Acceleration of Euclidean Algorithm and Extensions ’

Victor Y. Pan
Dept. of Mathematics and Computer Science
Lehman College of CUNY
Bronx, NY 10468, USA

vpan@lehman.cuny.edu

ABSTRACT

We accelerate the extended Euclidean algorithm for integers,
the rational number reconstruction, and consequently, the
stage of the recovery of the solution of a nonsingular integer
system of linear equations via Hensel’s lifting. The acceler-
ation is by the order of magnitude and yields nearly opti-
mal randomized algorithms. In the highly important case of
Toeplitz, Hankel, and Toeplitz/Hankel-like linear systems,
the accleration is potentially practical.

Keywords

extended Euclidean algorithm, linear system of equations,
Toeplitz and Hankel matrices, Smith invariant factors, p-
adic lifting, randomized algorithms, bit operation complex-
ity, rational number reconstruction

2000 M athematics Subject Classification:
15A36, 15A06, 68Q25, 68W40, 12Y05

1. INTRODUCTION

A customary approach in computer algebra is to perform
computations with rational numbers modulo a large inte-
ger g (a prime, prime power, or product of several selected
primes) and then to reconstruct the rational output from its
value modulo ¢ [9]. In particular, the rational number recon-
struction is the final stage of the solution of a nonsingular
linear system of n equations by means of p-adic lifting [12],
[7], and we pay special attention to this application in the
present paper (see [9] on other important applications).

Each component of the solution is reconstructed as a pair of
integers 1 and ¢ from three integers g, k, and r such that
1<o<q/k, r=(n/6)modq. (L1)

The hardest stage of computing i and § is the application of
the extended Euclidean algorithm to g and r. The algorithm

*Supported by NSF Grant CCR 9732206 and PSC CUNY
Award 61393-0030, 62435-0031 and 66383-0032

Inl <k <gq,

Xinmao Wang
Ph.D. Program in Mathematics
Graduate School of CUNY
New York, NY 10036, USA

xwang2@gc.cuny.edu

recursively produces triples (rj,s;j,t;), j = 1,...,[; in our
case we only need the triple where |r;| < k and j is the
smallest. Theorem 5.26 in [9] supplies all details for the
transition from this triple to the integers n and § satisfying
(1.1). The known algorithms compute the triple by using

p(q) = O(h2)7 for h = lOgZ q, (12)

bit operations.

Now, given a nonsingular linear system of equations Ax = b,
we first compute A~'b mod p for a fixed prime

p=n"Wlog|A]| (1.3)

where
Al = max 3 fai | (1.4)
is the co-norm of a matrix A = (a;;);,; and the matrix

A mod p is still nonsingular. Then we apply Hensel’s lifting
[12], [7] to compute A~'b mod q for

g = llog(2[A" " b])] + 1, (1.5)

so q > 2|n|d for every compoment 5/§ of the vector A~ 'b.
Finally, we choose k = |A|"~!|b| + 1 and recover the n com-
ponents of the solution at the bit cost np(q) for p(g) in (1.2).
We assume realistically that

log |b| = O(nlog |A]). (1.6)

q=7p°,

The bit cost of the recovery of x = A~'b from x mod ¢
is O(n®log? |A]). This is close to the bit cost of computing
x mod q for a general linear system Ax = b. The latter cost,
however, decreases by roughly the factor of n where A has
structure of Toeplitz or Hankel type. So, in this highly im-
portant case [18], the bit cost of the recovery stage strongly
dominates the overall cost of the solution of a linear system.
The slow performance at the recovery stage devaluates the
p-adic lifting approach to solving structured linear systems,
making it inferior to other methods.

Our present paper fixes this mishap. We accelerate the ra-
tional reconstruction stage by roughly the factor of n by
using two techniques. One of them exploits a simple trick
already used in [16], [4], [5], [13], although in a different
context. The other technique is quite advanced: it solves
the classical problem of accelerating the extended Euclidean
algorithm for integers. In the result of this progress, the
overall cost of the solution of structured linear systems via
Hensel’s lifting is now dominated at the stage of computing



the solution modulo g. Versus the other known algorithms
for structured linear system [18], the overall acceleration is
only by the factor of logn but is practically significant be-
cause the problem is highly important and because the bit
operation cost of the solution is now placed within the factor
of (m(n)/n)u(log p)/log p from the information lower bound
(see Corollary 3.4 and Theorem 4.1). Here and hereafter we
assume that m(n) field operations are sufficient to multiply
two polynomials modulo z", and p(h) bit operations are
sufficient to multiply two integers modulo 2" + 1, so

n < m(n) = O((nlog n)loglogn), (1.7)
h < u(h) = O((hlog h)loglog h) (1.8)

(see [6] and [22], respectively). The same refinement of the
rational number reconstruction stage applies to the general
linear systems, but the relative improvement of the overall
bit cost of system’s solution is less significant.

Our first (practical) improvement of the recovery stage re-
lies on multiplying the rational output (computed modulo
q) by the Smith leading invariant factor s, of the matrix
A. The product is an integer vector and thus is immedi-
ately reconstructed from its value modulo gq. The known
best algorithm for computing s, is the algorithm Largest
Invariant Factor in [8]. It is based on the approach pro-
posed in [14, Appendix], [15], [1]. The approach reduces the
problem to application of Hensel’s lifting to a few linear sys-
tems Ax® = b® for random vectors b* and to subsequent
randomized recovery of s, as the least common denomina-
tor of all components of all x*. This may seem to bring us
to a vicious circle, but we now observe that for probabilistic
computation of the Smith factor it is sufficient to replace
the n denominators of the n rational components of x*
by a single denominator of the scalar ¢x() = ¢7A7'p®
for a random vector c. This yields the desired randomized
practical speedup.

Our further acceleration is technically much more involved.
We speed up the computation of a selected entry in the
extended Euclidean algorithm by the factor of almost h,
that is, we decrease the bit cost bound (1.2) to the level

plq) = O(u(h)logh), h =log,q, (1.9)

although the overhead constant hidden in the above “O”
notation may be too large to allow the algorithm become
practical.

A similar acceleration is known for the Euclidean algorithm
applied to polynomials [11], [2], [3], but in the integer case a
well known additional difficulty is due to the carries. Among
the known methods only the Knuth-Schénhage algorithm
[21] has settled the problem for integers but only in the
case where j = [ and the triple (7, s;,¢;) terminates the
Euclidean algorithm, that is, where r; is the gcd. In our
work we were motivated by the following excerpt from [9,
page 305] on the extended Euclidean algorithm for integers:

The method also works for integers, although
there are some complications due to the carries,

and by the recent comments of an expert Joachim von zur
Gathen on the state of the art which he sent by email to one

of the present authors:

Yes, I suppose rational number reconstruction
can be done in time O(m(n)logn) for n-bit num-
bers and a given upper bound on the denomina-
tor. This is alluded to in [9], as you observed.
But we do not give a proof, and I do not know
any rigorous proof in the literature. I can imag-
ine roughly what needs to be done, but it will be
quite messy.

In section 5 we clear the cited mess and come out with a de-
sired algorithm (see Theorem 5.11). Otherwise we organize
our paper as follows. After some preliminaries in section 2,
we show randomized acceleration of computing the Smith
leading factor s, in section 3, and we extend this algorithm
to solving linear systems in section 4.

2. PRELIMINARIES

Hereafter, we write log to replace log, unless specified oth-
erwise, and we use definitions (1.1)—(1.9).

Numbers, polynomials, vectors, matrices

Hereafter, Q is the field of rational numbers, Z is the ring
of integers, Z, is the ring of integers modulo q. We write
d(r) = 0, n(r) = n for two coprime integers 6 > 0 and 7
and for the rational number r = n/d. For three integers
h,p and m, we write h = ord, m if p" divides m but p"*+*
does not divide m. |u(z)| =Y |u:| for a polynomial u(z) =

k3
S uix'. v = (v;)ie; is a vector with components v1, ..., Up;

12

A = (aij)i ;=1 is an n X n matrix with the (i, j)-th entry
aij,i,j=1,...,n; vl and AT are the transposes of v and
A; I is the identity matrix. det(A) is the determinant of a
matrix A.

Complexity estimates
Hereafter, we assume that vy ring or field operations suffice
to multiply a given n x n matrix W by a vector, n < vw <
2n? — n, whereas iy field operations suffice to invert W or
to determine its singularity.

Smith invariant factorsand ratios

DEFINITION 2.1. The greatest common divisor (gcd)
dy = di.(A) of all k x k minors (subdeterminants) of a ma-
trix A € Z™*™ is called the k-th determinantal divisor of A,
for k=1,...,n. We write so = do = 1 and define the k-th
Smith invariant factor of A as sp = sk(A) = di/dr—1, and
the k-th Smith ratio of A as ry = s /sk—1 for k=1,...,n.

It is easily deduced that si,...,s, € Z and |detA| =
81+ 8n, so (cf. (1.4))

50 < | det(A)] < A", (2.1)

THEOREM 2.2. For a nonsingular matriz A € Z"*"™ and
its leading Smith factor s,, we have s, A~! € Z"*™,

Due to this theorem, reconstruction of A~! from A~! mod ¢
as well as A™'b from A~'b mod q (for larger ¢) is trivial if
sn = sn(A) is available.



3. COMPUTATION OF THE LEADING

SMITH FACTOR
We follow [8] (cf. [14], [15], [1]) and reduce computing s, (A)
to solving linear systems Ax ¥) = b® | for random vectors
b, but unlike [8], we recover s, (A) from the denominators
of random linear combinations of the rationals z‘gk), . z&k)
rather than from the lcm’s of the integer denominators,
lcm(é(x&k)), ..., 8(z%)). This saves us the factor of roughly
n in the estimated bit cost of the recovery. The acceleration
relies on a simple trick of obtaining the lem as the denomi-
nator of a random linear combination of reciprocals already
used in [16], [4], [5], and [13] although in a different context.

THEOREM 3.1. For a nonsingular matriz A € Z"*"
and a positive € < 1, independent of n and A, it is
sufficient to generate a sufficiently large random prime
p = n°Wlog|A| and K = O(log(1/e)) random vec-
tors b® c® e 7z for k = 1,2,....K, K =
O(log(1/e)), and M = max{[/nlog]|A|],4000}, that is,
to generate a total of O((nlog(n|A|))log(1/e)) random
bits, and in addition to perform iap(logp) + O(((va +
va—1)(u(log p)/ log p)nlog | A| + p(|A[")) log(1/€)) bit opera-
tions (for p(h) in (1.8), p(q) = O(u(log q) loglog q) in (1.9))
in order to compute a positive s;, dividing s, = sn(A) and
such that

Probability (s, = s,) > 1 —e. (3.1)

ProOF. To support Theorem 3.1 for ¢ = 1/2, let us mod-
ify the algorithm Largest Invariant Factor in [8, Section
2] by changing its parameters M and . As in [8], the
extension to any fixed €, 0 < € < 1, is by increasing the
parameter K by the factor of log(1/€).

ALGORITHM 3.2  (LEADING SMITH FACTOR).

INPUT: A nonsingular matrizv A € Z™*".
OuTPUT: A positive integer sy, | $n.

INITIALIZATION: M, p, b®) and <™ are as in Theorem 8.1
for K =2, and h = [2log,(|A|**~" M)] such that q = pt >
|A|2n_1M.

COMPUTATION: For k = 1,2, compute

1. x® = @™, = A7 p® e z?,

2. y(k) = T (k) — > cgk)a:gk) € Zyq,

=1
3.t = S(y™) such that 0 < th < |A|™,

4. output s = lcm(tg),tgf)).

Clearly, s, | sn. Let us prove that s, = s, with a proba-
bility of at least 1/2. It is sufficient to repeat the proof of
Theorem 2 in [8] complemented by the next lemma, which

¢

for every k validates using the denominator of linear

combinations of xgk), . ,x,(lk) instead of the lcm of all de-

nominators é(xgk)), ey 6(1:5[“)).

LevMMa 3.3, Write 6% = lem(8(zM),...,8(5), so
t 1 6% Then for any prime p, we have
a) Probability (Ordﬁ(Sn) # Ordﬁ(é(k))) < max{1/M,1/p};

b) Probability (ordﬁ(t;’“)) # ordﬁ(5(k))) < max{1/M,1/p}.

ProOF OF LEMMA 3.3. Part a) follows from Theorem 2
in [1]. To prove part b), write y* = n®)/§H) 50 k) =

> cgk)n(a:gk))éi(k), for 6i(k) = J(k)/é(a:gk)). By the definition
i=1

of 6 we have ged (7, n(xgk))éi(k)) =1 for at least one i, 1 <
i < n (excluding the trivial case where x*) = 0 mod p for all

k). Let this hold, say for ¢ = 1. Write ) cgk)n(a:gk))éi(k) =
=2

gp+r,qr €Z,0<r <p. Then p | 7™ only where p |
(r+ cgl)n(xgk))éi(k)), that is, for at most M max{1/M,1/p}
(1)
1

choices of ¢;’ in Z . This proves part b). [

To prove Theorem 3.1, it remains to estimate from above the
number of bit operations used in Algorithm 3.2. We have
the following upper bounds: iapu(logp) for computing A~*
at stage 1 (once for all k); O(va+va-1)u(log p)h, where h =
O(nlog, A), in Hensel’s p-adic lifting applied for each fixed
k to compute A~'b* mod p" [12], [7], and O(u(h) log h) =
O(p(nlog|A|)log(nlog|A|)) for each k at stage 3 (see (1.9)).
The cost of lifting dominates the cost at stages 2 and 4 (recall
our assumption that v4 > m). Summarizing, we complete
the proof of Theorem 3.1. [

Let us next specify the bit operation bounds of Theorem
3.1 for general and Toeplitz matrices A. For a general n x n
non-singular matrix A, we have ia = O(n®), va < 2n* —n,
va-1 < 2n2 —n. If A is a Toeplitz matrix, we have
ta = O(m(n)logn), va = O(m(n)), vy—1 = O(m(n)) (cf.
(1.7)), provided the inverse A~' is represented by its first
and last columns or by a pair of its other products by a
fixed pair of vectors [18]. The same cost bounds hold for
Hankel matrices A and for a larger and highly important
class of nonsingular structured matrices A having structure
of Toeplitz/Hankel type and represented (as well as A™')
with their displacement generators of length O(1) [18]. Sub-
stituting these bounds, we specialize Theorem 3.1 as follows
(see more details in [20]).

COROLLARY 3.4. Let A € Z™*"™, det A # 0, |A| > n, and
€ > 0. Then a divisor s, of the leading Smith factor s, such
that s;, = s, with a probability of at least 1 — € can be com-
puted by generating O((nlog|A|)log(1/€)) random bits and
performing O(((n* u(log p)/ log p) log || + p(|A|")) log(1/¢))
bit operations for p = O(nlog|A|), p(h) in (1.8), and
p(q) in (1.9). If the matriz A has Toeplitz/Hankel-
like structure, then the bit operation cost bound decreases
to O(((nm(n)pu(log p)/ log p) log |A] + p(|A")) log(1/e)) for
m(n) in (1.7). If log|A|] = O(logn), then the above



bounds turn into O(n®p(logn)log(1/€)) for general ma-
trices A and into O((nm(n)p(logn)/logn)log(l/e)) for
Toeplitz/Hankel-like matrices A. By ignoring the factors
log(1/€) (assuming 1/e = O(1)) and (loglogn)°™", we ob-
tain the bounds O(n®logn) and O(n®logn), respectively.

4. SOLVING A LINEAR SYSTEM OF
EQUATIONS

Given a nonsingular matrix A € Z™*™ and a vector b € Z",
we first apply Theorem 3.1 and Algorithm 3.2 to compute
probabilistically s, = sn(A), then compute the integer vec-
tor y = spA”'b (see Theorem 2.2), and finally compute
X =y/sn.

The entries of y are integers not exceeding s, |A|"!|b|, so
we may immediately recover each of them from y mod p” for
h = |log,(2sn|A|"""|b|)| +1 at the bit operation cost O(p")
(see (2.1)). The asymptotic bit operation cost of computing
y mod p" and recovering y is dominated by the respective
estimates in Theorem 3.1 and Corollary 3.4.

The well-known techniques enable extension to computing
a basis for the null space of A and solving a linear system
Ax = b where A is singular [10], [18, Chapter 5]. The next
theorem summarizes the cost estimates (see [20] for further
details).

THEOREM 4.1. Let log|b| = O(nlog|A|). Then all bit
cost estimates of Theorem 3.1 and Corollary 3.4 apply to
the problem of the solution of a nonsingular linear system
Ax =b. If A is a singular Toeplitz/Hankel-like matriz, the
same estimates apply to the solution of a consistent system
Ax = b and to computing a short displacement generator
for a matriz whose columns form a basis for the null space
of A. For a general matriz A, computing a basis for its
null space requires additional O((n— B)B*u(logp)/logp) bit
operations for p = O(log(|A|°|b|)) and B = rank(A). The
bounds cover the bit cost of verification of correctness of the
solution where it is represented by a single vector or by O(1)
vectors. If the solution is represented by k vectors, k < n—_3,
then additional O(knm(n)p(logn)/logn) bit operations are
required to verify their correctness.

REMARK 4.2. The known bit operation cost bounds for
computing s, = s,(A) and solving linear systems Ax =b
are improved in Theorems 3.1 and 4.1 and Corollary 3.4
by roughly the factor of log|A|, for general matrices A.
For matrices A with Toeplitz/Hankel structure such that

nlog|A| = 0(2"0'5_5) and for a fixed positive constant §, the
improvement is by the factor of logn, and the new bounds
are within the factor of (m(n)/n)u(logn)/logn, from the
information lower bound of the order of n? log |A].

5. ACCELERATED EXTENDED
EUCLIDEAN ALGORITHM

DEFINITION 5.1. |z] and [z] are two integers closest to

a real number z such that |z] <z < [z]. {z} =z — |z].

||A|| = max|a; ;| for any real matrix A = (a;,j)i,;. m mod n
0.

is defined to be m — n|m/n] for m,n € Z and n > 0. (Here

we slightly abuse the notation: in this section n is not related
to the matrix dimension n in the preceding sections.)

ALGORITHM 5.2 (EUCLIDEAN ALGORITHM).
INPUT: A pair of natural numbers m > n.

OurtpuT: ged(m,n).

COMPUTATION: Write £o = m, x1 = n. Compute
Ti+1 = x;—1 mod z;

fori=1,2,... k, until 41 = 0. Output .
DEFINITION 5.3.
1 0 oo 00
QO - (0 1) ) Qk’-’rl - (OO OO) )

Qi=Qi (Lz“i/m (1)) for1 <i<k.

REMARK 5.4.

(i) zi > xit1 >0, i > Tiy1 +xip2 for 1 =0,1,...  k— 1.

(i) det(Q;) = (—1)" and (’7’;‘) = Q (x“" ) for i =

it1
0,1,...,k

. a; b;

(iii) Write Q; = e d ) then b; = a;—1, di = ¢i—1 for

(2 3

1=1,2,.. .,k:. Since a; = aifll_l'ifl/l‘ij +ai—2, ¢ =
Ci—1|®i—1/x;i| + ci—2, we have a; > a;—1, ¢; > ¢i—1 for
i = 2,3,...,k. Furthermore, since ap > co, a1 > ci,
we have a; > ¢; for i = 2,3,..., k. Therefore,

(iv) |Q:ill = ai for i = 0,1,...,k and [|Q:]| > [|Qi-1]| +
1Qi—2|| for i =2,3,...,k.

(v) Qi—1 can be computed from Q; by a;—» = a; mod a;_1,
ci—2 = c¢; mod ¢;—1 for i = 3,4,... k.

(vi) Combining (i) and (iv), we have m/2 < z;||Q;|| < m
fori=0,1,...,k

For the input of another pair of natural numbers m* > n”*,
the Euclidean Algorithm computes the sequences {z; }f;
and {Q; % . When m/n =m"/n", it is obviously that the
two sequences {Q;}F_; and {Qf}f;l are identical. When
m/n and m* /n" are very close to each other, we believe that
the first several terms of {Q;}*_; and {Qf}f;l are the same.
The next theorems show us some sufficient conditions under
which Q; = Q7 for a given i. Therefore, we may accelerate
our computation of @; by using some smaller integers m* <
m and n* < n.

THEOREM 5.5. Given two pairs of natural numbers m >
n and m* > n*, then

min(z;z;y 1, Tig17;) > |mn" —nm”| = Q; = Q5.



Proor. By Remark 5.4 (i), min(z;z]q,zj112]) >
|[mn* — nm*| for 5 = 0,1,...,i. We prove Theorem 5.5
by induction. Qo = Qg is trivial. Suppose Q-1 = Qj_1,

then
m m" Tj—1 T;
_ ‘1
* _—ijl J - )
n o n xj ]

. * *
- min(z; 711, Tj+12;)
p

J

Lk — Lk
T;T} T;T}
«
. Tj+1 Tj41 . Tj—1
= min (L,% = min J .
Z; Z‘j

So |wj—1/a;] = |aj1/e]], Q= @} for j=1,2,....i. O

Tj—1 z;_1|  |mn* —nm*| <

Z; X

COROLLARY 5.6. Given a pair of natural numbers m > n,
let m* = |m/A], n* = |n/A] for a natural number X\. Then

m” 24 [|Qin |- Qi = Qi=Qi.

PROOF. |mn* —nm*| = |(m m*A)n* —(n—n )\) <
mIA < m, x5 > Ty > gl > T > gge - BY
Theorem 5.5, @Q; = Q;. [0

Tl

THEOREM b5.7. Given a pair of natural numbers m > n,
let m* = |m/A], n* = |n/A] for a natural number X\. Then

Tipe > |Qill = Qi=Q;.

Proor. Write () =@~ (™) for j =0,1,...,i+1.
v; J n

J

Uj+1) _ 1 u;j o
) (”Hl) B <1 _L$;/$;+1J) <”J') =t = v for

7=0,1,... %
(ii) uj ) _ x; )\+Q*71 m—m*A
vj i n—n'A )’

Note that the first row of Q;“l is two integers (one is > 0,
another is < 0) bounded by [|Qj_+|| and the second row of
Q; " is two integers (one is < 0, another is > 0) bounded
by [|Q;||. Therefore v; > (x4 — [|Q7IDA > 0 and u; —v; >

(@7 = 11Qj-1IDA = (zj41 + 1QFIDA = (f12 — 1Qj41]DA >0
for j = 1,2,...,i. Now we have ug = m, u1 = n, ujt1 =
uj—y modu; for j =1,2,...,i. Sou; = xzj, Q; = Qj for

j=0,1,...,4. O

THEOREM 5.8. Given a pair of natural numbers m > n,
let m* = [m/\|, n* = [n/\]| for a natural number X. Sup-
pose m* > 2k% and ||Q;|| < k < ||Qi+1]| for a natural
number k, then ||Q;|| < k < ||Qj+1|| for some j such that
i—2<j<i+3.

PrOOF. Since z; > 2HQ = k2> [|Q7 ||, by Theorem 5.7,

Qi—> = Qi_o. If [|Qill > k/2 then [|Qit2|| > 2||Qil| > F,
|Q;ll <k < ||Qj+1]| for some j such that : —2 < j <i+1.

From now on we assume ||Q;|| < k/2, therefore, 4 ||Q;]| -
|Q: |l < 2k? < m*. By Theorem 5.5 and Corollary 5.6, we
have Q;—1 = Q;_; and

|mn —nm | m_ 2||Czl|| <1

T} xixi

CasE L. |zi—1/z;| = |zi_/z] ], then Q; = Q;. From

m m* — O T; r;
n n' ) T \zig1 zig )’

and
( m ) <|IQ I ||Q:,1||) ( ri x )
Ti41 xH_l 1 Tit1 $Z+1 )
we have
[mziyy —m x| = [|QF|| - [mn” — nm”| < km.
Hence
Tiy1 < %(Z}W-z;‘“) < % + % = 32_72,

3m
1Qi+all > 3|Qisall > 5——— > k.
Ti41

CasE IL. |zi—1/x;] = |zj_1/zi| — 1, then Q; = Qj (7} 1).

From
m m" " i ]
n nt) Qi Tit1 — Ti T ’
i+1 —Ti T4
and
m ||Qz I 11QF-1ll T ]
Ti+1 — Ti z+1 1 Lit1 — T $;+1 ’
we have
matys +m* (2 — i) = Q] - [mn* — nm’| < km.
Hence
m m
Tiv2 ST =it < o < o 1Qi+21l > T > k.
CasE III. |z;—1/xi| = |zj_/zi| + 1, then Q] = Ql(_i -
From
m m*\ _ o % z;
n nt )T V' \&iq1 xig—xi)’
and

m m* _ (11Qsll ||Qz | i
Tit1 T — 5 0 x1+1 Tiy— i)’

we have
m(z; —xip) +m zipr = |Qi]] - Imn” — nm”| < [|Qilm.
Hence
m
okt < < LR Co1Qui @l >

In a word, we find ||Q]|| <k<||Qjsi||fori—2<j<i+3
in all the above cases. []



ALGORITHM 5.9  (SELECTED OUTPUT OF THE EEA).

INPUT: A pair of natural numbers m > n, and an integer
h > 0.

OutpuT: The unique Qi such that ||Qrll < 2" < ||Qrr1]].

COMPUTATION: Let d = |logm].

1. When h < |d/2] —1, let A = 2772 m™ = |m/A],
n* = [n/A], then 2*"*1 < m* < m/2. We first apply
the algorithm for the input (m™,n*,h) and have the
output Q;. Theorem 5.8 tells us that Qi—> = Qi_»
and ||Qr|] < 2" < ||Qrr1|| for some i —2 <k <i+3.
We may compute Qi—2 from Q; and find Qk in a few
Euclidean steps.

2. When |d/2] < h < d— 1, we first apply the algo-
rithm to find |Qi]] < 21%/2) < ||Qit1||. Next we ap-
ply the algorithm again for the input (x;, xit1, |h/2])
and have the output Qj. Now we have Qi; = Qin,
1Qitill < 2" |Qitjtoll > 2" Then because
1Qkll < 2" < ||Qrsall for somei+j—2 <k <i+j+3,
we may find Qr in o few Euclidean steps.

3. When h > d, we first apply the algorithm to find
1Qill < 2971 < ||Qix1ll. Then because [|Qx|| < 2" <
[|Qr+1]| for some i <k <i+4, we may find Qr in a
few Euclidean steps.

BIT-COMPLEXITY OF THE SOLUTION: Let f(d,h) be the
bit-cost of the algorithm for the input (m,n,h) where d =
|logm], we have
F@h+1,h) +O(u(d), fh<|5]-1;
Fd, 5] + f(d— 5], [5]) + O(u(d)),
if 5] <h<d-1

Especially, let F(h) = f(2h + 1, h) then

F(h) = 2F(h/2]) + O(n(2h)),
by which we have

F(h) = O(u(2h) log h).

Therefore
14|logh] )
fam=3 (FUm2h+ow@) .,
= O(u(d)logh)

REMARK 5.10. Given three natural numbers m,n, k, m >
n, we may apply Algorithm 5.9 to find the matrix Q; = (¢ ”)

\cd
such that ||Qil] < m/k < ||Qis1|l. Write y = (=1)'mit1.
Since (71 ) = (1)’ 4 7B (™), we have

i+1 c a n
ly| < T <k, 1<a=]Qil| <m/k, n=y/amodm.
Qitall

Replacing m by g, n by r, y by , and a by §, turns the
above equation into equation (1.1). Now we arrive at

THEOREM 5.11. Algorithm 5.9 solves the problem (1.1) of
rational number reconstruction by using p(q) bit operations

for p(q) in (1.9).

6. ACKNOWLEDGEMENTS

We are grateful to Joachim von zur Gathen for his expert
advice on the state of the art of the bit complexity of ratio-
nal number reconstruction and to him and the referees for
helpful comments on the original draft of our paper.

7. REFERENCES
[1] J. Abbott, M. Bronstein, T. Mulders. Fast
Deterministic Computations of the Determinants of
Dense Matrices. Proceedings of International
Symposium on Symbolic and Algebraic Computation
(ISSAC’99), 197-204, ACM Press, New York, 1999.

[2] A. V. Aho, J. E. Hopcroft, J. D. Ullman. The Design
and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Massachusetts, 1974.

[3] R. P. Brent, F. G. Gustavson, D. Y. Y. Yun. Fast
Solution of Toeplitz Systems of Equations and
Computation of Padé Approximations. Journal of
Algorithms, 1:259-295, 1980.

[4] D. Bini, V. Y. Pan. Polynomial and Matriz
Computations, Vol.1: Fundamental Algorithms,
Birkh&auser, Boston, 1994.

[5] G. Cooperman, S. Feisel, J. von zur Gathen, G.
Havas. GCD of Many Integers. Computing and
Combinatorics, Lecture Notes in Computer Science,
1627:310-317, Springer, Berlin, 1999.

[6] D. G. Cantor, E. Kaltofen. On Fast Multiplication of
Polynomials over Arbitrary Rings. Acta Informatica,
28(7):697-701, 1991.

[7] J. D. Dixon. Exact Solution of Linear Equations
Using p-adic Expansions. Numerische Math.,
40:137-141, 1982.

[8] W. Eberly, M. Giesbrecht, G. Villard. On Computing
the Determinant and Smith Form of an Integer
Matrix. Proc. 41st Annual Symposium on
Foundations of Computer Science (FOCS’2000),
675-685, IEEE Computer Society Press, Los
Alamitos, California, 2000.

[9] J. von zur Gathen, J. Gerhard. Modern Computer
Algebra, Cambridge University Press, Cambridge,
UK, 1999.

[10] E. Kaltofen, V. Y. Pan. Processor Efficient Parallel
Solution of Linear Systems over an Abstract Field.
Proceedings of 3rd Annual ACM Symposium on
Parallel Algorithms and Architectures (SPAA’91),
180-191, ACM Press, New York, 1991.

[11] R. Moenck. Fast Computation of GCDs. Proceedings
of 5th ACM Annual Symposium on Theory of
Computing, 142-171, ACM Press, New York, 1973.



[12]

[13]

[14]

[15]

[16]

R. T. Moenck, J. H. Carter. Approximate Algorithms
to Derive Exact Solutions to Systems of Linear
Equations. Proceedings of EUROSAM, Lecture Notes
in Computer Science, 72:63—73, Springer, Berlin,
1979.

T. Mulders, A. Storjohann. Certified Dense Linear
System Solving, preprint, 2001.

V. Y. Pan. Complexity of Parallel Matrix
Computations. Theoretical Computer Science,
54:65-85, 1987.

V. Y. Pan. Computing the Determinant and the
Characteristic Polynomials of a Matrix via Solving
Linear System of Equations. Information Processing
Letters, 28:71-75, 1988.

V. Y. Pan. Parametrization of Newton’s Iteration for
Computations with Structured Matrices and
Applications. Computers € Mathematics (with
Applications), 24(3):61-75, 1992.

[17]

[18]

[19]

V. Y. Pan. Parallel Complexity of Computations
with General and Toeplitz-like Matrices Filled with
Integers and Extensions. SIAM Journal on
Computing, 30:1080-1125, 2000.

V. Y. Pan. Structured Matrices and Polynomials:
Unified Superfast Algorithms, Birkhduser/Springer,
Boston/New York, 2001.

V. Y. Pan. Randomized Acceleration of Fundamental
matrix Computations. Proc. of Symposium on
Theoretical Aspects of Computer Science
(STACS’2002), Lecture Notes in Computer Science,
Springer, Berlin, 2002.

V. Y. Pan. Can We Optimize Computations with
Structured Matrices? preprint, 2002.

A. Schénhage. Schnelle Berechnung von
Kettenbruchentwicklungen. Acta Informatica,
1:139-144, 1971.

A. Schonhage, V. Strassen. Schnelle Multiplikation
grosse Zahlen. Computing, 7:281-292, 1971.



