
Iterative Inversion of Structured Matrices �

Victor Y. Pan a Marc Van Barel b,∗ Xinmao Wang c

Gianni Codevico a

a Department of Mathematics and Computer Science, Lehman College, City
University of New York, Bronx, NY 10468

b Department of Computer Science, Katholieke Universiteit Leuven,
Celestijnenlaan 200A, B-3001 Leuven (Heverlee), Belgium

c Ph.D. Program in Mathematics, Graduate School of CUNY, New York,
NY 10016, USA

Abstract

Iterative processes for the inversion of structured matrices can be further improved
by using a technique for compression and refinement via the least-squares computa-
tion. We review such processes and elaborate upon incorporation of this technique
into the known frameworks.

Key words: structured matrices, displacement rank, iterative inversion,
least-squares computations

� The research of the first and third author was supported by NSF Grant CCR
9732206 and PSC CUNY Award 66406-0033. The research of the second and fourth
author was supported by the Research Council K.U.Leuven, project OT/00/16
(SLAP: Structured Linear Algebra Package), by the Fund for Scientific Research–
Flanders (Belgium), projects G.0078.01 (SMA: Structured Matrices and their Ap-
plications), G.0176.02 (ANCILA: Asymptotic aNalysis of the Convergence beha-
vior of Iterative methods in numerical Linear Algebra), and G.0184.02 (CORFU:
Constructive study of Orthogonal Functions), and by the Belgian Programme on
Interuniversity Poles of Attraction, initiated by the Belgian State, Prime Minister’s
Office for Science, Technology and Culture, project IUAP V-22 (Dynamical Systems
and Control: Computation, Identification & Modelling). The scientific responsibility
rests with the authors.∗ Corresponding author

Email addresses: vpan@lehman.cuny.edu (Victor Y. Pan),
Marc.VanBarel@cs.kuleuven.ac.be (Marc Van Barel), xwang2@gc.cuny.edu
(Xinmao Wang), Gianni.Codevico@cs.kuleuven.ac.be (Gianni Codevico).

Preprint submitted to Elsevier Science 20 November 2003

1 Introduction

Structured matrices such as Toeplitz, Hankel, Vandermonde, and Cauchy
matrices as well as matrices with a structure generalizing the latter classes are
omnipresent in computations for sciences, engineering, and signal processing.
Displacement representations of such a matrix enable its fast multiplication by
a vector and expression of its inverse via the solutions of a few linear systems
of equations. The latter problems (of inversion and linear system solving) are
highly important for the theory and practice of computing.

Some effective direct solution algorithms exploiting the displacement repres-
entation can be found, e.g., in [1–8]. Alternative iterative methods were pro-
posed, e.g., in [9–16]. The latter methods nontrivially extend some preceding
work for general input matrices [17–19] and can be most effective for well-
conditioned inputs.

We briefly survey the state of the art in Sections 2–5. In particular, in Section
5 we cover two policies of keeping matrices compressed during the iterative
process. In Section 6, we cover another technique based on the least-squares
computation, which enables both compression and refinement of the computed
approximations to the inverse (see Theorem 6.1). We elaborate upon incor-
poration of this technique into the known frameworks for iterative inversion.
Section 7 demonstrates the validity of the method by numerical experiments.

Due to the well-known close correlation between computations with structured
matrices and with polynomials and rational functions [8], many fundamental
algebraic computations such as polynomial multiplication and division, and
polynomial and rational interpolation and multipoint evaluation can be re-
duced to operations with structured matrices. So our work may serve as an
example of effective application of numerical methods to solve fundamental
problems of algebraic computation.

2 Iterative matrix inversion

Newton’s iteration for matrix inversion

Xi+1 = Xi(2I + MXi), i = 0, 1, . . . (2.1)

defines a sequence of approximations X0, X1, . . . to −M−1 with the residuals
I+MXi and I+XiM squared in each step (2.1). Thus the matrices Xi rapidly
converge to −M−1 if initially the norms ‖I + MXi‖ and/or ‖I + XiM‖ are
substantially less than 1. In some cases an initial approximation X0 can be sup-
plied from outside; otherwise it can be generated according to some rules spe-

2

cified in [17,19,16,18] and [8, Chapter 6]. (See also the homotopy/continuation
approach in [8, Chapter 6] and [16].) There are certain policies allowing con-
vergence acceleration, such as

Xi+1 = aiXi(2I + MXi), i = 0, 1, . . . , (2.2)

decreasing the number of steps by a factor of 2 versus (2.1) for scalars ai

specified in [19] (cf. [8, page 191]), and

Xi+1 = Xi(I+Ri+R2
i +. . .+Rp−1

i), Ri = I+MXi, i = 0, 1, (2.3)

Note that Ri+1 = Rp
i under (2.3), multiplication of p matrix pairs is needed

per step (2.3), and processes (2.2) and (2.3) turn into (2.1) where ai = 1 for
all i and p = 2, respectively.

3 Structured matrices

Iterative inversion is most effective for structured matrices, for which matrix-
matrix and matrix-vector multiplication can be performed at a low compu-
tational cost (using O(n log n) or O(n log2 n) flops, versus the order of n3 for
n × n general matrices).

Table 3.1 displays the most popular classes of structured matrices. Each of
these n×n matrices is completely defined by n, 2n−1, or 2n parameters. More
generally, many other matrices with similar structures can be represented with
O(n) parameters as follows. Associate with a fixed class of structured matrices
M a pair of operator matrices A and B such that the Sylvester and/or Stein
displacements of M ,

�A,B(M) = M − AMB = GHT ,∇A,B(M) = AM − MB = GHT , (3.1)

respectively, have small rank r (called the displacement rank of M). The n×n
matrix M can be effectively expressed via the columns of its displacement gen-
erator matrices G and H of size n× r. Then operate with structured matrices
represented in this compressed form. We trace this important approach back
to [20–23] (cf. also [24,1]); it has a huge bibliography (cf. [5,8,25,26] for surveys
and details). We cover the Sylvester displacement representation referring the
reader to [8] and the references therein on the dual Stein displacement repres-
entation.

Typical operator matrices are the unit f -circulant matrices,

Zf = (zi,j)
n−1
i,j=0 (3.2)

3

Table 3.1
Four classes of structured matrices

Toeplitz matrices (ti−j)
n−1
i,j=0 Hankel matrices (hi+j)

n−1
i,j=0

t0 t−1 · · · t1−n

t1 t0
...

...
...

... ... t−1

tn−1 · · · t1 t0

h0 h1 · · · hn−1

h1 h2 ... hn

...
...

hn−1 hn · · · h2n−2

Vandermonde matrices
(
tji

)n−1

i,j=0
Cauchy matrices

(
1

si−tj

)n−1

i,j=0

1 t0 · · · tn−1
0

1 t1 · · · tn−1
1

...
...

1 tn−1 · · · tn−1
n−1

1
s0−t0

· · · 1
s0−tn−1

1
s1−t0

· · · 1
s1−tn−1

...
...

1
sn−1−t0

· · · 1
sn−1−tn−1

where zi+1,i = 1, i = 0, 1, . . . , n − 2, z0,n−1 = f, zi,j = 0 if (i − j) mod n �= 1,
and diagonal matrices, Ds = diag(si)

n−1
i=0 for s = (si)

n−1
i=0 . Table 3.2 shows

operator matrices associated with structured matrices of Table 3.1, the dis-
placement rank, and the cost in flops for multiplication by a vector. For these
operator matrices, the arithmetic cost of multiplication of a structured matrix
by a vector lies in O(rn logn) with the operators ∇Ze,Zf

and ∇Ze,ZT
f

(that

is, in the Toeplitz/Hankel, T/H, case) and in O(rn log2 n) with the operators
∇D(t),ZT

f
and ∇D(s),D(t) (that is, in the Vandermonde/Cauchy, V/C, case).

4 Structured iterative inversion via matrix-by-vector multiplica-
tion

The acceleration of iterative inversion of structured matrices is achieved by
reducing processes (2.1)–(2.3) to matrix-by-vector multiplication. Similarly to
(3.1), write

∇B,A(Xi) = GiH
T
i (4.1)

where Gi, Hi are n × li matrices, r ≤ li ≤ n, and observe that iteration (2.2)
can be performed by computing the generators

Gi+1 = (ai(2I + XiM)Gi, aiGi, aiXiG), (4.2)

4

Table 3.2
Structured matrix operator matrices

Pair of # of Flops for

Matrix Operator Displacement Multiplication

Class Matrices Rank by Vector

Toeplitz (ti−j)i,j Ze, Zf , e �= f ≤ 2 O(n log n)

Hankel (hi+j)i,j Ze, Z
T
f , ef �= 1 ≤ 2 O(n log n)

Vandermonde (tji)i,j Dt, Z
T
f ≤ 1 O(n log2 n)

Cauchy (1
si−tj

)i,j Ds,Dt ≤ 1 O(n log2 n)

HT
i+1 =

HT
i

HT MXi

HTXi

, (4.3)

for Xi+1. For ai = 1, this turns into a compressed version of iteration (2.1), and
similar expressions can be derived for process (2.3). Eqs. (4.2) and (4.3) reduce
step (2.2) (or (2.1)) essentially to multiplication of the matrices M, MT , Xi,
and XT

i by li, r, r+li, and r+li vectors, respectively, where r and li denote the
lengths of the displacement generators available for M and Xi, respectively.
This means

cr,n,li = O((r + li)
2n logd n) (4.4)

flops per step (2.2) where d = 1 (in the T/H case) or d = 2 (in the V/C
case), so it is crucial to bound li to make the iteration effective. Typical initial
choices of X0 achieve l0 ≤ r, but the process (4.2), (4.3) may inflate this to
li = 3il0, so special care should be taken periodically to keep computations
effective.

5 Compression of the iterates via the truncation of singular values
or via substitution

To compress the iterates Xi+1 one should modify (2.1)–(2.3) as follows:

X̂i+1 = g(Xi, M), Xi+1 = f(X̂i+1) (5.1)

5

where g(Xi, M) is the iteration defined by (2.1), (2.2), or (2.3), and the func-
tion f(W) defines a compression rule. Unfortunately, already with the first
compression step, the theorems in [19] supporting acceleration by twice in
(2.2) vs. (2.1) hold no more, so one may either ensure a desired decrease of
the residual norm in fewer steps (2.2) by postponing compression (5.1) and
thus involving more flops per step or use compression and then risk divergence
or a slow-down of convergence.

The first simple policy of defining f(X̂i+1) in (5.1) (proposed in [10], [11,12]
and described as Subroutine R1 in [8, Section 6.4]) is to truncate the smallest
singular values of the displacement ∇B,A(X̂i+1) = Ĝi+1Ĥ

T
i+1. Then we recover

Xi+1 from the resulting shorter displacement generator.

Another policy [13,14] (called compression via substitution, relying on the
observation that

∇B,A(−M−1) = G−HT
− = M−1∇A,B(M)M−1 = M−1GHT M−1,

and described as Subroutine R2 in [8, Section 6.5]) is to replace (2.1)–(2.3) by
the process

Gi+1 = g(Xi, M)G, HT
i+1 = HTg(Xi, M), (5.2)

requiring about cr,n,li flops per step. The reader is referred to [10,11,14,27]
on the estimates for how much (or how little) these compression policies slow
down the convergence.

6 Compression using a least-squares criterion

The third policy is to compute a least-squares refinement Gi+1, Hi+1 of the
displacement generator Ĝi+1, Ĥi+1 of the computed approximation X̂i+1 to
−M−1 such that

∇B,A(X̂i+1) = Ĝi+1Ĥ
T
i+1, (6.1)

Gi+1 = Ĝi+1Yi+1,G, Hi+1 = Ĥi+1Yi+1,H , (6.2)

and the column-wise vector 2-norms

NG = ‖G − MĜi+1Yi+1,G‖ = ‖G − MĜi+1Yi+1,G‖2 (6.3)

and

NH = ‖H − MT Ĥi+1Yi+1,H‖ = ‖H − MT Ĥi+1Yi+1,H‖2 (6.4)

are minimum over all li+1 × r matrices Yi+1,G and Yi+1,H. The pair Gi+1, Hi+1

is used as a displacement generator representing the matrix

Xi+1 = ∇−1
B,A(Gi+1H

T
i+1)

6

of (5.1) (cf. (4.1)). Besides compression, this policy is also intended to refine
the approximation to −M−1 (see Theorem 6.1).

We consider two applications of this policy of compression and refinement via
least-squares approximation:

(1) as an alternative for the policy of truncating the smallest singular values,
in which case the matrices ĜT

i+1, Ĥ
T
i+1 are defined as GT

i+1, H
T
i+1 in (4.2), (4.3),

and

(2) as a complement to the compression by substitution, in which case the
matrices Ĝi+1, Ĥ

T
i+1 are defined as the matrices Gi+1, H

T
i+1 in (5.2).

In case (1), the Ĝi+1, Ĥi+1 are n×li+1 matrices, for li+1 ≤ 3r, and are typically
rank deficient, so the least-squares computation of Yi+1,G and Yi+1,H should

rely on computing the SVD’s of MĜi+1 and MT Ĥi+1 at the cost of performing
2(2n + 11li+1)l

2
i+1 flops (see [28, pages 257,263]) or maybe on rank revealing

QR factorization replacing the SVD’s. This clearly dominates the (4li+1−2)nr
flops required for computing the generator Gi+1, Hi+1 in (6.2) but typically
(for small r) is dominated by cr,n,li flops involved in the computations in (4.2),
(4.3).

In case (2), Ĝi+1 and Ĥi+1 are n × r matrices and typically have full rank;
in this case, instead of computing Yi+1,G and Yi+1,H based on the SVD’s, one
may compute them simply from the normal equations

(ĜT
i+1M

T)MĜi+1Yi+1,G = ĜT
i+1M

T G, (6.5)

(ĤT
i+1M)MT Ĥi+1Yi+1,H = ĤT

i+1MH. (6.6)

This amounts to multiplication of each of the matrices M and MT by li+1

vectors (that is a fraction of cr,n,li flops of (4.4)), 2li+1(li+1 + r)(2n − 1) flops
for computing the coefficients of normal equations (6.5), (6.6), and 2rli+1(li+1−
1)(2li+1 +5)/3 = 4rl3i+1/3+O(rl2i+1) flops for solving these equations. Clearly,

computations in (6.1)–(6.4) compress the generator Ĝi+1, Ĥi+1 to the smallest
length r. Their role for refinement can be seen from the next theorem applied
for

X∗ = Xi+1, G∗ = Gi+1, H∗ = Hi+1.

Theorem 6.1 Let A, B, M , and X∗ be n×n matrices and let G, H, G∗ and
H∗ be n × r matrices, 1 ≤ r < n, such that M is nonsingular,

∇A,B(M) = AM − MB = GHT ,

∇B,A(X∗) = BX∗ − X∗A = G∗HT
∗ .

7

Then

M∇B,A(X∗ + M−1)M == −G(HT − HT
∗ M) − (G − MG∗)HT

∗ M.

PROOF. The generator G−, H− for the inverse matrix −M−1 satisfies the
following relation:

∇B,A(−M−1) = M−1∇A,B(M)M−1 = G−HT
−.

Hence, G−, H− can be chosen as follows:

G = MG−, MT H− = H.

Therefore, we have

M∇B,A(X∗ + M−1)M =M(−G−HT
− + G∗HT

∗)M

=−GHT + MG∗HT
∗ M

=−G(HT − HT
∗ M) − (G − MG∗)HT

∗ M.

�

The computations in (6.1)–(6.4) minimize the 2-norms of approximations to
G by MG∗ and to H by MT H∗; since G = MG− and H = MT H−, this should
move G∗ closer to G− and H∗ closer to H−.

By Theorem 6.1, we get the following result.

Corollary 6.1 Using the same notation as in Theorem 6.1 and the 2-norm,
we obtain that

N = ‖M∇B,A(X∗ + M−1)M‖2 ≤
≤ ‖G‖2‖HT − HT

∗ M‖2 + ‖G − MG∗‖2‖HT
∗ M‖2.

(6.7)

Hence, decreasing the norms ‖H − MT H∗‖2 and ‖G − MG∗‖2 leads to de-
creasing the upper bound on the norm N and consequently on the error norm

E = ‖X∗ + M−1‖2 ≤ N‖∇−1
B,A‖2‖M−1‖2.

In [8] and [29] quite tight upper and lower bounds on ‖∇−1
B,A‖2 are derived

for various often used pairs of A and B. In particular by Corollary 8.10 of [29]
we have

‖∇−1
Ze,Zf

‖2 ≤
√

2r
|ẽf̃ |n−1

n

mini,j |e 1
n ωi − f

1
n ωj|

8

provided that ẽ = max{|e|, 1/|e|}, f̃ = max{|f |, 1/|f |}, ω = exp(2π
√−1/n),

and the operator is applied on the matrices of rank r.

We also note the respective bounds on the norms of the left and right residuals:

‖I + XiM‖2 ≤ E‖M‖2, ‖I + MXi‖2 ≤ E‖M‖2.

Remark 6.1 For a given displacement ∇A,B(M) the choice of the generator
pair G, H satisfying (3.1) is not unique but this choice does not affect norm N
of (6.7), which only depends on GHT . This follows because Yi+1,GY T

i+1,H only
depends on GHT as can be seen from (6.5),(6.6) in the full rank case and from
QR factorization of MĜi+1 and MT Ĥi+1 with column pivoting ([28, Section
5.4.1]) in the rank deficient case.

7 Numerical experiments

Let us specify a particular invertible displacement operator, which we used
to perform the numerical tests. We write C+ = Z+1, C− = Z−1 (cf. (3.2)),
and denote with C+(x) =

∑n
i=1 xi(C

+)i−1, C−(x) =
∑n

i=1 xi(C
−)i−1 the (+1)-

circulant and (−1)-circulant matrices having x as the first column. We recall
from [30] that:

C+(x) = F diag(y)F H , C−(x) = DF diag(ŷ)F HDH , y =
1

n
F Hx,

ŷ =
1

n
F HDHx, F = (ω(i−1)(j−1))i,j=1,...,n, D = diag(1, θ, θ2, . . . , θn−1),

ω = cos(2π/n) +
√−1 sin(2π/n) = exp(2π

√−1/n),

θ = cos(π/n) +
√−1 sin(π/n) = exp(π

√−1/n).

(7.1)

Consider the invertible operators

∆+(M) = C+M − MC− and ∆−(M) = C−M − MC+.

The following theorem summarizes some well known results (see, e.g., [31–
33,8]).

Theorem 7.1 It holds that

∆+(M) =
k∑

i=1

uiv
T
i ⇔ M =

1

2

k∑
i=1

C+(ui)C
−(Jvi),

∆−(M) =
k∑

i=1

uiv
T
i ⇔ M = −1

2

k∑
i=1

C−(ui)C
+(Jvi),

∆−(M−1) = −M−1∆+(M)M−1,

9

where J is the permutation matrix having ones on the anti-diagonal. In par-
ticular, if ∆+(M) =

∑k
i=1 uiv

T
i and det M �= 0, we obtain

M−1 =
1

2

k∑
i=1

C−(M−1ui)C
+(JM−T vi). (7.2)

We have implemented the classical approach based on truncating the smallest
singular values and the new least-squares based compression approach for the
displacement operators ∆+ and ∆−. The software was written in Matlab 1 .

Experimental tests based on this algorithm clearly show that the new least-
squares cutting approach gives more accurate results compared to the clas-
sical compression for well-conditioned matrices. The algorithm is applied to
100 Toeplitz matrices M = T of size 100-by-100 where the entries of each
Toeplitz matrix are uniformly random between zero and one. For each of the
100 samples, the starting point is computed as T−1 ∗ (I + αl ∗ R), where the
entries of R are uniformly random between −1 and +1. The parameter αl is
determined such that the norm of the left residual ‖I + X0 ∗ T‖ equals 1 and
the norm of the right residual ‖I + T ∗ X0‖ is larger than 1. Figure 1 gives a
histogram of log10(cond(T)).

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6
0

5

10

15

20

25

30

log
10

(cond(T))

nu
m

be
r

of
 s

am
pl

es

Fig. 1. Histogram of log10 of the condition numbers of the 100 Toeplitz matrices.

Let Ri = I +Xi ∗T be the left residual for Xi. Then, the choice of our starting
point guarantees that the convergence is reflected in the behaviour of the se-
quence ‖R0‖, ‖R1‖, . . . because for the Newton iteration without compression,
we have ‖Ri+1‖ ≤ ‖Ri‖2.

Figure 2 shows the results for these 100 samples. Each plot shows a histogram

1 Matlab is a registered trademark of the MathWorks

10

−2 0 2 4 6
0

50

100

Iteration number 1

N
um

be
r

of
 r

es
id

ua
ls

 w
ith

 n
or

m
 1

0−
(n

um
be

r
on

 h
or

iz
on

ta
l a

xi
s)

Newton method with classical cutting

−2 0 2 4 6
0

50

100

Iteration number 1

Newton method with least squares cutting

−1 0 1 2 3 4 5
0

10

20

30

40

50

Iteration number 3
−1 0 1 2 3 4 5
0

10

20

30

40

50

Iteration number 3

0 5 10
0

10

20

30

40

50

Iteration number 6
0 5 10 15

0

10

20

30

40

50

Iteration number 6

Fig. 2. Distribution of the left residual norms in 1, 3 and 6 iterations in the two
approches: the classical truncation of singular values (left) and the least-squares
compression (right).

of − log10 ‖Ri‖ (as the x-coordinate) for i = 0, 3 and 6. The y-coordinate
shows the number of sampled matrices (out of the total of 100) with this
value of ‖Ri‖. The histograms at the left show the results when the classical
compression is used while the histograms at the right are corresponding to the
least-squares compression.

In the first iteration the residual norms are the same in all tests, but already
3 iterations with the least-squares compression generically result in a signific-
antly smaller left residual norm. This is illustrated in the histograms by the
fact that the black area in the right figure is shifted more towards the right
compared to the left plot. In the 6th iteration the difference between the two
approaches shows up even more dramatically.

8 Conclusion

We first recalled Newton’s iteration algorithms for the inversion of structured
matrices and then presented an alternative compression strategy based on
a least-squares criterion. The numerical experiments with inverting random

11

Toeplitz matrices show that for well-conditioned matrices this new compres-
sion scheme results in fewer iteration steps to obtain the same accuracy. In a
companion paper [34], an alternative initial iteration step is proposed leading
to a much more robust iteration scheme, especially when the matrix is ill-
conditioned. In an upcoming paper, we also investigate a general compression
framework with truncation, substitution and the least-squares approach as
special cases. To come to a user-friendly, robust and efficient iteration scheme
for approximating the inverse of a structured matrix, still a lot of research
has to be done. Several other compression strategies are possible. Finding the
right combination of all the possible variants for inverting a fixed Toeplitz
matrix is not trivial.

References

[1] M. Morf, Fast algorithms for multivariable systems, Ph.D. thesis, Department
of Electrical Engineering, Stanford University, Stanford, CA (1974).

[2] M. Morf, Doubling algorithms for Toeplitz and related equations, in:
Proceedings of IEEE International Conference on ASSP, IEEE Press,
Piscataway, New Jersey, 1980, pp. 954–959.

[3] R. R. Bitmead, B. D. O. Anderson, Asymptotically fast solution of Toeplitz
and related systems of linear equations, Linear Algebra and Its Applications 34
(1980) 103–116.

[4] I. Gohberg, T. Kailath, V. Olshevsky, Fast Gaussian elimination with partial
pivoting for matrices with displacement structure, Mathematics of Computation
64 (212) (1995) 1557–1576.

[5] T. Kailath, A. H. S. (editors), Fast Reliable Algorithms for Matrices with
Structure, SIAM Publications, Philadelphia, 1999.

[6] V. Y. Pan, A. Zheng, Superfast algorithms for Cauchy-like matrix computations
and extensions, Linear Algebra and Its Applications 310 (2000) 83–108.

[7] V. Olshevsky, V. Y. Pan, A unified superfast algorithm for boundary rational
tangential interpolation problem, in: Proceedings of the 39th Annual IEEE
Symposium Foundations of Computer Science (FOCS’98), IEEE Computer
Society Press, Los Alamitos, California, 1998, pp. 192–201.

[8] V. Y. Pan, Structured Matrices and Polynomials: Unified Superfast Algorithms,
Birkhäuser/Springer, Boston/New York, 2001.

[9] V. Y. Pan, Fast and efficient parallel inversion of Toeplitz and block Toeplitz
matrices, Operator Theory: Advances and Applications 40 (1989) 359–389.

[10] V. Y. Pan, Parallel solution of Toeplitz-like linear systems, J. Complexity 8
(1992) 1–21.

12

[11] V. Y. Pan, Decreasing the displacement rank of a matrix, SIAM Journal on
Matrix Analysis and its Applications 14 (1) (1993) 118–121.

[12] V. Y. Pan, Concurrent iterative algorithm for Toeplitz-like linear systems, IEEE
Transactions on Parallel and Distributed Systems 4 (1993) 592–600.

[13] V. Y. Pan, A. Zheng, X. Huang, O. Dias, Newton’s iteration for inversion of
Cauchy-like and other structured matrices, Journal of Complexity 13 (1) (1997)
108–124.

[14] V. Y. Pan, S. Branham, R. E. Rosholt, A. Zheng, Newton’s iteration
for structured matrices and linear systems of equations, in: Fast Reliable
Algorithms for Matrices with Structure,(T. Kailath and A. H. Sayed, editors),
SIAM Publications, Philadelphia, 1999, pp. 189–210.

[15] D. Bini, B. Meini, Approximate displacement rank and applications, in:
V. Olshevsky (Ed.), Proceedings AMS Conference “Structured Matrices in
Operator Theory, Numerical Analysis, Control, Signal and Image Pocessing”,
Boulder, 1999, American Mathematical Society, Providence, R.I., 2001, pp. 215–
232.

[16] V. Y. Pan, M. Kunin, R. E. Rosholt, H. Cebecioğlu, Residual correction
algorithms for general and structured matrices, preprint (2001).

[17] A. Ben-Israel, A note on iterative method for generalized inversion of matrices,
Mathematics of Computation 20 (1966) 439–440.

[18] T. Söderström, G. Stewart, On the numerical properties of an iterative
method for computing the Moore-Penrose generalized inverse, SIAM Journal
on Numerical Analysis 11 (1974) 61–74.

[19] V. Y. Pan, R. Schreiber, An improved Newton iteration for the generalized
inverse of a matrix, with applications, SIAM Journal on Scientific and Statistical
Computing 12 (5) (1991) 1109–1131.

[20] T. Kailath, A. Vieira, M. Morf, Inverses of Toeplitz operators, innovations and
orthogonal polynomials, SIAM Rev. 20 (1978) 106–119.

[21] T. Kailath, S.-Y. Kung, M. Morf, Displacement ranks of matrices and linear
equations, Journal of Mathematical Analysis and its Applications 68 (1979)
395–407.

[22] T. Kailath, S. Kung, M. Morf, Displacement ranks of a matrix, Bulletin of the
American Mathematical Society 1 (1979) 769–773.

[23] G. Heinig, K. Rost, Algebraic Methods for Toeplitz-like Matrices and Operators,
Akademie-Verlag, Berlin, and Birkhäuser, Basel/Stuttgart, 1984.

[24] I. Gohberg, A. Semencul, On the inversion of finite Toeplitz matrices and their
continuous analogs, Matematicheskiie Issledovaniia 2 (1972) 187–224.

[25] T. Kailath, A. Sayed, Displacement structure: Theory and applications, SIAM
Review 37 (3) (1995) 297–386.

13

[26] D. Bini, V. Pan, Polynomial and Matrix Computations, vol. 1: Fundamental
Algorithms, Birkäuser, Boston, 1994.

[27] V. Y. Pan, Y. Rami, X. Wang, Structured matrices and Newton’s iteration,
Linear Algebra and Its Applications 343-344 (2002) 233–265.

[28] G. H. Golub, C. F. Van Loan, Matrix Computations, 3rd Edition, The Johns
Hopkins University Press, 1996.

[29] V. Y. Pan, X. Wang, Inversion of displacement operators, SIAM Journal on
Matrix Analysis and Applications In press.

[30] W. Cline, R. Plemmons, G. Worm, Generalized inverses of certain Toeplitz
matrices, Linear Algebra and Its Applications 8 (1974) 25–33.

[31] G. Ammar, P. Gader, A variant of the Gohberg-Semencul formula involving
circulant matrices, SIAM Journal on Matrix Analysis and Applications 12 (3)
(1991) 534–541.

[32] I. Gohberg, V. Olshevsky, Circulant displacement and decomposition of
matrices, Integral Equations Operator Theory 15 (1992) 730–743.

[33] I. Gohberg, V. Olshevsky, Complexity of multiplication with vectors for
structured matrices, Linear Algebra and Its Applications 202 (1994) 163–192.

[34] M. Van Barel, G. Codevico, An adaptation of the Newton iteration method to
solve symmetric positive definite Toeplitz systems, Report TW 349, Department
of Computer Science, K.U.Leuven, Leuven, Belgium (Nov. 2002).
URL
http://www.cs.kuleuven.ac.be/publicaties/rapporten/tw/TW349.abs.html

14

