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Abstract
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ment of various classes of such matrices. We recall some fundamental techniques for such a
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with O(n) entries of their short generators rather than with their afrentries. Based on
such a representation, matrix operations are performed much more rapidly and use much less
memory space. A major problem is to control the length of the generators, which tends to grow
quite rapidly in the iterative process. Two known methods solve this problem for Toeplitz-
like and Cauchy-like matrices. We extend both methods to a more general class of structured
matrices and estimate the convergence rate as well as the computational complexity. Some
novel techniques are introduced in this study, in particular for the estimation of the norms of
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1. Introduction
1.1. Four basic classes of structured matrices and their four basic properties

In Table 1, we display four basic classes of structured matrices, which themselves
are highly important in numerous applications to sciences, engineering, and commu-
nication and also have been naturally extended in terms of the associated operators
to cover several other popular and important classes of structured matrices.

The matrices of the four classes of Table 1:

(1) are represented with a few parameters (frame m + n for anm x n matrix),
(2) can be multiplied by vectors much faster than general matrices,

(3) are closely related to some operations with polynomials, and

(4) can be naturally associated with some linear operators of shift and scaling.

We refer the reader to [4,32] on property (3), will specify properties (1) and (2) in
Table 2, will extend them to more general classes of structured matrices in Section
1.4, and will comment below on property (4). The latter property as well as properties
(1) and (2) characterizes the more general class of structured matrices.

1.2. The displacement rank approach and our main subject

The modern study of structured matrices was largely motivated by the seminal
paper [18] and, in particular, by the basic concept ofdisplacement rankntro-
duced there. The idea was to measure the Toeplitz-like (or Hankel-like) structure of
a matrixM by the rank of its displacement, that is, of the image matrix of some linear
shift operators applied to the matmix.

The rank of the displacement (called the displacement rankl) isfat most 2 for
Toeplitz (and Hankel) matrices, and anx n matrix M is said to be offoeplitz(or
Hanke) typeor, alternatively, to b&oeplitz-like(or Hankel-likg if the rankr of its
displacement is small (say, bounded by a small constant independemtran). In
this case, the matrix can be representedby- n)r entries of its short displacement
generators rather than by its owrm entries. This enables more efficient storage of
such matrices in computer memory as well as much faster computations with them
[22].

Toeplitz-like and Hankel-like matrices are omnipresent in scientific and engineer-
ing computations, but there are other popular matrix structures too.

Several important classes of structured matrices can be defined and treated simi-
larly in a unified way based on their association with other linear operators, in par-
ticular the scaling operators of multiplication by diagonal matrices and the operators
that combine scaling and shifts. There are conceptual and computational benefits of
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Table 1
Four classes of structured matrices

Toeplitz matrices7 = [ti,j]ﬁjzo

; -1
Hankel matricesH = [hi+j];‘1,j:0

o 1 fAn ho  hy - hy_1
" hq - - hn
. 1 : . . :
fh—1 f to hp—1  hn o hop-2
Vandermonde matrice¥, = [t?]VTl Cauchy matrices; = [L]’?Tl
' i1i,j=0 si—1ji,j=0
n—1 1 . 1
1 i 50—10 S0—tn-1
. n;l 1
Lot fn-1 Sn—1—10 U Sp—1"1Ip—-1
Table 2

Parameters and flops counts for matrix representation and its multiplication by a vector

Matrix class Number of parameters
in them x n matrix

Number of flops required for
multiplication by a vector

General mn 2mn —m —n
Toeplitz/ Hankel m+n—1 O((m + n) logn)
Vandermonde n O((m + n) log? n)
Cauchy m+n O((m + n) log? n)

unified treatment of various classes of structured matrices, where the operators are
unspecified and viewed as symbolic and where the computations with matrices are
performed with their displacements, that is, with the images of the operators applied
to the matrices (see [4,24,26,31,32]). This will be our approach in the present paper.

The approach can be applied to various algorithms for various computational
problems [26,32]. Presently, however, we will narrow our goal to the detail study
of Newton’s iteration for the computation of the inverse of a structured input matrix
and will analyze the resulting algorithms.

Strong numerical stability of Newton’s iteration is well-known (see, e.g., [38]);
furthermore, the iteration becomes particularly effective where the input matrix is
structured. In this case, the main basic operation of matrix multiplication is simpli-
fied dramatically and the entire computation uses much smaller memory and com-
puter time than for general matrices provided that the matrix structure is preserved
throughout the computation. The preservation of matrix structure, however, is a non-
trival problem, which will be our main subject.
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1.3. Our results

We present Newton’s iteration for the computation of the inverses or generalized
inverses of various structured input matrices. Each iteration step is reduced to two
multiplications of structured matrices. We elaborate two methods that preserve ma-
trix structure throughout the computation, based either on truncation of the smallest
singular values of the displacement or on the substitution of approximate invers-
es for the inverse matrix into its displacement expression. With each of the tech-
niques, every iteration step is performed by using nearly linear time and nearly opti-
mal memory space, in line with the estimates of Table 2. We also prove superlinear
convergence with each of these techniques. The algorithms and their analysis are
presented in terms of operations with symbolic displacement operators and symbolic
displacements of the matrices involved, which makes the presentation unified for
various matrix structures. The study of the convergence rate requires estimates for
the norms of the inverse displacement operators. We obtain such estimates by using
three distinct techniques of some independent interest.

1.4. Related work

Newton'’s iteration for matrix inversion was proposed by Schultz in 1933 and
was well studied (see [38] and bibliography therein). The Toeplitz-like case was
studied in [2,4,27-30,33] and the Cauchy-like case in [40]. The unified approach
was treated so far only in the two proceedings papers [36] (confined to the variant
with the truncation of the singular values for both the iteration itself and the estimate
of the inverse operator norms) and [37]. In Section 17, we will comment on the
further ongoing research on our subjects.

1.5. Organization of our paper

We organize the rest of our paper as follows. In the following three sections,
we state some basic definitions and assumptions and recall some auxiliary results
for the unified study of structured matrices represented by their associated opera-
tors and displacements. In Section 5, we recall the definitions and basic facts for
the matrix and operator norms. In Section 6, we brielfly recall Newton’s iteration
for general matrices and outline its modification where the input matrix is struc-
tured. The modification involves a subroutine for the compression of generators of
the computed approximate inverses. We propose two variants of such a subroutine in
Sections 7 and 9 (as Subalgorithms 7.1 and 9.1). In Sections 8 and 10, we analyze the
resulting variants of our Newton-structured iteration and estimate its computational
complexity and convergence rate. Our study in Sections 7-10 is elaborated for the
displacement operator of Sylvester type. In Section 11, we extend the algorithms
to the case of the operators of Stein type. In Sections 12—-15, we estimate the norm
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v~ of the inverse displacement operators, required in our estimates for the output
errors and the convergence rate of our algorithms. In Section 16, we breifly compare
the unification approach with the transformation approach, which reduces to each
other the inversion of structured matrix of various classes. In Section 17, we briefly
comment on the extension of our algorithms to the cases where the displacement
operator is singular and/or where no initial approximation to the inverse is available
as well as to some other important computations with structured matrices.

2. Displacement operators and compressed displacement representation of
structured matrices

The four classes of matrices of Table 1 are naturally associated with various linear
displacement operators &f Sylvester typéalso called_yapunov typevhen they are
applied over the functional spaces),

L(M) =V4 (M) =AM — MB, (2.1)
and/orStein type
L(M) = Ax (M) =M — AMB. (2.2)

Here A andB are fixedn x n matrices and are said to lmperator matricesthe
image matriced. (M) are said to be thdisplacementsf M. The operators of the
two types are closely related to each other.

Theorem 2.1. V4 p = A4,-1 p if the operator matrix A is nonsingularand
Va.p = —4, p-1B if the operator matrix B is nonsingular.

Among the customary choices férandB are the matrices of the scaling and
shifts operatorsD(s), Z , Z}, which we will define next.

Definition 2.1. For a fixed vectos = (s;)'25, D(s) = diag(so, ..., si—1) denotes

ak x k diagonal matrixe; is the (j + 1)th coordinate vecton” andWT are the

transposes of a vectorand a matriX\V, respectivelyv* and W* are the Hermitian
(conjugate) transposeg. = Zo = ), ei+1el.T is the unit lower triangular Toeplitz
matrix, defined by its first columey = (0,1,0,...,0)".

1
J =
1

is thereflection matrix andt” = (¢') for a vectort = (). Zy = Z + feoelfl de-
notes the unit-circulant matrices (for a fixed scalfr

We immediately observe that
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Table 3
Operator matrices, B of the operatorsi, g associated with the four basic classes of structured ma-
trices

Matrix class Matrix pair(A, B) for the operatord 4 Thedy p-rank
Toeplitz (Ze, Z})or(2(.Zy) Atmost 2
Hankel (Ze, Zp)or ([, Z}) At most 2
Vandermonde (D(t), ZZ) or (D(t), Ze) 1
Cauchy (D~Y(9)., D()) 1

7] =JZ.J, Zi;=2;" foranyscalargandf # 0. (2.3)

Definition 2.2. Z(v) is thelower triangular Toeplitz matrile’.’;ol VAR Zy(v)is
-1

anf-circulant matriij?:0 v; Z}; in particularZ1(v) is a circulant matrix.

To each linear operatdr = V4 p or L = A4 p, a class of structured matrichs
is associated such that the rgmbf the displacement€4 z (M) and/ord 4 p(M) of
the application of this operator to a mathk is small relatively to the matrix size.
Or equivalently,

L(M)=GHT, (2.4)

G andH aren x p matrices,p is minimal for the three given matricég, A andB
and is small relatively to the matrix size.

We will call the matrix painG, H) by bothgeneratoifor the displacement (M)
andL-generatorfor the matrixM, and we will call the rank of.(M) by theL-rank
of M (for the operatorg of Egs. (2.1) and (2.2)) (see [4,18,31,32]). We will also say
displacement ranknddisplacement generatowhereL is unspecified or is known
by default.

Table 3 represents some examples of operator matrices associated naturally with
the matricesvl of Table 1 and with the ones having similar structure. The matrices
whoseL-rank is small for the operatdr of the respective lines of Table 3 will be
called the matrices dfoeplitz Hankel VandermondeandCauchytypes, respective-
ly. We will call themToeplitz-like Hankel-like Vandermonde-likeandCauchy-like
matrices, respectively if their shdrtgenerators are available. (Some authors use the
nomenclature Vandermonde-like for a distinct class of matrices [13,23].) The above
definitions cover several important classes of structured matrices such as Sylvester
(resultant), Frobenius, Loewner, and Pick matrices [4,24]. Furthermore, the block
submatrices, the products and the inverses of structured matrices inherit their struc-
ture [4,18,26,31,32], that is, have smialtank for appropriate operatorgoo. There
are also some natural extensions of the above matrix classes, such as polynomial
Vandermonde-like matrices [21], Toeplitz + Hankel-like matrices [3,4,16] and block
Toeplitz matrices.

A linear operatot is nonsingulaif the equation.(M) = 0 implies thatM = 0.
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In this paper, we will deal with nonsingular displacement operdtotisat are
readily and(bi)linearly invertible that is, we have simple expressions of matrices
M via the generator matricés andH and the operator matrice®s and B, which
arelinear in the displacemenL (M) and bilinear in the entries of the generator
matricesG andH. Here are some examples from [32,39], where such expressions
are presented also for several other operators (see [1,4,9,10,16,18] on some earlier
works and see [32,39] on the extensions to singular operators).

Theorem 2.2. Let G and H be a pair of x « matrices

Gz(glv"'sga)v H=(hls"'7hol)7 (25)
andletL(M) = GH' (see(2.1), (2.2), and(2.4)). Then we have
(a)
(e — )M = Zze(gj)zfuhj), where L =Vyz, z,. e+ f,
j=1
L—ef)M = ;ze(gj)z}(hj), where L = 42,71 ef #1,
J=
(e— M=) Z.9)Zshj)J. WhereL =V, ;1. e#f.
j=1
A—ef)M =) Z.(9)Zy(Jhj)J,  where L =4z, z,. ef #1
j=1
(b)

o
(1— fD")M =) " D(g)HVM®Z}h)),
j=1
whereL = AD(U’Z}, t'f # 1forall i,

o
(1= fD"(tY)M =Y " D(g)HV1JIZs(Jh)),
j=1
whereL = Ap).zs» ' f # 1foralli,

(11— fD" ()M = D) Z D(@)HVMZs(Jhj),
j=1
whereL = V11,2, t'f # 1,1 #0foralli,

(L= fD"®)M = D®) Yy D@)HVM®Z}(Ih)),
j=1
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whereL = VD,l(t)’Z}, t'f #1,t; # 0foralli.
(c) For operators L of Cauchy typeve have

o
M =" D(g))C(s t)D(h)),
j=1
whereL = VD(S,D(t))v Si :,é 174 forall i, k,
- 1
M = D(g; D(h;
; (9)) (1—Sirk),-,k (h)).

whereL = AD(S),D(t)s Si £tk forall i, k.

Remark 2.1. The above expressions can be immediately extended to some other
operatord. based on the equations

(Va (M) = —Vgr ;r(M7),
(Aa,p(M)T = Agr 4,m(MT).

Theorem 2.2 enables immediate extension of the computational cost bounds of
Table 2 to more general classes of structured matrices.

Definition 2.3. v, = vu.n (L) denotes the arithmetic cost (in flops) of multiplica-
tion by a vector of am x n matrix M represented by itk-generator of lengtla.
mo.n = mg.n(L, L1) denotes the arithmetic cost of multiplication of a painok n
matrices, where the input matrices are represented byltheind L1-generators of
length Q) for nonsingular operatotsandL i, respectively.

Theorem 2.3. We havev, ,(L) = O(anlogn) for L =V g, L = A4 p for any
pair of matrices4, B from the setZ,, Z], Zy, Z}} and for any pair of scalars e and
f; v (L) = O(anlog?n) for L = V4 p, L = A4 3, WhereA = D(s), B = D(t),
or A= D(s), Bel{Zy, Z}}, orAe{Zy, Z}}, B = D(s) for any pair of vectors
andt and any scalar f. '

The displacement rank approach can be represented by the following flowchart:
COMPRESS, OPERATE, RECOVER

To take advantage of the matrix structure, we will COMPRESS the structured in-

put matricesM via their shortL-generators based on Theorem 2.2 or its generaliza-

tion, then OPERATE witl.-generators rather than with the matrices themselves, and
finally RECOVER the output from the computed shiorgenerators.
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3. Basic matrix operation performed with displacements

The following three theorems express the operator and generator matrices for the
linear combinations, products and inverses of matrices. They are well known [18,31]
and can be easily verified.

Theorem 3.1. For any linear operator L.any pair ofm x n matrices M and Nand
any pair of scalars a and,bwe haveL(aM + bN) = aL(M) + bL(N).

Theorem 3.2. For any5-tuple (A, B, C, M, N) of matrices of compatible sizes we
have

Va,c(MN) =V p(M)N + MVp c(N),

AA,C(MN) = AA,B(M)N + AMVp c(N).

Furthermore

Ap,c(MN) = Ap g(M)N + AMBAg-1.(N)
if B is a nonsingular matrixwhereas

Ap,c(MN) = Ap g(M)N — AM Ay -1(N)C
if C is a nonsingular matrix.

Theorem 3.3. Let a pair ofn x o matrices G and H form al4 g-generator of
lengthe for a nonsingular matrix M. Writdd ~*G = —U andH"M~1 = WT. Then
Ve Aa(M~1) = UWT. Furthermore

Ap aM™Yy = BM™ 4, pM)B™ M1
if B is a nonsingular matrixwhereas

Ap aM™Y = M TAT A, p(M)M 1A
if Ais a nonsingular matrix.

Theorem 3.2 motivates the following definition [32].

Definition 3.1. Operator pairgVa, g, Va.c), (44,8, V.c), (44,8, 4p-1 ), and
(44,8, 4 1) are calleccompatible

Theorem 3.4. For a pair of compatible operators L anb; associated with opera-
tor matrix pairs of Theorer@.3, we haveny , (L, L1) = O(avg.n (L) + avg.n(L1)).

Our next assumption is motivated by Theorems 2.3 and 3.4.

Assumption 3.1. Hereafter, we will always deal with nonsingular operatomnd
L1 having linear inverse operators and such that
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ma,n(L: L) = o(owa,n(L) + avg, (L1)),
Van(L) = O(anlog?n), d <2

We will call such operatorstrongly regular

4. Orthogonal displacement representation of structured matrices

For a fixed pair of operatdr and matrixM, we may choose therthogonal(SVD-
based L-generator matriceto achieve better numerical stability [2,27,29,33]). That
is, we first compute the SVD of the displacem&nt= L(M),

W=U3?vT, (4.1)

U*U = V*V =1, X =diagot,...,0,),

01220, >0, p=rankW), (4.2)
whereU andV arem x p andp x n matrices, respectively, amf, ...,crpz denote
the singular values of the matrif%¢, and then we write

G=UX, H=VZX. (4.3)

Remark 4.1 (see[29]). The SVD computation is quite inexpensive in this case,
involving O(na? + a(log log(1/8) log) flops for ann x n matrix M given with its
L-generators of lengtta and fors denoting the output approximation error bound for
the SVD; we will ignore the latter term assuming realistically tthag log(1/5)) log«

= O(na). The computation of the SVD of the displaceméritV) given with its
longer L-generator of lengtlx enables us to achieve maximal compression of a
matrix M, that is, to obtain its shortektgenerator. An alternative algorithm of Prop-
osition A.6 of [28] for the same compression task uséss®) flops and involves no
SVDs. Thus, we will usually assume that our structured matrices are given with their
shortest-generators.

5. Matrix and operator norms
We will need some further definitions in addition to the ones of Section 1.
Definition 5.1. || M| denotes any fixed operator norm of a matix | M ||; is the

l-norm,/ = 1, 2, oo (see [4,7])« (M) = conch(M) = oZ(M)/aZ(M), wheres?(M)
is theith singular value oM (see (4.1) and (4.2)),= 1, ..., p, p = rankM).
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Theorem 5.1(see [4,7]).|M|2 = crf(M) for every matrix M and« (M) = | M|2
|M~1||> forann x n nonsingular matrix\/ = [m,+,-]. Furthermore we have| M ||;/
< |IM|l2 < [Mji/n, 1=1,00; [[M|1= M |lc =max; Y, [m IIM||§ <
I M2 M | oo-

Definition 5.2. We define thenormsof a nonsingular linear operatarand its in-
verseL L

v=1,(L) = SAl;HIIL(M)Ill/IIMllz),

vo=v, (L) = v (L7 = SIEFXHMHZ/”L(M)HI),

wherel = 1, 2, co and the supremum is over all matridéshaving positiveL-rank
of at mostp. We also define theondition numbepf the operatoL.:

Kk =k(L)=condL) =vv~ = vp,l(L)v;l(L).

6. The Newton-structured iteration

Let us assume that a crude initial approximatioWios (M 1) is available, sup-
plied, say by the preconditioned conjugate gradient method, which converges to the
output rather slowly, with linear rate [5], or by a direct solution algorithm performed
with rounding. The approximations can be rapidly refined by means of Newton’s
iteration for matrix inversion:

Xiv1=2X;, —XiMX;, i=0/1... (6.1)
Matrix equation (5.1) implies that
[ =MXisa=(I—MX)% |1 —MXial < I — MX;|?

foralli. Thatis, we have quadratic convergencelif- M Xo|| < 1. Thisis a special
case of the residual correction process [17, p. 86]. The iteration is numerically stable
even wheréMl is a singular matrix (in this case the iteration converges to the Moore—
Penrose generalized invera&™) and can be accelerated based on various policies
of scaling X;41 for all i and choosing an initial approximatiaXip [38]. We will
only study unscaled Newton’s iteration (see our comments on scaling in Section 17).
Furthermore, to make our analysis more transparent, we will work with iteration (6.1)
though practically it is slightly simpler to perform the computations with the matri-
ces—X; and—X,; 1 and to rely on the equationsX; 1 = (—X;)(2] + M (—X;)),
i=0,1,...[33].

Each step (6.1) is essentially two matrix multiplications, which uge@log? n)
flops,d < 2, for structured matrices of Theorems 2.3 and 3.4. In particular, for struc-
tured matricesM and X, having shorv4 - andVp_4-generators, respectively, the
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iteration can be performed efficiently by operating with shéigenerators of the ma-
tricesM, X;, andM X; (or X; M). This, however, requires some special techniques for
controlling the length of th& 5 _4-generators ok;, which tends to be tripled at every
iterative step. Similar comments apply whetg z- and4p_4-generators are used.

Two methods proposed in [27,30,33,40] counter such a mishap in the case of
Toeplitz-like and Cauchy-like matrices. Our main goal in the present paper is to
extend them to various other classes of structured matrices in a unified way and to
analyze the resulting algorithms.

Here is the basic observation of [27,30,33,40]. By assumption(¥ak(M 1))
= p. Therefore, the matriceX;, which approximate ~* closely for largei, have
a nearby matrixy/ ~* of V_s-rankp. Thus, our strategy is to replage in (6.1) by
a nearby matrix; havingVp_4-rank at mosjp and then to restart the iteration with
Y; instead ofX;.

Let us next formally describe this approach for Sylvester type operators. (On the
extension to Stein type operators, see Section 11.)

Algorithm 6.1 (The Newton-structured matrix iteration for the Sylvester type oper-
ators).

Input. A positive integerp, a pair ofn x n matricesA andB, ann x n nonsingular
matrix M havingV4 g-rank p and defined by it§/4 p-generatoG, H) of length
p, a matrix Yo (an initial approximation to the matri® —1) given with its VB, a-
generator of length at mogt a bound on the numbé&t of Newton'’s iteration steps,
and a subroutin® for the transition from &g _4-generator of length at mosp3or
ann x n matrix approximating — to anV ,_g-generator of length at mogtfor a
nearby matrix.

Output. A V_4-generator of length at mogtfor a matrixy; 1 approximatingy —*.

Computations. Recursively comput& s 4-generators of length at mosp 3or the
matrices

Xip1=Y;(2l —MY;), i=0,1,...,N—1, (6.2)

andVp_4-generators of length at mostfor the matrices’; 1 defined by a transfor-
mation fromX; 1 by means of the subroutiri

Theorem 6.1 (see [40] or [32]).Let the assumptions of Algorithél hold. Then
foranyi =0, 1,..., a Vg a-generator of length at moSlp for the matrixX;;1 =
2Y; — Y;MY; can be computed at the cost of performi@gov, ,(Vp a) + pv,.»
(Va.p)) flops which isO(p2n log? n) flops ford < 2 under AssumptioB.1.

To complete the description of the Newton-structured iteration, it remains to spec-
ify the subroutindR, which controls the length of the computegenerators. We will
do this in two ways, to be specified in Sections 7 and 9.
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7. Newton-structured iteration I: compression by the truncation of singular
values

The following result enables us to compress a mafrilying nearX; andM 1.

Theorem 7.1[7, pp. 72, 230]Given a matrix W of rank and a non-negative integer
B, B < p, it holds that

2 .
o = min W — B]|2.
p+1 B:rankB)<p I I2

We will represent the displaceme¥iz 4 (X;) via its SVD, truncate all its sin-
gular values except for the largest of them, and thus obtainVg 4-generator of
length at mosp for a nearby matrix;. The matricesX; andM lie near each oth-
er. Furthermore, we havVp 4(X:) — Vg a(Y)ll2 < Ve a(Xi) — Ve a(M Y2
by Theorem 7.1 because re(ﬂg,A(Mfl)) < p. For invertible operatorS 4, this
implies that alsd; lies nearX;.

To specify and to analyze formally the transition from the matri¥e$o Y;, we
will use some further definitions and simple preliminary results.

Hereafter, we will write8 = g; = rank Ve a(Xi)). (8 < 3p for all i, by Theorem
6.1.) Let us also write

ei=1Xi =M Y, 1=1200 e=|Xi—M1, (7.1)
GLi=1Yi—MY,, 1=1200 &=|Y;—M1, (7.2)
ri= |1 —Y;M|a. (7.3)

Now, we are ready to describe variant | of subrouhfr Algorithm 6.1.

Subalgorithm 7.1 (Compression of a displacement by truncation of its smallest sin-
gular values.

Input. A positive integelp, operator matrice8 andB, a V4, g-generator of lengtlp
for a nonsingularn x n matrix M, wherep = rank(Va g(M)) = rank Vg aA(M™1)),
and aVp a-generatonG;, H;) of length at mosp = 8; for a matrixX; such that
p < B, Ve a(Xi) = GiH].
Output. A Vg a-generator of length at mogtfor a matrixY; such that

1Y; = M~ Y2 < A+ (1All2 + | Bll2)v ez, (7.4)
for ez of (7.1) andv— = vp,z(V;)lB) of Definition 5.2.

Computations.
(a) Compute the SVD of the displacem@&m 4 (X;) = UiZl.ZViT.
(b) Set to zero the diagonal entried,;, .. ., o7 of the matrix>?, thus turning=?

into a diagonal matrix of rank at mogt (o2

21+, 0f are thep — p smallest
singular values of the matriXp 4 (X;).)
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(c) Compute and output the matricé$ and H;* obtained from the matricels; 2;
andV;X;, respectively, by deleting their lagt— p columns.

Correctness of Subalgorithm 7.1 is implied by the following result, which shows
that bound (7.4) holds under our assumptions on the input of Algorithm 6.1 and
Subalgorithm 7.1.

Theorem 7.2. Let the structured matricel® —, X;, andY; be defined as above and
let a positive scalaez; be defined by Eq.7.1). Let Vg 4 be a nonsingular linear
operator. Then boung?.4) holds.

Theorem 7.2 generalizes a result proved in [27,29,30] for the Toeplitz-like case.
To prove Theorem 7.2, we need the following two lemmas.

Lemma 7.1. Under the notation of Algorithr6.1, we have
IVB.a(Xi) = Vg a(Yi)ll2= 03+1(VB,A(X1')), (7.5)
IVB,A(M™Y) = Ve a(X)Il < (Al +[B|De;. (7.6)
for e; of (7.1).

Proof. Eq. (7.5) follows immediately from Theorem 5.1. To prove bound (7.6),
recall that

Ve aM™h =am™t —mM1B,
Vg .a(Xi) = AX; — X;B.
Therefore,

||VB,A(M71) — VB,A(Xi)H
=|X;B—AX; — M™*B+ AM|
=I(X;i =M HB - AX; — MY
<IXi = MY IBI+ Al - I1X: — M|
< A+ IBIDIX; — MY
= (lAll +11BlDe;. O

Lemma 7.2, ||V, a(Xi) — Vpa(YD) 2 < (I1All2 + [ Bll2)e2,i.

Proof. Apply the well-known estimate of [7, p. 428] and deduce that
102(Vp.4(X0)) — 02(Vp a(M™1)| < VB.A(Xi) = VB, a(M Yll2
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for all j, wherecrjz(W) are defined by (4.1) and (4.2). For gll> p, recall that
oj.z(VB,A(Mfl)) = 0 and obtain
o?(Vp,a(X)) < |VB.4(Xi) — VB A(M |2
Now, substitute inequality (7.6) and deduce that
0?(Vp,4(X)) < (|All2+ || Bll2)ez,;  for j > p.
Combine this bound fof = p + 1 with Eq. (7.5) and deduce Lemma 7.20]

Now, we are prepared to prove Theorem 7.2.

Proof of Theorem 7.2. By first applying Definition 5.2 for =2 andL = Vg 4
and then applying the linearity of the opera¥s 4, we obtain that

1Xi = Yilla < v IV a(Xi = Y)ll2=v"IVB,a(Xi) — Vg a(Yi)|2.
On the right-hand side of the inequality
1M~ = Yill2 < 1M~ = X;ll2 + I1Xi — Yill2,

substitute Eq. (7.1) fof = 2, that is,ep; = || X; — M (|2, substitute the above
bound on|| X; — Y;||2 and the one of Lemma 7.2, and obtain that

1M~ = Yill2 < e2 + VB.A(Xi) — Viga(¥)[l2v™
<ezi + (Al + IBll2)eziv—. U

8. Newton-structured iteration I: convergence rate and computational
complexity estimates

Combining Algorithm 6.1 with Subalgorithm 7.1 applied as a subrougirske-
finesNewton-structured iteratioh Next, we will estimate its convergence rate and
computational complexity. Estimating the computational cost, we will rely on Defi-
nition 5.2 and the bound @p?) of Remark 4.1 on the cost of computing the SVD.
This immediately implies:

Theorem 8.1. Newton-structured iteratiohproduces the matrice¥1, Y1, X2, Y2,
..., X, Yi by performingO((v, » (VB,4) + vp.n(Va,B) + pn)ip) flops which is
O(ip?nlog?n) flops ford < 2 under Assumptio.1.

Let us next estimate the convergence rate of the iteration. We have
I=XipaM = (I = YiM)?, |1 = X;1aM|l2 < rf

for ry = ||I — Y; M ||2 of (7.3); therefore| M~* — X; 112 < r2|M~1|2. By Theo-
rem 7.2, we have
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IM™t = Yisall2 < L+ (1All2 + 1BI2vOIM ™ = Xit1l2.
Consequently, we have
IM™ — Yigalla < A+ (1Al2 + 1BlI2v)r2IM 722,
Therefore,
rigr =1 = YigaMll2 < |M~Y = Yiall2| M|l
<A+ (Al + IBlI2vO)rAIM 2 M |12
< A+ (IAll2 + IIBl2v )réc (M),

wherex (M) = concb(M) = |[M~1|2|[M||2 (see Theorem 5.1). Let us rewrite the lat-
ter bound as follows:

pripr < (ur)?, p= A+ (|All2+ | Bl2v )k (M) fori =0,1,... (8.1)
Relations (8.1) imply that

wri < (wro)?, i=0,1,...
The following theorem summarizes our analysis.

Theorem 8.2. Let the matricesXgp and M be given with theivVp 4- and V4 p-
generators of lengtly and p, respectively. Furthermordet

uro <0 <1, pu=Q+Alz+IBl2)v )k (M), (8.2)
for ro = ||[I — YoM |2 of (7.3), v~ = vp‘é(VA,B) of Definition5.2, x of (8.1), and
some fixed read. Then for all positive,iwe havetz ; = ||¥; — M~ < ri|[M 72

< (uro)? (IM~ Y2/ < 02 | M7 2/ 1.

Corollary 8.1 (see also Remark 4.10Inder the assumptions of Theoré2, the
residual norm bound; = || — V)M |2 < €/ is ensured in

[ = [log,(loge/logh)]

steps of Newton-structured iteratidn These steps requi®((v,,,(Vp,a) + vp.n
(Va.p))pl) flops which isO(lp2n log? n) for d < 2 under AssumptioB.1.

9. Newton-structured iteration Il: compression by means of substitution

Letus describe an SVD-free method for the compression of approximate inverses.
First recall thatVz (MY = —M~1GHTM~1, by Theorem 3.3. Now substitute
X, for M~ on the right-hand side and define a sHopt 4-generator for the matrix
Y;:
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Ve a(Y))=UW!, U =-X;GeC™, Wl=H"X;eCr. (9.1)

(We expect tha¥; ~ M~ becaus&/p A(Y;) ~ Vg a(M~1), which should hold be-
causeX; ~ ML) This leads us to the following variant of subroutiRe

Subalgorithm 9.1 (Compression of the displacement by substitution of an approx-
imate inverse for the inverkse

Input. A positive integerp, a pair ofn x n operator matriceé& andB defining a
strongly regular operatdrg 4, aVa, p-generator of lengtpp for a nonsingulan x n
matrix M where p = rankV4 p(M)) = rank V. 4(M~1)), and aV 4-generator
(Gi+1, Hi+1) of length at most 3 for a matrixX;,1 of Eq. (6.1).

Output. A Vp_4-generatoKU;+1, W;1) of length at mosp for a matrixY; ;1 such
that

éiv1= Y1 — MY < Cie; (9.2)

for éi41 0f (7.2),¢; of (7.1),C; = v=[GH||(er + 21 M|, andv™ = v, (V%)
of Definition 5.2.

Computations. Compute and output the matrix produéts.1 = —X;+1G, WI.T+l =

H'X;\1.

Under Assumption 3.1 about strong regularity of the oper&igr, the matrix
pair (Ui+1, Wi+1) is a Vg a-generator of length at mogtfor a matrixY;1, which
is a unique solution to the following equation (see (9.1)):

Vp.alYit1) = Ui+1W,-T+1-

The computation of the x p matricesU;1, W;4+1 of (9.1) is reduced to multipli-
cation of the matrixX; 1 by then x (2p) matrix (—G, H). This requires Quv, ,
(VB.4) +vp.1(Va,p)p)) flops, which is Q@p2n log? n) flops under Assumption 3.1.
To prove correctness of the subalgorithm, that is, to prove bound (9.2), we need

some auxiliary results. Recall the matrix equatieris=M1G andW™ = HTM~1

of Theorem 3.3 and deduce that

~U;=X;G=(X; - M HG + MG,
W =H'X;=H"(X;—-M Y +H M

Now, write £; = UWT — U; W] and obtain the following matrix equation:

Ei=X;-MYGHT(X; —M™Y
+MGHT(X; - MY
+(X;-MYHGH ™ML



18 V.Y. Pan et al. / Linear Algebra and its Applications 00 (2001) 000—-000

Lemma 9.1. For the matriced;, W].T, andE; defined above and fet; = || X; —
M~ of (7.1), we have

IEjIl = \U;W] —UWT|| < IGH |lej(ej + 2IlM ).
Proof. The lemma follows from the above expressionfgr [

Theorem9.1. Fori =0,1,..., we havee¢;;1 < Ciy1ei41 for ¢; of (7.1), ¢; of
(7.2). Ci = v~ |GH||(e; + 2| M~1[)), and the normv~ = v(V5",) of Definition
5.2.

Proof. Recall thaté;41 = [|Yi+1 — MY < v7 || Vg a(Yiys —M~b)]|. Since the
operatorVp 4 is linear, we haveé; 11 < v7||[Vp a(Yix1) = Ve a(M™H| <v7|

U,»HWI.TJrl —UWT| < v ||Eis1]l. At this point apply Lemma 9.1 forj =i + 1

and obtain thaé; 11 < Cit1ei41. O

10. Newton-structured iteration Il: its convergence rate and computational
complexity estimates

Combining Algorithm 6.1 with Subalgorithm 9.1 (applied as subrouR)ele-
fines Newton-structured iteration Il. Our next goal is to estimate its convergence rate
and its computational complexity.

Lemma 10.1. For a nonsingular matrix M the matrixX; 1 defined by Eq(6.1),
the matrixY;;1 of Subalgorithm9.1, and the scalarsC;, e;j+1 = || Xit+1 — M
andé; = ||Y; — M~1|| (of Theoren®.1 and Eqgs.(7.1) and (7.2)), we haver; 1 <
IM|é? < (Cien?|M| fori = 0,1, ...

Proof. By (6.1), we havel — MX; ;1 = (I — MY;)?,i =0,1,... It follows that
i1 =1Xis1 — MY =IM72U - MXi)|| = M2 — MY)?| = [|(M~T -
YOMM™ 1 —Y)| < ||M||éi2. Finally, substitute the bound of Theorem 9.1

Let us restate this lemma in a more constructive way, that is, let us replace the
valueseg, ||[M 1|, andC; by more readily available values. Write
e = roll¥oll /(1 — ro) (10.1)
forrg = ||I — MYp| of (7.3) and assume realistically that
ro< 1, (10.2)
e <IM7Y, (10.3)

for ¢; of (7.1) and for alii.
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Lemma 10.2. Assuming relation§10.1)—(10.3), we have

M~ < 1Yoll/(X - ro), (10.4)
éo < e, (10.5)
Ci<C=3v"|GH"| - |Yoll/(d—ro) foralli. (10.6)

Proof. We have
M= — 1Yol < éo = 1M~ = Yol < IM~2ro,

and (10.4) follows. Substitute (10.4) into the bodgdk || M ~1|ro and obtain (10.5).
Substitute (10.3) into the expression of Theorem 9.1(grthen substitute (10.4),
and obtain (10.6). [

By combining Theorem 9.1, Lemmas 10.1 and 10.2, we obtain:

Theorem 10.1. Assume relation€l0.1)—(10.3). Therg; < Ce;, eir1 < (Ce))?| M|
for C of (10.6), ¢; of (7.1), ¢; of (7.2), andi =1, 2, ...

Corollary 10.1. Assume relation10.1)—-(10.3) and write i = C?||M|. Then we
have

feir1 < (fie)? < (pep)? fori=1,2.... (10.7)

By applying Lemma 10.1 and then bound (10.5), we obtaindhat egl|M || <

(e3)2||M||. Substitute the latter bound into Corollary 10.1 and obtain:
Corollary 10.2. Assume relation&l0.1)—(10.3) and the bound

(en)'? < CeglM| <0 <1, (10.8)
for i = C?|M||, eg 0f (10.1), C of (10.6), and a realf. Then we havéie; 11 <

- i i+1 i+1 ~ .
(Re)? < (CelIMIN? " <62 andéis1 < Ceirr,i=0,1,...

Corollary 10.3. Write
i*+1=Tlogy((loge®)/log o)1,

and assume relationd 0.1)—(10.3) and(10.8). Thenwe have; ;1 = || X; 11 — M|
<e*/ipandej g = Y1 — MY < Ce*/ifori +1>i*+ 1; furthermore the
matricesX; 1 andY; ;1 are computed in* + 1 steps(9.1) by usingO((i* + 1) (vp,»
(VB.A) +p.1(Va.p))p) flops this isO((i* + 1) p?n log? n) flops ford < 2 under
AssumptiorB.1.
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11. Extension to the case of the Stein-type operators

We may extend our algorithms by replacing the Sylvester type opeaiogsby
the Stein type operatorss g (see Theorem 2.1). This involves some minor changes.
First, the formula for the recovery of a matW from its image44 g(W) chang-
es versus the recovery fromy z(W), and all the algorithms change respectively.
Second, minor changes appear in the computation of thg-generators of the ma-
tricesX;+1 = 2Y; — Y; MY; because of the changes of the expressions for the matrix
products and inverses. Let us specify.

Assume that the matricdd andA are nonsingular and writd4 g (M) = GHT.
Then we have the following expression for the inverse:

ApaM Yy =M1 —BM A =MTA" 4, g(M)M A =G_H,

whereG_ = M~1A=1G andH' = HTM~1A. Similarily, if M andB are nonsingu-
lar, we have

ApaM™ Yy =M —BM™A=BM Y4, g(M)BM 1 =G, H],

where G, = BM~1G and H] = H"B~*M~1. In both cases, the length of the
A 4 p-generatoiG, H for M equals the length of the respectixtg 4-generator for
ML

Likewise, for the producYMY we deduce the following expression without any
nonsingularity assumptions:

YMY — BYMYA= (Y — BYAMY + BYAMY — BYA — BY(M — AMB)YA

This expression furnishes us wittg_4-generators (of Stein type) of length at most
3p for Y;MY; and, consequently, foX; 1 = 2Y; — Y;MY;, provided that andY;
are given with theid 4 - and4p_s-generators of length at most respectively.

The resulting changes of our algorithms will be further specified in the following
two subsections. On some more elaborate techniques that enable extension of our

algorithms to some operatot, 5 where both matriceé andB are singular, see,
e.g., Theorem 11.2 of Chapter 2 in [4].

11.1. Specific changes for Subalgorithm 7.1

We change the requirements to the output of Subalgorithm 7.1 and its computation
as follows:

New output. A 45 4-generator of a length at mogtfor a matrix¥; satisfying the
bound

Vi — M2 < L+ A+ [All2lBll2)v ez, (11.1)
for ep; of (7.1) andv~ of Definition 5.2. The latter change is motivated by the
following argument extending the proof of Lemma 7.1:

IX; — BX;A— M4+ BM 1A
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=X =M™ — B(X; — M~ HA|2

<I(Xi — M Y2+ I1Bll21(Xi — M~ Y201 All2
<@+ IAl0BID X — MYz

< 1+ [Al2ll Bll2)e;.

Assumption (8.2) for = 0, which ensures rapid convergence of Algorithm 6.1, turns
into the following one in the Stein type case:

A+ A+ lAl20Bll2v )x(M)ro <0 < 1 (11.2)

forv= = v, 2(44, ) of Definition 5.2.
11.2. Specific changes for Subalgorithm 9.1

We change Subalgorithm 9.1 as follows:

New input. A positive integep, a pair ofn x n operator matrice& andB, which de-
fine a strongly regular operatdy g, Abeing nonsingular, @ g-generator of length
at mostp for a nonsingular matrik, wherep =rank(4a g(M)) =rank(4 B,A(M—l)),
and a4p a-generatotG;1, H;+1) of length at most 38 for matrix X; 1 of Eq. (6.1).

New output. A 45 _s-generator of a length at mostfor matrix Y; 1 satisfying the
bound

éiv1=Yie1 — MY < Ciej (11.3)
fore; of (7.1),¢; of (7.2),
Ci =v IIGHT| - |AIl - IA I(es + 211M 72, (11.4)

andv~ of Definition 5.2.

New computations.Recall Theorem 3.3, compute and output the matri¢es =
Xiy1A7IG, WL = HTX;11A.

The latter changes are motivated by the following argument extending Lemma
9.1. Express the matrix

Ej=UjW] —UW' = X;A'GH"X;A— M *A"'\GH" M 'A
as follows:
Ej=UjH"(X; - M HA+(X; - M HaTlew]
—(X;—MHalGHT(X; - M~HA.
Therefore,
IEN < IGHT| - Al - A ej(ej + 21M )
= IGH |k (A)e;j(e; + 2| M~ ).
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Corollaries 10.1-10.3, which specify the convergence rate of Algorithm 6.1 com-
bined with Subalgorithm 9.1 and the computational cost of the resulting algorithm,
are extended to the Stein type case too. Here is the respective extension of Corollary
10.1, which immediately implies appropriate extension of Corollaries 10.2 and 10.3.

Corollary 11.1. Assume relation§7.1)—(7.3), (10.1)—(10.5) andAthe bounds; <
|M =2 foralli. Write C = 3v=|GH ||k (M)||Yoll /(1 — ro), fi = C?|[M]. Then we
havejiej+1 < (fiei)? < (ften)? fori =1,2, ...

12. Norm estimates via truncation of singular values

To complete our analysis presented in the previous sections we must estimate the
normsv™ of the inverse displacement operat¥rs’, orAAT 5 that we associate with
the input matrices of our Newton-structured iteration (see Definition 5.2). In this and
the following three sections, we will apply three approaches to the solution of this
problem (see yet alternative techniques in [39]).

In this section, we will estimate the norms for the operators associated with
the four basic classes of structured matrices, that is, Toeplitz-like, Hankel-like, Van-
dermonde-like, and Cauchy-like matrices. The estimates will depend on the choice
of the basic bilinear representation of such matrices). Technically, we will follow the
line of the Appendix of [27]. In particular we will rely on the truncation of singular
values of the displacemet(M) and will use the two following simple auxiliary
facts.

Fact 12.1. We have| Z ¢ (v)|l; = ||v|l1 for any scalar f | f| < 1, any vectorv and
[ = 1, oo; furthermore || D(V)|l; < |IVI|;-

Fact 12.2. For an orthogonal L-generatofG, H) of a matrix(see(4.1)—(4.3)), we
havellgillz = [lhillz=0;(GHT),i =1,...,p, [GH |2 =0Z(GH").

Now we are ready to estimate the norms We writel = (1)] o= (t")

Theorem 12.1. Lets = (s;) andt = (¢;) be a pair of vectors of dimension n filled
with 2n distinct coordinatesnone of the; being zero. LeV = V4 g and4 = 4,
be nonsingular operators @2.1) and (2.2). Then we have the following bounds on
the I-norm of the inverse operatovs 1 and 4~ over then x n complex matrices

Vo (A1) < pn®. vy (V) < pnt®, (12.1)
whereA, Be{zf,zT |l < 1)
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Vo1 (A1) < py/nIDTEHA = VD),

12.2

Ve (Vih) < p il DL~ FEOV L, Y 2
where(A, B) € ((D(t). Zy). (D(t). Z}). (Zy, D). (Z}.. D(t)}.

v (bl nes) < PVAIDESCES DI (12.3)

fori =1,2,00,1< p < n. Forl =2, all these upper bounds are decreased by the
factor of \/n.

Proof. The bounds of Theorem 12.1 are obtained based on the bilinear representa-
tion for each matrixM of A4-rank (respectivelyy-rank) at mosp such thatd(M) =
GHT (respectivelyV (M) = G HT) for the matricess andH of (2.5), wherex = p.
That is, we deduce bounds (12.1)—(12.3) based on the equations of Theorem 2.2 and
Remark 2.1.

We first deduce from Theorem 2.2 (a) thidt/ || < le ||Ze(g,»)Z}(h,~)|| for M
of part (a) of Theorem 2.2. By applying Facts 12.1, 12.2, and Theorem 5.1, we
obtain that| Z(g:)ll1 = 19:ll1 < oi/n, [ZT (M)l = 1 Z(h)lloe < [Iill1 < 0 y/m,
1Z(@)ZT(h)ll; < on forl = 1, co and for alli. Therefore|[M|; <n Y /_ 02 <
npo? =np|GH |2 forl = 1 andl = cc.

By using Theorem 5.1, we reconcile th@orm and the 2-norm on both sides
of the latter inequality and arrive at bounds (12.1). Furthermore, we combine our
bounds on||M||; for I = 1, co with the bound||M||§ < [IM]1|IM]|0 Of Theorem
5.1 and improve the bound of (12.1) fbe= 2 by the factor ofy/n. Egs. (12.2) and
(12.3) are derived similarly, based on the expressions of Theorem 2.2 and on Remark
2.1. (We leave details to the reader.)}]

Remark 12.1. The operatorg andV are associated with Toeplitz-like and Hankel-
like matrices (for (12.1)), Vandermonde-like matrices (for (12.2)), and Cauchy-like
matrices (for (12.3)).

13. Norm estimates where operators matrices arepotent

In this section, we will estimate the norpt for the operators associated with
Toeplitz-like, Hankel-like, Vandermonde-like, and Chebyshev-Vandermonde-like
matrices where at least one of the operator matc@s = A or C = B) isf-potent,
thatis,C" = f1. This is the case fof = Z; andC = Z}.

We will explicitly estimatev— for the Stein type operatots but we may extend
the estimate immediately to the case of the operators (2.1) of Sylvester type provided
that at least one of the operator matriéeandB is nonsingular. Indeed, recall The-

orem 2.1 and observe that the matrix equationg (M) = A4 ,-1 (M) implies
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thatv ) (441 5) > ||A*1||1v;l(vA,B) and similarly Vs g(M) = =4, z-1(M)B
implies thatv ", (4,4 p-1) > ||B—1||1u;_1(vA,B).

We will start with auxiliary results (of independent interest), first of which will
enable us to invertthe operatbr= 44 g (bi)linearly where some annihilation poly-
nomials for the matrice& andB are avaliable. This approach was used in [8,16,42]
in order to express Toeplitz-like matrices via their displacements.

Theorem 13.1. Forall k > 1, we have
k—1 '
M= A*MB* + %" A"A; p(M)B'.
i=0

Proof. Notethatd’ M B = AIT1M B*1 4+ AP A, p(M)B!, sum these matrix equa-

tionsfori =0, 1, ...,k — 1, and cancel the identical terms that appear on both sides
of the resulting equation. O

Fork = p, we obtain the following corollary.

Corollary 13.1. Suppose that” = al and/or B? = b1 (that is A is an a-potent
matrix of order p and/or B is a b-potent matrix of order. dhen

p—1
M = Z AlAs g(M)B' | (I —aBP)™? (13.1)
i=0
and/or
q—1
M= (I —-bA?)1 ZA"AA,B(M)B" ,
i=0

respectively.

Corollary 13.2. LetL = 44 p, where A¥ = £ for some positive integer k. Then
we have(13.1) fora = f, p = k and, consequently

VT < (THNANBI + -+ 1A 1 — £BH T (13.2)
Likewise if BX = fI, then we have

V(L NANIBY A+ -+ IAHBE ) I - £ A5 7. (13.3)

Next, we will specialize Corollary 13.2 to some specific classes of structured
matrices. We will use the following notatioa:andt denote a pair of vectors of di-
mensiom filled with 2» distinct coordinates andt;, none of the; being zero (asin
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Theorem 12.1), and we write = min; ||, 4 = max; |¢|, Z = 22}2@(—1)"*1
ZZi_l.

Theorem 13.2. Leta, b, e, and f be four scalars such th#t| < 1, |f| <1, a=
1/max|l—el|, |1— f|} >1/2, b=1/|1— f| > 1/2. Then we have the following
bounds

Vp.l (AX,lB) < na, (13.4)
whereA, B € {Z,, Zs, Z], z}}, [ =1, 00,

()

1 b ooifr #1,
vt (At . ) <4 27 ) (13.5)
wherel =1, 2, oo,
11 .
-1 lTb if ty # 1,
Vp.l (AD(t),Zf) < !nb“ o, =1 (13.6)

wherel =1, 2, oo,

(2)

n Lt i

o) [ O e
14 22D if 1y = 2.

Proof. The bounds of Theorem 13.2 are obtained based on bound (13.2) and
(13.3) applied fork = n and the operatord of (13.4)—(13.7). Bound (13.4) is im-

mediate becausgZc; = 1Z] |l = -~ = I1Z¢ i = [(Z])" 1 =1 for ] <1
and/ = 1, co. Bound (13.5) immediately follows from (13.3) fdr=n because
ID7X(®)]l; = *, and therefore, we have

1 1

v, <1l4 =4+

tnfl'

The proof of (13.6) is similar to the proof of (13.5). Finally, let us prove (13.7).
Recall thatZ = 2Y""/? (—1)i~17%~1 and deduced that

2"=0, |Zl1<n,

ln/2]
”27141”1 — 21171 Z (_1)1’71221'71 < 2”717’1/2 — 21172,1’
i=1

1

1
Vo <14 S =2
,0,1 t+ tnfl

+
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2 2 n—2
=1+£<1+—+---+(—) ) O
1y [ 1y

Remark 13.1. The operatorsl are associated with Toeplitz-like and Hankel-like
matrices for4 of (13.4), Vandermonde-like matrices fdrof (13.5) and (13.6), and
Chebyshev—Vandermonde-like matrices [21] fioof (13.7).

14. Eigenvalue technique for the estimation of operator norms

In the following section, we will estimate the nonm in the cases of the operators
associated with the Cauchy-like and Toeplitz + Hankel-like matrices. Corollary 13.2
is not sufficient in these cases, but we will rely on the following result:

Theorem 14.1. Let 4 = A4 p be a Stein type operator @R.2) with n x n oper-
ator matrices A and B. Lety, ..., A, be the eigenvalues of the matrix A. Write
Ay, = A—Ail, By, = I — A;B. Assume that the matrices,, are nonsingular for
alli. Then we have

M = AM)B* + Ay, A(M)B; BB,

2
+oet Any e Ag, L AM) B - BB (14.1)

and, consequently

v, 1(A™H < IB; Hln + [1Aagllall BllallB; Il B I
oo Al 1 As, Il B el B M- 1185 M.
(14.2)

Proof. Leta be any eigenvalue of the matix We have

A(M)= M — AMB + AMB — AMB
=M — AB) — (A — A)MB
= MB, — A, MB,
and, consequently,
AM)B;* = M — A, MBB; . (14.3)
Forx = A1, A = A2 we obtain that
AM)B;t = M — 4;,MBB; !, (14.4)
A(M)B;zl =M - AAZMBB;;. (14.5)
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Pre-multiply (14.5) byA,,, post-multiply byBB; " and obtain that

A A(M)B;BB; ' = A;,MBB — A;,A;,MBB; BB, . (14.6)
Add (14.4) to (14.6) and obtain that
A(M)B; ' + Ay, A(M)B'BB ' = M — A,,A;,MBB; 'BB; " (14.7)

Substituter = A3z into Eq. (14.3). Pre-multiply the resulting equation by the first
term on the left-hand side of (14.7) and post-multiply it by the second term, then add
(14.7) to the resulting equation. Repeat this process recursively arstéps obtain
the following equation:

AM)B !+ A AM)B BB T 4+ 4 Ay, - - Ay, ,A(M)BB; - - BB
=M — A3, Ay, A, MBB ' BB L.

This implies (14.1) sincd;, --- A, =0. O
15. Specific norm bounds based on the eigenvalue techniques

Letus apply Theorem 14.1 to the operatdjgs), p(t) associated with Cauchy-like
matrices andly,, y,, associated with Toeplitz + Hankel-like matrices [6,21], where
Yoo=Z + ZT, Y11 = Yoo + €€} + €,-1€"_,. We have the following auxiliary re-

sults, which in particular show the diagonalization of the matri¢gsY11 [20].

Theorem 15.1. Let

2 ijr )\

S= sin ,
n+1 n+1]

i,j=1

(2 @-1ni-vr)
Q—(/;QJCOU 2 )

i,j=1

denote thgnormalized matrices of the Discrete Sine Transfotrand the Discrete
Cosine Transfornil, respectively whereq; = 1/+/2, gj =1for j > 1. Then we
haves = ST, 52 = QTQ =T, sothat|S[2 = | Qll2 = L, IS; < va. QI < V/n
forl =1, oco.

Theorem 15.2. SYo0S = Ds, Q"Y110 = Dy, where

. k "
Dy = d|ag(2 cos—~ ) . IDsli <2,
n -+ 1 k=1
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kT[ n—1
Do = diag(z cos—) . IIDglli=2, 1=1,2, 00.
nJ k=0

We will also use the following simple estimates:
Yia — Ailll1 < 2+ |4 (15.1)
foranya;.

Fact 15.1. For all scalarsi;, we havq|(Y&)l);il||1 < 2n/v;, where

1—2A,~/cos( J7 >‘
n+1

Proof. By definition, (Yogh)s, = I — 4; ¥4y . Recall Theorems 15.1 and 15.2 and
obtain thatYo,h)s, = S(I — A; D31)S. Therefore,

1Yol = I1SU = 4 DgH ™SI < 2n/yi. O

Yi = min
J

Now, we are ready to state our next theorem.

Theorem 15.3. As in Theoreml2.1, let s andt be a pair of vectors of dimen-
sion n filled with2» distinct coordinates; and¢;, none of ther; being zero. Let
A = A4, p be an operator L 0f2.2). Let &; denote the eigenvalues of the matrix
A i=1 ..., n Letuswriter_ =min; |t;], sy = max; |s;|, ¢; = min; |1 — s;¢;],
¢ = min; ¢;, ¥ =min; ¥;, p; =2+ |A;], and p = max p; for y; of Fact 15.1.
Then we have
i ()
1 ¢

W : if 2= 1
- -1 _ S41— ?
v = v (450, p ) < ;Pn 1= (15.2)
— if 2= =1,
¢
for A= D(s), B = D7),
_ (20
&71 ( v ) if 22 21
- -1 _ 2 v ’
v o= Up,l (AYll,(Z—‘,-ZT)*l) < ;ﬁnz 1 2 (153)
— if % =1,
14

forA=Yy, B=(Z+2zZ"H L.

Proof. Recall thatd,, = A — ;1 and deduce thatA;, |l1 = |1A — A I|l1 < [1AllL
+ |A;|. We haved = D(s) in (15.2). Thereforei; = s;, |A;| < max; |s;| = sy, and
1Az, lla < 254 foralli. Similarily, for B = D~1(t) of (15.2), we obtain thatB;, [|1 <
t—/¢:. Substitute both norm bounds into (14.2) foe= 4 p-1() and obtain that
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- 25,12 (25 )" 1
T G1- - Pn
for v~ of (15.2). Since we havg = min; ¢;, it follows that
Sy 25+é +ot (2s+)”‘1£,
¢ $? "
and we obtain (15.2). By combining (14.2), (15.1), and Fact 15.1, we obtain that
S @@
V1 V1y2 V1 Yn
for v~ of (15.3). Substitutey = miny; andp = maxp;, obtain that
2 n
v\%+p(f;lz) + - ,0"1(2%3

2n 2np <2n,0>”_1
1+ (22 ’
w( Ty

and arrive at (15.3). O

16. The unification and transformation approaches

As an alternative to the unification of the study of Newton’s iteration for various
matrix structures, one may transform the problem to the Toeplitz-like or Cauchy-like
cases to extend the cited successful algorithms of [27,30,33,40] to other classes of
structured matrices. This is a special case of the general idea of extending successful
algorithms from one class to other classes of structured matrices. The idea was pro-
posed in [26] together with the sample transformations in all directions among Toep-
litz-like, Hankel-like, Vandermonde-like, and Cauchy-like matrices. The approach
turns out to be quite powerful. Some of the current best practical algorithms for
solving Toeplitz and Toeplitz-like linear systems of equations reduce them to Cau-
chy-like linear systems. Furthermore, structured matrix transformations of this kind
have been used for handling matrix singularities, for computational improvements
of polynomial interpolation and multipoint evaluation as well as algebraic decod-
ing, and in the computational complexity analysis of structured matrix operations
(cf. [6,15,35,41], [25, Section 6] and [31,32]). The unification and transformation
approaches may effectively complement each other.

As a rule, the unification approach enables a deeper insight into the subject and its
more comprehensive treatment. In some cases, transformations are costly (in terms of
extra flops and numerical stability problems involved), and the unification approach
can be more effective. In other cases, transformations are inexpensive (e.g., from
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Toeplitz/Hankel-like to Cauchy-like matrices [6,15]) and can enhance the domain
where the algorithms are effective.

In particular, Theorem 2.2 and the bounds of Table 2 imply that(L) = O
(an log? n), whered = 1 for operatord. associated with Toeplitz-like and Hankel-
like matrices versug = 2 in the Vandermonde-like and Cauchy-like cases. The dif-
ference in the computational cost is extended to various other operations with these
matrices, in particular to Newton’s iteration. The standard transformations to Toep-
litz-like or Hankel-like cases (cf. [26] and [4, Section 12 of Chapter 2]) enable re-
spective decrease of the asymptotic upper bounds on the number of flops involved in
the algorithms.

17. Conclusion

There are several interesting directions for the extension and further study of the

Newton-structured iteration.

1. Some useful singular displacement operatoase strongly regular on the linear
space of matrices that vanish on a fixed suBs#ttheir entries having small card-
inality. In particular,Smay consist of the first and/or last column (and/or) row of
a matrix (seevz, z,) or of its diagonal (se&p(s). p(s). In such a case the matrix
is generated by its entries of the setaind by its displacemerit(M) together.
(Bi)linear expressions of Section 2 as well as iteration (6.1) and its analysis can
be modified and extended, respectively (see [32,33]). Alternatively, the problem
can be reduced to the one with a strongly regular operator [32].

2. If no initial approximationy to the matrixM 1 is available, such an approxi-
mation can be generated in a homotopic process [27,31,32,34]. In this approach,
the algorithm of [27] approximates a Toeplitz-like matfix—* within the out-
put error norm bound by using Q(y + loglog(1/e€))rv, (L)) flops withy =
O(logx (M)). The study is extended to other well-known classes of input matrices
in [31,32,34].

3. There are alternative recipes for choosing an initial approximafosuch as
Yo = M*/(||M]1]lM] ) and of the convergence acceleration by scaling the iter-
atesy; for all i as well as by shifting to higher order processes. These recipes rely
on the observation that the singular vectors of the residualg/Y; are invariant
in i provided thatX; = Y; for all i (see [38] and references therein). Compres-
sion of the displacements of the computed approximations, however, perturbs the
matricesX; so that the singular vectors of the matridévary withi. Therefore,
the entire approach remains valid only to the extent to which the perturbation
caused by the compression makes no significiant impact on the singular spaces.
Estimation and restriction of such an impact is the subject of further theoretical
and experimental study [32,34]. Its preliminary results are encouraging.

4. Newton’s iteration for the computation of the inverse and Moore—Penrose general-
ized inverse of a matrix is a special case of residual correction methods [17,34,38],
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yielding faster convergence (in particular with using scaling). Would application
of such more general methods improve our algorithms?

5. Newton'’s iteration is a well-known tool for the solution of matrix equation, in
particular for the computation of the polar decomposition, the square roots and the
sign function for general matrices [11,12,14,19]. Could the known methods be im-
proved where the input matrix is structured? Our methods would be immediately
extended whenever the output matrices have short displacement generators.
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