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Abstract. We approximate polynomial roots numerically as the eigenvalues of a unitary
diagonal plus rank-one matrix. We rely on our earlier adaptation of the QR algorithm,
which exploits the semiseparable matrix structure to approximate the eigenvalues in a fast
and robust way, but we substantially improve the performance of the resulting algorithm at
the initial stage, as confirmed by our numerical tests.
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1 Introduction

Polynomial root-finding is a fundamental mathematical problem with a long history [16]. The
design of computationally effective polynomial root-finders is still an active research field. Besides
the well-known applications to algebraic-geometric computations, we emphasize here the highly
important applications in various areas of signal processing such as spectral factorization, filter and
wavelet design, linear prediction, phase unwrapping, forming a cascade of lower degree systems,
etc. (see [12] and the references therein). In these contexts polynomials are typically generated by
the z-transform of finite length signals, with polynomial degree n equal to the number of sample
points. Thus, orders of several hundred are common and, moreover, the coefficients are typically
small with most of the roots located quite close to the unit circle.

Many root-finders are actually implemented as standard software in numerical libraries and
environments such as NAG, IMSL, Mathematica1 and Matlab2. Among the most used general
purpose root-finders is the Jenkins-Traub method [11, 10] implemented by IMSL and Mathemat-
ica (NSolve function). It is instructive to compare it with another popular root-finder, which is
employed by the function roots of Matlab and applies the matrix QR algorithm to compute the
eigenvalues of the companion matrix associated with the given polynomial. Library implementa-
tions of the Jenkins-Traub method usually limit the acceptable degree of the input polynomial to
50. Numerical experiments reported in [12] confirm that the accuracy of the Jenkins-Traub pro-
gram can dramatically deteriorate for relatively small degrees (n = 50) even if the roots of the
input polynomial are numerically well-conditioned. On the contrary, the matrix approach based on
the QR process yields a norm-wise backward stable root-finding algorithm [6, 21], which produces
good results for most inputs. It has, however, a serious drawback: The resulting method is very
space and time consuming (O(n2) and O(n3), respectively). Therefore, as Cleve Moler has pointed
out in [13], this method may not be the best possible because “an algorithm designed specifically
for polynomial roots might use order n storage and n2 time.”

In our present work we study numerically reliable algorithms which achieve this goal. Theoret-
ically one may approximate all zeros of a polynomial in linear arithmetic time as well as in the
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optimal Boolean time (in both cases up to polylogarithmic factors so far). We refer the reader
to [14], [15] on the first algorithm that has achieved these time bounds and to [16], [17], and the
bibliography therein on the preceding and subsequent work. For the sake of completeness, we also
mention the reduction in [5, 19] of polynomial root-finding to the tridiagonal eigenproblem. So far,
however, such methods have been of no practical value because of their poor accuracy when they
are implemented in finite precision arithmetic. Our present work is completely different. In this pa-
per we propose a numerically reliable root-finding algorithm based on the exploitation of a different
reduction to a matrix eigenvalue problem which is solved by the fast adaptation of QR iteration
devised in [4]. To the advantage of our approach, we replace potentially unstable processes, such
as the the construction of the tridiagonal matrix and the computation of its eigenvalues, by more
robust computations while at the same time we keep the computational cost as low as possible.

A disturbing restriction of the algorithm in [4] is that it requires that the input matrix be
a real diagonal plus rank-one matrix. The computation of a matrix in this form having a given
characteristic polynomial leads to nontrivial numerical issues. In particular, the computed entries
can be affected by large absolute errors thus resulting in poor approximation of the eigenvalues.
Moreover, the choice of real diagonal elements is also in conflict with the customary recipe of
selecting the initial approximations on the complex circles centered at the origin [2]. This recipe is
known to support faster convergence.

Our goal in this paper is to fix numerical deficiency of our polynomial root-finder in [4] by
using algebraic tools. We propose and elaborate upon the following simple algebraic technique for
circumventing the restriction in [4] on the input matrix. We assume that the input polynomial p(z)
is given by its degree n and by a black box for its evaluation at any point z. This setting is quite
general since it covers many different polynomial representation without requiring to perform any
possibly ill-conditioned basis conversion. We first evaluate p(z) for z = 0 and at the n-th roots of
unity (Fourier points) and then compute a unitary diagonal plus rank-one matrix Â = D̂ + ûv̂H ,
where D̂ = diag[ξ1, . . . , ξn], |ξi| = 1 for all i, and Â has the characteristic polynomial p(z). (We
may generalize this approach by choosing |ξi| = r for any fixed positive r.) Then we choose a

Moebius (bilinear) transformation M(z) : C∪{∞} → C∪{∞}, M(z) =
az − b

cz − d
, which maps the

unit circle into the real axis and thus transforms the matrix Â into a real diagonal plus rank-one
matrix M(Â) = A = D + uvH , D = diag[η1, . . . , ηn] and ηi ∈ R. We apply the algorithm in [4]
to approximate the eigenvalues of the matrix A and then obtain the eigenvalues of Â (that is the
roots of p(z)) simply by solving a linear equation in one variable for each eigenvalue. Apart from
the application of the algorithm in [4], the computations essentially amount to evaluating p(z)
at the Fourier points. If we know the coefficients of p(z) in the power form and if n = 2h, then
we may apply FFT to evaluate p(z) at a point z by using O(n log n) flops, that is, floating point
arithmetic operations. The overall computational cost is dominated at the stage of the application
of the algorithm in [4], which requires O(n2) flops for all roots (eigenvalues) (assuming a constant
number of QR iterations per eigenvalue). Numerical experiments show that our root-finder exhibits
a stable behavior.

We organize the paper as follows. In Sect. 2 we reduce the polynomial root-finding problem to
solving an eigenvalue problem for a real diagonal plus rank-one matrix. In Sect. 3, for the sake
of completeness, we describe our adaptation of the QR algorithm from [4]; at the end we briefly
discuss some issues of the computational complexity and compare the algorithm in [4] with other
polynomial root-finders. In Sect. 4 we present and discuss the results of our extensive numerical
experiments. Finally, conclusion and discussion are the subjects in Sect. 5.

2 An eigenvalue algorithm for computing polynomial roots

Assume that we seek numerical approximations of the roots of the n-degree polynomial p(z),

(1) p(z) = a0 + a1 z + . . . + anzn = an

n∏
i=1

(z − λi), an �= 0, ai ∈ C,

represented by means of a black box for computing the polynomial at any point z. Hereafter we
write i =

√−1. By using the Lagrange interpolation formula applied on the nodes ωj = ωj , where



ω = exp(2πi/n) ∈ C is a primitive nth root of 1, we find that

p(z) − anzn = (zn − 1)
n−1∑
i=0

ωi(p(ωi) − an)
n(z − ωi)

.

It follows that

(2) p(z) = (zn − 1)(an +
n−1∑
i=0

ωip(ωi)
n(z − ωi)

).

By evaluating both sides of this formula at the point z = 0, we obtain the following simple
expression for the leading coefficients of p(z),

(3) an =
n−1∑
i=0

p(ωi)
n

− p(0).

The root-finding problem for p(z) given in the form (2) can be easily recasted into a matrix set-
ting as the computation of the eigenvalues of a generalized companion matrix Â ∈ Cn×n associated
with p(z).

Theorem 1. Let p(z) be the n-th degree polynomial (1) and denote by ω a primitive nth root of
1. Define the unitary diagonal plus rank-one matrix Â by

Â =




1
ω

. . .
ωn−1


 − 1

nan




p(1)
p(ω)

...
p(ωn−1)


 [

1 ω . . . ωn−1
]
.

Then an det(zI − Â) = p(z).

Proof. ¿From the Sherman-Morrison-Woodbury formula (see [8], page 50) applied for the compu-
tation of the determinant of zI − Â, we find that

an det(zI − Â) = an(zn − 1)(1 +
1
an

n−1∑
i=0

ωip(ωi)
n(z − ωi)

),

which coincides with p(z) in the view of (2).

An alternative derivation of this theorem relates the matrix Â to the Frobenius matrix F
associated with p(z),

F =




0 −a0/an

1 0 −a1/an

1 0
...

. . . . . .
...

1 −an−1/an




.

First observe that

(4) F =




0 1
1 0 0

. . . . . .
...

1 0


 +



−1 − a0/an

−a1/an

...
−an−1/an


 [

0 . . . 0 1
]

= Z + peT
n ,

where en is the last column of the identity matrix I of order n. The unit circulant matrix Z can
be diagonalized by the Fourier unitary matrix Ω = (ω(i−1)(j−1)), where V = Ω/

√
n, that is,

Z = V H diag[1, ω, . . . , ωn−1]V = V HD̂V.



By substituting this equation into (4), we obtain

(5) F = V HD̂V + peT
n = V H(D̂ + V peT

nV H)V.

Since ω̄ = ω−1, we deduce that

(6) eT
nΩH =

[
1 ω−(n−1) . . . ω−(n−1)(n−1)

]
=

[
1 ω . . . ω(n−1)

]
= v̂T .

Furthermore, it is easily verified that

(7) Ωp = a−1
n

[
p(1) p(ω) . . . p(ωn−1)

]T = û.

Hence, Theorem 1 follows when we substitute (6) and (7) into the equation (5).
The advantage of the matrix formulation of the root-finding problem provided by Theorem 1 is

that well established techniques of numerical linear algebra can be used to compute the eigenvalues
of Â. Because of its robustness, the QR iteration is usually the method of choice for finding the
eigendecomposition of a matrix numerically [19, 8, 1].

Remark 1. Our second derivation of Theorem 1 shows that Â is similar by a unitary transformation
to the Frobenius matrix F associated with p(z). However, the conditioning of the root-finding
problem for a polynomial p(z) expressed by means of (2), (3) can be much different from that for
the root-finding problem for the same polynomial given in the power form. We only point out that
the sensitivity of the QR process applied to the matrices Â and F with respect to arbitrary (not
structured) initial perturbations of the matrix entries should be comparable.

Next we modify the matrix Â to speed up the computation of its eigenvalues by means of the
QR algorithm. We introduce a matrix A ∈ Cn×n related to Â and having the following features:

1. Each zero of p(z) is obtained from a corresponding eigenvalue of A simply by solving a linear
equation in one variable.

2. Approximations of the eigenvalues of A can be found by means of the QR algorithm in a fast
and robust way.

Observe that the diagonal matrix D̂ = diag[1, ω, . . . , ωn−1] has entries located on the unit circle
in the complex plane. A bilinear Moebius transformation M(z),

M(z) : C ∪ {∞} → C ∪ {∞}, M(z) =
δz − β

−γz + α
, αδ − βγ �= 0

for appropriate choices of the parameters α, β, δ and γ maps the unit circle into the real axis.
If the matrix αI − γÂ is nonsingular, then A = M(Â) is well defined and has the form of a real
diagonal plus rank-one matrix. We recall from [9] that the inverse of a Moebius transformation is
still a Moebius transformation defined by

M−1(z) =
αz + β

γz + δ
.

By combining this property with Theorem 4.3 of [23], we obtain the following simple result.

Theorem 2. Let γ = |γ|eiθγ and δ = |δ|eiθδ be two arbitrary nonzero complex numbers such that

e2i(θγ−θδ) �= 1. Set α = |γ|eiθ̃, θ̂ = θ̃+θγ −θδ, and β = |δ|eiθ̂. Then the function M(z) =
δz − β

−γz + α
is a Moebius transformation mapping the unit circle (except for the point z = α/γ) onto the real
axis.

Assume now that M(z) is prescribed as in the previous theorem, αI − γÂ is nonsingular and,
moreover, M(D̂) is well defined, i.e., ωj �= α/γ for j = 0, . . . , n − 1. Then we have that

M(Â) = (δÂ − βI)(αI − γÂ)−1



which can be rewritten as

(8) M(Â) = [(δD̂ − βI) − δ

nan
ûv̂T ][(αI − γD̂) +

γ

nan
ûv̂T ]−1,

where the diagonal matrix αI − γD̂ is invertible. From the Sherman-Morrison-Woodbury formula
[8] it follows that

[(αI − γD̂) +
γ

nan
ûv̂T ]−1 = (αI − γD)−1(I − θûvT ),

where

(9) v = (αI − γD̂)−1v̂, θ =
γ

nan + γvT û
.

Substitute the latter expression for the inverse of (αI − γD̂) +
γ

nan
ûv̂T into (8) and deduce that

M(Â) = M(D̂) − θM(D̂)ûvT − δ

nan
ûvT +

δθ

nan
û(vT û)vT ,

which implies that

M(Â) = M(D̂) − (θM(D̂)û +
δ

nan
û − δθ

nan
û(vT û))vT .

Write

(10) u = θM(D̂)û +
δ

nan
û − δθ

nan
û(vT û),

and finally arrive at the following simple representation of M(Â).

Theorem 3. Let Â = D̂− 1
nan

ûv̂T be the matrix of Theorem 1. Assume that M(z) =
δz − β

−γz + α
is

a Moebius transformation determined as in Theorem 2 to map the unit circle onto the real axis in
the complex plane. Moreover, suppose that αI−γÂ is nonsingular and ωj �= α/γ for j = 0, . . . , n−1.
Then M(A) = A = D − uvT is a real diagonal plus rank-one matrix, where

D = diag[M(1),M(ω) . . . ,M(ωn−1)] ∈ R
n×n,

and u and v are defined by (9) and (10), respectively.

Each eigenvalue ηj of A is related to the corresponding eigenvalues λj of Â by ηj = M(λj) �=
−δ/γ. Once we have computed the eigenvalues of A we may retrieve those of Â simply by computing

(11) λj =
αηj + β

γηj + δ
, 1 ≤ j ≤ n.

Based on the above results we devise an algorithm for approximating the roots of an nth degree
polynomial p(z) represented by means of a black box for its evaluation. The algorithm outputs the
vector λ of the approximations to the roots of p(z).

function [λ] = FastRoots(p)
1) Evaluate p(z) at the Fourier points 1, ω, . . . , ωn−1, where ω = cos(2π/n) + i sin(2π/n).
2) Compute the leading coefficient an of p(z) by means of (3).
3) Form the vectors û and v̂ defined in (6) and (7), respectively.
4) Choose random complex numbers γ and δ.
5) Choose a random real number θ̃ ∈ [0, 1].
6) Define α and β as in Theorem 2.
7) Compute (D)i,i = M(ωi−1), for i = 1, . . . , n.
8) Compute u and v by means of (9) and (10).
9) Compute approximations ηj of the eigenvalues of D − uvT .
10) Approximate λj by using (11).



The core of this algorithm is the computation of the eigenvalues of the matrix A = D − uvT .
In the next section we recall our fast adaptation of the classical QR algorithm for finding the
eigenvalues of a real diagonal plus rank-one matrix in a robust and fast way. Our root-finding
method is obtained by incorporating such a variant of QR in the FastRoots procedure in order to
carry out the eigenvalue computation at step 9 efficiently.

3 Fast QR iteration for real diagonal plus rank-one matrices

In this section for the sake of completeness we summarize the results of [4] for the computation of the
eigenvalues of n×n generalized semiseparable matrices. Let us first specify this class of structured
matrices, denoted by Cn, by showing that it includes real diagonal plus rank-one matrices. A
matrix A = (ai,j) ∈ Cn×n belongs to Cn if there exist real numbers d1, . . . , dn, complex numbers
t2, . . . , tn−1, and four vectors u = [u1, . . . , un]T ∈ Cn, v = [v1, . . . , vn]T ∈ Cn, z = [z1, . . . , zn]T ∈
Cn and w = [w1, . . . , wn]T ∈ Cn such that

(12)




ai,i = di + ziwi, 1 ≤ i ≤ n;
ai,j = uit

×
i,jvj , 1 ≤ j < i, 2 ≤ i ≤ n;

ai,j = ujt
×
j,ivi + ziwj − zjwi, 1 ≤ i < j, 2 ≤ j ≤ n,

where t×i,j = ti−1 . . . tj+1 for i− 1 ≥ j + 1 and, otherwise, t×i,i−1 = 1. For z = u, w = v and ti = 1,
i = 2, . . . , n− 1, then it is easily seen that Cn contains the real diagonal plus rank-one matrices of
the form A = D + uvH with D = diag[d1, . . . , dn] ∈ Rn×n.

The computation of the eigenvalues of a generalized semiseparable matrix A ∈ Cn can be
efficiently performed by means of the classical QR iteration with linear shift. The QR algorithm
with linear shift applied to the matrix A = A0 defines a sequence of similar matrices according to
the following rule:

(13)
{

As − σsIn = QsRs

As+1 − σsIn = RsQs, s ≥ 0,

where Qs is unitary, Rs is upper triangular, In denotes the identity matrix of order n and σs is
a parameter called the shift parameter. The first equation of (13) yields a QR factorization of the
matrix As −σsIn. Under quite mild assumptions the matrix As tends to an upper triangular or, at
least, a block upper triangular form thus yielding some desired information about the eigenvalues
of A.

The following results are proved in [4]. The first of them states that the generalized semisepa-
rable structure is invariant under the QR iterative process (13).

Theorem 4. Let As, s = 1, . . . , s̃ + 1, be the matrices generated at the first s̃ + 1 iterations
by the QR algorithm (13) starting with A = A0 ∈ Cn of the form (12), where R0, . . . , Rs̃ are
assumed to be nonsingular. Then, each As, with 0 ≤ s ≤ s̃ + 1, belongs to Cn. That is, for
0 ≤ s ≤ s̃+1, there exist real numbers d

(s)
1 , . . . , d

(s)
n , d(s) = [d(s)

1 , . . . , d
(s)
n ]T ∈ Rn, complex numbers

t
(s)
2 , . . . , t

(s)
n−1, t(s) = [t(s)2 , . . . , t

(s)
n−1]

T ∈ Cn−2, and four n-vectors u(s) = [u(s)
1 , . . . , u

(s)
n ]T ∈ Cn,

v(s) = [v(s)
1 , . . . , v

(s)
n ]T ∈ Cn, z(s) = [z(s)

1 , . . . , z
(s)
n ]T ∈ Cn and w(s) = [w(s)

1 , . . . , w
(s)
n ]T ∈ Cn such

that As = (a(s)
i,j ) admits the following representation:

(14)




a
(s)
i,i = d

(s)
i + z

(s)
i w

(s)
i , 1 ≤ i ≤ n;

a
(s)
i,j = u

(s)
i t

(s)
i,j

×
v
(s)
j , 1 ≤ j < i, 2 ≤ i ≤ n;

a
(s)
i,j = u

(s)
j t

(s)
j,i

×
v
(s)
i + z

(s)
i w

(s)
j − z

(s)
j w

(s)
i , 1 ≤ i < j, 2 ≤ j ≤ n,

where t
(s)
i,j

×
= t

(s)
i−1 . . . t

(s)
j+1 for i − 1 ≥ j + 1 and, otherwise, t

(s)×

i,i−1 = 1.

The structured QR algorithm for generalized semiseparable matrices can be defined by a map
Ψ ,

Ψ : Rn × Cn × Cn × Cn × Cn × Cn−2 × C → Rn × Cn × Cn × Cn × Cn × Cn−2

(d(s−1), u(s−1), v(s−1), z(s−1), w(s−1), t(s−1), σs−1)
Ψ→ (d(s), u(s), v(s), z(s), w(s), t(s)),



which, given a generalized semiseparable representation of As−1 together with the value of the shift
parameter σs−1, yields a generalized semiseparable representation of As satisfying (13). The next
result is concerned with the complexity of such a map. Its proof in [4] is constructive and provides
a fast implementation of the QR iteration (13) applied to the computation of the eigenvalues of a
generalized semiseparable matrix A = A0.

Theorem 5. Under the hypotheses of Theorem 4, there exists an algorithm which given an input
d(s−1), u(s−1) v(s−1), z(s−1), w(s−1), t(s−1) and σs−1 returns d(s), u(s) v(s), z(s), w(s) and t(s)

as the output at the cost of O(n) flops.

If, for a fixed index ŝ, the matrices Rŝ and Aŝ − σŝIn are singular, then σŝ is an eigenvalue of
A0, and a deflation technique should be employed. When we work in finite precision arithmetic,
we also apply deflation if the entries of the matrix Aŝ satisfy a suitable stopping criterion. Let
Aŝ[1 : n − k, 1 : n − k] ∈ C(n−k)×(n−k) be the leading principal submatrix of Aŝ obtained from
Aŝ by deleting its last k rows and columns. It is easily seen that Aŝ[1 : n − k, 1 : n − k] admits
a representation similar to the one provided by Theorem 4. Such a representation is found simply
by truncating the corresponding representation of the matrix Aŝ of a larger size. Hence, Aŝ[1 :
n− k, 1 : n− k] ∈ Cn−k and, therefore, all the matrices generated by means of the QR scheme (13)
applied to A0 ∈ Cn for the computation of its eigenvalues still satisfy (14).

Let us briefly discuss some issues of the computational complexity of our algorithm. No good
upper bounds are known on the number of iterations required by the QR algorithm for the worst
case input, and the same can be said about our QR specialization as well. This precludes us from
comparing our algorithm with the algorithms in [20], [14], [15], [17], oriented towards the decrease
of the worst case complexity bound. The QR algorithm, however, is the practical champion in
popularity for solving the non-Hermitian eigenproblem for a general matrix because it is perfectly
robust numerically and uses only a small constant number of steps per eigenvalue according to the
immense statistics [8, page 359]. The results of our extensive numerical tests, partly reported in
Section 4, show that these properties also characterize our specialization of the QR algorithm to
polynomial root-finding. The main advantage of using our algorithm for polynomial root-finding
(versus using the customary QR algorithm) is the linear bounds on the arithmetic time per iteration
and on the memory space, which we achieve by maintaining and exploiting the structure of the
input matrices. Our algorithm in [4] represents the matrix methods for polynomial root-finding
(cf. [18]), follows the previous works in [7] and [3], and like them can be equally well applied to
root-finding for the important secular equation. The algorithm is faster than the algorithm in [7]
and promises to be even more robust than one in [3]. Further experimental tests should decide its
”practical complexity” versus the cited and various other known root-finders for polynomial and
secular equations.

Wilkinson polynomial

n cond maxerr minerr average

10 1.61e+12 0.07 8.09e-05 0.004
20 6.64e+29 47.2 8.59 18.1

Table 1.

Scaled Wilkinson polynomial

n cond maxerr minerr average

10 4.52e+07 2.42e-06 5.13e-10 5.32e-08
20 3.46e+16 0.4 0.05 0.12

Table 2.



4 Numerical experiments

In this section we describe and discuss the results of our experiments in which we tested the speed
and the accuracy of our root-finding algorithm. We have implemented in Matlab the function
FastRoots described in the Section 2 and used it for computing the roots of polynomials of both
small and large degree. At the step 9 of FastRoots, we applied the structured QR iteration for
generalized semiseparable matrices devised in [4] and summarized in the previous section. To avoid
possible unfortunate selections of the random parameters defining the Moebius transformation
M(z), we repeated steps 4–8 twice and defined the final set of parameters that minimized the
infinity normrank h of the corresponding matrix D − uvT .

We tested the following polynomials, most of which are chosen or modified from [24] and [21]:

1. the “Wilkinson polynomial”: p(z) =
∏n

k=1(z − k);
2. the scaled “Wilkinson polynomial”: p(z) =

∏n
k=1(z − k/n);

3. the Chebyshev polynomial: p(z) = cos(n arccos(z)), −1 ≤ 	(z) ≤ 1;
4. the monic polynomial with zeros equally spaced on the curve z = x + i sin(πx), −1 ≤ x ≤ 1,

namely p(z) =
∏n/2−1

k=−n/2(z − 2(k+0.5)
n−1 − i sin(2(k+0.5)

n−1 ));

5. the polynomial p(z) =
∏2m−1

k=1 (z − cos(π(k−m)
2m ) − i sin(π(k−m)

2m ))
∏4m

k=2m(z − 0.9 cos(π(k−m)
2m ) −

0.9i sin(π(k−m)
2m )), m = n/4, which has a root distribution similar to the transfer function of

an FIR low-pass filter [12];
6. the random polynomial p(z) = (zn−1)(an +

∑n−1
i=0

ωip(ωi)
n(z−ωi)

) with p(ωi) = rand + irand, p(0) =
rand + irand.

Tables 1, 2, 3, 4 and 5 show the results of our numerical experiments for the polynomials from
1) to 5) by reporting the degree n, an estimate for the maximum condition number of the roots,
the maximum, minimum and average absolute error of the computed root approximations over 100
experiments. Condition numbers are found from the Lagrange’s representation of the polynomial
p(z) where we assume that the leading coefficient an is known exactly whereas the computed
values fl(p(ωi)) satisfy fl(p(ωi)) = p(ωi)(1+ ε), where |ε| ≤ neps and eps is the machine precision.
The poor results reported in Table 1 can be explained by observing the growth of the coefficients
generated at intermediate steps by the Matlab function poly employed to compute the coefficients
of the polynomial 1) given its zeros. Table 6 reports the output data for the polynomial 5) in the
case where the values attained by the polynomial on the roots of unity are evaluated by using its
factorization as a product of linear terms. Figure 1 covers our tests with random polynomials of
the form 6) of high degree. It shows the errors and the running time for polynomials of degree
n(m) = 22+m for m = 1, . . . , 7. Our test program returns these values as the output. The error
value is computed as the maximum of the minimum distance between each computed eigenvalue
and the set of “true” eigenvalues computed by the function eig of Matlab. For each size we carried
out 100 numerical experiments. In each figure, the first plot reports the average value of the errors,
and the second plot reports the ratio between the average values of running time for polynomials
having degree n(m) and n(m + 1). Since m(n + 1)/m(n) = 2 and the proposed algorithm for
computing all the zeros of p(z) is expected to have a quadratic cost, this ratio should be close to
4 for large n(m), which was indeed observed in these tests.

Chebyshev polynomial

n cond maxerr minerr average

10 1.34e+03 8.06e-12 3.09e-14 4.07e-13
20 6.6e+06 2.88e-06 1.67e-10 3.61e-08

Table 3.



p(z) =
∏n/2−1

k=−n/2
(z − 2(k+0.5)

n−1
− i sin( 2(k+0.5)

n−1
))

n cond maxerr minerr average

10 54.8 1.03e-12 6.48e-15 4.05e-14
20 2.71e+04 2.90e-09 4.72e-11 9.58e-11

Table 4.

r ank h p(z) =
∏2m−1

k=1 (z − ei
π(k−m)

2m )
∏4m

k=2m(z − 0.9ei
π(k−m)

2m ), m = n/4

n cond maxerr minerr average

20 7.18 1.64e-12 2.08e-13 3.25e-13
40 64.8 5.76e-09 5.16e-09 5.31e-09

Table 5.

p(z) =
∏2m−1

k=1 (z − ei
π(k−m)

2m )
∏4m

k=2m(z − 0.9ei
π(k−m)

2m ), m = n/4

n cond maxerr minerr average

20 7.18 2.08e-12 4.26e-15 1.01e-13
40 64.8 5.16e-12 2.46e-14 2.2e-13

Table 6.

0 2 4 6 8
0

1

2

3

4

5

6

7
x 10

−13

 m

||e
rr

or
||

 (a)

0 2 4 6 8
3.85

3.9

3.95

4

4.05

4.1

4.15

4.2

4.25

 m

tim
e

 (b)

Fig. 1. Random polynomials of degree n(m) = 22+m, 1 ≤ m ≤ 7.



5 Conclusion

In this paper we have presented a novel root-finding algorithm based on eigenvalue computations
which is appealing because of its memory requirements and computational cost. By exploiting
the structure of the associated eigenvalue problems enables us to yield a quadratic time using
a linear memory space. The results of extensive numerical experiments confirm the robustness
and the effectiveness of the proposed approach. The accuracy of computed results is generally in
accordance with the estimates on the conditioning of polynomial roots for polynomials represented
by means of an interpolation on the roots of unity.
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