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Abstract

Recent progress in the study of structured matrices shows advantages of unifying the treat-
ment of various classes of such matrices. We recall some fundamental techniques for such a
unification and then specify it in full details for Newton’s iteration, which rapidly improves
an initial approximation to the inverse matrix by performing two matrix multiplications per
recursive step. The iteration is particularly suitable forn× n structured matrices, represented
with O(n) entries of their short generators rather than with their ownn2 entries. Based on
such a representation, matrix operations are performed much more rapidly and use much less
memory space. A major problem is to control the length of the generators, which tends to grow
quite rapidly in the iterative process. Two known methods solve this problem for Toeplitz-
like and Cauchy-like matrices. We extend both methods to a more general class of structured
matrices and estimate the convergence rate as well as the computational complexity. Some
novel techniques are introduced in this study, in particular for the estimation of the norms of
the inverse displacement operators. © 2001 Elsevier Science Inc. All rights reserved.
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1. Introduction

1.1. Four basic classes of structured matrices and their four basic properties

In Table 1, we display four basic classes of structured matrices, which themselves
are highly important in numerous applications to sciences, engineering, and commu-
nication and also have been naturally extended in terms of the associated operators
to cover several other popular and important classes of structured matrices.

The matrices of the four classes of Table 1:
(1) are represented with a few parameters (fromm to m+ n for anm× n matrix),
(2) can be multiplied by vectors much faster than general matrices,
(3) are closely related to some operations with polynomials, and
(4) can be naturally associated with some linear operators of shift and scaling.

We refer the reader to [4,32] on property (3), will specify properties (1) and (2) in
Table 2, will extend them to more general classes of structured matrices in Section
1.4, and will comment below on property (4). The latter property as well as properties
(1) and (2) characterizes the more general class of structured matrices.

1.2. The displacement rank approach and our main subject

The modern study of structured matrices was largely motivated by the seminal
paper [18] and, in particular, by the basic concept of thedisplacement rankintro-
duced there. The idea was to measure the Toeplitz-like (or Hankel-like) structure of
a matrixM by the rank of its displacement, that is, of the image matrix of some linear
shift operators applied to the matrixM.

The rank of the displacement (called the displacement rank) ofM is at most 2 for
Toeplitz (and Hankel) matrices, and anm× n matrix M is said to be ofToeplitz(or
Hankel) typeor, alternatively, to beToeplitz-like(or Hankel-like) if the rankr of its
displacement is small (say, bounded by a small constant independent ofm andn). In
this case, the matrix can be represented by(m+ n)r entries of its short displacement
generators rather than by its ownmnentries. This enables more efficient storage of
such matrices in computer memory as well as much faster computations with them
[22].

Toeplitz-like and Hankel-like matrices are omnipresent in scientific and engineer-
ing computations, but there are other popular matrix structures too.

Several important classes of structured matrices can be defined and treated simi-
larly in a unified way based on their association with other linear operators, in par-
ticular the scaling operators of multiplication by diagonal matrices and the operators
that combine scaling and shifts. There are conceptual and computational benefits of
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Table 1
Four classes of structured matrices

Toeplitz matrices,T = [ti−j ]n−1
i,j=0 Hankel matrices,H = [hi+j ]n−1

i,j=0
t0 t−1 · · · t1−n

t1
...

...
.
.
.

.

.

.
...

... t−1
tn−1 · · · t1 t0




h0 h1 · · · hn−1
h1 q q hn

.

.

. q q
.
.
.

hn−1 hn · · · h2n−2



Vandermonde matrices,V = [tji ]n−1
i,j=0 Cauchy matrices,C = [ 1

si−tj
]n−1
i,j=0

1 t0 · · · tn−1
0

.

.

.
.
.
.

.

.

.

1 tn−1 · · · t
n−1
n−1




1
s0−t0

· · · 1
s0−tn−1

.

.

.
.
.
.

1
sn−1−t0

· · · 1
sn−1−tn−1



Table 2
Parameters and flops counts for matrix representation and its multiplication by a vector

Matrix class Number of parameters Number of flops required for
in them× n matrix multiplication by a vector

General mn 2mn−m− n

Toeplitz / Hankel m+ n− 1 O((m+ n) logn)

Vandermonde n O((m+ n) log2 n)

Cauchy m+ n O((m+ n) log2 n)

unified treatment of various classes of structured matrices, where the operators are
unspecified and viewed as symbolic and where the computations with matrices are
performed with their displacements, that is, with the images of the operators applied
to the matrices (see [4,24,26,31,32]). This will be our approach in the present paper.

The approach can be applied to various algorithms for various computational
problems [26,32]. Presently, however, we will narrow our goal to the detail study
of Newton’s iteration for the computation of the inverse of a structured input matrix
and will analyze the resulting algorithms.

Strong numerical stability of Newton’s iteration is well-known (see, e.g., [38]);
furthermore, the iteration becomes particularly effective where the input matrix is
structured. In this case, the main basic operation of matrix multiplication is simpli-
fied dramatically and the entire computation uses much smaller memory and com-
puter time than for general matrices provided that the matrix structure is preserved
throughout the computation. The preservation of matrix structure, however, is a non-
trival problem, which will be our main subject.
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1.3. Our results

We present Newton’s iteration for the computation of the inverses or generalized
inverses of various structured input matrices. Each iteration step is reduced to two
multiplications of structured matrices. We elaborate two methods that preserve ma-
trix structure throughout the computation, based either on truncation of the smallest
singular values of the displacement or on the substitution of approximate invers-
es for the inverse matrix into its displacement expression. With each of the tech-
niques, every iteration step is performed by using nearly linear time and nearly opti-
mal memory space, in line with the estimates of Table 2. We also prove superlinear
convergence with each of these techniques. The algorithms and their analysis are
presented in terms of operations with symbolic displacement operators and symbolic
displacements of the matrices involved, which makes the presentation unified for
various matrix structures. The study of the convergence rate requires estimates for
the norms of the inverse displacement operators. We obtain such estimates by using
three distinct techniques of some independent interest.

1.4. Related work

Newton’s iteration for matrix inversion was proposed by Schultz in 1933 and
was well studied (see [38] and bibliography therein). The Toeplitz-like case was
studied in [2,4,27–30,33] and the Cauchy-like case in [40]. The unified approach
was treated so far only in the two proceedings papers [36] (confined to the variant
with the truncation of the singular values for both the iteration itself and the estimate
of the inverse operator norms) and [37]. In Section 17, we will comment on the
further ongoing research on our subjects.

1.5. Organization of our paper

We organize the rest of our paper as follows. In the following three sections,
we state some basic definitions and assumptions and recall some auxiliary results
for the unified study of structured matrices represented by their associated opera-
tors and displacements. In Section 5, we recall the definitions and basic facts for
the matrix and operator norms. In Section 6, we brielfly recall Newton’s iteration
for general matrices and outline its modification where the input matrix is struc-
tured. The modification involves a subroutine for the compression of generators of
the computed approximate inverses. We propose two variants of such a subroutine in
Sections 7 and 9 (as Subalgorithms 7.1 and 9.1). In Sections 8 and 10, we analyze the
resulting variants of our Newton-structured iteration and estimate its computational
complexity and convergence rate. Our study in Sections 7–10 is elaborated for the
displacement operator of Sylvester type. In Section 11, we extend the algorithms
to the case of the operators of Stein type. In Sections 12–15, we estimate the norm
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ν− of the inverse displacement operators, required in our estimates for the output
errors and the convergence rate of our algorithms. In Section 16, we breifly compare
the unification approach with the transformation approach, which reduces to each
other the inversion of structured matrix of various classes. In Section 17, we briefly
comment on the extension of our algorithms to the cases where the displacement
operator is singular and/or where no initial approximation to the inverse is available
as well as to some other important computations with structured matrices.

2. Displacement operators and compressed displacement representation of
structured matrices

The four classes of matrices of Table 1 are naturally associated with various linear
displacement operators Lof Sylvester type(also calledLyapunov typewhen they are
applied over the functional spaces),

L(M) = ∇A,B(M) = AM−MB, (2.1)

and/orStein type,

L(M) = DA,B(M) = M − AMB. (2.2)

HereA and B are fixedn× n matrices and are said to beoperator matrices; the
image matricesL(M) are said to be thedisplacementsof M. The operators of the
two types are closely related to each other.

Theorem 2.1. ∇A,B = ADA−1,B if the operator matrix A is nonsingular, and
∇A,B = −DA,B−1B if the operator matrix B is nonsingular.

Among the customary choices forA andB are the matrices of the scaling and
shifts operators,D(s), Zf , ZT

f , which we will define next.

Definition 2.1. For a fixed vectors= (si )
k−1
i=0 , D(s) = diag(s0, . . . , sk−1) denotes

a k × k diagonal matrix.ej is the(j + 1)th coordinate vector.vT andWT are the
transposes of a vectorv and a matrixW, respectively.v∗ andW∗ are the Hermitian
(conjugate) transposes.Z = Z0 =∑i ei+1eT

i is the unit lower triangular Toeplitz
matrix, defined by its first columne1 = (0, 1, 0, . . . , 0)T.

J =
 1

q
1


is thereflection matrix, andtn = (tni ) for a vectort = (ti). Zf = Z + f e0eT

n−1 de-
notes the unitf-circulant matrices (for a fixed scalarf).

We immediately observe that
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Table 3
Operator matricesA,B of the operatorsDA,B associated with the four basic classes of structured ma-
trices

Matrix class Matrix pair(A,B) for the operatorDA,B TheDA,B -rank

Toeplitz (Ze, Z
T
f ) or (ZT

e , Zf ) At most 2

Hankel (Ze, Zf ) or (ZT
e , ZT

f ) At most 2

Vandermonde (D(t),ZT
e ) or (D(t),Ze) 1

Cauchy (D−1(s),D(t)) 1

ZT
e = JZeJ, ZT

1/f = Z−1
f for any scalarseandf /= 0. (2.3)

Definition 2.2. Z(v) is the lower triangular Toeplitz matrix
∑n−1

i=0 viZ
i . Zf (v) is

anf-circulant matrix
∑n−1

i=0 viZ
i
f ; in particularZ1(v) is a circulant matrix.

To each linear operatorL = ∇A,B or L = DA,B , a class of structured matricesM
is associated such that the rankρ of the displacements∇A,B(M) and/orDA,B(M) of
the application of this operator to a matrixM is small relatively to the matrix size.
Or equivalently,

L(M) = GHT, (2.4)

G andH aren× ρ matrices,ρ is minimal for the three given matricesM, A andB
and is small relatively to the matrix size.

We will call the matrix pair(G,H) by bothgeneratorfor the displacementL(M)

andL-generatorfor the matrixM, and we will call the rank ofL(M) by theL-rank
of M (for the operatorsL of Eqs. (2.1) and (2.2)) (see [4,18,31,32]). We will also say
displacement rankanddisplacement generator, whereL is unspecified or is known
by default.

Table 3 represents some examples of operator matrices associated naturally with
the matricesM of Table 1 and with the ones having similar structure. The matrices
whoseL-rank is small for the operatorL of the respective lines of Table 3 will be
called the matrices ofToeplitz, Hankel, Vandermonde, andCauchytypes, respective-
ly. We will call themToeplitz-like, Hankel-like, Vandermonde-like, andCauchy-like
matrices, respectively if their shortL-generators are available. (Some authors use the
nomenclature Vandermonde-like for a distinct class of matrices [13,23].) The above
definitions cover several important classes of structured matrices such as Sylvester
(resultant), Frobenius, Loewner, and Pick matrices [4,24]. Furthermore, the block
submatrices, the products and the inverses of structured matrices inherit their struc-
ture [4,18,26,31,32], that is, have smallL-rank for appropriate operatorsL too. There
are also some natural extensions of the above matrix classes, such as polynomial
Vandermonde-like matrices [21], Toeplitz + Hankel-like matrices [3,4,16] and block
Toeplitz matrices.

A linear operatorL is nonsingularif the equationL(M) = 0 implies thatM = 0.
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In this paper, we will deal with nonsingular displacement operatorsL that are
readily and(bi)linearly invertible, that is, we have simple expressions of matrices
M via the generator matricesG andH and the operator matricesA andB, which
are linear in the displacementL(M) and bilinear in the entries of the generator
matricesG andH. Here are some examples from [32,39], where such expressions
are presented also for several other operators (see [1,4,9,10,16,18] on some earlier
works and see [32,39] on the extensions to singular operators).

Theorem 2.2. Let G and H be a pair ofn× α matrices,

G = (g1, . . . , gα), H = (h1, . . . , hα), (2.5)

and letL(M) = GH T (see(2.1), (2.2), and(2.4)). Then we have

(a)

(e − f )M =
α∑

j=1

Ze(gj )Zf (Jhj ), where L = ∇Ze,Zf , e /= f,

(1− ef )M =
α∑

j=1

Ze(gj )Z
T
f (hj ), where L = DZe,Z

T
f
, ef /= 1,

(e − f )M =
α∑

j=1

Ze(gj )Zf (hj )J, where L = ∇Ze,Z
T
f
, e /= f,

(1− ef )M =
α∑

j=1

Ze(gj )Z
T
f (Jhj )J, where L = DZe,Zf , ef /= 1.

(b)

(1− f Dn(t))M =
α∑

j=1

D(gj )V (t)ZT
f (hj ),

whereL = DD(t),ZT
f
, tni f /= 1 for all i,

(1− f Dn(t))M =
α∑

j=1

D(gj )V (t)JZf (Jhj ),

whereL = DD(t),Zf
, tni f /= 1 for all i ,

(1− f Dn(t))M = D(t)
α∑

j=1

D(gj )V (t)Zf (Jhj ),

whereL = ∇D−1(t),Zf
, tni f /= 1, ti /= 0 for all i ,

(1− f Dn(t))M = D(t)
α∑

j=1

D(gj )V (t)ZT
f (Jhj ),
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whereL = ∇D−1(t),ZT
f
, tni f /= 1, ti /= 0 for all i.

(c) For operators L of Cauchy type, we have

M =
α∑

j=1

D(gj )C(s, t)D(hj ),

whereL = ∇D(s,D(t)), si /= tk for all i, k,

M =
α∑

j=1

D(gj )

(
1

1− si tk

)
i,k

D(hj ),

whereL = DD(s),D(t), si /= tk for all i, k.

Remark 2.1. The above expressions can be immediately extended to some other
operatorsL based on the equations

(∇A,B(M))T = −∇BT,AT(MT),

(DA,B(M))T = DBT,AT(MT).

Theorem 2.2 enables immediate extension of the computational cost bounds of
Table 2 to more general classes of structured matrices.

Definition 2.3. vα = vα,n(L) denotes the arithmetic cost (in flops) of multiplica-
tion by a vector of ann× n matrix M represented by itsL-generator of lengthα.
mα,n = mα,n(L,L1) denotes the arithmetic cost of multiplication of a pair ofn× n

matrices, where the input matrices are represented by theirL- andL1-generators of
length O(α) for nonsingular operatorsL andL1, respectively.

Theorem 2.3. We havevα,n(L) = O(αn logn) for L = ∇A,B, L = DA,B for any
pair of matricesA,B from the set{Ze,Z

T
e , Zf ,ZT

f } and for any pair of scalars e and

f; vα,n(L) = O(αn log2 n) for L = ∇A,B, L = DA,B, whereA = D(s), B = D(t),
or A = D(s), B ∈ {Zf ,ZT

f }, or A ∈ {Zf ,ZT
f }, B = D(s) for any pair of vectorss

andt and any scalar f.

The displacement rank approach can be represented by the following flowchart:

COMPRESS, OPERATE, RECOVER

To take advantage of the matrix structure, we will COMPRESS the structured in-
put matricesM via their shortL-generators based on Theorem 2.2 or its generaliza-
tion, then OPERATE withL-generators rather than with the matrices themselves, and
finally RECOVER the output from the computed shortL-generators.



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

V.Y. Pan et al. / Linear Algebra and its Applications 00 (2001) 000–000 9

3. Basic matrix operation performed with displacements

The following three theorems express the operator and generator matrices for the
linear combinations, products and inverses of matrices. They are well known [18,31]
and can be easily verified.

Theorem 3.1. For any linear operator L, any pair ofm× n matrices M and N, and
any pair of scalars a and b, we haveL(aM + bN) = aL(M)+ bL(N).

Theorem 3.2. For any5-tuple(A,B,C,M,N) of matrices of compatible sizes we
have

∇A,C(MN)= ∇A,B(M)N +M∇B,C(N),

DA,C(MN)= DA,B(M)N + AM∇B,C(N).

Furthermore,

DA,C(MN) = DA,B(M)N + AMBDB−1,C(N)

if B is a nonsingular matrix, whereas

DA,C(MN) = DA,B(M)N − AMDB,C−1(N)C

if C is a nonsingular matrix.

Theorem 3.3. Let a pair of n× α matrices G and H form aDA,B-generator of
lengthα for a nonsingular matrix M. WriteM−1G = −U andH TM−1 = WT. Then
∇B,A(M−1) = UWT. Furthermore,

DB,A(M−1) = BM−1DA,B(M)B−1M−1

if B is a nonsingular matrix, whereas

DB,A(M−1) =M−1A−1DA,B(M)M−1A

if A is a nonsingular matrix.

Theorem 3.2 motivates the following definition [32].

Definition 3.1. Operator pairs(∇A,B,∇B,C), (DA,B,∇B,C), (DA,B,DB−1,C), and
(DA,B,DB,C−1) are calledcompatible.

Theorem 3.4. For a pair of compatible operators L andL1 associated with opera-
tor matrix pairs of Theorem2.3, we havemα,n(L,L1) = O(αvα,n(L)+ αvα,n(L1)).

Our next assumption is motivated by Theorems 2.3 and 3.4.

Assumption 3.1. Hereafter, we will always deal with nonsingular operatorsL and
L1 having linear inverse operators and such that
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mα,n(L,L1) = O(αvα,n(L)+ αvα,n(L1)),

vα,n(L) = O(αn logd n), d 6 2.

We will call such operatorsstrongly regular.

4. Orthogonal displacement representation of structured matrices

For a fixed pair of operatorL and matrixM, we may choose theorthogonal(SVD-
based) L-generator matricesto achieve better numerical stability [2,27,29,33]). That
is, we first compute the SVD of the displacementW = L(M),

W = UR2V T, (4.1)

U∗U = V ∗V = Iρ, R = diag(σ1, . . . , σρ),

σ1 > · · · > σρ > 0, ρ = rank(W),
(4.2)

whereU andV arem× ρ andρ × n matrices, respectively, andσ 2
1 , . . . , σ 2

ρ denote
the singular values of the matrixW, and then we write

G = UR, H = V R. (4.3)

Remark 4.1 (see[29]). The SVD computation is quite inexpensive in this case,
involving O(nα2 + α(log log(1/δ) logα) flops for ann× n matrix M given with its
L-generators of lengthα and forδ denoting the output approximation error bound for
the SVD; we will ignore the latter term assuming realistically that(log log(1/δ)) logα

= O(nα). The computation of the SVD of the displacementL(M) given with its
longer L-generator of lengthα enables us to achieve maximal compression of a
matrixM, that is, to obtain its shortestL-generator. An alternative algorithm of Prop-
osition A.6 of [28] for the same compression task uses O(nα2) flops and involves no
SVDs. Thus, we will usually assume that our structured matrices are given with their
shortestL-generators.

5. Matrix and operator norms

We will need some further definitions in addition to the ones of Section 1.

Definition 5.1. ‖M‖ denotes any fixed operator norm of a matrixM. ‖M‖l is the
l-norm,l = 1, 2,∞ (see [4,7]).κ(M) = cond2(M) = σ 2

1 (M)/σ 2
ρ (M), whereσ 2

i (M)

is theith singular value ofM (see (4.1) and (4.2)),i = 1, . . . , ρ, ρ = rank(M).
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Theorem 5.1(see [4,7]).‖M‖2 = σ 2
1 (M) for every matrix M, andκ(M) = ‖M‖2

‖M−1‖2 for ann× n nonsingular matrixM = [mi,j ]. Furthermore, we have‖M‖l/√
n 6 ‖M‖2 6 |M‖l√n, l = 1,∞; ‖M‖1 = ‖MT‖∞ = maxj

∑
i |mi,j |, ‖M‖22 6‖M‖1‖M‖∞.

Definition 5.2. We define thenormsof a nonsingular linear operatorL and its in-
verseL−1:

ν = νρ,l (L) = sup
M

(‖L(M)‖l/‖M‖l ),

ν− = ν−ρ,l (L) = νρ,l (L
−1) = sup

M

(‖M‖l/‖L(M)‖l ),

wherel = 1, 2,∞ and the supremum is over all matricesM having positiveL-rank
of at mostρ. We also define thecondition numberof the operatorL:

κ = κ(L) = cond(L) = νν− = νρ,l (L)ν−ρ,l (L).

6. The Newton-structured iteration

Let us assume that a crude initial approximation to∇A,B(M−1) is available, sup-
plied, say by the preconditioned conjugate gradient method, which converges to the
output rather slowly, with linear rate [5], or by a direct solution algorithm performed
with rounding. The approximations can be rapidly refined by means of Newton’s
iteration for matrix inversion:

Xi+1 = 2Xi − XiMXi, i = 0, 1, . . . (6.1)

Matrix equation (5.1) implies that

I −MXi+1 = (I −MXi)
2, ‖I −MXi+1‖ 6 ‖I −MXi‖2

for all i. That is, we have quadratic convergence if‖I −MX0‖ < 1. This is a special
case of the residual correction process [17, p. 86]. The iteration is numerically stable
even whereM is a singular matrix (in this case the iteration converges to the Moore–
Penrose generalized inverseM+) and can be accelerated based on various policies
of scalingXi+1 for all i and choosing an initial approximationX0 [38]. We will
only study unscaled Newton’s iteration (see our comments on scaling in Section 17).
Furthermore, to make our analysis more transparent, we will work with iteration (6.1)
though practically it is slightly simpler to perform the computations with the matri-
ces−Xi and−Xi+1 and to rely on the equations−Xi+1 = (−Xi)(2I +M(−Xi)),
i = 0, 1, . . . [33].

Each step (6.1) is essentially two matrix multiplications, which use O(α2n logd n)

flops,d 6 2, for structured matrices of Theorems 2.3 and 3.4. In particular, for struc-
tured matrices,M andX0, having short∇A,B- and∇B,A-generators, respectively, the
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iteration can be performed efficiently by operating with short∇-generators of the ma-
tricesM, Xi , andMXi (orXiM). This, however, requires some special techniques for
controlling the length of the∇B,A-generators ofXi , which tends to be tripled at every
iterative step. Similar comments apply whereDA,B- andDB,A-generators are used.

Two methods proposed in [27,30,33,40] counter such a mishap in the case of
Toeplitz-like and Cauchy-like matrices. Our main goal in the present paper is to
extend them to various other classes of structured matrices in a unified way and to
analyze the resulting algorithms.

Here is the basic observation of [27,30,33,40]. By assumption, rank(∇B,A(M−1))

= ρ. Therefore, the matricesXi , which approximateM−1 closely for largeri, have
a nearby matrixM−1 of ∇B,A-rankρ. Thus, our strategy is to replaceXi in (6.1) by
a nearby matrixYi having∇B,A-rank at mostρ and then to restart the iteration with
Yi instead ofXi .

Let us next formally describe this approach for Sylvester type operators. (On the
extension to Stein type operators, see Section 11.)

Algorithm 6.1 (The Newton-structured matrix iteration for the Sylvester type oper-
ators).

Input. A positive integerρ, a pair ofn× n matricesA andB, ann× n nonsingular
matrix M having∇A,B-rankρ and defined by its∇A,B -generator(G,H) of length
ρ, a matrixY0 (an initial approximation to the matrixM−1) given with its∇B,A-
generator of length at mostρ, a bound on the numberN of Newton’s iteration steps,
and a subroutineR for the transition from a∇B,A-generator of length at most 3ρ for
ann× n matrix approximatingM−1 to an∇A,B -generator of length at mostρ for a
nearby matrix.

Output. A ∇B,A-generator of length at mostρ for a matrixYl+1 approximatingM−1.

Computations.Recursively compute∇B,A-generators of length at most 3ρ for the
matrices

Xi+1 = Yi(2I −MYi), i = 0, 1, . . . , N − 1, (6.2)

and∇B,A-generators of length at mostρ for the matricesYi+1 defined by a transfor-
mation fromXi+1 by means of the subroutineR.

Theorem 6.1(see [40] or [32]).Let the assumptions of Algorithm6.1 hold. Then
for any i = 0, 1, . . . , a ∇B,A-generator of length at most3ρ for the matrixXi+1 =
2Yi − YiMYi can be computed at the cost of performingO(ρvρ,n(∇B,A)+ ρvρ,n

(∇A,B)) flops, which isO(ρ2n logd n) flops ford 6 2 under Assumption3.1.

To complete the description of the Newton-structured iteration, it remains to spec-
ify the subroutineR, which controls the length of the computedL-generators. We will
do this in two ways, to be specified in Sections 7 and 9.
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7. Newton-structured iteration I: compression by the truncation of singular
values

The following result enables us to compress a matrixYi lying nearXi andM−1.

Theorem 7.1[7, pp. 72, 230].Given a matrix W of rankρ and a non-negative integer
β, β 6 ρ, it holds that

σ 2
β+1 = min

B:rank(B)6β
‖W − B‖2.

We will represent the displacement∇B,A(Xi) via its SVD, truncate all its sin-
gular values except for theρ largest of them, and thus obtain a∇B,A-generator of
length at mostρ for a nearby matrixYi . The matricesXi andM lie near each oth-
er. Furthermore, we have‖∇B,A(Xi)−∇B,A(Yi)‖2 6 ‖∇B,A(Xi)− ∇B,A(M−1)‖2
by Theorem 7.1 because rank(∇B,A(M−1)) 6 ρ. For invertible operators∇B,A, this
implies that alsoYi lies nearXi .

To specify and to analyze formally the transition from the matricesXi to Yi , we
will use some further definitions and simple preliminary results.

Hereafter, we will writeβ = βi = rank(∇B,A(Xi)). (β 6 3ρ for all i, by Theorem
6.1.) Let us also write

el,i = ‖Xi −M−1‖l , l = 1, 2,∞; ei = ‖Xi −M−1‖, (7.1)

êl,i = ‖Yi −M−1‖l , l = 1, 2,∞; êi = ‖Yi −M−1‖, (7.2)

ri = ‖I − YiM‖2. (7.3)

Now, we are ready to describe variant I of subroutineR for Algorithm 6.1.

Subalgorithm 7.1(Compression of a displacement by truncation of its smallest sin-
gular values).

Input. A positive integerρ, operator matricesA andB, a∇A,B-generator of lengthρ
for a nonsingularn× n matrix M, whereρ = rank(∇A,B(M)) = rank(∇B,A(M−1)),
and a∇B,A-generator(Gi,Hi) of length at mostβ = βi for a matrixXi such that
ρ 6 β, ∇B,A(Xi) = GiH

T
i .

Output. A ∇B,A-generator of length at mostρ for a matrixYi such that

‖Yi −M−1‖2 6 (1+ (‖A‖2 + ‖B‖2)ν−)e2,i (7.4)

for e2,i of (7.1) andν− = νρ,2(∇−1
A,B) of Definition 5.2.

Computations.
(a) Compute the SVD of the displacement∇B,A(Xi) = UiR2

i V
T
i .

(b) Set to zero the diagonal entriesσ 2
ρ+1, . . . , σ

2
β of the matrixR2

i , thus turningR2
i

into a diagonal matrix of rank at mostρ. (σ 2
ρ+1, . . . , σ

2
β are theβ − ρ smallest

singular values of the matrix∇B,A(Xi).)
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(c) Compute and output the matricesG∗i andH ∗i obtained from the matricesUiRi

andViRi , respectively, by deleting their lastβ − ρ columns.

Correctness of Subalgorithm 7.1 is implied by the following result, which shows
that bound (7.4) holds under our assumptions on the input of Algorithm 6.1 and
Subalgorithm 7.1.

Theorem 7.2. Let the structured matricesM−1, Xi, andYi be defined as above and
let a positive scalare2,i be defined by Eq.(7.1). Let∇B,A be a nonsingular linear
operator. Then bound(7.4) holds.

Theorem 7.2 generalizes a result proved in [27,29,30] for the Toeplitz-like case.
To prove Theorem 7.2, we need the following two lemmas.

Lemma 7.1. Under the notation of Algorithm6.1, we have

‖∇B,A(Xi)−∇B,A(Yi)‖2 = σ 2
ρ+1(∇B,A(Xi)), (7.5)

‖∇B,A(M−1)−∇B,A(Xi)‖ 6 (‖A‖ + ‖B‖)ei , (7.6)

for ei of (7.1).

Proof. Eq. (7.5) follows immediately from Theorem 5.1. To prove bound (7.6),
recall that

∇B,A(M−1) = AM−1−M−1B,

∇B,A(Xi) = AXi −XiB.

Therefore,

‖∇B,A(M−1)−∇B,A(Xi)‖
= ‖XiB − AXi −M−1B + AM−1‖
= ‖(Xi −M−1)B − A(Xi −M−1)‖
6 ‖Xi −M−1‖ · ‖B‖ + ‖A‖ · ‖Xi −M−1‖
6 (‖A‖ + ‖B‖)‖Xi −M−1‖
= (‖A‖ + ‖B‖)ei . �

Lemma 7.2. ‖∇B,A(Xi)−∇B,A(Yi)‖2 6 (‖A‖2 + ‖B‖2)e2,i .

Proof. Apply the well-known estimate of [7, p. 428] and deduce that

|σ 2
j (∇B,A(Xi))− σ 2

j (∇B,A(M−1))| 6 ‖∇B,A(Xi)−∇B,A(M−1)‖2
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for all j, whereσ 2
j (W) are defined by (4.1) and (4.2). For allj > ρ, recall that

σ 2
j (∇B,A(M−1)) = 0 and obtain

σ 2
j (∇B,A(Xi)) 6 ‖∇B,A(Xi)−∇B,A(M−1)‖2.

Now, substitute inequality (7.6) and deduce that

σ 2
j (∇B,A(Xi)) 6 (‖A‖2+ ‖B‖2)e2,i for j > ρ.

Combine this bound forj = ρ + 1 with Eq. (7.5) and deduce Lemma 7.2.�

Now, we are prepared to prove Theorem 7.2.

Proof of Theorem 7.2. By first applying Definition 5.2 forl = 2 andL = ∇B,A

and then applying the linearity of the operator∇B,A, we obtain that

‖Xi − Yi‖2 6 ν−‖∇B,A(Xi − Yi)‖2 = ν−‖∇B,A(Xi)−∇B,A(Yi)‖2.
On the right-hand side of the inequality

‖M−1− Yi‖2 6 ‖M−1− Xi‖2 + ‖Xi − Yi‖2,
substitute Eq. (7.1) forl = 2, that is,e2,i = ‖Xi −M−1‖2, substitute the above
bound on‖Xi − Yi‖2 and the one of Lemma 7.2, and obtain that

‖M−1− Yi‖26 e2,i + ‖∇B,A(Xi)−∇B,A(Yi)‖2ν−
6 e2,i + (‖A‖2+ ‖B‖2)e2,iν

−. �

8. Newton-structured iteration I: convergence rate and computational
complexity estimates

Combining Algorithm 6.1 with Subalgorithm 7.1 applied as a subroutineR de-
finesNewton-structured iterationI. Next, we will estimate its convergence rate and
computational complexity. Estimating the computational cost, we will rely on Defi-
nition 5.2 and the bound O(nρ2) of Remark 4.1 on the cost of computing the SVD.
This immediately implies:

Theorem 8.1. Newton-structured iterationI produces the matricesX1, Y1,X2, Y2,

. . . , Xi, Yi by performingO((vρ,n(∇B,A)+ vρ,n(∇A,B)+ ρn)iρ) flops, which is
O(iρ2n logd n) flops ford 6 2 under Assumption3.1.

Let us next estimate the convergence rate of the iteration. We have

I −Xi+1M = (I − YiM)2, ‖I −Xi+1M‖2 6 r2
i

for ri = ‖I − YiM‖2 of (7.3); therefore,‖M−1 −Xi+1‖2 6 r2
i ‖M−1‖2. By Theo-

rem 7.2, we have
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‖M−1− Yi+1‖2 6 (1+ (‖A‖2+ ‖B‖2)ν−)‖M−1−Xi+1‖2.
Consequently, we have

‖M−1− Yi+1‖2 6 (1+ (‖A‖2+ ‖B‖2)ν−)r2
i ‖M−1‖2.

Therefore,

ri+1= ‖I − Yi+1M‖2 6 ‖M−1 − Yi+1‖2‖M‖2
6 (1+ (‖A‖2+ ‖B‖2)ν−)r2

i ‖M−1‖2‖M‖2
6 (1+ (‖A‖2+ ‖B‖2)ν−)r2

i κ(M),

whereκ(M) = cond2(M) = ‖M−1‖2‖M‖2 (see Theorem 5.1). Let us rewrite the lat-
ter bound as follows:

µri+1 6 (µri)
2, µ = (1+ (‖A‖2+ ‖B‖2)ν−)κ(M) for i = 0, 1, . . . (8.1)

Relations (8.1) imply that

µri 6 (µr0)
2i

, i = 0, 1, . . .

The following theorem summarizes our analysis.

Theorem 8.2. Let the matricesX0 and M be given with their∇B,A- and∇A,B-
generators of lengthβ0 andρ, respectively. Furthermore, let

µr0 6 θ < 1, µ = (1+ (‖A‖2 + ‖B‖2)ν−)κ(M), (8.2)

for r0 = ‖I − Y0M‖2 of (7.3), ν− = ν−1
ρ,2(∇A,B) of Definition5.2, µ of (8.1), and

some fixed realθ . Then for all positive i, we havêe2,i = ‖Yi −M−1‖2 6 ri‖M−1‖2
6 (µr0)

2i‖M−1‖2/µ 6 θ2i‖M−1‖2/µ.

Corollary 8.1 (see also Remark 4.1).Under the assumptions of Theorem8.2, the
residual norm boundrl = ‖I − YlM‖2 6 ε/µ is ensured in

l = dlog2(logε/ logθ)e
steps of Newton-structured iterationI. These steps requireO((vρ,n(∇B,A)+ vρ,n

(∇A,B))ρl) flops, which isO(lρ2n logd n) for d 6 2 under Assumption3.1.

9. Newton-structured iteration II: compression by means of substitution

Let us describe an SVD-free method for the compression of approximate inverses.
First recall that∇B,A(M−1) = −M−1GH TM−1, by Theorem 3.3. Now substitute
Xi for M−1 on the right-hand side and define a short∇B,A-generator for the matrix
Yi :
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∇B,A(Yi) = UiW
T
i , Ui = −XiG ∈ Cn×ρ, WT

i = H TXi ∈ Cρ×n. (9.1)

(We expect thatYi ≈ M−1 because∇B,A(Yi) ≈ ∇B,A(M−1), which should hold be-
causeXi ≈ M−1.) This leads us to the following variant of subroutineR.

Subalgorithm 9.1 (Compression of the displacement by substitution of an approx-
imate inverse for the inverse).

Input. A positive integerρ, a pair ofn× n operator matricesA andB defining a
strongly regular operator∇B,A, a∇A,B-generator of lengthρ for a nonsingularn× n

matrix M whereρ = rank(∇A,B(M)) = rank(∇B,A(M−1)), and a∇B,A-generator
(Gi+1,Hi+1) of length at most 3ρ for a matrixXi+1 of Eq. (6.1).

Output. A ∇B,A-generator(Ui+1,Wi+1) of length at mostρ for a matrixYi+1 such
that

êi+1 = ‖Yi+1 −M−1‖ 6 Ciei (9.2)

for êi+1 of (7.2),ei of (7.1),Ci = ν−‖GH T‖(ei + 2‖M−1‖), andν− = νρ(∇−1
B,A)

of Definition 5.2.

Computations.Compute and output the matrix productsUi+1 = −Xi+1G, WT
i+1 =

H TXi+1.

Under Assumption 3.1 about strong regularity of the operator∇B,A, the matrix
pair (Ui+1,Wi+1) is a∇B,A-generator of length at mostρ for a matrixYi+1, which
is a unique solution to the following equation (see (9.1)):

∇B,A(Yi+1) = Ui+1W
T
i+1.

The computation of then× ρ matricesUi+1,Wi+1 of (9.1) is reduced to multipli-
cation of the matrixXi+1 by then× (2ρ) matrix (−G,H). This requires O((vρ,n

(∇B,A)+ vρ,n(∇A,B)ρ)) flops, which is O(ρ2n logd n) flops under Assumption 3.1.
To prove correctness of the subalgorithm, that is, to prove bound (9.2), we need

some auxiliary results. Recall the matrix equations−U=M−1G andWT = H TM−1

of Theorem 3.3 and deduce that

−Uj = XjG = (Xj −M−1)G+M−1G,

WT
j = H TXj = H T(Xj −M−1)+H TM−1.

Now, writeEj = UWT − UjW
T
j and obtain the following matrix equation:

Ej = (Xj −M−1)GH T(Xj −M−1)

+M−1GH T(Xj −M−1)

+(Xj −M−1)GH TM−1.
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Lemma 9.1. For the matricesUj ,W
T
j , andEj defined above and forej = ‖Xj −

M−1‖ of (7.1), we have

‖Ej‖ = ‖UjW
T
j − UWT‖ 6 ‖GH T‖ej (ej + 2‖M−1‖).

Proof. The lemma follows from the above expression forEj . �

Theorem 9.1. For i = 0, 1, . . . , we haveêi+1 6 Ci+1ei+1 for ei of (7.1), êi of
(7.2), Ci = ν−‖GH T‖(ei + 2‖M−1‖), and the normν− = ν(∇−1

B,A) of Definition
5.2.

Proof. Recall thatêi+1 = ‖Yi+1 −M−1‖ 6 ν−‖∇B,A(Yi+1 −M−1)‖. Since the
operator∇B,A is linear, we haveêi+1 6 ν−‖∇B,A(Yi+1)−∇B,A(M−1)‖ 6 ν−‖
Ui+1W

T
i+1 − UWT‖ 6 ν−‖Ei+1‖. At this point, apply Lemma 9.1 forj = i + 1

and obtain that̂ei+1 6 Ci+1ei+1. �

10. Newton-structured iteration II: its convergence rate and computational
complexity estimates

Combining Algorithm 6.1 with Subalgorithm 9.1 (applied as subroutineR) de-
fines Newton-structured iteration II. Our next goal is to estimate its convergence rate
and its computational complexity.

Lemma 10.1. For a nonsingular matrix M, the matrixXi+1 defined by Eq.(6.1),

the matrixYi+1 of Subalgorithm9.1, and the scalarsCi, ei+1 = ‖Xi+1 −M−1‖
and êi = ‖Yi −M−1‖ (of Theorem9.1 and Eqs.(7.1) and (7.2)), we haveei+1 6
‖M‖ê2

i 6 (Ciei)
2‖M‖ for i = 0, 1, . . .

Proof. By (6.1), we haveI −MXi+1 = (I −MYi)
2, i = 0, 1, . . . It follows that

ei+1 = ‖Xi+1 −M−1‖ = ‖M−1(I −MXi+1)‖ = ‖M−1(I −MYi)
2‖ = ‖(M−1 −

Yi)M(M−1− Yi)‖ 6 ‖M‖ê2
i . Finally, substitute the bound of Theorem 9.1.�

Let us restate this lemma in a more constructive way, that is, let us replace the
valuese0, ‖M−1‖, andCi by more readily available values. Write

e∗0 = r0‖Y0‖/(1− r0) (10.1)

for r0 = ‖I −MY0‖ of (7.3) and assume realistically that

r06 1, (10.2)

ei 6 ‖M−1‖, (10.3)

for ei of (7.1) and for alli.
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Lemma 10.2. Assuming relations(10.1)–(10.3), we have

‖M−1‖6 ‖Y0‖/(1− r0), (10.4)

ê06 e∗0, (10.5)

Ci 6 C = 3ν−‖GH T‖ · ‖Y0‖/(1− r0) for all i. (10.6)

Proof. We have

|‖M−1‖ − ‖Y0‖| 6 ê0 = ‖M−1 − Y0‖ 6 ‖M−1‖r0,

and (10.4) follows. Substitute (10.4) into the boundê0 6 ‖M−1‖r0 and obtain (10.5).
Substitute (10.3) into the expression of Theorem 9.1 forCi , then substitute (10.4),
and obtain (10.6). �

By combining Theorem 9.1, Lemmas 10.1 and 10.2, we obtain:

Theorem 10.1. Assume relations(10.1)–(10.3). Thenêi 6 Cei, ei+1 6 (Cei)
2‖M‖

for C of (10.6), ei of (7.1), êi of (7.2), andi = 1, 2, . . .

Corollary 10.1. Assume relations(10.1)–(10.3) and write µ̄ = C2‖M‖. Then we
have

µ̄ei+1 6 (µ̄ei)
2 6 (µ̄e1)

2i

for i = 1, 2, . . . (10.7)

By applying Lemma 10.1 and then bound (10.5), we obtain thate1 6 ê2
0‖M‖ 6

(e∗0)2‖M‖. Substitute the latter bound into Corollary 10.1 and obtain:

Corollary 10.2. Assume relations(10.1)–(10.3) and the bound

(µ̄e1)
1/2 6 Ce∗0‖M‖ 6 θ < 1, (10.8)

for µ̄ = C2‖M‖, e∗0 of (10.1), C of (10.6), and a realθ . Then we havēµei+1 6
(µ̄e1)

2i 6 (Ce∗0‖M‖)2i+1 6 θ2i+1
and êi+1 6 Cei+1, i = 0, 1, . . .

Corollary 10.3. Write

i∗ + 1= dlog2((logε∗)/ logθ)e,
and assume relations(10.1)–(10.3)and(10.8). Then we haveei+1 = ‖Xi+1 −M−1‖
6 ε∗/µ̄ and êi+1 = ‖Yi+1 −M−1‖ 6 Cε∗/µ̄ for i + 1> i∗ + 1; furthermore, the
matricesXi+1 andYi+1 are computed ini∗ + 1 steps(9.1) by usingO((i∗ + 1)(vρ,n

(∇B,A)+ vρ,n(∇A,B))ρ) flops; this is O((i∗ + 1)ρ2n logd n) flops ford 6 2 under
Assumption3.1.
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11. Extension to the case of the Stein-type operators

We may extend our algorithms by replacing the Sylvester type operators∇A,B by
the Stein type operatorsDA,B (see Theorem 2.1). This involves some minor changes.
First, the formula for the recovery of a matrixW from its imageDA,B(W) chang-
es versus the recovery from∇A,B(W), and all the algorithms change respectively.
Second, minor changes appear in the computation of theDB,A-generators of the ma-
tricesXi+1 = 2Yi − YiMYi because of the changes of the expressions for the matrix
products and inverses. Let us specify.

Assume that the matricesM andA are nonsingular and writeDA,B(M) = GH T.
Then we have the following expression for the inverse:

DB,A(M−1) =M−1 − BM−1A = M−1A−1DA,B(M)M−1A = G−H T−,

whereG− =M−1A−1G andH T− = H TM−1A. Similarily, if M andB are nonsingu-
lar, we have

DB,A(M−1) =M−1 − BM−1A = BM−1DA,B(M)B−1M−1 = G+H T+,

whereG+ = BM−1G and H T+ = H TB−1M−1. In both cases, the length of the
1A,B-generatorG,H for M equals the length of the respectiveDB,A-generator for
M−1.

Likewise, for the productYMYwe deduce the following expression without any
nonsingularity assumptions:

YMY− BYMYA= (Y − BYA)MY+ BYAM(Y − BYA)− BY(M − AMB)YA.

This expression furnishes us withDB,A-generators (of Stein type) of length at most
3ρ for YiMYi and, consequently, forXi+1 = 2Yi − YiMYi , provided thatM andYi

are given with theirDA,B- andDB,A-generators of length at mostρ, respectively.
The resulting changes of our algorithms will be further specified in the following

two subsections. On some more elaborate techniques that enable extension of our
algorithms to some operatorsDA,B where both matricesA andB are singular, see,
e.g., Theorem 11.2 of Chapter 2 in [4].

11.1. Specific changes for Subalgorithm 7.1

We change the requirements to the output of Subalgorithm 7.1 and its computation
as follows:

New output. A DB,A-generator of a length at mostρ for a matrixYi satisfying the
bound

‖Yi −M−1‖2 6 (1+ (1+ ‖A‖2‖B‖2)ν−)e2,i (11.1)

for e2,i of (7.1) andν− of Definition 5.2. The latter change is motivated by the
following argument extending the proof of Lemma 7.1:

‖Xi − BXiA−M−1+ BM−1A‖2
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= ‖(Xi −M−1)− B(Xi −M−1)A‖2
6 ‖(Xi −M−1)‖2 + ‖B‖2‖(Xi −M−1)‖2‖A‖2
6 (1+ ‖A‖2‖B‖2)‖(Xi −M−1)‖2
6 (1+ ‖A‖2‖B‖2)ei .

Assumption (8.2) fori = 0, which ensures rapid convergence of Algorithm 6.1, turns
into the following one in the Stein type case:

(1+ (1+ ‖A‖2‖B‖2)ν−)κ(M)r0 6 θ < 1 (11.2)

for ν− = νρ,2(DA,B) of Definition 5.2.

11.2. Specific changes for Subalgorithm 9.1

We change Subalgorithm 9.1 as follows:

New input. A positive integerρ, a pair ofn× n operator matricesA andB, which de-
fine a strongly regular operatorDA,B , A being nonsingular, aDA,B-generator of length
at mostρ for a nonsingular matrixM, whereρ= rank(DA,B(M))= rank(DB,A(M−1)),
and aDB,A-generator(Gi+1,Hi+1) of length at most 3ρ for matrixXi+1 of Eq. (6.1).

New output. A DB,A-generator of a length at mostρ for matrix Yi+1 satisfying the
bound

êi+1 = ‖Yi+1 −M−1‖ 6 C̄iei (11.3)

for ei of (7.1),êi of (7.2),

C̄i = ν−‖GH T‖ · ‖A‖ · ‖A−1‖(ei + 2‖M−1‖), (11.4)

andν− of Definition 5.2.

New computations.Recall Theorem 3.3, compute and output the matricesUi+1 =
Xi+1A

−1G, WT
i+1 = H TXi+1A.

The latter changes are motivated by the following argument extending Lemma
9.1. Express the matrix

Ej = UjW
T
j − UWT = XjA

−1GH TXjA−M−1A−1GH TM−1A

as follows:

Ej = UjH
T(Xj −M−1)A+ (Xj −M−1)A−1GWT

j

−(Xj −M−1)A−1GH T(Xj −M−1)A.

Therefore,

‖Ei‖6 ‖GH T‖ · ‖A‖ · ‖A−1‖ej (ej + 2‖M−1‖)
= ‖GH T‖κ(A)ej (ej + 2‖M−1‖).
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Corollaries 10.1–10.3, which specify the convergence rate of Algorithm 6.1 com-
bined with Subalgorithm 9.1 and the computational cost of the resulting algorithm,
are extended to the Stein type case too. Here is the respective extension of Corollary
10.1, which immediately implies appropriate extension of Corollaries 10.2 and 10.3.

Corollary 11.1. Assume relations(7.1)–(7.3), (10.1)–(10.5) and the boundsei 6
‖M−1‖ for all i. Write Ĉ = 3ν−‖GH T‖κ(M)‖Y0‖/(1− r0), µ̂ = Ĉ2‖M‖. Then we
haveµ̂ei+1 < (µ̂ei)

2 < (µ̂e1)
2i

for i = 1, 2, . . .

12. Norm estimates via truncation of singular values

To complete our analysis presented in the previous sections, we must estimate the
normsν− of the inverse displacement operators∇−1

A,B or D−1
A,B that we associate with

the input matrices of our Newton-structured iteration (see Definition 5.2). In this and
the following three sections, we will apply three approaches to the solution of this
problem (see yet alternative techniques in [39]).

In this section, we will estimate the normsν− for the operators associated with
the four basic classes of structured matrices, that is, Toeplitz-like, Hankel-like, Van-
dermonde-like, and Cauchy-like matrices. The estimates will depend on the choice
of the basic bilinear representation of such matrices). Technically, we will follow the
line of the Appendix of [27]. In particular we will rely on the truncation of singular
values of the displacementL(M) and will use the two following simple auxiliary
facts.

Fact 12.1. We have‖Zf (v)‖l = ‖v‖1 for any scalar f, |f | 6 1, any vectorv and
l = 1,∞; furthermore, ‖D(v)‖l 6 ‖v‖l .

Fact 12.2. For an orthogonal L-generator(G,H) of a matrix(see(4.1)–(4.3)), we
have‖gi‖2 = ‖hi‖2 = σi(GH T), i = 1, . . . , ρ, ‖GH T‖2 = σ 2

1 (GH T).

Now we are ready to estimate the normsν−. We write1= (1)n−1
j=0, tn = (tnj )n−1

j=0.

Theorem 12.1. Let s= (si) and t = (tj ) be a pair of vectors of dimension n filled
with 2n distinct coordinates, none of thetj being zero. Let∇ = ∇A,B andD = DA,B

be nonsingular operators of(2.1) and(2.2). Then we have the following bounds on
the l-norm of the inverse operators∇−1 andD−1 over then× n complex matrices:

νρ,l (D
−1
A,B) 6 ρn1.5, νρ,l (∇−1

A,B) 6 ρn1.5, (12.1)

whereA,B ∈ {Zf ,ZT
f : |f | 6 1}.
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νρ,l (D
−1
A,B) 6 ρ

√
n‖D−1(1− f tn)V (t)‖l ,

νρ,l (∇−1
A,B) 6 ρ

√
n‖D−1(1− f tn)V (t)‖l , (12.2)

where(A,B) ∈ {(D(t), Zf ), (D(t), ZT
f ), (Zf ,D(t)), (ZT

f ,D(t))}.

νρ,l

(
∇−1

D(t),D(s)

)
6 ρ
√

n‖D(s)C(s, t)‖l (12.3)

for l = 1, 2,∞, 16 ρ 6 n. For l = 2, all these upper bounds are decreased by the
factor of

√
n.

Proof. The bounds of Theorem 12.1 are obtained based on the bilinear representa-
tion for each matrixM of D-rank (respectively,∇-rank) at mostρ such thatD(M) =
GH T (respectively,∇(M) = GH T) for the matricesG andH of (2.5), whereα = ρ.
That is, we deduce bounds (12.1)–(12.3) based on the equations of Theorem 2.2 and
Remark 2.1.

We first deduce from Theorem 2.2 (a) that‖M‖ 6∑ρ
i=1 ‖Ze(gi )Z

T
f (hi )‖ for M

of part (a) of Theorem 2.2. By applying Facts 12.1, 12.2, and Theorem 5.1, we
obtain that‖Z(gi )‖1 = ‖gi‖1 6 σi

√
n, ‖ZT(hi )‖1 = ‖Z(hi )‖∞ 6 ‖hi‖1 6 σi

√
n,

‖Z(gi )Z
T(hi )‖l 6 σ 2

i n for l = 1,∞ and for alli. Therefore,‖M‖l 6 n
∑ρ

i=1 σ 2
i 6

nρσ 2
1 = nρ‖GH T‖2 for l = 1 andl = ∞.

By using Theorem 5.1, we reconcile thel-norm and the 2-norm on both sides
of the latter inequality and arrive at bounds (12.1). Furthermore, we combine our
bounds on‖M‖l for l = 1,∞ with the bound‖M‖22 6 ‖M‖1‖M‖∞ of Theorem
5.1 and improve the bound of (12.1) forl = 2 by the factor of

√
n. Eqs. (12.2) and

(12.3) are derived similarly, based on the expressions of Theorem 2.2 and on Remark
2.1. (We leave details to the reader.)�

Remark 12.1. The operatorsD and∇ are associated with Toeplitz-like and Hankel-
like matrices (for (12.1)), Vandermonde-like matrices (for (12.2)), and Cauchy-like
matrices (for (12.3)).

13. Norm estimates where operators matrices aref-potent

In this section, we will estimate the normν− for the operators associated with
Toeplitz-like, Hankel-like, Vandermonde-like, and Chebyshev–Vandermonde-like
matrices where at least one of the operator matricesC (C = A or C = B) is f-potent,
that is,Cn = f I . This is the case forC = Zf andC = ZT

f .
We will explicitly estimateν− for the Stein type operatorsL, but we may extend

the estimate immediately to the case of the operators (2.1) of Sylvester type provided
that at least one of the operator matricesA andB is nonsingular. Indeed, recall The-
orem 2.1 and observe that the matrix equation∇A,B(M) = ADA−1,B(M) implies
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that ν−ρ,1(DA−1,B) > ‖A−1‖1ν−ρ,1(∇A,B) and similarly∇A,B(M) = −DA,B−1(M)B

implies thatν−ρ,1(DA,B−1) > ‖B−1‖1ν−ρ,1(∇A,B).
We will start with auxiliary results (of independent interest), first of which will

enable us to invert the operatorL = DA,B (bi)linearly where some annihilation poly-
nomials for the matricesA andB are avaliable. This approach was used in [8,16,42]
in order to express Toeplitz-like matrices via their displacements.

Theorem 13.1. For all k > 1, we have

M = AkMBk +
k−1∑
i=0

AiDA,B(M)Bi.

Proof. Note thatAiMBi = Ai+1MBi+1 + AiDA,B(M)Bi , sum these matrix equa-
tions fori = 0, 1, . . . , k − 1, and cancel the identical terms that appear on both sides
of the resulting equation. �

Fork = p, we obtain the following corollary.

Corollary 13.1. Suppose thatAp = aI and/orBq = bI (that is, A is an a-potent
matrix of order p and/or B is a b-potent matrix of order q). Then

M =
p−1∑

i=0

AiDA,B(M)Bi

 (I − aBp)−1 (13.1)

and/or

M = (I − bAq)−1

q−1∑
i=0

AiDA,B(M)Bi

 ,

respectively.

Corollary 13.2. Let L = DA,B, whereAk = f I for some positive integer k. Then
we have(13.1) for a = f, p = k and, consequently,

ν− 6
(
1+ ‖A‖‖B‖ + · · · + ‖Ak−1‖‖Bk−1‖

)
‖(I − f Bk)−1‖. (13.2)

Likewise, if Bk = f I, then we have

ν− 6
(
1+ ‖A‖‖B‖ + · · · + ‖Ak−1‖‖Bk−1‖

)
‖(I − f Ak)−1‖. (13.3)

Next, we will specialize Corollary 13.2 to some specific classes of structured
matrices. We will use the following notation:s andt denote a pair of vectors of di-
mensionn filled with 2n distinct coordinatessi andtj , none of thetj being zero (as in
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Theorem 12.1), and we writet− = minj |tj |, t+ = maxj |tj |, Ẑ = 2
∑bn/2c

i=1 (−1)i−1

Z2i−1.

Theorem 13.2. Let a, b, e, and f be four scalars such that|e| 6 1, |f | 6 1, a =
1/ max{|1− e|, |1− f |} > 1/2, b = 1/|1− f | > 1/2. Then we have the following
bounds:

νρ,l

(
D−1

A,B

)
6 na, (13.4)

whereA,B ∈ {Ze,Zf ,ZT
e , ZT

f }, l = 1,∞,

νρ,l

(
D−1

D−1(t),Zf

)
6


1−
(

1
t−
)n

1− 1
t−

b if t− /= 1,

nb if 1
t− = 1,

(13.5)

wherel = 1, 2,∞,

νρ,l

(
D−1

D(t),Zf

)
6
{

1−tn+
1−t+ b if t+ /= 1,

nb if t+ = 1,
(13.6)

wherel = 1, 2,∞,

νρ,1

(
D−1

D(t),Ẑ

)
6

1+
(

n
t+

)(1−
(

2
t+
)n−1

1−
(

2
t+
)
)

if t+ /= 2,

1+ n(n−1)
2 if t+ = 2.

(13.7)

Proof. The bounds of Theorem 13.2 are obtained based on bound (13.2) and
(13.3) applied fork = n and the operatorsD of (13.4)–(13.7). Bound (13.4) is im-
mediate because‖Zc‖l = ‖ZT

c ‖l = · · · = ‖Zn−1
c ‖l = ‖(ZT

c )n−1‖l = 1 for |c| 6 1
and l = 1,∞. Bound (13.5) immediately follows from (13.3) fork = n because
‖D−1(t)‖l = 1

t− , and therefore, we have

ν−ρ,l 6 1+ 1

t−
+ · · · + 1

tn−1−
.

The proof of (13.6) is similar to the proof of (13.5). Finally, let us prove (13.7).
Recall thatẐ = 2

∑bn/2c
i=1 (−1)i−1Z2i−1 and deduced that

Ẑn = 0, ‖Ẑ‖1 6 n,

‖Ẑn−1‖1 = 2n−1

∥∥∥∥∥∥∥
bn/2c∑

i=1

(−1)i−1Z2i−1

n−1
∥∥∥∥∥∥∥

1

6 2n−1n/2= 2n−2n,

ν−ρ,16 1+ 1

t+
n+ · · · + 1

tn−1+
2n−2n
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= 1+ n

t+

(
1+ 2

t+
+ · · · +

(
2

t+

)n−2
)

. �

Remark 13.1. The operatorsD are associated with Toeplitz-like and Hankel-like
matrices forD of (13.4), Vandermonde-like matrices forD of (13.5) and (13.6), and
Chebyshev–Vandermonde-like matrices [21] forD of (13.7).

14. Eigenvalue technique for the estimation of operator norms

In the following section, we will estimate the normν− in the cases of the operators
associated with the Cauchy-like and Toeplitz + Hankel-like matrices. Corollary 13.2
is not sufficient in these cases, but we will rely on the following result:

Theorem 14.1. Let D = DA,B be a Stein type operator of(2.2) with n× n oper-
ator matrices A and B. Letλ1, . . . , λn be the eigenvalues of the matrix A. Write
Aλi = A− λiI, Bλi = I − λiB. Assume that the matricesBλi are nonsingular for
all i. Then we have

M = D(M)B−1
λ1
+ Aλ1D(M)B−1

λ2
BB−1

λ1

+ · · · +Aλ1 · · ·Aλn−1D(M)B−1
λn
· · ·BB−1

λ1
(14.1)

and, consequently,

νρ,1(D−1)6 ‖B−1
λ1
‖1+ ‖Aλ1‖1‖B‖1‖B−1

λ1
‖1‖B−1

λ2
‖1

+ · · · + ‖Aλ1‖1 · · · ‖Aλn−1‖1‖Bn−1‖1‖B−1
λ1
‖1 · · · ‖B−1

λn
‖1.

(14.2)

Proof. Let λ be any eigenvalue of the matrixA. We have

D(M)=M − λMB+ λMB− AMB

=M(I − λB)− (A− λI)MB

= MBλ − AλMB,

and, consequently,

D(M)B−1
λ = M − AλMBB−1

λ . (14.3)

Forλ = λ1, λ = λ2 we obtain that

D(M)B−1
λ1
= M − Aλ1MBB−1

λ1
, (14.4)

D(M)B−1
λ2
= M − Aλ2MBB−1

λ2
. (14.5)
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Pre-multiply (14.5) byAλ1, post-multiply byBB−1
λ1

and obtain that

Aλ1D(M)B−1
λ2

BB−1
λ1
= Aλ1MBB−1

λ1
− Aλ1Aλ2MBB−1

λ2
BB−1

λ1
. (14.6)

Add (14.4) to (14.6) and obtain that

D(M)B−1
λ1
+ Aλ1D(M)B−1

λ2
BB−1

λ1
= M − Aλ1Aλ2MBB−1

λ2
BB−1

λ1
. (14.7)

Substituteλ = λ3 into Eq. (14.3). Pre-multiply the resulting equation by the first
term on the left-hand side of (14.7) and post-multiply it by the second term, then add
(14.7) to the resulting equation. Repeat this process recursively and inn steps obtain
the following equation:

D(M)B−1
λ1
+ Aλ1D(M)B−1

λ2
BB−1

λ1
+ · · · + Aλ1 · · ·Aλn−1D(M)BB−1

λn
· · ·BB−1

λ1

=M − Aλ1Aλ2 · · ·AλnMBB−1
λn
· · ·BB−1

λ1
.

This implies (14.1) sinceAλ1 · · ·Aλn = 0. �

15. Specific norm bounds based on the eigenvalue techniques

Let us apply Theorem 14.1 to the operatorsDD(s),D(t) associated with Cauchy-like
matrices andDY00,Y11 associated with Toeplitz + Hankel-like matrices [6,21], where
Y00= Z + ZT, Y11 = Y00+ e0eT

0 + en−1eT
n−1. We have the following auxiliary re-

sults, which in particular show the diagonalization of the matricesY00, Y11 [20].

Theorem 15.1. Let

S =
(√

2

n+ 1
sin

ijπ

n+ 1

)n

i,j=1

,

Q=
(√

2

n
qj cos

(2i − 1)(j − 1)π

2n

)n

i,j=1

denote the(normalized) matrices of the Discrete Sine TransformI and the Discrete
Cosine TransformII , respectively, whereq1 = 1/

√
2, qj = 1 for j > 1. Then we

haveS = ST, S2 = QTQ = T , so that‖S‖2 = ‖Q‖2 = 1, ‖S‖l 6 √n, ‖Q‖l 6 √n

for l = 1,∞.

Theorem 15.2. SY00S = DS, QTY11Q = DQ, where

DS = diag

(
2 cos

kπ

n+ 1

)n

k=1
, ‖DS‖l < 2,
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DQ = diag

(
2 cos

kπ

n

)n−1

k=0
, ‖DQ‖l = 2, l = 1, 2,∞.

We will also use the following simple estimates:

‖Y11− λiI‖1 6 2+ |λi | (15.1)

for anyλi .

Fact 15.1. For all scalarsλi, we have‖(Y−1
00 )−1

λi
‖1 6 2n/ψi, where

ψi = min
j

∣∣∣∣1− 2λi/ cos

(
jπ

n+ 1

)∣∣∣∣ .
Proof. By definition, (Y−1

00 )λi = I − λiY
−1
00 . Recall Theorems 15.1 and 15.2 and

obtain that(Y−1
00 )λi = S(I − λiD

−1
S )S. Therefore,

‖(Y−1
00 )−1

λi
‖1 = ‖S(I − λiD

−1
S )−1S‖1 6 2n/ψi. �

Now, we are ready to state our next theorem.

Theorem 15.3. As in Theorem12.1, let s and t be a pair of vectors of dimen-
sion n filled with2n distinct coordinatessi and tj , none of thetj being zero. Let
D = DA,B be an operator L of(2.2). Let λi denote the eigenvalues of the matrix
A, i = 1, . . . , n. Let us writet− = minj |tj |, s+ = maxj |sj |, φi = minj |1− si tj |,
φ = mini φi, ψ = mini ψi, ρi = 2+ |λi |, and ρ = maxi ρi for ψi of Fact 15.1.
Then we have

ν− = νρ,1

(
D−1

D(s),D−1(t)

)
6


t−
φ

1−
(

2s+t−
φ

)n

1− 2s+t−
φ

if 2s+t−
φ

/= 1,

t−n

φ
if 2s+t−

φ
= 1,

(15.2)

for A = D(s), B = D−1(t),

ν− = νρ,1

(
D−1

Y11,(Z+ZT)−1

)
6


2n

ψ

1−
(

2nρ
ψ

)n

1− 2nρ
ψ

if 2nρ
ψ

/= 1,

2n2

ψ
if 2nρ

ψ
= 1,

(15.3)

for A = Y11, B = (Z + ZT)−1.

Proof. Recall thatAλi = A− λiI and deduce that‖Aλi‖1 = ‖A− λiI‖1 6 ‖A‖1
+ |λi |. We haveA = D(s) in (15.2). Therefore,λi = si , |λi | 6 maxj |sj | = s+, and
‖Aλi‖1 6 2s+ for all i. Similarily, forB = D−1(t) of (15.2), we obtain that‖Bλi‖1 6
t−/φi . Substitute both norm bounds into (14.2) forD = DD(s),D−1(t) and obtain that
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ν− 6 t−
φ1
+ 2s+t2−

φ1φ2
+ · · · + (2s+)n−1tn−

φ1 · · ·φn

for ν− of (15.2). Since we haveφ = mini φi , it follows that

ν− 6 t−
φ
+ 2s+

t2−
φ2 + · · · + (2s+)n−1 tn−

φn
,

and we obtain (15.2). By combining (14.2), (15.1), and Fact 15.1, we obtain that

ν− 6 2n

ψ1
+ ρ1

(2n)2

ψ1ψ2
+ · · · + ρ1 · · · ρn−1

(2n)n

ψ1 · · ·ψn

for ν− of (15.3). Substituteψ = minψi andρ = maxρi , obtain that

ν− 6 2n

ψ
+ ρ

(2n)2

ψ2 + · · · + ρn−1 (2n)n

ψn

= 2n

ψ

(
1+ 2nρ

ψ
+ · · · +

(
2nρ

ψ

)n−1
)

,

and arrive at (15.3). �

16. The unification and transformation approaches

As an alternative to the unification of the study of Newton’s iteration for various
matrix structures, one may transform the problem to the Toeplitz-like or Cauchy-like
cases to extend the cited successful algorithms of [27,30,33,40] to other classes of
structured matrices. This is a special case of the general idea of extending successful
algorithms from one class to other classes of structured matrices. The idea was pro-
posed in [26] together with the sample transformations in all directions among Toep-
litz-like, Hankel-like, Vandermonde-like, and Cauchy-like matrices. The approach
turns out to be quite powerful. Some of the current best practical algorithms for
solving Toeplitz and Toeplitz-like linear systems of equations reduce them to Cau-
chy-like linear systems. Furthermore, structured matrix transformations of this kind
have been used for handling matrix singularities, for computational improvements
of polynomial interpolation and multipoint evaluation as well as algebraic decod-
ing, and in the computational complexity analysis of structured matrix operations
(cf. [6,15,35,41], [25, Section 6] and [31,32]). The unification and transformation
approaches may effectively complement each other.

As a rule, the unification approach enables a deeper insight into the subject and its
more comprehensive treatment. In some cases, transformations are costly (in terms of
extra flops and numerical stability problems involved), and the unification approach
can be more effective. In other cases, transformations are inexpensive (e.g., from
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Toeplitz/Hankel-like to Cauchy-like matrices [6,15]) and can enhance the domain
where the algorithms are effective.

In particular, Theorem 2.2 and the bounds of Table 2 imply thatvα,n(L) = O
(αn logd n), whered = 1 for operatorsL associated with Toeplitz-like and Hankel-
like matrices versusd = 2 in the Vandermonde-like and Cauchy-like cases. The dif-
ference in the computational cost is extended to various other operations with these
matrices, in particular to Newton’s iteration. The standard transformations to Toep-
litz-like or Hankel-like cases (cf. [26] and [4, Section 12 of Chapter 2]) enable re-
spective decrease of the asymptotic upper bounds on the number of flops involved in
the algorithms.

17. Conclusion

There are several interesting directions for the extension and further study of the
Newton-structured iteration.
1. Some useful singular displacement operatorsL are strongly regular on the linear

space of matrices that vanish on a fixed subsetSof their entries having small card-
inality. In particular,Smay consist of the first and/or last column (and/or) row of
a matrix (see∇Zf ,Zf ) or of its diagonal (see∇D(s),D(s)). In such a case the matrix
is generated by its entries of the setS and by its displacementL(M) together.
(Bi)linear expressions of Section 2 as well as iteration (6.1) and its analysis can
be modified and extended, respectively (see [32,33]). Alternatively, the problem
can be reduced to the one with a strongly regular operator [32].

2. If no initial approximationY0 to the matrixM−1 is available, such an approxi-
mation can be generated in a homotopic process [27,31,32,34]. In this approach,
the algorithm of [27] approximates a Toeplitz-like matrixM−1 within the out-
put error norm boundε by using O((γ + log log(1/ε))rvr,n(L)) flops withγ =
O(logκ(M)). The study is extended to other well-known classes of input matrices
in [31,32,34].

3. There are alternative recipes for choosing an initial approximationY0 such as
Y0 = M∗/(‖M‖1‖M‖∞) and of the convergence acceleration by scaling the iter-
atesYi for all i as well as by shifting to higher order processes. These recipes rely
on the observation that the singular vectors of the residualsI −MYi are invariant
in i provided thatXi = Yi for all i (see [38] and references therein). Compres-
sion of the displacements of the computed approximations, however, perturbs the
matricesXi so that the singular vectors of the matricesYi vary with i. Therefore,
the entire approach remains valid only to the extent to which the perturbation
caused by the compression makes no significiant impact on the singular spaces.
Estimation and restriction of such an impact is the subject of further theoretical
and experimental study [32,34]. Its preliminary results are encouraging.

4. Newton’s iteration for the computation of the inverse and Moore–Penrose general-
ized inverse of a matrix is a special case of residual correction methods [17,34,38],
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yielding faster convergence (in particular with using scaling). Would application
of such more general methods improve our algorithms?

5. Newton’s iteration is a well-known tool for the solution of matrix equation, in
particular for the computation of the polar decomposition, the square roots and the
sign function for general matrices [11,12,14,19].Could the known methods be im-
proved where the input matrix is structured? Our methods would be immediately
extended whenever the output matrices have short displacement generators.

Acknowledgement

The authors are grateful to a referee for helpful comments.

References

[1] G.S. Ammar, P. Gader, A variant of the Gohberg–Semencul formula involving circulant matrices,
SIAM J. Matrix Anal. Appl. 12 (3) (1991) 534–541.

[2] D.A. Bini, B. Meini, Approximate displacement rank and applications, preprint.
[3] D. Bini, V.Y. Pan, Improved parallel computations with Toeplitz-like and Hankel-like matrices,

Linear Algebra Appl. 188/189 (1993) 3–29.
[4] D. Bini, V.Y. Pan, Polynomial and Matrix Computations, Vol. 1, Fundamental algorithms,

Birkhäuser, Boston, 1994.
[5] R.H. Chan, M.K. Ng, Conjugate gradient methods for toeplitz systems, SIAM Rev. 38 (1996)

427–482.
[6] I. Gohberg, T. Kailath, V. Olshevsky, Fast Gaussian elimination with partial pivoting for matrices

with displacement structure, Math. Comput. 64 (1995) 1557–1576.
[7] G.H. Golub, C.F. Van Loan, Matrix Computations, third ed., Johns Hopkins University Press,

Baltimore, MD, 1996.
[8] I. Gohberg, V. Olshevsky, Circulants, displacements and decompositions of matrices, Integral

Equations and Operator Theory 15 (5) (1992) 730–743.
[9] I. Gohberg, V. Olshevsky, Complexity of multiplication with vectors for structured matrices, Linear

Algebra Appl. 202 (1994) 163–192.
[10] I. Gohberg, A. Semencul, On the inversion of finite Toeplitz matrices and their continous analogs,

Mat. Issled. 2 (1972) 187–224.
[11] N.J. Higham, Newton’s method for the matrix square root, Math. Comput. 46 (1986) 537–550.
[12] N.J. Higham, Computing the polar decomposition—with applications, SIAM J. Sci. Statist. Com-

put. 7 (4) (1986) 1160–1174.
[13] N.J. Higham, Fast solution of Vandermonde-like systems involving orthogonal polynomials, IMA

J. Numer. Anal. 8 (1988) 473–486.
[14] N.J. Higham, The matrix sign decomposition and its relations to polar decomposition, Linear Al-

gebra Appl. 212/213 (1994) 3–20.
[15] G. Heinig, Inversion of generalized Cauchy matrices and the other classes of structured matrices,

in: Linear algebra for signal processing, IMA Volume in Mathematics and its Applications, Vol.
69, Springer, Berlin, 1995, pp. 95–114.

[16] G. Heinig, K. Rost, Algebraic methods for Toeplitz-like matrices and operators, in: I. Gohberg,
(Ed.), Operator Theory: Advances and Applications, vol. 13, Birkhäuser, Basel, 1984.

[17] E. Issacson, H.B. Keller, Analysis of Numerical Methods, Wiley, New York, 1966.



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

32 V.Y. Pan et al. / Linear Algebra and its Applications 00 (2001) 000–000

[18] T. Kailath, S.Y. Kung, M. Morf, Displacement ranks of matrices and linear equations, J. Math.
Anal. Appl. 68 (2) (1979) 395–407.

[19] C. Kenney, A.J. Laub, On scaling Newton’s method for polar decomposition and the matrix sign
function, SIAM J Matrix Anal. Appl. 13 (3) (1992) 698–706.

[20] T. Kailath, V. Olshevsky, Displacement structure approach to discrete transform based precondi-
tioners of G. Strang type and of T. Chan type, Calcolo 33 (1996) 191–208.

[21] T. Kailath, V. Olshevsky, Displacement structure approach to polynomial Vandermonde and related
matrices, Linear Algebra Appl. 285 (1997) 37–67.

[22] T. Kailath, A. Sayed (Eds.), Fast Reliable Algorithms for Matrices with Structure, SIAM, Phila-
delphia, PA, 1999.

[23] H. Lu, Solution of Vandermonde-like systems and confluent Vandermonde-like systems, SIAM J.
Matrix Anal. Appl. 17 (1) (1996) 127–138.

[24] V. Olshevsky, V.Y. Pan, A unified superfast algorithm for boundary rational tangential interpolation
problem and for inversion and factorization of dense structured matrices, in: Proceedings of the
39th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer Society
Press, 1998, pp. 192–201.

[25] V. Olshevsky, M.A. Shokrollahi, A displacement approach to efficient decoding of algebraic-geo-
metric codes, in: Proceedings of the 31st Annual Symposium on Theory of Computing, ACM
Press, New York, 1999, pp. 235–244.

[26] V.Y. Pan, On computations with dense structured matrices, Math. Comput. 55 (191) (1990) 179–
190.

[27] V.Y. Pan, Parallel solution of Toeplitz-like linear systems, J. Complexity 8 (1992) 1–21.
[28] V.Y. Pan, Parametrization of Newton’s iteration for computations with structured matrices and

applications, Comput. Math. Appl. 24 (3) (1992) 61–75.
[29] V.Y. Pan, Decreasing the displacement rank of a matrix, SIAM J. Matrix Anal. Appl. 14 (1) (1993)

118–121.
[30] V.Y. Pan, Concurrent iterative algorithm for Toepliz-like linear systems, IEEE Trans. Parallel and

Distributed Systems 4 (5) (1993) 592–600.
[31] V.Y. Pan, Nearly optimal computations with structured matrices, in: Proceedings of the 11th An-

nual ACM–SIAM Symposium on Discrete Algorithms (SODA’2000), ACM Press, New York, and
SIAM, Philadephia, 2000, pp. 953–962.

[32] V.Y. Pan, Structured Matrices and Polynomials: Unified Superfast Algorithms, Birkhäuser/Spring-
er, Basel/Berlin, 2001, to appear.

[33] V.Y. Pan, S. Branham, R. Rosholt, A. Zheng, Newton’s Iteration for Structured Matrices and Linear
Systems of Equations, SIAM volume on Fast Reliable Algorithms for Matrices with Structure,
SIAM, Philadelphia, PA, 1999.

[34] V.Y. Pan, M. Kunin, R. Rosholt, Homotopic residual correction processes, to appear.
[35] V.Y. Pan, E. Landowne, A. Sadikou, O. Tiga, A new approach to fast polynomial interpolation and

multipoint evaluation, Comput. Math. Appl. 25 (9) (1993) 25–30.
[36] V.Y. Pan, Y. Rami, Newton’s iteration for the inversion of structured matrices, in: D. Bini, E.

Tyrtyshnikov, P. Yalamov (Eds.), Structured Matrices: Recent Developments in Theory and Com-
putation, Nova Science Publishers, USA, 2001.

[37] V.Y. Pan, Y. Rami, X. Wang, Newton’s iteration for the inversion of structured matrices, in:
Proceedings of the 14th International Symposium on Math. Theory of Network and Systems
(MTNS’2000), June 2000.

[38] V.Y. Pan, R. Schreiber, An improved Newton iteration for the generalized inverse of a matrix, with
applications, SIAM J. Sci. Statist. Comput. 12 (5) (1991) 1109–1131.

[39] V.Y. Pan, X. Wang, Inversion of displacement operators, to appear.
[40] V.Y. Pan, A. Zheng, X. Huang, O. Dias, Newton’s iteration for inversion of Cauchy-like and other

structured matrices, J. Complexity 13 (1997) 108–124.



U
N

C
O

R
R

EC
TE

D
 P

R
O

O
F

V.Y. Pan et al. / Linear Algebra and its Applications 00 (2001) 000–000 33

[41] V.Y. Pan, A. Zheng, X. Huang, Y. Yu, Fast multipoint polynomial evaluation and interpolation via
computations with structured matrices, Ann. Numer. Math. 4 (1997) 483–510.

[42] D.H. Wood, Product rules for the displacement of nearly-Toeplitz matrices, Linear Algebra Appl.
188 (1993) 641–663.


