and O�ðm2g2=3LÞ;
whereas for univariate determinants these bounds become O�ðm19=5d1LÞ and

O�ðm3g1=2d1LÞ:
(b) For any fixed t40; the algorithm involves Oðm2 log m þ LmÞ random bits to

ensure the upper bound t on the failure probability. The generation of these bits is

covered by the cost bounds in part (a).

Let us supply some details for deriving the above cost bounds, which are
instrumental in extending them below. Theorem 2.1 is supported by the algorithm in
[Pan02b], which extends the one in [KV01, Section 3], outlined in Appendices A and
B. The algorithm computes det M modulo sufficiently many distinct random primes
s1;y; su and then recovers det M by applying the Chinese remaindering algorithm

(abbreviated as CRA); cf. [vzGG03,Zip93]. Under the requirement that log s41þ
Lm41þ logjdet Mj for s ¼ s1?su; the algorithm either fails with a small probability
or ensures computing the correct output at the claimed bit cost, dominated at the
evaluation stage (see some further comments in Appendix A).

The bit cost of performing the entire algorithm is dominated by the bounds

O�ðm3rkþ1DLÞ; O�ððm3=rÞðm=tÞkþ1DLÞ; and
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O�ðmkþ2t2DLÞ; ð2Þ

achieved at stages 2.2, 2.3, and 3, respectively (see Appendix B). We are based on (1)

and on the simple observation that DðMhÞpDðMÞhk; for any positive hAZ:
Now, we consider the three bounds above for the parameters r and t of our choice,

which have to satisfy 1prpm=t; mXtX1 since they define baby steps/giant steps
and blocking in Wiedemann’s algorithm, respectively. The overall cost bound

O�ðmkþ2þðkþ3ÞgDLÞ is obtained when the three summands are made asymptotically

equal. The first two summands are equal for r :¼ ðm=tÞðkþ1Þ=ðkþ2Þ; and the last two for

t :¼ mðkþ3Þ=ðk2þ4kþ5Þ: These specifications satisfy the requirements on r and t:
The bounds in terms of g are obtained by trivializing the baby steps/giant steps

from stage 2, i.e. writing r ¼ 1 trivializes stage 2. Then the bit cost at stage 2.3 is
bounded by

O� gm
m

t

� �kþ1

DL

� �
: ð3Þ

Stage 3 is as before. So the overall complexity is bounded by the sum of (2) and (3)

Then for t :¼ g1=ðkþ3Þ; we obtain the overall bound O�ðmkþ2g2=ðkþ3ÞDLÞ:

3. Improved determinant computation

The estimates in the following subsections are in g and thus decrease for structured
matrices. Only the last subsection deviates from this rule and presents output-
sensitive bounds for unstructured matrices. We are going to extend Theorem 2.1 and
for completeness partly repeat its derivation, which formally the reader is not
required to read.

3.1. Computation modulo a product of random primes for structured matrices

Our first contribution (in Theorem 3.2) is the computation modulo a product of
random primes which exploits matrix structure. Let M be an m � m matrix, with

jjMðxÞjj ¼ 2L; whose entries are polynomials in x1;y; xk with respective degrees less
than d1;y; dk; kX0; and with integer coefficients. Let D :¼ d1?dk and set D :¼ 1 for
k ¼ 0:

Lemma 3.1. For a multivariate matrix MðxÞ as above, for l ¼ 2 and N; we have

jjdet MðxÞjjlpjjMjjm2 p2Lm:

Proof. We use the Kronecker substitution, namely

x1-y; x2-yd1þ1; x3-yd1d2þ1;y: So we have det MðxÞ ¼
PN�1

i¼0 ciy
i where y is a

single variable and N ¼ 1þ d1 þ d1d2 þ?þ d1?dk: Let o be a primitive Nth root
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of unity and let

O ¼ ð1=
ffiffiffiffiffi
N

p
ÞðoijÞN�1

i; j¼0; O� ¼ ð1=
ffiffiffiffiffi
N

p
Þðo�ijÞN�1

i; j¼0

be the scaled unitary matrices of the forward and inverse Fourier transforms, where

jjO�jjl=
ffiffiffiffiffi
N

p
pjjOjj2 ¼ jjO�jj2 ¼ 1: Then ðdet MðoiÞÞN�1

i¼0 ¼
ffiffiffiffiffi
N

p
OðcjÞN�1

j¼0 ; ðcjÞN�1
j¼0 ¼

ð1=
ffiffiffiffiffi
N

p
ÞO�ðdet MðoiÞÞN�1

i¼0 ;

jjðcjÞN�1
j¼0 jjl ¼ ð1=

ffiffiffiffiffi
N

p
ÞjjO�jjl jj ðdet MðoiÞÞN�1

i¼0 jjl :

We have jjO�jj2 ¼ 1; jjðdet MðoiÞÞN�1
i¼0 jj2pmaxijdet MðoiÞj

ffiffiffiffiffi
N

p
; so

jjdet MðxÞjj
N
pjjdet MðxÞjj2 ¼ jjðcjÞN�1

j¼0 jj2pmax
i

jdet MðoiÞjpjjMjjm2 ¼ 2Lm: &

Alternatively, we may use the Goldstein–Graham bound [GG74], namely

jjdet ðMi; jðxÞÞjj2pð
Q

i

P
j jWi; jj2Þ1=2; where Wi; j ¼ jjMi; jjj1:

We shall operate modulo s ¼ s1?su; i.e. s is the product of u random primes
sampled in the range ðw; 20w� with

wXm2 max jjMjj2;
m

t
log

m

t

n o
ð4Þ

(see Appendix B), for a fixed upper bound t40 on the failure probability; we choose
a sufficiently large parameter upm to have q ¼ log so1þ u log w: We may increase
the range if we need more primes. We assume that log wpc logðmLÞpqpcLmg=2;
for a fixed constant c: This holds if 2upLmg=logðmLÞ; and under this condition we

may still choose s ¼ 2ðmLÞcLmg=ð2 logðmLÞÞ42jjdet Mjj; for cg42; due to the lemma.
The next theorem extends the second bound of Theorem 2.1(a) (in terms of g) to

computation of ðdet MÞmod s where log wpq ¼ log spcLmg=2:

Theorem 3.2. (a) Under the above assumptions, ðdet MÞmod s can be computed by a

Las Vegas algorithm with bit operation complexity in

O� mkþ1g
2

kþ2 Dq

� �

and in

O� mkþ1 ðLmgÞ2qkþ1
� � 1

kþ3D

 !
;

where q ¼ log s:
(b) The bounds in Theorem 2.1(b) apply for

q ¼
Xu

i¼1

Jlog sinpu þ log s:

The first bound is smaller iff qp2Lm=g1=ðkþ2Þ: The cost bounds cover the
generation of random primes. By Lemma 3.1, q ¼ mL bounds logjjdet Mjj: On the
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other hand, for q of the order of Lm; the second bound above is exactly the second
bound in Theorem 2.1 (see Corollary 3.4).

Proof and algorithm. The theorem is supported essentially by the algorithm in
[Pan02b] extending [KV01, Section 3] and adjusted to computing modulo s: The
overall bit complexity is specified in [Pan02b] to be in

O� gm
m

t

� �k

min q;
Lm

t

� �
Dþ t2mkþ1qD

� �
ð5Þ

for tAZ chosen in ½1;m�: The first summand corresponds to stage 2.3 of the
algorithm (see Appendix A), where the baby steps/giant steps have been trivialized in
order to be able to bound the complexity in terms of g; and Lm=t is replaced by
minfq;Lm=tg: The second summand expresses the complexity of stage 3 where we
replace mL by q: Other stages are dominated.

To support these bounds, we need to operate modulo s in O�ðqÞ bit operations per
arithmetic operation. This is achieved by Schönhage–Strassen’s algorithm or by
CRA. Practically the latter is preferred because of the considerable overhead of the
former. Theoretically one may combine the two approaches to compute det M

modulo several larger coprimes s1;y; sv; each a product of several random primes in
½a; amÞ; and then recover det M mod s; s ¼ s1?sv via the CRA. The recovery’s cost
is dominated.

Now distinguish between the two cases above depending on whether minfq;Lm=tg
is q or Lm=t: Pick t to make the two summands in the bound equal up to a constant

factor, such that tkþ2 :¼ g=2 or tkþ3 :¼ cLmg=ð2qÞ; respectively. So the claimed bit
cost bounds hold. Furthermore, in the first case, the hypothesis that qpLm=t implies

that qp2Lm=g1=ðkþ2Þ: In the second case, the hypothesis that q4Lm=t implies

q42Lm=g1=ðkþ2Þ; for the chosen value of t:

In both cases, the hypothesis tpm is satisfied for gp2mkþ2; where the latter bound
holds true even for k ¼ 0: Similarly, 1pt holds because gX2 and 2qpcLmg by
assumption.

In extending the bounds from the scalar to the multivariate case, it is important to
bound the degree in the k variables of the product of M with a vector, repeated m=t

times. Initially, the vector has only scalar entries; at the end its degree in the ith
variable is at most ðm=tÞdi: Hence, the product of degrees in the final vector product

is ðm=tÞkD: &

Corollary 3.3. The above bit operation cost bounds specialize to O�ðmgqÞ and

O�ðm5=3L2=3g2=3q1=3Þ for scalar determinants, and to O�ðm2g2=3d1qÞ and

O�ðm5=2L1=2g1=2q1=2d1Þ for univariate determinants. The former bounds are superior

iff qp2Lm=g1=ðkþ2Þ:

Corollary 3.4. If s42jjdet Mjj; Theorem 3.2 can be applied to the evaluation of det M

yielding the bit operation cost bound O�ðmkþ2Lg2=ðkþ3ÞDÞ; which is the second bound of

Theorem 3.2 for q ¼ cLm and for a constant c and thus is exactly the second bound of
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Theorem 2.1. In particular, for scalar determinants, if s42ð
ffiffiffiffi
m

p
2LÞm; q41þ mðL þ

logð
ffiffiffiffi
m

p
ÞÞ42Lm=g1=ðkþ2Þ; then s42jjdet Mjj and the bound becomes O�ðm2Lg2=3Þ:

3.2. Output sensitive bit operation complexity for structured matrices

This section employs the previous approach, based on Theorems 2.1 and 3.2 and
exploiting matrix structure, with the additional goal of achieving output-sensitive
improvements of the known algorithms. In our iterative algorithms for polynomial
systems, we may compute det M where it nearly vanishes, and then the output
sensitive approach enables a substantial speedup, because the bit cost of determinant
evaluation dominates the CRA cost. This leads to an improvement upon (output
insensitive) algorithms whose complexity depends on static a priori bounds on
jdet Mj; e.g. [ABM99,KV01,Pan02b]. Static bounds on jdet Mj usually rely on
Hadamard’s inequality, which excessively high in general [ABM99], and even more
so when det M may nearly vanish.

Practically, as we noted, s1;y; su should be random primes sampled from a fixed
range, then the number of residues required in the CRA is roughly proportional to a
bound on the bit size of the output value v: Reconstructing v by Lagrange’s

deterministic scheme has bit complexity quasi-linear in this bound, versus Oðq2Þ by
Newton’s incremental method, with q expressing the actual bit size of v; namely
q ¼ log2ðjvj þ 2Þ: The latter method was applied in determinantal computations in
[BEPP99]. Hence Newton’s CRA in [BEPP99] is an output-sensitive algorithm (cf.
[MC93]). It is a Monte Carlo algorithm because it stops when the computed value
may still be different from the desired correct output but only with a low probability.

More precisely, for primes si; write vk ¼
Pk

i¼0 bis1?si; bi ¼ ðv �
viÞðs1?siÞ�1mod siþ1: By sampling si uniformly from a set S; we obtain Probfvk ¼
v if vk ¼ vk�1gX1� 1=jSj; whereas the bound s1?sk42jvj implies deterministically
that vk ¼ v:

Let us use an a posteriori Monte Carlo bound in an output-sensitive way. Recall

that the si are random primes from ðw; 20w�: Let qj :¼ log sj and qð jÞ :¼
Pj

i¼1 qi: We

compute dj :¼ ðdet MÞmod sð jÞ; sð jÞ :¼ s1?sj ; j ¼ 1; 2;y; h for the minimum h

such that dh�1 ¼ dh: To increase the probability of success, we may require that
dh�b ¼ dh for some fixed b41:

Corollary 3.5. Assume the above computation of d1;y; dh such that dh�1 ¼ dh for the

minimum h: Then dh�1 ¼ det M with a probability of at least 1� 1=jSj; using the above

notation. Our bounds in Theorem 2.1(b) apply to the computation of d1;y; dh with the

term Lm replaced with qðhÞ þ L þ logðm=rÞ þ Oð1Þ: The bit operation complexity

bounds in Theorem 3.2 apply for q ¼ qðhÞ; and the first of these bounds is superior iff

qðhÞp2Lm=g1=ðkþ2Þ:
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Proof and algorithm. Combine the algorithm of Theorem 3.2 for q ¼ qðhÞ with
Newton’s CRA to compute the dj : Concerning the precise probabilities and the

complexity of CRA, see [BEPP99,Emi98,Kal02] and the discussion above.

A delicate point in our present proof is that qðhÞ is not known until we observe that

dh�b ¼ dh for bX1; and the value qðhÞ affects the choice of the parameter t: If we
blindly extend the algorithm supporting Theorem 3.2, we may have to recompute
ðdet MÞmod si for the current primes si as soon as we change t: This could increase
the bit cost by the factor of the order of u (the number of primes si), which can be of
the order of Lm: A simple way out, however, is not to change t until the new value of
q is doubled versus the last time it defined t: Then the overall number of distinct t is
OðlogðLmÞÞ and the increase of the bit cost by the factor of logðLmÞ is immaterial
under the O� notation. &

3.3. General output-sensitive bounds

Let us now apply the algorithm in [Pan02c], extending [KV01] in the multivariate
case but with baby steps/giant steps. We do not express complexity in terms of g
here, hence the usefulness of the next theorem for structured resultant matrices is
limited. Nonetheless, the result is presented for completeness, since it is of
independent interest and achieves record output-sensitive complexity estimates.

Theorem 3.6. Suppose qXL and qXlogðc logðmLÞÞ with the above notation (cf.
Theorem 2.1). Then det M can be computed by a Monte Carlo algorithm with the bit

operation complexity bounded by

(a)

O�ðmkþ1þð2kþ5ÞgLðkþ2Þgq1�ðkþ2ÞgDÞ;

where g :¼ 2=ðk2 þ 4k þ 5Þ;
(b)

O�ðmkþ1þðkþ4ÞhLhq1�hDÞ;

where h :¼ 2=ðk2 þ 3k þ 4Þ;
(c)

O�ðmkþ1þðkþ2Þf qDÞ;

where f :¼ 2=ðk2 þ 2k þ 2Þ: These bounds improve Theorem 2.1 for qpLm;

qpLmkðkþ2Þ=ðk2þ3kþ3Þ; qpLmk2f =2; respectively. The bounds in Theorem 2.1(b) on

the failure probability and the number of random bits can be applied.

Proof. The estimates in Section 2, namely (2) and the ensuing discussion, rely on
using the bit length of the orders of Lr;Lm=t; and Lm at stages 2.2, 2.3, and 3 of the
algorithm, respectively. Using the output sensitive CRA (with dynamic choice of
primes separately for each of stages 2.2, 2.3, and 3), we may replace the bit length
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bounds by q wherever qoLr; qoLm=t; and qoLm and then we may still satisfy the
constraints 1prpm=t; 1ptpm: The bit complexity of stages 2.2, 2.3, and 3 becomes

O�ðm3rk minfq; rLgDÞ; O�ððm3=rÞðm=tÞk minfq;Lm=tgDÞ; and O�ðmkþ1t2qDÞ; re-
spectively. As in the proof of Corollary 3.5 we change the bound on the bit length
of q only when this at least doubles it, and thus we limit the number of changes to
OðlogðLmÞÞ:

To prove (a), we equalize the three stages’ bounds by choosing

r :¼ ðm=tÞðkþ1Þ=ðkþ2Þpm=t; t :¼ ðmð2kþ5Þ=ðkþ2ÞL=qÞðkþ2Þg=2:

Then tpm3L=qpmk; which holds for kX0;Lpq: With no extra hypotheses, we
may simply replace minfq; rLg by rL and minfq;Lm=tg by Lm=t; even if
qorL; qoLm=t; thus obtaining the bounds encountered in the context of Theorem
2.1 for stages 2.2 and 2.3. The first two summands are equal due to our choice of r;
and the last two summands become equal for our choice of t:

For (b), if we write r :¼ m2=tkþ2; t :¼ mðkþ4Þh=2ðL=qÞh=2; then the hypothesis

qpLmkðkþ2Þ=ðk2þ3kþ3Þ is equivalent to qpLm=t: Therefore, we replace minfq;Lm=tg
by q: We also replace minfq; rLg by rL; which is always possible. For the chosen

values of r and t; we have rpm=t because r=ðm=tÞ ¼ m=tkþ1; which equals

m1�ðkþ1Þðkþ4Þ=ðk2þ3kþ4Þ ðq=LÞðh=2Þðkþ1Þ:

This is bounded by m�khðq=LÞðkþ1Þh=2: For k ¼ 0; we have q ¼ L; so r=ðm=tÞp1:
Otherwise, kX1: Then substitute q=Lpm=t and obtain that

r

m=t
p mð1�kÞh=2 =tðkþ1Þh=2o1:

Now observe that the choice of r makes the last two summands equal. Similarly, the
choice of t makes the first and third summands equal. For this specialization, tpm

can be established by using tqpLm and Lpq and tX1 by using qpmL:

For (c), let us write r :¼ ðm=tÞk=ðkþ1Þpm=t; t :¼ mðkþ2Þf =2pm; these choices satisfy

t; rX1: Then the hypothesis qpLmk2f =2 is equivalent to qprL: Since rpm=t; qprL

we have qpmL=t; so we can replace minfq; rLg and minfq;Lm=tg by q: The chosen
value of r makes the first two summands in the overall bound equal. The choice of t

makes the last two summands equal. &

Corollary 3.7. The theorem’s bounds specialize as follows. For k ¼ 0: (a)

O�ðm3L4=5q1=5Þ; (b) O�ðm3L1=2q1=2Þ [Kal02], and (c) O�ðm3qÞ: For k ¼ 1: (a)

O�ðm3þ2=5L3=5q2=5d1Þ (b) O�ðm3þ1=4L1=4q3=4d1Þ; (c) O�ðm3þ1=5qd1Þ:

Proof. k ¼ 0 ) g ¼ 2
5
; h ¼ 1

2
; f ¼ 1: k ¼ 1 ) g ¼ 1

5
; h ¼ 1

4
; f ¼ 2

5
: Substitute these va-

lues in the bounds of Theorem 3.6. &
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4. Resultant matrices

This section reviews matrix formulae for the resultant. For further information see
[CKL89,CLO98]. Consider a system of polynomials

f0;y; fnAK ½x1;y; xn�;

i.e., in n affine variables, with indeterminate coefficients; typically K ¼ Z (or K ¼ Q).
Then their resultant R is an irreducible polynomial in these indeterminates, whose
vanishing provides a necessary and sufficient condition for the existence of common
roots of the system in a specified variety. For the classical resultant of homogeneous
polynomials in n þ 1 variables, this variety is the projective space Pn

K : For the toric

resultant, it is the toric variety obtained as the closure of the torus ð %K � f0gÞn under
the Veronese maps of certain monomials in a projective space of dimension usually

larger than n; where %K stands for the algebraic closure of K : In toric elimination
theory, the polynomials can have integer exponents and each polynomial is
characterized by its support in Zn (exponent vectors of nonzero monomials) rather
than its total degree. More precisely, each polynomial is characterized by the
corresponding Newton polytope Qi; defined as the convex hull of the support.

Let us think of the fi having symbolic coefficients. The resultant R is a
homogeneous polynomial in the (symbolic) coefficients of each fi; with integer
coefficients. Its degree in the (symbolic) coefficients of fi equals the generic number of
common roots of the other n polynomials in the corresponding variety. This is given
by Bézout’s number or the mixed volume MVjð�Þ; where we consider mixed volumes

of sets of j polynomials in j affine variables. Equivalently, mixed volume is also seen
as a function on j convex polytopes in j-dimensional Euclidean space.

Mixed volume captures the sparsity of the equations, since it depends solely on
their nonzero terms and, to be more precise, on their Newton polytopes. It is more
general than Bézout’s number in that it reduces to the latter for n dense
homogeneous polynomials in n þ 1 variables [CLO98]. Hence, the total degree of
R in the input coefficients is

D :¼
Xn

i¼0

MVnð f0;y; fi�1; fiþ1;y; fnÞ: ð6Þ

There are two types of resultant matrices used to compute the resultant itself.
Those of Bézout-type are discussed at the end of Section 6 briefly. Most of this paper
focuses on Sylvester-type matrices, specified by means of generic polynomials
g0;y; gn such that the map

½g0;y; gn�/½g0;y; gn� M ¼
Xn

i¼0

gifi

" #

has two properties: first, it is surjective for generic fi and, second, the dimensions of
the domain and the range are equal. Generic polynomials can be thought of as
having indeterminate coefficients. Then M is an m � m Sylvester-type resultant
matrix such that Rjdet M and det Ma0: In the case of dense homogeneous
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polynomials, this is the classical Macaulay matrix. Matrix construction is
independent of the coefficient values and can thus be conducted off-line; its
complexity can be asymptotically smaller than that of manipulating the matrix for
system solving [CE00].

M is quasi-Toeplitz, i.e., its entries depend only on a� b; where a; b belong to two
subsets of Zn which index, respectively, the rows and columns of M: The most
relevant property of such matrices is that, by Emiris and Pan [EP02b, Theorem 5.6]

(cf. [CKL89]), for a vector v and M both filled with scalars, computing vTM and Mv

takes O�ðmn þ n
ffiffiffi
d

p
Þ arithmetic operations, where d is the maximum degree of fi in

any variable. Assuming mX

ffiffiffi
d

p
; the time complexity becomes O�ðmnÞ; in practice,

we usually have mbd: Hence, by Wiedemann’s algorithm with structured
preconditioning and [EP02b], the arithmetic complexity of computing det M is

O�ðm2nÞ:
We may assume, m4n; otherwise the polynomial system degenerates and its

resultant can be defined by fewer than n þ 1 polynomials. To bound the size of m

and, eventually, of the complexity of constructing M; we recall the concept of
Newton polytopes. Let sAR; sX1 bound the amount of scaling necessary for the
minimum-volume Newton polytope to enclose the largest one. Then we have, in the
worst case,

m ¼ OððseÞn
DÞ

and the bit complexity of constructing M is in O�ððseÞn
Dk7Þ; where e is the basis of

natural logarithms and k bounds the number of vertices in any Newton polytope Qi

[CE00,EC95]. In fact, we typically have mbD:
Our algorithms heavily rely on the quotient formula of [DA02]:

R ¼ ðdet MÞ=ðdet SÞ;
which extends Macaulay’s classical result to the toric case, with S being a submatrix
of the Sylvester-type resultant matrix M: This formula gives a general means for
computing R exactly, and leads to output-sensitive bounds. When we specialize the
input coefficients in K ; with K ¼ Z; the resultant is in Z even though it is a ratio of
two determinants. Furthermore, s ¼ dim Som ¼ dim M and m � s ¼ D; mbD )
s5m: The specialized entries of M are integers of length pc:

To use resultants for finding all isolated roots of a well-constrained polynomial
system with specialized coefficients, there are two approaches. The first considers
n þ 1 input polynomials in x1;y; xnþ1; and regards this system as overconstrained
over K ¼ Z½xnþ1�; where xnþ1 is known as the hidden variable. No information is
available a priori on the distribution of xnþ1 in M [Man93]. Since, the input
coefficients are specialized, Rðxnþ1Þ is a univariate polynomial with degree

V :¼ MVnþ1ð f0;y; fnÞ
in xnþ1: Its coefficients have bit length Dc; due to the quotient formula in [DA02] and
Definition (6). There is no a priori relation between V and D but it is safe to assume
log V ¼ OðDÞ: It is always the case that Vom: Some examples, for the cyclic-N
family, are the following, where N ¼ n þ 1 in our notation: for N ¼ 4; 5; 6; 7; we
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have V ¼ 16; 70; 156; 924 and, respectively, m ¼ 25; 147; 851 and more than 3000.
See [EC95] for the definition of the cyclic-N systems and more examples on the
relation of m and V :

The second way to arrive at an overconstrained system, when one is given n

equations, is by adding a linear polynomial f0 with indeterminate coefficients
u1;y; un; they play the role of the hidden variables. Then R is a polynomial in these
variables, where all coefficients are specialized, and is known as the u-resultant. In
certain cases, we shall consider the homogenized u-resultant, with homogenizing
variable u0: Hence the hidden variables are u ¼ ðu1;y; unÞ or u ¼ ðu0;y; unÞ: The u-

resultant factorizes as RðuÞ ¼ C
Q

i LiðuÞei ; where the Li are linear,

X
i

ei ¼ V0 :¼ MVn ð f1;y; fnÞ

and C is independent of u; notice that V0oD: The polynomial RðuÞ=C is also known
as the Chow form of f1;y; fn [CLO98]. In RðuÞ; the coefficients’ bit length is
bounded by Dc as well as V0 times the bit length of the roots (for the output-sensitive
bound).

Degeneracies constitute the Achilles’ heel of Sylvester-type matrices, including
Macaulay’s matrix, because these matrices are constructed for indeterminate
coefficients. They must eventually be specialized to their input values, and this
may make the determinant vanish identically. In addition, it is possible that the
resultant polynomial vanishes, due to the existence of an infinite number of common
roots, thus giving no information on the isolated roots. This is a degenerate case,
since most applications still require determining all isolated solutions. The proposed
linear perturbations [Can90,DE01,MC92] yield a projection operator as the trailing
coefficient of det MðeÞ=det SðeÞ; which vanishes at the isolated roots, thus allowing
their computation.

Since, the resultant can be obtained from one or more determinants, our results in
the preceding sections apply to its computation. In the remaining sections, we specify
the relevant estimates for the bit operation complexity which support a fixed bound
on the error probability; we omit repeating the straightforward extensions for the
number of random bits involved.

5. Resultant evaluation

This section studies evaluation of the scalar resultant. Let L stand for the matrix
entries’ bit length in general. This slightly differs from L ¼ logjjMjj as used before,
but by at most the additive term log m; so we slightly abuse the notation for
simplicity. When M contains integers, then L ¼ c; the input data length. When M is
univariate with d1 bounding the degree of each entry, then, after specializing the
variable to an (integer) value of fixed bit size, L ¼ Oðd1 þ cÞ: In the notation of
Section 2, we consider only two cases: k ¼ 1; d1X1 and k ¼ n; d1 ¼ ? ¼ dn ¼ 1:
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Problem 5.1. Compute the value of the scalar resultant R: If the resultant is a

polynomial in some hidden variables, then suppose these variables have been specialized.
In either case, L stands for the matrix entries’ bit length.

Lemma 5.2. If gðAÞ denotes the arithmetic cost of multiplication of a matrix A by a

vector and A0 is a submatrix of A; then gðA0ÞpgðAÞ:

Let mAðXÞ and mBðX Þ represent asymptotic arithmetic and bit complexities, ignoring
polylog factors, for computing X : For instance, when X ¼ R;Rðxnþ1Þ or RðuÞ; the
respective complexities denote those for computing the specialization of resultant R;
or the uni- or multi-variate resultant polynomial Rðxnþ1Þ or RðuÞ:

In particular, mAðRÞ ¼ O�ðm2nÞ; which follows simply since gðMÞ ¼ O�ðmnÞ by
Emiris and Pan [EP02b]. Notice that, by using Tellegen’s reversion circuit theorem
([BCS97, Theorem 13.20]) or, directly, the transposition principle ([vzGG03, Notes
12.3]), gðMÞ bounds the asymptotic cost of pre- and post-multiplication under our
computational model.

Theorem 5.3. With the above notation, a Las Vegas algorithm solves Problem 5.1 with

bit operation complexity mBðRÞ ¼ O�ðm2nDLÞ: A Monte Carlo algorithm solves the

same problem with bit operation complexity mBðRÞ ¼ O�ðm2nqÞ; where q :¼ lgðjjRjj þ
2Þ expresses the actual bit size of the specialized resultant R:

Proof and algorithm. The algorithm is based on the CRA. It requires evaluation of
R mod si; for q þ 1 primes si of logarithmic length. The discussion of the previous
section implies q ¼ Oðlog Vð0Þ þ DLÞ; where Vð0Þ stands for V or V0; depending on

whether we deal with the case of a hidden variable xnþ1 or the u-resultant. But
log V ¼ OðDÞ and V0pD; as explained in the previous section. Therefore, q ¼
OðDLÞ:

Apply Corollary 3.3 with primes si such that log si ¼ Oðlogðm logjjMjjÞÞ for scalar
matrices M and S: The bit operation cost of each evaluation of det M is

O�ðmg logðm logjjMjjÞÞ ¼ O�ðm2n log logjjMjjÞ; by using the first part of the
corollary for q ¼ log si: S is a submatrix of M; thus, by Lemma 5.2, its determinant
is computed within the same complexity as M: So the bit cost of the evaluation phase

is O�ðm2nqÞ:
Reconstructing the value R uses Lagrange’s deterministic scheme with bit

complexity quasi-linear in DL: This is dominated by the cost of evaluations since

DL ¼ O�ðm2nÞ: The latter equation follows from the fact that D5m; and we safely
assume that L is not too large.

For the Monte Carlo version, OðqÞ evaluations determine the overall complexity.

The reconstruction phase has bit cost in Oðq2Þ by Newton’s interpolation with early
termination [BEPP99]. &

The rest of this section covers linearly perturbed resultant matrices. The

numerator is denoted by MðeÞ ¼ M0 þ eM1 where det MðeÞ ¼ ekDk þ?þ emDm:
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The bit length of the integer entries of M1 is assumed the same as that of the input
M0; denoted L: The perturbation guarantees that Dka0 for some mXkX0;
typically, mbk: The perturbed denominator is det SðeÞ ¼ esSs þ?þ etSt; with
Sta0 such that sXtX0: By the divisibility of the (perturbed) determinants, tpk: The
degree and coefficient length of the projection operator are bounded by the
respective quantities of the resultant.

It is possible that M;S contain indeterminate(s) xnþ1 or u1;y; un: In this section,
all indeterminates are specialized such that DkSta0:

Problem 5.4. Assume the resultant evaluates to zero. Compute the value of the trailing

coefficient of the perturbed resultant, namely Dk=St; when both numerator and

denominator matrices are perturbed with respect to e-0þ: Dka0 and Sta0 are the

trailing e-coefficients in det MðeÞ and det SðeÞ; respectively.

It is known that k can be found by binary search in ½0;m� with bit complexity
m log mmAðdet MÞ ¼ O�ðmmAðdet MÞÞ: [DE01, Lemma 5.1]. It is realistic to suppose

k ¼ OðL
ffiffiffiffiffiffiffiffiffi
m=n

p
Þ:

Lemma 5.5. There is a Las Vegas randomized algorithm that determines k with bit

operation complexity in O�ðm2nDLkÞ; and t in O�ðm2nDLtÞ: There is a Monte Carlo

algorithm that determines k with bit operation complexity in O�ðm2nkÞ; and t in

O�ðm2ntÞ:

Proof and algorithm. The algorithm computes Oðlog kÞ univariate polynomials

det MðeÞmod eh; for h ¼ 1; 2; 4; 8;y: Each such computation has bit complexity
bounded by that of computing the scalar det M multiplied by O�ðhÞ: Then it suffices
to apply Theorem 5.3. The same algorithm works for computing t from matrix SðeÞ:

In the Monte Carlo approach, first randomly specialize e/r0: Clearly, hpk )
ðdet Mðr0ÞÞmod rh

0 ¼ 0; whereas h4k ) ðdet Mðr0ÞÞmod rh
0a0; with a high prob-

ability. Supposing r0 is sufficiently small compared to det Mðr0Þ; we deduce that

ðdet Mðr0ÞÞmod rh
0 is uniformly distributed in ½0; rh

0Þ so that the probability of error

is 1=rh
0: Therefore, ðdet Mðr0ÞÞmod rh

0a0 implies h4k; otherwise the algorithm

decides that hpk; the test can be repeated with different random values of r0 in order
to decrease the error probability.

The algorithm performs a constant number of tests on whether det Mðr0Þ ¼
0 mod rh

0; for each h where h ¼ 1; 2; 4; 8;y takes O�ðlog kÞ values. Each test is

performed modulo an integer s of bit size hpk: So we can apply the first part of
Corollary 3.3, due to the bound on k: Hence the overall cost is Oðmgk lg kÞ; where
log s ¼ YðkÞ: Finally, use g ¼ O�ðmnÞ:

The algorithm supports an analogous complexity bound for computing t; by
replacing k by t: &
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The CRA-based algorithm in [DE01] can be adapted to the quotient formula to

support bit complexity O�ððk � tÞmAðdet MÞmLÞ ¼ O�ðkm3nLÞ for Problem 5.4
provided k; t have been computed. Without knowing k; t; it is still possible to solve
this problem by the approaches discussed in the next section, all of them with bit

complexity proportional to m3: We next show the solutions with a smaller bit cost
and with no a priori knowledge of k; t:

Corollary 5.6. There exists a Las Vegas algorithm for Problem 5.4, with bit operation

complexity in O�ðkm2nDLÞ: There exists a Monte Carlo algorithm for the same

problem, with bit operation complexity in O�ðm2nqÞ; where q :¼ lgðjDk=Stj þ 2Þ:

Proof and algorithm. For the Las Vegas method, we perform the computation with

symbolic e; modulo eh; this adds the factor O�ðhÞ to the complexity estimates for
determinant evaluation, for each candidate h ¼ 1; 2; 4; 8;y; until h reaches or
exceeds k � t; which is the degree corresponding to the trailing coefficient. There are
about logðk � tÞ evaluations. Therefore, the bit complexity equals that of evaluating
R; multiplied by O�ðk � tÞ: The claim follows by dropping the dependence on t for
simplicity.

The Monte Carlo approach first computes k; t by applying the algorithm of the
previous lemma separately to the numerator and denominator. We then apply the

CRA with OðqÞ evaluations. Then Corollary 3.3 gives an overall bound of O�ðm2nqÞ
for the Monte Carlo algorithm. The latter cost dominates the complexity of
computing k; t; because we may suppose k ¼ O�ðlogjDk=StjÞ: &

6. Resultant expansion

This section studies the problem of computing the resultant as a uni- or multi-
variate polynomial, assuming it is a nonzero polynomial.

Problem 6.1. Assume the entries of resultant matrix M lie in Z½xnþ1�; with coefficients

of size c: Then Rðxnþ1Þ ¼ det Mðxnþ1Þ=det Sðxnþ1Þ: Compute the polynomial Rðxnþ1Þ;
of degree V ; in the monomial basis.

Corollary 6.2. Problem 6.1 can be solved by a Las Vegas algorithm with bit operation

complexity in O�ðm2nVDcÞ and by a Monte Carlo algorithm with bit operation

complexity in O�ðm2nVqÞ; where q expresses the actual bit size of the specializations of

Rðxnþ1Þ:

Proof and algorithm. We use Toom’s standard evaluation–interpolation over V þ 1
integer values (see [Ber03b,Too63]). Each resultant value is computed with bit
operation complexity mBðRÞ; given by Theorem 5.3, with L ¼ c: The interpolation
phase reduces to solving a transposed Vandermonde system, with arithmetic
complexity O�ðVÞ [Pan01], and its cost is dominated by the evaluation cost. If,
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instead, we apply the Monte Carlo version of Theorem 5.3, we obtain the bound in
terms of q: &

Next, consider the u-resultant. It is possible to factor out of det MðuÞ the minor
det Q; where Q is the largest square submatrix of MðuÞ filled with scalars. In general,
Q contains S as a proper submatrix.

Problem 6.3. Compute RðuÞ ¼ det MðuÞ=det Q; of total degree V0; in the monomial

basis. Q is a submatrix of M containing scalars, such that dim Q ¼ m � V0:

It is possible to apply Theorem 2.1 for k ¼ n þ 1 variables yielding a bound

proportional at least to mnþ3: This bound grows as much as exponentially in n2

because m may be exponential in n: Our bounds reduce this exponent of m:

Corollary 6.4. If h is the actual support cardinality of RðuÞ and q the maximum bit

length of its specializations, then a Monte Carlo algorithm for Problem 6.3 has bit

operation complexity in O�ðhnV0mBðRÞÞ ¼ O�ðhm2n2V0qÞ:

Proof and algorithm. Zippel’s sparse interpolation algorithm [CKL89,Zip93] leads to
an output-sensitive Monte Carlo solution: its cost depends on the actual support
cardinality, denoted by h: The bottleneck is the evaluation stage, which requires
O�ðhnV0Þ integer values, each computed with complexity mBðRÞ as in Theorem 5.3 by
a Monte Carlo algorithm. The interpolation cost is dominated by the evalua-
tions. &

The algorithms discussed above can be readily extended to the case that the
resultant polynomial is identically zero. Then, one wishes to compute the trailing
coefficient of the perturbed resultant in one or n þ 1 hidden variable(s) when both

numerator and denominator are perturbed by e-0þ: The sought polynomial,
known as a projection operator, equals Dkðxnþ1Þ=Stðxnþ1Þ or DkðuÞ=StðuÞ;
respectively. The precise algorithms and their complexities are based on those
supporting Corollaries 5.6 and 6.4, but are omitted here for the sake of being concise.

In computing the Bézout-type resultant matrices, the bottleneck is expanding the
determinant of an ðn þ 1Þ-dimensional matrix, which contains the discrete
differentials of the input polynomials fi; i ¼ 0;y; n; in 2n variables [Mou98,Zip93].
The coefficients have bit length c and, when all variables are specialized to scalars of
fixed length, the bit size of the matrix entries is L ¼ Oðdn þ cÞ; where d bounds the
degree of fi in each variable. The number of terms in the determinant is bounded by

n!dn ¼ Oððnd=eÞnÞ: Hence, a sparse interpolation method like those used above has

bit complexity in O�ððnd=eÞnðd þ cÞÞ by Theorem 2.1.

7. Algebraic system solving

This section first examines methods for numerical approximation of a specific
coordinate of the zeros, e.g. the ðn þ 1Þst coordinate, by solving the univariate
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resultant Rðxnþ1Þ: The second problem under examination is to compute the zeros of
a zero-dimensional polynomial system, which is equivalent to factoring the u-
resultant RðuÞ: These problems signal the involvement of numerical approximation
algorithms. This is typical for multivariate polynomial root-finding: symbolic
techniques are used at the first stage, which can be viewed as preconditioning,
followed by numerical approximation techniques at the final stage.

Let us consider the case of a hidden variable xnþ1: If we have computed the
coefficients of Rðxnþ1Þ with respect to the monomial basis, as in the algorithm
supporting Corollary 6.2, we may compute all of its roots by a variety of available
numerical methods (e.g., [McN93,McN97,Pan97,Pan02c,PH01] and their refer-
ences). However, practically, one may prefer to rely on computing polynomial values
rather than the coefficients; this shall be Problem 7.3.

For now, let us focus on exact-computation methods for real root isolation.

Problem 7.1. Given a well-constrained polynomial system, isolate all real zeros of the

univariate resultant polynomial Rðxnþ1Þ: This yields one real coordinate of all common

roots of the system.

Once we compute Rðxnþ1Þ in the monomial basis, it is possible to apply any
bisection or Sturm-based method for isolating all real roots. In practice, the best
performance seems to be obtained from iterative methods relying on Descartes’ rule
of sign [CL82,RZ01].

Theorem 7.2. A Las Vegas algorithm solves Problem 7.1 by using O�ðm2V 4D2c2Þ bit

operations. A Monte Carlo algorithm for the same problem uses O�ðm2V 4q2Þ bit

operations, where q :¼ lgðjjRðxnþ1Þjj þ 2Þ:

Proof and algorithm. By Corollary 6.2, we obtain Rðxnþ1Þ in the monomial basis by
a Las Vegas or a Monte Carlo algorithm with bit operation complexity in

O�ðm2nVDcÞ or O�ðm2nVqÞ; respectively. Polynomial Rðxnþ1Þ has degree V and
coefficient size bounded a priori by Dc and, in an output-sensitive manner, by q:
Bisection methods based on Descartes’ rule of sign isolate all real roots with bit

operation complexity in O�ðV6k2Þ; where k bounds the coefficient size [CL82,RZ01].
Now it suffices to bound V by m in order to arrive at the sought bounds. &

We consider now the problem of isolating all roots of the univariate polynomial
Rðxnþ1Þ by relying on computing polynomial values rather than the coefficients.
Values are computed by applying the algorithm of Theorem 5.3.

Problem 7.3. When Rðxnþ1Þ ¼ det Mðxnþ1Þ=det Sðxnþ1Þ; approximate all (or some of)

its zeros with output error tolerance t ¼ 2�b; without expanding it in the monomial

basis. This yields one coordinate of all common roots of an algebraic system.
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Most popular polynomial root finders recursively update the current approxima-
tions to all (or one) root(s) of Rðxnþ1Þ based on recursive evaluation of Rðxnþ1Þ and
possibly R0ðxnþ1Þ ¼ dR=dxnþ1 at these approximation points. Weierstrass’ approach
approximates all roots. It uses a multidimensional Newton iteration for solving
Viete’s system. Its variants include Durand–Kerner’s, Aberth’s, Farmer–Loizou’s,
Maehly’s, and Werner’s algorithms. They converge rapidly for any input polynomial
as is testified by decades of extensive practical computations. At every iteration, the
complexity is dominated by the cost of computing the values of R (in Durand–
Kerner’s) as well as R0 (in the other algorithms) at OðVÞ points, since V is the degree
of Rðxnþ1Þ:

Alternatively, our resultant evaluation techniques can be combined with Jenkins–
Traub’s, modified Laguerre’s, or modified Newton’s algorithms for computing a
single root. These algorithms can be recursively extended to the next roots via
implicit deflation. In our next Theorem 7.4 and Corollary 7.5, we formally assume
that all the above algorithms converge at least quadratically right from the start, so
that the number of iterations by these algorithms is expressed by

Oðlog bÞ where t ¼ 2�b

denotes the root coordinates error tolerance.
To apply the results of previous sections, we need to scale the variable when the

iterative procedure is near the root in order to make the matrix entries integral. To

approximate the root within t ¼ 2�b; we have to scale the matrix by t: Then the bit
precision factor logjdet Mj in our cost bounds grows by an additive term of at most
mb: The l factor grows by an additive term b which is absorbed in the O�ðÞ notation.

Our assumption about at least quadratic convergence is more realistic than it may
seem to be. It is proved for the input polynomials with no multiple roots (compare
the effective treatment of multiple roots in [Yun76,Zen03]), provided that the initial
approximations are either close enough to the roots ([McN93,McN97,PH01] and
their references) or satisfy some other readily available conditions [Bin96,Kim88,-
PHI98,PPI03,Sma86,ZW95]. Furthermore, immense statistics and extensive experi-
ments show very rapid convergence of these algorithms (when properly
implemented) for all input polynomials (including specially devised ‘‘hard’’
polynomials) even under the primitive customary choices of the initial approxima-
tions, e.g. uniformly distributed on a large circle centered at the origin [Bin96,For01].

Theorem 7.4. Assume sufficiently close initial approximations enabling quadratic

convergence of the Durand–Kerner algorithm. Then a Las Vegas iterative method,
based on combining this algorithm and our determinant algorithms, solves Problem 7.3

for all roots by using O�ðm2nDVðcþ mbÞÞ bit operations. A Monte Carlo algorithm

for the same problem uses O�ðm2nVðq þ mbÞÞ bit operations, where q :¼
lgðjjRðxnþ1Þjj þ 2Þ: If only a subset of r roots must be output, then the Jenkins–

Traub algorithm yields a Las Vegas and a Monte Carlo method with the respective bit

operation costs above multiplied by r=V :
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Proof and algorithm. The number of iterative steps of a rootfinder is Oðlog bÞ: For
evaluating R; we may use the Las Vegas algorithm supporting Theorem 5.3 with
complexity mBðRÞ; with L ¼ cþ mb: Then the overall cost is O�ðVmBðRÞlog bÞ bit

operations. This yields a bound of O�ðm2nDVðc log b þ mbÞÞ bit operations. Since
c log b þ mb ¼ O�ðcþ mbÞ; we arrive at the claim.

We may also apply the Monte Carlo algorithm of Theorem 5.3. &

In order to use algorithms that require the derivative values, we may represent the
Las Vegas algorithm of Theorem 5.3 by a straight-line program (SLP), i.e., without
branching. SLPs define a polynomial by the black box for its (and its derivative)
evaluation rather than its coefficients. Then, evaluating R0 has the same cost (up to
an extra factor of 4) as evaluating R [BCS97]. This is needed in all algorithms of the
Weierstrass type except Durand–Kerner’s, and those of Newton type, except
Jenkins–Traub’s. In fact, Laguerre’s method requires second order derivatives,
which multiplies the complexity by 16, but offers convergence of the 4th order.

Corollary 7.5. All algorithms of the Weierstrass or Newton type mentioned above yield

Las Vegas methods for solving the respective problems of the previous theorem. Their

bit operation complexity in the SLP model is equal to that of the respective Las Vegas

algorithm of the previous theorem.

Now, we consider the u-resultant approach, supposing resultant matrices MðuÞ;S

are available, where S contains only scalars. Recall that the factors of the u-resultant
are in bijective correspondence with the vectors representing the common roots of
the input algebraic system. Given its coefficients in the monomial basis, the u-
resultant can be factorized by standard methods (e.g., [Zip93]). This can be rather
expensive, therefore we wish to rely only on its values.

Problem 7.6. With no expansion in the monomial basis, express the factors of RðuÞ ¼
det MðuÞ=det S; where u ¼ ðu0;y; unÞ:

The primitive-element method of Canny [Can88], now known as rational
univariate representation [Rou99], expresses the factors of RðuÞ; and hence all
affine roots, via the roots of a univariate polynomial and a set of n univariate
rational expressions. The latter expressions, when specialized at the roots of the
polynomial, yield the roots of the system. For completeness, we state Canny’s lemma
but use our own notation, the same as in the subsequent theorem.

Lemma 7.7 (Canny [Can88, Lemma 2.2]). We consider an overconstrained system of

n þ 1 nonhomogeneous polynomials in n variables. There is a univariate polynomial R0

of degree V0 and n rational functions, such that every solution of the system not at

infinity has as ith coordinate the value of the ith rational function at some root of R0:

All 2n þ 1 polynomials involved, including R0; can be computed in polynomial space.
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This means of expressing the roots implicitly can be particularly useful, for
instance, if they have to be compared to other algebraic numbers or if we wish to
store all roots in order to compute only a small number of them upon demand later
on.

Theorem 7.8. There is a Monte Carlo algorithm that solves Problem 7.6 by the

primitive-element method (i.e., by computing n rational expressions and a univariate

polynomial as above) with bit operation complexity O�ðm2n2V0 log jjRðu0ÞjjÞ; where

logjjRðu0Þjj bounds the bit length of the coefficients of the polynomials obtained by

specializing the u1;y; un in RðuÞ: This yields a description of all common roots of an

algebraic system. The same results are achieved with a Las Vegas algorithm with bit

complexity O�ðm2n2V 2
0 DcÞ:

Proof and algorithm. The primitive-element algorithm of Canny [Can88] (or the
black-box method of Kaltofen and Villard [KT88]) reduces factoring to the
computation and manipulation of 2n þ 1 univariate polynomials in u0; denoted by

R0;Rþ
i ;R�

i ; i ¼ 1;y; n: For details, see the proof of Lemma 2.2 in [Can88]. Each

new polynomial is defined by specializing the variables u1;y; un to randomly
selected constants, hence yielding univariate polynomials in u0: These polynomials
have degree V0: Their output-sensitive coefficient length is in OðlogjjRðu0ÞjjÞ:
Another bound on this length is V0 times the length of the coefficients in RðuÞ; hence
OðV0DcÞ:

We may compute any univariate polynomial via V0 þ 1 evaluations, each by
applying the Monte Carlo version of Theorem 5.3. The total bit complexity for

expanding the 2n þ 1 polynomials is O�ðm2n2V0qÞ: Here q expresses the sum of the
input and the output bit sizes which is asymptotically equal to the actual bit size of
the coefficients of the univariate polynomials, expressed by logjjRðu0Þjj:

The primitive-element algorithm computes the first subresultant of the square-free

parts of Rþ
i ðu0Þ and R�

i ðu0Þ; for i ¼ 1;y; n; and reduces the computed polynomials

modulo R0ðu0Þ: These steps have complexity dominated by the OðnÞ univariate GCD

computations, each with bit complexity in O�ðV2
0 DcÞ if we use FFT. The total

complexity of these steps is dominated by the cost of computing the 2n þ 1
univariate polynomials. This procedure yields n univariate rational functions, whose

specializations at the roots of R0ðu0Þ yield the original system’s common zeros.
The Las Vegas version of this algorithm is obtained by applying the Las Vegas

version of Theorem 5.3. Then, in the above bounds, we let q ¼ V0Dc and the claim
follows. &

Corollary 7.9. There is a Las Vegas algorithm that solves Problem 7.6 by numerically

approximating the factors of the u-resultant with bit operation complexity

O�ðm2nV0ðmbþ logjjRðu0ÞjjÞÞ; where logjjRðu0Þjj is as above and b bounds the output

precision of the factors’ coefficients. This yields a Las Vegas algorithm for algebraic

system solving with the same complexity, where b bounds the output precision of the

roots’ coordinates.
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Proof and algorithm. We start with the primitive-element algorithm supporting

Theorem 7.8 which computes a univariate polynomial R0ðu0Þ and n univariate

rational expressions in u0: When the latter are specialized at the roots of R0ðu0Þ; they
yield the factors’ coefficients, i.e., the system’s common zeros. The most expensive

step here is solving R0ðu0Þ by the Monte Carlo algorithm of Theorem 7.4, in

O�ðm2nV0ðq log bþ mbÞÞ bit operations. Recall that the additive factor mb is due to
the scaling of M in order to obtain the output with b bits. Moreover, the log b factor
disappears from the final bound, as in the proof of Theorem 7.8.

Now q ¼ logjjRðu0Þjj þ b; and due to the O�ð�Þ notation, the bound stated at the
claim follows. Observe that this complexity dominates that of the Monte Carlo
algorithm supporting Theorem 7.8.

The factors’ coefficients give the system’s roots, which can be checked by
substitution into the given equations. The cost of this verification step is dominated,
thus yielding a certified randomized method. &

Appendix

A. Computing integer determinants by the Wiedemann–Coppersmith–Kaltofen–

Villard algorithm

Let us outline the computation of integer determinants in [KV01]. The algorithm
extends the ones in [Cop94,Wie86]. The algorithm in [Wie86] computes the minimum
polynomial of a matrix M as the generating polynomial for the sequence of scalars

xTMiy; i ¼ 0; 1;y; for two random vectors x; y: Furthermore, in [Wie86] it is
proved that for a preconditioned matrix MD; with random diagonal matrix D; this is
likely to be equal to the characteristic polynomial det ðlI � MÞ; which turns into

ð�1Þm det M for l ¼ 0: Wiedemann [Wie86] supplies all details and the probability
estimates. An accelerated block version of Wiedemann’s algorithm was proposed in
[Cop94]. (On the related Lanczos algorithm see [GV96, Chapter 9], on its block
version see [GV96, Section 9.2.6].) The algorithm was intensively studied for solving
linear systems of equations (see some bibliography in [KV01]). The main result in
[KV01] is the elaboration and analysis of this algorithm to yield the following
theorem.

Theorem A.1 (Kaltofen and Villard [KV01, Theorem 2]). The algorithm in [KV01,

Section 3] computes the determinant of any matrix MAZm�m with O�ðm10=3LÞ bit

operations. It utilizes O�ðm4=3 þ m log LÞ random bits and either returns the correct

determinant or it returns ‘‘failure’’, the latter with probability of no more than 1
2
:

The main stages of the algorithm in [KV01, Section 3], supporting the above
theorem, are

(1) Precondition M’ðI þ ZÞM; Z ¼ ðzi; jÞi; j; zi; j ¼ 0 unless j ¼ i þ 1; zi;iþ1 are

random.
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(2) Compute B½i� :¼ XTMiY for i ¼ 0; 1;y;Yðm=tÞ; where X ;Y are random m �
t matrices, tAZ is chosen in ½1;m�; this is achieved with a baby step/giant step
technique. The most costly parts of this stage are substage 2.2, of computing a power
Mr of M for 1prpt; and substage 2.3, of computing the Krylov sequence

XTMrk; k ¼ 1; 2;y; s for s ¼ Oðm=ðtrÞÞ:
(3) Compute the minimal matrix generator for the sequence ðB½i�ÞiX0; this reduces

to finding t linearly independent vectors in the kernel of the block Toeplitz matrix

T :¼ ðB½dþi�j�Þd�1;d
i; j¼0 ; d ¼ Jm=tn: If rankðTÞom; then output ‘‘failure’’.

(4) Compute det M; which is equal to the ratio of the leading and trailing
coefficients of the determinant of this generator.

For computations at stage 3 without fast matrix multiplication, Kaltofen and

Villard [KV01] only states the bound O�ðm2t3LÞ for k ¼ 0; in the notation of Section
2, and derives this bound by using Levinson–Durbin’s algorithm. The resulting

overall bit cost estimate is O�ðm10=3LÞ: The smaller exponent 16
5
in [Pan02b] relies on

the bound O�ðm2t2LÞ at stage 3, which is implied by (2) for k ¼ 0 and can be
achieved in at least two ways. According to Pan [Pan02c], we may apply the Morf–
Bitmead–Anderson (MBA) divide-and-conquer algorithm [Pan01, Chapter 5],
complemented by compression of displacement generators by Pan [Pan92,
Appendix], and by the randomized preconditioning of Kaltofen and Saunders
[KS91]. Alternatively, one may apply the block version of the algorithm of Brent
et al. [BGY80] instead of the block MBA algorithm. The latter recipe, in the
equivalent form of using Lehmer–Knuth–Schönhage’s block half-gcd algorithm
[Ber03a] (also supporting the same complexity bound at stage 3 and consequently the

overall bound O�ðm16=5LÞ) was cited in [KV01], although only in conjunction with
the algorithms using fast matrix multiplication (for k40 this is the multivariate

block half-gcd algorithm). So the bound O�ðm16=5LÞ is implicit in [KV01].
The block half-gcd algorithm is notorious for being impractical, unlike all other

stages of the determinant computation in [KV01] (if we assume the computation
modulo sufficiently many smaller primes s1;y; su with the CRA at the end and the
application of the classical algorithm at the stages of matrix multiplication). In
contrast, the recent works [Pan02a,Pan03a,PMRW03] show practical promise of
employing the MBA approach for the integer input matrix M having smaller
displacement rank.

B. The generation of random parameters

The determinant algorithm of Appendix A involves ð2t þ 1Þm � 1 random entries
of the matrices Z;X ;Y and u random primes s1;y; su: Let us assume a fixed upper
bound t40 on the probability of failure in Las Vegas algorithms and of the output
errors in Monte Carlo algorithms. According to Kaltofen and Villard [KV01] and
Pan [Pan03b], this bound is supported under the random choice of

ARTICLE IN PRESS

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

I.Z. Emiris, V.Y. Pan / Journal of Complexity ] (]]]]) ]]]–]]] 25

YJCOM : 768



UNCORRECTED P
ROOF

* the ð2t þ 1Þm � 1 integer entries of the matrices Z;X ;Y in a range ð�b; bÞ;
b4m2=t; independently of each other, and under the uniform probability
distribution in this range, and

* sufficiently many random primes s1;y; su in a range ðw; 20w� for w bounded by
(4) such that the product s1?su exceeds the value 2jjdet Mjj2 for the Monte Carlo

algorithms or some a priori upper bound on this value, e.g. jjMjjm2 for the Las

Vegas algorithm. Clearly, m random primes in this range suffice even in the Las
Vegas case, and

* 2mt þ t2 random integers in the range ½0; si� for every i; i ¼ 1;y; u:

We obtain the upper bounds of

ð2t þ 1Þm � 1ð Þ 1þ Ilogðm2=tÞm
� 	

¼ O m2 logðm=tÞ
� 	

random bits for the matrices Z;X ;Y ; and ð2mt þ t2Þm log w ¼ OððL þ
logðm=tÞÞm2tÞ random bits in all primes s1;y; su and in the random integers in
the ranges ½0; s1; �;y; ½0; su�: For the Monte Carlo algorithms, the latter upper
estimate for primes and the integers decreases to

logð1þ jjdet Mjj2Þ þ L þ logðm=tÞ þ Oð1Þð Þðmt þ t2Þ:

To support the claims in our theorems, it remains to show that the bit operation cost
of generating the random primes s1;y; su is covered by our estimates for the bit cost
of the evaluation of det M:

We recall that O�ðlog3 wÞ bit operations are sufficient to generate an integer in a

range ðw; 20w�; which is a prime with a probability of at least 1
2 [vzGG03, Section

18.4], and that ðlog wÞOð1Þ bit operations suffice to test such an integer for primality

deterministically [AKS02] (or Oðlog2 wÞ probabilistically [vzGG03, Section 18.6]).
Then, Las Vegas generation of k primes is ensured with probability of at least 1� t
by using k logOð1Þðm=tÞ bit operations where kpm: Clearly, this bit cost bound is
dominated for any fixed constant t40:
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