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Summary
To approximate all roots (zeros) of a univariate polynomial,
we develop two effective algorithms and combine them in
a single recursive process. One algorithm computes a ba-
sic well isolated zero-free annulus on the complex plane,
whereas another algorithm numerically splits the input poly-
nomial of the n-th degree into two factors balanced in the
degrees and with the zero sets separated by the basic annu-
lus. Recursive combination of the two algorithms leads to re-
cursive computation of the complete numerical factorization
of a polynomial into the product of linear factors and fur-
ther to the approximation of the roots. The new rootfinder
incorporates the earlier techniques of Schönhage and Kirrin-
nis and our old and new techniques and yields nearly opti-
mal (up to polylogarithmic factors) arithmetic and Boolean
cost estimates for the complexity of both complete factor-
ization and rootfinding. The improvement over our previous
record Boolean complexity estimates is by roughly the fac-
tor of n for complete factorization and also for the approx-
imation of well-conditioned (well isolated) roots, whereas
the same algorithm is also optimal (under both arithmetic
and Boolean models of computing) for the worst case input
polynomial, where the roots can be ill-conditioned, forming
clusters. (The worst case bounds are supported by our pre-
vious algorithms as well.) All our algorithms allow processor
efficient acceleration to achieve solution in polylogarithmic
parallel time.
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Introduction
Numerical rootfinding for a univariate polynomial is a clas-
sical problem four millennea old, which for many centuries
remained most influential for the development of mathemat-
ics (cf. [29]). This is still a major research topic with highly
important applications to computer algebra, in particular
to the solution of polynomial systems of equations [2], [16],
[29], [20], [21] (cf. also [30], [34], and [35] on the applications
to the computation of approximate polynomial gcds and to
the algebraic eigenproblem). The rootfinder in [26], [28]
relies on recursive numerical splitting of the input polyno-
mial p(x) into the product of smaller degree (and ultimately
linear) factors and reaches optimal (up to polylogarithmic
factors) bounds on the asymptotic arithmetic and Boolean
time of rootfinding for the worst case input polynomial. This
case covers polynomials with ill-conditioned (clustered) ze-
ros, which typically represent polynomials with multiple ze-
ros after the numerical truncation of the coefficients. The
bounds on the computational precision and the Boolean cost
of the algorithm, however, are too high (off by the factor of
n, the degree of p(x), from the information lower bounds) at
the auxiliary stage of polynomial factorization (this stage is
of independent interest as well) and for the practically im-
portant case of rootfinding for the input polynomials with
well-conditioned (isolated) zeros.

In the present work, we include an improved block of lift-
ing/descending, which simplifies substantially (by the order
of magnitude) the subsequent stage of splitting a polyno-
mial into the product of two factors. At the latter stage,
we also apply a new improved algorithm. Furthermore, we
simplify the construction in [26], [28] at the stage of the
factorization of a higher order derivative of the input poly-
nomial. With the improved algorithm, we keep optimality
(up to polylog factors) of the rootfinding for the worst case
input polynomial but simultaneously reach it in the case of
well-conditioned zeros as well as for the complete factoriza-
tion of a polynomial. Technical statement of these results is
in section 1 of Part II.

All algorithms of this paper allow work (processor) efficient
parallel acceleration. This yields polylogarithmic parallel
time bounds preserving work (processor) optimality. Ap-
parently, our bit-operation cost bounds can be slightly im-
proved, by roughly logarithmic factor, if one applies fast
integer arithmetic based on the binary segmentation tech-
niques (cf. [4, section 3.3], [15], [38], and [39]). These tech-
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niques are slightly superior to the FFT-based arithmetic, on
which we rely in our estimates. Further comparision with
some related works will be given in the appendix (see also
[5]).

Our algorithms involve several advanced techniques (some
of independent interest, e.g., reversed Graeffe’s lifting incor-
porating Padé approximation) and generally require compu-
tations with multiple precision. Substantial further work is
required to implement them effectively and make practically
competitive. The implementation should be much simpler
for the algorithms of section 3 of Part II, which supply the
basis for effective splitting for a large class of input polyno-
mials.

Our rootfinder remains nearly optimal (up to polylogarith-
mic factors) even for the more limited tasks of approximat-
ing a single root or a few roots of a polynomial, but in this
case the computational cost is slightly lower and the imple-
mentation is simpler in distinct approaches, which use no
splitting [25], [31].

The presentation of our rootfinder was challenging because it
is bulit at the top of several highly developed constructions
and incorporates and improves their advanced techniques.
(Already [39] has 72 pages and [15] has 67 pages.) This ruled
out a self-contained presentation and required inclusion of
several citations. (We included a more complete exposition
into [5].) Furthermore, the statement of the problem and
the final complexity results are relatively compact but the
techniques supporting our rootfinder cannot be unified. At
least two groups of very different techniques are inviolved.
We partition our paper respectively into two parts, each
with separate enumeration of its sections, equations, the-
orems etc. In Part I we describe splitting algorithms. In
Part II we combine the splitting results of Part I with the
search for the basic annuli in a recursive process of nearly
optimal rootfinding and state the resulting complexity esti-
mates. Some auxiliary materials for Part I and comparison
with some related works are presented in the appendix.
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Part I: Preconditioned Splitting into Factors

1. SPLITTING THEOREMS AND ORGANI-
ZATION OF PART I

We begin with some definitions.

p = p(x) =
n∑

i=0

pix
i = pn

n∏
j=1

(x− zj), pn 6= 0, (1.1)

A = A(X, r−, r
+) =

{
x : r− ≤ |x−X| ≤ r+

}
, (1.2)

|u| = ‖u(x)‖ =
∑

i

|ui| for u = u(x) =
∑

i

uix
i, (1.3)

µ(b) = O((b log b) log log b), (1.4)

µ(b) bit-operations suffice to multiply two integers modulo
2b + 1. A polynomial p is given with its coefficients; w.l.o.g.
[15], [28], let all its zeros satisfy the bounds

|zj | ≤ 1, j = 1, . . . , n. (1.5)

“op” is an arithmetic operation, a comparison of two real
numbers, or the computation of the values |z| and |z|1/k for
a complex z and a positive integer k. ψ = r+/r− is the
relative width of the annulus A in (1.2) and the isolation
ratio of its internal disc

D = D(X, r−) = {x : |x| ≤ r−} ; (1.6)

this disc is called ψ-isolated [25], [29]. Hereafter, log stands
for log2. The rootfinders in [26], [28] recursively combine
preprocessing and splitting. Preprocessing algorithms com-
pute the basic annulus A for balanced splitting with relative
width

ψ =
r+

r−
≥ 1 +

c

nd
(1.7)

for two real constants c > 0 and d. Splitting algorithms con-
sist of computing a crude initial splitting and its refinement
by nearly optimal Newton’s iterative process. The refine-
ment process has been fully developed in several papers (see
[8], [12], [15], [17], [18], and [39]).

Let us first state the basic splitting results of Schönhage and
Kirrinnis and then our main splitting theorem.

Theorem 1.1. [15], [39]. Given a polynomial p of (1.1),
(1.5), a positive integer k, k < n, real c > 0, d,

N = N(n, d) =

{
n for d ≤ 0,

n logn for d > 0,
(1.8)

and b ≥ N , an annulus A = A(X, r−, r
+) of (1.2), (1.7)

such that

|zj | ≤ r− for j ≤ k, |zj | ≥ r+ for j > k, (1.9)

and two polynomials F̃ (monic, of degree k, with all its zeros

lying in the disc D = D(X, r−)) and G̃ (of degree n−k, with
all its zeros lying outside the disc D(X, r+)), satisfying

|p− F̃ G̃| ≤ 2−c̃N |p| (1.10)

for a fixed and sufficiently large constant c̃, it is sufficient
to perform O((n logn) log b) ops with O(b)-bit precision or
O(µ(bn)) bit-operations for µ(b) of (1.4), to compute the
coefficients of two polynomials F ∗ = F ∗(x) (monic, of degree
k, and having all its zeros lying in the disc D = D(X, r−))
and G∗ = G∗(x) (of degree n − k and having all its zeros
lying outside the disc D) such that

|p− F ∗G∗| ≤ 2−b|p|. (1.11)

We use an equivalent version of the theorem where we relax
assumption (1.5) and linearly transform the variable x (we
shift X into the origin) to ensure that

X = 0, qr− = 1, q = r+, ψ = q2 (1.12)

for some q > 1. Then all concentric annuli A(0, r1, r2) for
r− ≤ r1 ≤ r2 ≤ r+, including the unit circle A(0, 1, 1) =
C(0, 1) = {x, |x| = 1}, split the polynomial p and separate
the factors F ∗ and G∗ from one another. The computation
of the factors F ∗ and G∗ of Theorem 1.1 satisfying (1.11) is
called splitting the polynomial p over the unit circle.
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Theorem 1.2. [39] (cf. [8], [17], [18], and Appendix A of
[27]). Given a polynomial p of (1.1), a real N , and an an-
nulus A = A(0, r−, r

+) such that (1.2), (1.7)–(1.9), (1.12)
hold, it is sufficient to perform O(M logM) ops with O(N)-
bit precision or O((M logM)µ(N)) bit-operations to com-

pute the initial splitting polynomials F̃ (monic, of degree k,

with all zeros lying in the disc D = D(0, 1)) and G̃ (of de-
gree n−k, and with all zeros lying outside D(0, 1)) satisfying
(1.10). Here, we have (cf. (1.7))

M = n+N/(ψ − 1) =

{
O(n) for d ≤ 0,

O(n1+d logn) for d > 0.

Thus the initial splitting can be computed in nearly op-
timal time (up to a polylog factor) if d ≤ 0 but not if
d > 0. Theorems 1.1 and 1.2 are implicit in [15] and [39] al-
though the stated assumptions are slightly different and the
op/precision count is not included. As in [26], [28], we rely
on a lifting/descending process to reduce the case of posi-
tive d to the case of d = 0 but yield a substantially stronger
result, that is, by the factor of n we improve the bounds
on the computational precision and the Boolean cost versus
[26], [28].

Theorem 1.3. Under the assumptions of Theorem 1.2, it
is sufficient to perform O((n logn)(log2 n+ log b)) ops with
O(b) precision or O((µ(b)n logn)(log2 n+log b)) bit-operations
to compute the coefficients of the two polynomials F ∗ and G∗

of Theorem 1.1 satisfying (1.11)).

Technically, in this part we focus on the refined analysis of
the lifting/descending process, which, in spite of its crucial
role in the design of nearly optimal polynomial rootfinders,
remains essentially unknown to the computer algebra com-
munity. For instance, even in his most serious and compre-
hensive treatment of splitting a polynomial [15], P. Kirrinnis
ignores the glaring flaw in the variation of this process pre-
sented in [24], although this process is a centerpiece of the
paper [24], whose main result has been lost because of the
flaw (see the appendix).

Our analysis (cf. also [33] or [5]) is technically involved
but finally reveals surprising numerical stability (in terms
of the asymptotic relative errors of the order 2−cn) of Padé
approximation (provided that the zeros of the input analytic
function are isolated from its poles) and of Graeffe’s lifting
process, and this observation is a springboard for our current
progress in polynomial factorization and rootfinding.

We refer the reader to [5] and [33] on further details.

Organization of Part I
In the next section we define our lifting/descending process,
which splits a polynomial into two factors over a fixed zero-
free annulus. We also estimate the arithmetic cost of the
performance of this process and state the bound on the pre-
cision of its computation. The correctness of the algorithm
under this precision bound is shown in section 3. The analy-
sis includes the error estimates for the perturbation of the
Padé approximation involved. In the appendix, we cover
the extensions of our splitting over the unit circle to any

basic circle (in part A) and to the complete numerical fac-
torization of a polynomial (in part B) and we comment on
related works (in parts C and D). The computation of the
basic annuli for splitting is covered in Part II.

2. INITIAL SPLITTING VIA A LIFTING/
DESCENDING PROCESS

Theorem 1.2 enables splitting a polynomial p at a low cost
over a circle well isolated from the zeros of p. Theorem 1.3
partly relaxes the isolation requirement. It is sufficient if the
circle lies in the middle of a narrow zero-free annulus. Then
we recursively apply the so called Graeffe’s root–squaring
process, whose each step squares the isolation ratio of the
annulus. In O(logn) steps, the relative width of the root-
free annulus grows from 1 + c/nd to 4 and above, and we
may apply Theorem 1.2, to split the lifted polynomial into
two factors. Then we recursively descend down to the orig-
inal polynomial by reversing Graeffe’s lifting process. We
observe that the input of every Graeffe step is defined by
the (n − k, k) entry of the Padé approximation table for a
rational function formed by the output of this step. This im-
mediately reduces every descending step to the computation
of a Padé approximation. It is known that this computation
has small arithmetic cost, but it is quite surprising that its
asymptotic Boolean (bit-operation) cost turns out to be low
as well. A detailed technical description of the algorithm
supporting Theorem 1.3 follows next except that we omit
the analysis of the Padé step (see [5]) or [33]), and then we
estimate its arithmetic cost (in this section) and the Boolean
cost (in section 3).

Algorithm 2.1. Recursive lifting, splitting, and de-
scending.

Input: positive c, r−, r
+, real c̃ and d, and the coeffi-

cients of a polynomial p satisfying (1.1), (1.7), (1.9), and
(1.12).

Output: polynomials F ∗ (monic and of degree k) and
G∗ (of degree n − k), split by the unit circle C(0, 1) and
satisfying bound (1.10) for ε = 2−c̃N and N of (1.8).

Computation:
Stage 1 (recursive lifting). Write q0 = p/pn, compute the

integer

u = dd logn+ log(2/c)e, (2.1)

and apply u root-squaring Graeffe’s steps

ql+1(x) = (−1)nql(−
√
x)ql(

√
x), l = 0, 1, . . . , u− 1. (2.2)

(Note that ql =
n∏

i=1

(x − z2l

i ), l = 0, 1, . . . , u, so D(0, 1) is a

ψ2l

-isolated disc for ql, for all l.)

Stage 2 (splitting qu). Deduce from (2.1) that ψ2u

> 4
and apply Theorem 1.2 to split the polynomial pu = qu/|qu|
into two factors F ∗u and G̃uover the unit circle such that

|qu − F ∗uG
∗
u| = εu|qu|, εu ≤ 2−CN (2.3)

for G∗u = |qu|G̃u and a sufficiently large constant C = C(c, d).
Stage 3 (recursive descending). Start with the latter split-

ting of qu and recursively split the polynomials qu−j of (2.2)
over the unit circle, for j = 1, . . . , u. Output the computed
approximations F ∗ = F ∗0 and G∗ = pnG

∗
0 to the two factors

F and G of the polynomial p = pnq0 = FG. (The approxi-
mation error bounds are specified later on.)
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Remark 2.2. The algorithm applies Theorem 1.2 only at
Stage 2, where the computations are not costly because the
zeros of the polynomial pu are isolated from the unit circle,
due to (1.7), (1.9), and (1.12) for 1/(ψ − 1) = O(1) and p
replaced by pu.

Let us specify Stage 3.

Stage 3 (recursive descending). Step j, j = 1, 2, . . . , u. Stop
where j = u; for j < u, go to the (j + 1)-st step.

Input: the polynomial qu−j (computed at Stage 1) and the
computed approximations F ∗u−j+1 and G∗u−j+1 to the factors
Fu−j+1 and Gu−j+1 of the polynomial qu−j+1, which is split
over the unit circle. (The approximations are computed at
Stage 2 for j = 1 and at the preceding, (j−1)-st, descending
step of Stage 3 for j > 1.)

Computation: approximate the pair of polynomials Fu−j(x)
and Gu−j(−x) as the pair filling the (k, n − k)-entry of
the Padé approximation table for the meromorphic func-
tion. Given polynomials qu−j and G∗u−j+1 (approximating
the factor Gu−j+1 of qu−j+1), first approximate the polyno-
mial Mu−j(x) mod xn+1,

Mu−j(x) = qu−j(x)/Gu−j+1(x
2)

= (−1)n−kFu−j(x)/Gu−j(−x).
(2.4)

Then solve the Padé approximation problem (cf. Problem
5.2b (PADÉ) in [4, chapter 1]) or Problem 2.9.2 in [32] for
the input polynomialMu−j(x) mod xn+1 to obtain the poly-
nomials F ∗u−j = F ∗u−j(x) (approximating Fu−j), G

∗
u−j(−x),

and thus G∗u−j = G∗u−j(x) (approximating Gu−j) such that

|F ∗u−jG
∗
u−j − qu−j | = εu−j |qu−j |, εu−j ≤ 2−c̃N , (2.5)

for c̃ of (1.10), where qu−j = Fu−jGu−j , degF
∗
u−j = k, the

polynomial F ∗u−j is monic, and degG∗u−j ≤ n − k. Then
improve the computed approximations of Fu−j by F ∗u−j and
of Gu−j by G∗u−j , by applying Theorem 1.1 with p replaced
by qu−j , F

∗ by F ∗u−j , and G∗ by G∗u−j . In the refinement,

εu−j remains the value of the order of 1/2O(n log n) for j < u,
whereas the bound ε0 < 2−b is ensured at the last (u-th)
step.

Output of step j: Of the two computed factors, F ∗u−j

and G∗u−j , only the latter one is used at the subsequent
descending step, though at the last step, both F ∗ and G∗

are output.

The equationsGu−j+1(x
2) = (−1)n−kGu−j(x)Gu−j(−x) and

gcd(Fu−j(x), Gu−j(−x)) = 1 together with (2.4) immedi-
ately imply the correctness of Algorithm 2.1 performed with
infinite precision and no rounding errors provided that bound
(2.5) holds true for εu−j = 0 (that is, that F ∗u−j = Fu−j ,
G∗u−j = Gu−j) for all j.

We next estimate the arithmetic complexity of Algorithm
2.1.

Stage 1: O(un logn) = O(n log2 n) ops at the u = O(logn)
lifting steps, each is a polynomial multiplication (we use the
FFT based algorithms).

Stage 2 (for εu = 1/2O(n log n)): a total of O(n log2 n) ops,
by Theorems 1.1 and 1.2.

Stage 3: O(n log2 n) ops for the computation of the poly-
nomials Mu−j+1(x) mod xn+1 for all j, j = 1, . . . , u (this is
polynomial division modulo xn+1 for each j) and O(n log3 n)
ops for the computation of the (k, n − k)-th entries of the
Padé approximation tables for the polynomials Mu−j+1(x)
mod xn+1 for j = 1, . . . , u.

For every j, the latter computation is reduced to solving a
nonsingular Toeplitz linear system of n − k equations (see,
e.g., [4, chapter 2], equation (5.6) for z0 = 1 or Proposition
9.4 where s(x) = 1 or [32, Algorithm 2.11.1]); the Padé out-
put entry is filled with a nondegenerating pair of polynomials
(Fu−j(x), Gu−j(−x)). (Nonsingularity and nondegeneration
follow because the polynomials Fu−j(x) and Gu−j(−x) have
no common zeros and, therefore, have only constant com-
mon divisors; we extend this property to their approxima-
tions in the next section.) Moreover, the input coefficients
of the auxiliary nonsingular Toeplitz linear systems (each
of n− k equations) are exactly the coefficients of the input
polynomial Mu−j(x) mod xn+1 of the Padé approximation
problem.

To solve the u Toeplitz linear systems (where u = O(logn)),
we first symmetrize them and then apply the MBA algo-
rithm of Morf and Bitmead/Anderson (cf. [4, chapter 2,
Theorem 13.1] or [32, chapter 5]). The symmetrization en-
sures positive definiteness and therefore numerical stability
[6]. O(n log3 n) ops are sufficient in the u steps of Stage 3.
Summarizing, we arrive at the arithmetic cost estimates of
Theorem 1.3.

We perform all computations by Algorithm 2.1 with the pre-
cision of O(n logn) bits except for the refinement of the ap-
proximate initial splitting of the polynomial q0(x). There,
we require (1.11) for a fixed ε = 2−b, b ≥ N , and use com-
putations with the b-bit precision. To prove Theorem 1.3,
it remains to show that under the cited precision bounds,
Algorithm 2.1 remains correct, that is , bound (2.5) holds
for a fixed and sufficiently large c̃. We show this in the next
section.

3. PRECISION AND COMPLEXITY
ESTIMATES

Our goal is to prove that the computational precision of
O(N) bits and the bounds of order 2−cN on the values εu−j

of (2.5) for j = 0, 1, . . . , u are sufficient to support Algorithm
2.1. We first recall the following theorem.

Theorem 3.1. [40, Theorem 2.7]. Let

p = pn

n∏
j=1

(x− zj), p∗ = p∗n

n∏
j=1

(x− z∗j ),

|p∗ − p| ≤ ν|p|, ν < 2−7n,

|zj | ≤ 1, j = 1, . . . , k; |zj | ≥ 1, j = k + 1, . . . , n.

Then, up to reordering z∗j , we have

|z∗j − zj | < 9 n
√
ν, j = 1, . . . , k;
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|1/z∗j − 1/zj | < 9 n
√
ν, j = k + 1, . . . , n.

By applying the theorem for p = qu−j = Fu−jGu−j , p
∗ =

F ∗u−jG
∗
u−j , we obtain the following result.

Corollary 3.2. Let (1.1), (1.9), (1.12), (2.1), and (2.5)
hold and let εu−j < min{2−7n, ((ψ − 1)θ/9)n} for all j and
a fixed θ, 0 ≤ θ < 1. Then for all j, j = 0, 1, . . . , u, all zeros
of the polynomials F ∗u−j(x) and the reciprocals of all zeros
of the polynomials G∗u−j(x) lie inside the disc D(0, θ+ (1−
θ)/ψ). For ψ − 1 ≥ c/nd, c > 0, the latter properties of the

zeros are ensured already where εu−j ≤ 1/nO(N) for all j.

Let us estimate the error of splitting qu−j(x) in terms of the
approximation error for splitting qu−j+1(x).

Proposition 3.3. Suppose that |F ∗u−j+1G
∗
u−j+1 − qu−j+1|

≤ εu−j+1|qj−j+1| for some real εu−j+1 and a monic poly-
nomial F ∗u−j+1 of degree k. Let the Padé approximation
problem be solved exactly (with the infinite precision and
no rounding errors) for the input polynomial M∗

u−j(x) =

(qu−j(x)/G
∗
u−j+1(x

2)) mod xn+1. Let F ∗u−j , G
∗
u−j denote the

solution polynomials and let εu−j be defined by (2.5). Then

we have |F ∗u−j −Fu−j |+ |G∗u−j −Gu−j | ≤ εu−j+12
O(n log n),

εu−j = εu−j+12
O(n log n).

Due to the latter proposition, it is sufficient to choose the
value εu−j of (2.5) of the order of εu−j+12

−c̃N for a large
positive c̃ to ensure splitting qu−j within an error bound
(1.10), that is, small enough to allow the subsequent refine-
ment based on Theorem 1.1.

The next theorem of independent interest is used in the proof
of Proposition 3.3. It estimates the perturbation error of the
Padé approximation problem. Generally, the input pertur-
bation causes unbounded output errors but in our special
case the zeros of the output pair of polynomials are isolated
from the unit circle.

Theorem 3.4. Let us be given two integers, k and n, n >
k > 0, three positive constants C0, γ, and ψ,

ψ > 1, (3.1)

and six polynomials F, f,G, g,M and m. Let the following
relations hold

F =
k∏

i=1

(x− ẑi), |ẑi| ≤ 1/ψ, i = 1, . . . , k, (3.2)

G =
n∏

i=k+1

(1− x/ẑi), |ẑi| ≥ ψ, i = k + 1, . . . , n (3.3)

(compare (1.9), (1.12)),

F = MG mod xn+1, (3.4)

F + f = (M +m)(G+ g) mod xn+1, (3.5)

deg f ≤ k, (3.6)

deg g ≤ n− k, (3.7)

|m| ≤ γn(2 + 1/(ψ − 1))−C0n,

γ < min{1/128, (1− 1/ψ)/9}.
(3.8)

Then there exist two positive constants C and C∗ indepen-
dent of n and such that if |m| ≤ (2 + 1/(ψ − 1))−Cn, then

|f |+ |g| ≤ |m|(2 + 1/(ψ − 1))C∗n. (3.9)

The proof of Theorem 3.4 is elementary but quite long. It
can be found in [33] or [5] where the constant C0 is specified.

Proof of Proposition 3.3. The relative error norms
εu−j and εu−j+1 are invariant in scaling the polynomials.
For convenience, we drop all the subscripts of F, F ∗, G, q
and q∗ and use scaling that makes the polynomials F , F ∗,
Grev = xn−kG(1/x), and G∗rev = xn−kG∗(1/x) monic, that

is, F =
k∏

j=1

(x− zj), F
∗ =

k∏
j=1

(x− z∗j ), G =
n∏

j=k+1

(1− x/z∗j ),

G∗ =
n∏

j=k+1

(1 − x/z∗j ), q = FG, q∗ = F ∗G∗. The polyno-

mials q and q∗ are not assumed monic anymore (compare
Remark 3.5.) Furthermore, by (3.1) – (3.3) and Corollary
3.2, we may assume that |zj | < 1, |z∗j | < 1, for j ≤ k,
whereas |z∗j | > 1, |zj | > 1, for j > k. Therefore, 1 ≤ |F | <
2k, 1 ≤ |F ∗| < 2k, 1 ≤ |G| < 2n−k, 1 ≤ |G∗| < 2n−k,
1 < |q| < 2n, 1 < |q∗| < 2n.

For any positive r, let us deduce that∥∥∥∥ 1

Gu−j+1(x)
mod xr+1

∥∥∥∥ ≤ ∥∥∥(1− x)k−n mod xr+1
∥∥∥

=
r∑

i=0

(
n− k + i− 1

n− k − 1

)
=

(
n− k + r

r

)
< 2n−k+r,

(3.10)

Indeed, write (−x)n−k/Gn−k(x) =
∞∑

i=0

gi/x
i. Observe for

each i that |gi| reaches its maximum where zi = 1, that
is, where (−x)n−k/Gn−k(x) = xn−k/(1− x)n−k, and (3.10)
follows.

Likewise, we have

‖(1/G∗u−j+1(x)) mod xr‖ < 2n−k+r.

We apply a bound of section 10 of [39] to obtain that

|G∗u−j+1 −Gu−j+1| ≤ εu−j+12
O(N).

Now write

∆u−j+1 =

(
1

G∗u−j+1

− 1

Gu−j+1

)
=
Gu−j+1 −G∗u−j+1

Gu−j+1G∗u−j+1

,

summarize the above estimates, and obtain that

‖∆u−j+1(x) mod xr‖ ≤ εu−j+12
O(n log n)

for r = O(n).

Next write mu−j = mu−j(x) = (M∗
u−j(x) −Mu−j(x)) mod

xn+1 and combine our latter bound with (2.4) and with the

bound |qu−j | ≤ 2n to obtain that |mu−j | ≤ εu−j+12
O(N).

By combining this estimate with the ones of Theorem 3.4,
we obtain the first bound of Proposition 3.3,

∆F,G = |F ∗u−j − Fu−j |+ |G∗u−j −Gu−j | ≤ εu−j+12
O(N).
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Now we easily deduce the second bound,

εu−j = |F ∗u−jG
∗
uj
− Fu−jGu−j |

≤ |F ∗u−j(G
∗
u−j −Gu−j) + (F ∗u−j − Fu−j)Gu−j |

≤ |F ∗u−j | · |G∗u−j −Gu−j |+ |F ∗u−j − Fu−j | · |Gu−j |
≤ max

{
|F ∗u−j |, |Gu−j |

}
∆F,G

≤ εu−j+12
O(N).

Similarly to Proposition 3.3, we may prove that any pertur-
bation of the coefficients of the polynomial qu−j within the
relative norm bound of the order 1/2O(N) causes a pertur-
bation of the factors of qu−j within the relative error norm
of the same order.

Proposition 3.3 and Theorem 3.4 together show that the
relative errors of the order of O(N) bits do not propagate
in the descending process of Stage 3 of Algorithm 2.1. We
proved Theorem 3.4 in [33] (and included the proof in [5]).

To complete the proof of Theorem 1.3, it remains to show
that the relative precision of O(N) bits for the output of the
descending process of Algorithm 2.1 can be supported by the
computations with rounding to the precision of O(N) bits.
To yield this goal, one may apply the tedious techniques in
[38] (cf. also [15] and [39]). Alternatively we apply the back-
ward error analysis to all the polynomial multiplications and
divisions involved, to simulate the effect of rounding errors
of these operations by the input perturbation errors. This
leads us to the desired estimates simply via the invocation of
Theorem 3.4 and Proposition 3.3, except that we need some
distinct techniques at the stages of the solution of Toeplitz
linear systems of equations associated with the Padé prob-
lem.

To extend our analysis to these linear systems, we recall that
they are nonsingular because the Padé problem does not
degenerate in our case. Moreover, Theorem 3.4 bounds the
condition number of the problem. Furthermore, we solve the
Padé problem by applying the cited MBA algorithm to the
symmetrized linear systems. (The symmetrization squares
the condition number, which requires doubling the precision
of the computation, but this is not substantial for proving
our estimate of O(N) bits.) We then recall that the algo-
rithm only operates with some displacement generators de-
fined by the entries of the Padé input, M∗

u−j(x) mod xn+1,
and is proved to be numerically stable [6]. It follows that
O(N)-bit precision of the computation is sufficient at the
stages of solving Padé problems too, and we arrive at The-
orem 1.3.

Remark 3.5. One could have expected even a greater in-
crease of the precision required at the lifting steps of (2.2).
Indeed, such steps generally cause rapid growth of the ratio of
the absolutely largest and the absolutely smallest coefficients
of the input polynomial. Such a growth, however, does not
affect the precision of computing because all our error norm
bounds are relative to the norms of the polynomials. Techni-
cally, to control the output errors, we apply scaling, to make
the polynomials F , F ∗, Grev and G∗rev monic, and then con-
tinue as in the proof of Proposition 3.3, where the properties
(1.9) of the zeros of the input polynomials are extended to
the approximations to the zeros, due to Corollary 3.2.

Part II: Computing a Basic Annulus for Split-
ting

1. THE MAIN RESULTS AND THE ORGA-
NIZATION OF PART II

The algorithms of Part I enable us to reduce the approxi-
mation of the zeros of a polynomial

p(x) =
n∑

i=0

pix
i = pn

n∏
j=1

(x− zj), pn 6= 0, (1.1)

to the computation of a basic annulus over which the poly-
nomial p(x) can be split effectively into the product of two
nonlinear factors, F (x) and G(x). In this part of the pa-
per, we improve the algorithm of [26], [28], which computes
a basic annulus and, moreover, ensures that the resulting
splitting is a-balanced, that is,

(1− a)n/2 ≤ degF (x) ≤ (1 + a)n/2, (1.2)

where a is any fixed constant from the interval

5/6 ≤ a < 1. (1.3)

We use the definitions of Part I, including the concepts of
ops (that is, arithmetic operations + comparisions + the

computation of |z| or |z|1/k for complex numbers z and in-
tegers k > 1), the splitting of polynomials over (zero-free)
annuli, the relative width ρ(A) ≥ 1 of an annulus A (the ra-
tio of the radii of its two boundary circles), ψ-isolated discs
(the internal discs of zero-free annuli having a relative width
ψ), and the norm ‖

∑
i uix

i‖ =
∑

i |ui|. log still means log2.

Under the above assumptions, in each step of recursive split-
ting, we compute two factors of the input polynomial whose
degrees are at most (1 + a)n/2 (for instance, 11n/12 for
a = 5/6). Then we apply the estimates from Part I for the
computational complexity of splitting a polynomial over a
fixed circle. This gives us upper bounds on the overall arith-
metic and Boolean computational cost of the complete fac-
torization of the polynomial p(x) into the product of linear
factors and of the approximation of well- and ill-conditioned
polynomial zeros. All bounds are optimal up to polyloga-
rithmic factors.

Theorem 1.1. Let p(x) =
n∑

i=0

pix
i = pn

n∏
j=1

(x − zj), pn 6=

0, be a polynomial of (1.1) of degree n given with its coeffi-
cients. Let

|zj | ≤ 1 for all j. (1.4)

Let b be a fixed real number, b ≥ n logn. Then complex
numbers z∗j , j = 1, . . . , n, satisfying

‖p(x)− pn

n∏
j=1

(x− z∗j )‖ ≤ 2−b‖p(x)‖ (1.5)

can be computed by using O((n log2 n)(log2 n + log b)) ops
performed with the precision of O(b) bits or by using
O((n log2 n)(log2 n + log b)µ(b)) bit-operations for µ(b) de-
noting the bit-operation cost of performing a single op with
the b-bit precision,

µ(b) = O((b log b) log log b). (1.6)
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By a theorem from [39, section 19], the approximate fac-
torization (1.5) defines approximations z∗j to the zeros zj of
p(x) satisfying

|z∗j − zj | < 22−b/n, j = 1, . . . , n. (1.7)

Corollary 1.2. Under the assumptions of Theorem 1.1,
its cost bounds apply to the task of computing approxima-
tions z∗j to all the zeros zj of a polynomial p(x), where the
approximation errors are bounded according to (1.7).

Bound (1.7) covers the worst case polynomials p(x) whose
zeros may be ill-conditioned, that is, form clusters. The
recovery of well-conditioned (isolated) zeros of p(x) from
factorization (1.5) has approximation error of the order of
2−b.

With no preliminary knowledge about how well (or poorly)
the zeros of a given polynomial p(x) are isolated from each
other, one may apply the algorithm supporting Theorem
1.1 and Corollary 1.2 and get the isolation information by
examining the discs D(z∗j , 2

2−b/n). To refine the bounds of
(1.7), one may apply, for instance, the root radii algorithms
in [39] and/or some modifications of the Weierstrass method
(cf. [5]).

The estimates of Theorem 1.1 and Corollary 1.2 are nearly
optimal. Indeed, even the approximation of a single zero
of a polynomial p(x) requires at least (n + 1)/2 arithmetic
operations. This follows because the approximation involves
n+1 coefficients of p(x), whereas each arithmetic operation
has two operands and, therefore, may involve at most two
parameters. To approximate the n zeros, we need at least n
arithmetic operations because the algorithm must output n
values that are generally distinct. Therefore, the arithmetic
cost bound of Theorem 1.1 is optimal up to polylogarithmic
factors in n. So is also the Boolean cost bound, due to
Fact 1.1 in [28]. We also recall the lower bound Ω(log b)
in [37], on the number of arithmetic operations required for
the approximation of even a single zero of p(x) within 2−b

under the normalization assumption that |zi| ≤ 1 for all i.

Remark 1.3. We deduce our bit-operation (Boolean) cost
bounds simply by combining the ops and precision bounds
and the estimate (1.6) on the bit-operation (Boolean) cost
of performing an op with the b-bit precision. (To apply
the latter estimate, known for the bit-operation cost of an
arithmetic operation with integers performed modulo 2b + 1,
truncate real and complex operands to b bits and then scale
them.) This approach can be immediately extended to yield
bit-operation (Boolean) cost estimates based on other known
upper bounds on µ(b) (cf. [5]). It seems that a small further
decrease (by the factor of O(logn)) of our bit-operation cost
estimates is possible if one applies the refined integer arith-
metic based on the binary segmentation techniques (cf. [4,
section 3.3], [15], [38], [39], [15]).

We organize Part II as follows. In the next section, we de-
fine the basic concept of balanced splitting annuli and discs.
In section 3, we compute basic splitting annuli for a large
class of input polynomials; for the remaining polynomials
our algorithms confine most of their zeros to a small disc.

In sections 4 and 5, we recall the results in [23] on the com-

putation of the zeros of higher order derivatives p(l)(x) of an
input polynomial p(x) as a means of balancing the degrees in
splitting. In section 6, we yield the same goal without com-
puting the zeros of p(l)(x), which enables us to decrease the
computational cost dramatically and to arrive at Theorem
1.1.

2. SOME BASIC DEFINITIONS AND
RESULTS

To reach the (nearly optimal) estimates of Theorem 1.1,
one must balance the degrees of the two output factors in
each step of the recursive splitting. If, on the contrary, each
splitting produces a linear factor, then n− 1 splittings and
at least the order of n2 arithmetic operations are necessary.

It can be very hard to ensure balanced splitting, however.

For example, for a polynomial p(x) =
k∏

i=1

(x−2−i3−5/7)G(x),

where G(x) is a polynomial of degree n−k = n1/3, one must
separate from each other some zeros of p(x) lying in the same

disc of radius 1/2cn3
, for a fixed positive c. (By following

[28], we will say that p(x) has a massive cluster of zeros in
such cases.) Then, to yield the balanced splitting, one must
perform computations with a precision of the order of n4

bits, even if we are only required to approximate the zeros
of p(x) within the error tolerance 2−10n. Such a high preci-
sion of computing would not allow us to reach the Boolean
complexity bounds of Theorem 1.1.

We salvage the optimality (up to polylog factors) only be-
cause we do not compute balanced splitting in this case. In-
deed, the same point z = 5/7 approximates (within 2−10n)

all but n− l = O(n1/3) zeros of p(x), and it remains to ap-

proximate the remaining n − l = O(n1/3) zeros of p(x) by

working with a polynomial of a degree O(n1/3), obtained as
the quotient of numerical division of p(x) by (x− 5/7)l.

Generalizing the latter recipe, we detect massive clusters
and approximate their zeros without computing balanced
splitting of a given polynomial. Formally, we introduce the
concepts of (a, ψ)-splitting annuli (basic for balanced split-
tings) and (a,B, ψ)-splitting discs (each covering a massive
cluster of the zeros to be approximated by a single point,
without computing a balanced splitting).

Definition 2.1. A disc D(X, ρ) = {x, |x − X| ≤ ρ} is
called an (a,B, ψ)-splitting disc for a polynomial p(x) if it
is both ψ-isolated and contains more than (3a− 2)n zeros of
p(x) and if ρ satisfies the relations

ρ ≤ 2−B . (2.1)

An annulus A(X, ρ−, ρ+) = {x, ρ− ≤ |x−X| ≤ ρ+} is called
an (a, ψ)-splitting annulus for p(x) if it is free of the zeros of
p(x) and if its internal disc D(X, ρ) contains exactly k zeros
of p(x) (counted with their multiplicities) where ρ+ ≥ ψρ−
and

(1− a)n/2 ≤ k ≤ (1 + a)n/2 (2.2)

(compare (1.1)). In the latter case we also call the disc
D(X, ρ−) an (a, ψ)-splitting disc for the polynomial p(x).

259



A disc containing exactly k zeros of p(x) for k satisfying
bounds (2.2) is called a-balanced.

Definition 2.2. The j-th root radius for p(x) is the dis-
tance rn+1−j from the origin to the j-th closest root (zero)
of p(x). (We have rn+1−j = |zj |, j = 1, . . . , n, if the zeros
zj of p(x) are enumerated so that |z1| ≥ |z2| ≥ . . . ≥ |zn|.)
We write r0 = ∞, rn+1 = 0, and rj(X) for the j-th root ra-
dius of the polynomial q(x) = p(x+X), obtained from p(x)
when the origin is shifted to a complex point X.

We use the following auxiliary results.

Proposition 2.3. [39] (cf. also [31]). O(n log2 n) ops per-
formed with O(n)-bit precision are sufficient to approximate
within relative error bound c/nd (for any fixed pair of c > 0
and d ≥ 0) all root radii rj of a polynomial p(x), j =
1, . . . , n, as well as all root radii rj(X) of q(x) = p(x +X)
for j = 1, . . . , n and any fixed complex X.

Theorem 2.4. [33]. Suppose that we are given a polyno-
mial p(x) of (1.1), the real constants b, c and d, b > 1, c > 0,
and a splitting annulus A(0, ψ, 1/ψ) where

ψ ≥ 1 + c/nd. (2.3)

Then it is sufficient to perform O((n logn)(log2 n + log b))
ops with O(b) precision (which amount to O(µ(b)n logn)(log2 n+
log b)) bit-operations, for µ(b) of (1.6)) to compute two poly-
nomials F (x) and G(x) with all their zeros lying in the disc
D(0, 1) and outside it, respectively, and such that

deg(F (x)G(x)) = n, ‖F (x)G(x)− p(x)‖ ≤ 2−b‖p(x)‖.

Remark 2.5. We apply a simple extension of this theorem
where the annulus A(0, ψ, 1/ψ) is replaced by any other split-
ting annulus with a relative width ψ satisfying (2.3). The
extension is based on the respective linear transformations
of the variable x (cf. Appendix A).

3. BASIC SPLITTING ANNULI OR LARGE
ROOT CLUSTERS

Let us fix a positive a of (1.3) and let us write

ψ = 1 + c/n, (3.1)

for a fixed small positive constant c (to be estimated later
on). For a large class of polynomials p(x), their (a, ψ)-
splitting discs (and, consequently, their balanced splitting)
can be computed immediately by means of the approxima-
tion of root radii. Indeed, apply Proposition 2.3 to compute
an (a, ψ)-splitting disc for p(x). Write

g(a) = b(1− a)n/2c, h(a) = g(a) + banc, (3.2)

so 0 ≤ (1 + a)n/2− h(a) < 2,

g(a) ≥ bn/12c, h(a) ≥ bn/12c+ b5n/6c for a ≥ 5/6,

and let r+i and r−i denote the computed upper and lower
estimates for ri = |zi|, i = 1, . . . , n. We require that

r+i /r
−
i ≤ ψ∗ = 1 + (c/n)2, i = 1, . . . , n, (3.3)

for the same fixed positive c, and we observe that the discs
D(0, r+i ) are (r−i−1/r

+
i )-isolated, for all i. If

r−i−1/r
+
i ≥ ψ, (3.4)

for at least one choice of an integer i satisfying

g(a) ≤ n+ 1− i < h(a), (3.5)

then the disc D(0, r+i ) is both a-balanced, due to (3.2), and
ψ-isolated, due to (3.4).

This approach yields the desired (a, ψ)-splitting discs for a
very large class of the input polynomials p(x), that is, for
those for which bound (3.4) holds for some integer i satisfy-
ing (3.5). To yield Universal Rootfinders for all input poly-
nomials p(x), it remains to treat the opposite case where
bound (3.4) holds for none i of (3.5). In this case, we still
make some progress based on Proposition 2.3. Indeed, ob-
serve that at least h(a)− g(a) + 1 = banc+ 1 zeros of p(x)
lie in the closed annulus,

A = {x : r−n+1−g(a) ≤ |x| ≤ r+n+1−h(a)}, (3.6)

and recall that we have the bounds r−i−1 < ψr+i for all i
of (3.5). Together with (3.3), these bounds imply that the
relative width of the annulus A satisfies the bound

r+n+1−h(a)/r
−
n+1−g(a) ≤ (ψψ∗)h(a)−g(a)+1. (3.7)

Now we apply Proposition 2.3 twice, for the origin shifted
into the points 2r−n+1−h(a) and 2r−n+1−h(a)

√
−1. Then we ei-

ther compute a desired (a, ψ)-splitting disc for p(x) or arrive
at two additional narrow annuli of radii at most 3r−n+1−h(a),

each having a relative width of at most (ψψ∗)h(a)−g(a)+1 and
each containing at least na zeros of p(x). Our current goal
is the determination of an (a, ψ)-splitting disc for p(x), so
it is sufficient to examine the latter case, where each of the
three narrow annuli contains more than na zeros of p(x).

We have the following simple but useful result, which we
only need for h = 3.

Proposition 3.1. [23]. Let S1, S2, . . . , Sh denote h finite
sets. Let U denote their union and I their intersection.
Then

|I| ≥
h∑

i=1

|Si| − (h− 1)|U |,

where |S| denotes the cardinality of a set S.

Due to Proposition 3.1, the intersection of the three narrow
annnuli contains more than (3a − 2)n ≥ n/2 zeros of p(x)
(compare (1.4)). Since the annuli are narrow, we include
their intersection into a sufficiently small covering disc, D =
D(Y, r). We ensure that r < 0.1r−n+1−h(a) (say), by choosing

the constant c in (3.1) and (3.3) sufficiently small.

We could have decreased ψ to 1 + c/nd for a small positive
c and d > 1 and consequently decreased the radius of the
disc to O(r−n+1−h(a)/n

d−1), but then an extension of Theo-

rem 1.1 would be required to avoid a dramatic growth of the
computational cost estimates in the subsequent construction
and to confine the growth to the extra factor of logn (see
Remark 6.2). Thus we stay with ψ of (3.1) but shift the
origin into the center Y of the disc D and apply the same
construction again. Furthermore, we repeat this process re-
cursively until we obtain either a desired (a, ψ)-splitting disc
for p(x) or a (small) covering disc that contains more than
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(3a − 2)n zeros of p(x) and has a radius r bounded from
above by r−n+1−h(a)(0)/n

d for a fixed positive d. This ra-

dius may be small enough to enable the computation of an
(a,B, ψ)-splitting disc. We always check if this is the case
for each computed radius r (see Remark 3.5), but generally
we cannot count on such a rapid success. Hereafter, we refer
to this recursive computation as Algorithm 3.2.

Proposition 3.3. Write X0 = 0, r0 = r+n+1−h(a) and let

D(Xi, ri) denote the output covering disc of the i-th recur-
sive step of Algorithm 3.2. Then we have 5ri ≤ ri−1 and
|Xi| ≥ r0/2 for i = 1, 2, . . . provided that the constant c of
(3.1) and (3.3) has been chosen small enough.

Proof. Let wi−1 denote the width of the narrow annulus
Ai centered in Xi and computed at the (i − 1)-st recursive
step. By the construction of this annulus, we have

wi−1 ≤ (ψψ∗)h(a)−g(a)+1 − 1)ri−1

where h(a)− g(a) = banc (cf. (3.2)). Clearly, (ψψ∗)an → 1
as c→ 0 for c of (3.1) and (3.3). Therefore, wi−1/ri−1 → 0
as c → 0, that is, we may assume that wi−1 ≤ ν2ri−1 for
any fixed positive ν. It is easy to verify that the intersection
of the annulus Ai with the two other annuli computed at the
same recursive step of Algorithm 3.2 must have diameter at
most µ

√
wi−1ri−1 for some fixed constant µ. Therefore, the

radius ri of the output covering disc (covering this intersec-
tion) is less than µνri−1. It remains to choose ν < 0.2/µ
to obtain that 5ri ≤ ri−1. On the other hand, we have
|Xi−Xi−1| → ri−1 as c→ 0, for i = 1, 2, . . .. Together with
the bound 5ri ≤ ri−1 and equation X0 = 0, this implies that
|Xi| ≥ r0/2 for i = 1, 2, . . ..

Corollary 3.4. Under the assumptions of Proposition 3.3,
we have 2|Xi| ≥ 5iri, for i = 1, 2, . . ..

For a large class of input polynomials p(x), Algorithm 3.2
outputs (a, ψ)-splitting discs, thus completing our task. In
the remaining case, a covering disc D of smaller size is out-
put. We may use the center of the discD as a generally crude
approximation to more than n/2 zeros of p(x). The same
algorithm can be extended to improve the latter approx-
imations, decreasing the approximation errors with linear
rate. This is too slow for us, however. We follow a distinct
strategy: we specify and satisfy a condition under which Al-
gorithm 3.2 never outputs a disc that covers the intersection
of the three narrow annuli, so a desired (a, ψ)-splitting disc
must be output.

Remark 3.5. Application of the root radii algorithm en-
ables us to compute a desired (a,B, ψ)-splitting disc for p(x)
(see Definition 2.1) as soon as we detect that the value Bk =
2−B/(ψψ∗)n−k+1 exceeds the radius r of some computed disc
D(X, r) containing k zeros of p(x) where k > (3a − 2)n.
Indeed, in this case, we shift the origin into the point X,
compute the values r−i and r+i for i = 1, 2, . . . , n − k + 1
and write r−0 = ∞. Then we choose the maximal i such that
i ≤ n− k + 1 and r−i−1/r

+
i ≥ ψ and observe that r+i ≤ 2−B

and the disc D(X, r+i ) for such i is ψ-isolated and, therefore,
is a desired (a,B, ψ)-splitting disc for p(x). The compari-
son of the above values Bk with the radii of all computed
discs containing more than k ≥ (3a − 2)n zeros of p(x) is
assumed by default to be a part of all our algorithms (to

simplify their description, we do not cite this comparison
explicitly). Without making these comparisons, we would
have lost our control over the precision and the Boolean cost
of computing and would have allowed them to blow-up.

4. A (T, S)-CENTER OF A POLYNOMIAL
AS THE ZERO OF ITS HIGHER ORDER
DERIVATIVE

We recall the following result from [7].

Theorem 4.1. For any integer l satisfying 0 < l < n, for
every disc D(X, r) containing at least l+1 zeros of a polyno-
mial p(x) of degree n, and for any s ≥ 3 if l = n−1 and any
s ≥ 2+1/ sin(π/(n− l)) if l < n−1, the disc D(X, (s−2)r)

contains a zero of p(l)(x), the l-th order derivative of p(x).

Remark 4.2. Theorem 4.1 extends to the complex polyno-
mials Rolle’s classical theorem about a zero of the derivative
of a real function. A distinct and much earlier extension
of this theorem to the complex case, due to A. Gel’fond
[11], supports our nearly optimal asymptotic complexity es-
timates of Theorem 1.1 as well, although with slightly larger
overhead constants hidden in the “O” notation of these es-
timates versus the case where we rely on Theorem 4.1. On
the other hand, application of more advanced techniques in
[7] enables a further decrease of the parameter s of Theo-
rem 4.1 and, consequently, a further decrease of the latter
constants. Namely, by using nontrival techniques based on
properties of symmetric polynomials, the result of Theorem
4.1 was extended in [7] to any s exceeding 2 + cmax{(n −
l)1/2(l+1)−1/4, (n− l)(l+1)−2/3}, for l = 2, 3, . . . , n−1 and
for some constant c. This extension allows one to replace s
of Theorem 4.1, of the order of n, by s of the order of n1/3.

Hereafter, we assume that

l = b(3a− 2)nc, n− l = d(3− 3a)ne, (4.1)

and s satisfies the assumption of Theorem 4.1. By combining
(1.3) and (4.1), we obtain that l ≥ bn/2c, l + 1 > n/2. In
particular, one may choose

a = 5/6, l = bn/2c, n− l = dn/2e. (4.2)

Definition 4.3. [23]. A disc D(X, r) is called t-full if it
contains more than t zeros of p(x). A point Z is called a
(t, s)-center for p(x) if it lies in the dilation D(X, sr) of any
t-full disc D(X, r).

Proposition 4.4. [23]. Let t ≥ n/2 and let s > 2. If a
complex set S has a nonempty intersection with the dilation
D(X, (s− 2)r) of any t-full disc D(X, r), then such a set S
contains a (t, s)-center for p(x).

Proof. Let D(X, r) be a t-full disc for p(x) of the minimum
radius and let Z be a point of the set S lying in the disc
D = D(X, (s − 2)r). Let D(Y,R) be another t-full disc for
p(x). Then R ≥ r, and since t ≥ n/2, this disc intersects
D(X, r). Therefore, the discD(Y, sR) covers the discD and,
consequently, the point Z, which is, therefore, a (t, s)-center
for p(x).

Proposition 4.4 and Theorem 4.1 together imply the next
result.
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Corollary 4.5. If s satisfies the assumptions of Theorem
4.1 for n + 1 > l + 1 > n/2, then at least one of the n − l
zeros of the l-th order derivative of p(x) is an (l, s)-center
for p(x).

5. (T, S)-CENTERS AND SPLITTING
A POLYNOMIAL

Now suppose that we apply the recursive algorithm of sec-
tion 3 in the case where the origin is initially shifted into a
(t, s)-center Z for p(x) and where t/n = 3a−2 ≥ 1/2. Then
after sufficiently many recursive steps, an (a, ψ)-splitting
disc must be output. Indeed, otherwise, according to Corol-
lary 3.4, for every positive i the i-th recursive step must out-
put a covering disc D(Xi, ri) containing more than (3a−2)n
zeros of p(x) where 5iri ≤ 2|Xi|. Then it follows that

sri < |Xi|, (5.1)

already for some i = O(log s). The latter inequality implies
that the origin cannot lie in the disc D(Xi, sri), in contra-
diction to our assumption that the origin is (or has been
shifted into) a (t, s)-center for p(x).

This gives us an algorithm (hereafter referred to as Algo-
rithm 5.1) that computes an (a, ψ)- or an (a,B, ψ)-splitting
disc for p(x) as soon as we have a (t, s)-center for p(x) where
t ≥ n/2.

It is easy to extend Algorithm 5.1 to the case where an
approximation to a (t, s)-center for p(x) is available within
a small absolute error, say, being less than

ρ∗ = 2−2B/s. (5.2)

The extension relies on the following result.

Proposition 5.2. Suppose that an unknown ((3a−2)n, s)-
center for p(x) lies in a disc D(0, ρ∗). Suppose that Algo-
rithm 5.1 applied at the origin (rather than at such a center)
does not output an (a, ψ)-splitting disc for p(x) but yields a
covering disc D = D(X, r), which is ((3a−2)n)-full for p(x).
Then

|X| ≤ sr + ρ∗. (5.3)

Proof. A ((3a − 2)n, s)-center for p(x) lies in both discs
D(X, sr) and D(0, ρ∗). These two discs have a nonempty
intersection because 3a − 2 ≥ 1/2, and hence, |X| ≤ sr +
ρ∗.

By Proposition 5.2, application of Algorithm 5.1 should out-
put a desired (a, ψ)- or (a,B, ψ)-splitting disc for p(x) as
soon as we have sri < |Xi| − ρ∗, which for a small ρ∗ of
(5.2) is almost as mild a bound as (5.1).

Due to Corollary 4.5, an (l, s)-center for p(x) can be found

among the n − l zeros of the l-th order derivative p(l)(x)
for l of (4.1). Suppose that the set, Z∗l , of sufficiently close
approximations to these zeros within ρ∗ of (5.2) is avail-
able, but we do not know which of them is a (t, s)-center
for p(x), for t ≥ n/2. Then, clearly, we still may compute
a desired splitting disc by applying Algorithm 5.1 with the
origin shifted into each of the n − l approximations to the
n−l zeros of p(l)(x). Alternatively, we may apply an implicit

binary search [23], which enables us to shift the origin into
at most dlog(n− l)e candidate approximation points Yi. We
call the latter algorithm (using binary search) Algorithm
5.3.

In spite of the acceleration by roughly the factor of (n −
l)/ log(n − l) versus application of Algorithm 5.1 at every
point of S0, the latter algorithm still reduces the approxi-
mation of the zeros of p(x) to the approximation of the zeros

of a higher order derivative p(l)(x) (at first) and then of two
factors of p(x), F (x) and G(x). Due to the extra stage of

the approximation of the zeros of p(l)(x), which precedes the
computation of a splitting disc for p(x), the overall upper
bounds on both sequential and parallel time of polynomial
rootfinding increase by the factor of nδ for some positive δ.
In the next section, we show how to avoid this costly stage.

6. THE ROOTS OF HIGHER ORDER
DERIVATIVES ARE NOT REQUIRED

Suppose that we have an (a, ψ)-splitting disc, D(Y,R), for

the l-th order derivative p(l)(x) for l of (4.1). Then we may
shift the origin into Y and apply Algorithm 3.2, repeating
the recursive process until either a desired (a, ψ)-splitting
disc for p(x) is computed or the dilation D(Xi, sri) of a cov-
ering disc D(Xi, ri) lies either entirely in the disc D(Y, ψR)
or entirely in the exterior of the disc D(Y,R). The lat-
ter property of the dilation of the disc D(Xi, ri) is clearly
ensured if the width (ψ − 1)R of the computed annulus

{x : R ≤ |x| ≤ ψR} (which is free of the zeros of p(l)(x))
exceeds the diameter 2sri of the disc D(Xi, sri).

Let z denote a (t, s)-center for p(x) such that p(l)(z) = 0,

t ≥ n/2. Let p(l)(x) = fl(x)gl(x), where fl(x) and gl(x) are
two polynomials, fl(x) has all its zeros in the disc D(Y,R),
and gl(x) has no zeros in the disc D(Y, ψR). Then we have
fl(z) 6= 0 = gl(z) if the dilation D(Xi, sri) of the cover-
ing disc D(Xi, ri) has only empty intersection with the disc
D(Y,R), and we have fl(z) = 0 6= gl(z) if D(Xi, sri) ⊆
D(Y, ψR). Therefore, the considered application of Algo-
rithm 3.2 enables us to discard one of the two factors, fl(x)
and gl(x), and to narrow the search of a (t, s)-center z for

p(x) to the set of the zeros of the remaining factor of p(l)(x).
By continuing recursively, we compute either an (a, ψ)- or
an (a,B, ψ)-splitting disc for p(x) or a (t, s)-center for p(x),
where t ≥ n/2. The latter search for a (t, s)-center is actu-
ally implicit; it ends with outputing an(a, ψ)-splitting disc
for p(x) in O(log(n − l)) recursive steps. To the advantage

of this approach, instead of all zeros of p(l)(x) it requires ap-

proximation of only one factor of p(l)(x) and the root radii

of p(l)(x+X) for some shift value X. This enables a low cost
reduction of the original problem of the complete factoriza-
tion of a polynomial p(x) to two similar problems for its two
factors, F (x) and G(x), satisfying the balancing assumption
(1.1). By applying this approach, together with the recur-
sive splitting algorithms of Part I, we arrive at Theorem
1.1.

We next specify the resulting factorization algorithm first
describing a black box subroutine involved.

Subroutine Split(v(x), Bv, A).
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Input: a polynomial v(x) of degree nv, real Bv, and an
annulus A = A(X, r−, r+) = {x : r− ≤ ‖x − X‖ ≤ r+} on
the complex plane, for positive r− and r+ and a complex X.

Output: Two polynomials, f∗(x) (monic, with all its zeros
lying in the disc D(X, r∗−)) and g∗(x) (with all its zeros
lying outside the disc D(X, r∗+)), for r∗− = qr−, r∗+ = r+/q,
r+/r− = q4, satisfying

‖f∗(x)g∗(x)− v(x)‖ ≤ 2−Bv‖v(x)‖. (6.1)

Algorithm 6.1. DISC(p(x), a, B, c).
Input: Polynomial p(x) =

∑n
i=0 pix

i of (1.1), pn 6= 0,
real a,B, c, ψ, ψ∗, and s (provided that a satisfies (1.3), c, ψ,
and ψ∗ satisfy (3.1) and (3.3),

B > Cn logn (6.2)

for a sufficiently large constant C, and s satisfies the
assumption of Theorem 4.1), and a black-box subroutine
Split(v(x), Bv, A) specified above.

Output: a) Either an (a, ψ)-splitting disc for p(x) or
b) an (a,B, ψ)-splitting disc for p(x).

Computations:
Stage 0 (initialization). Write v(x) = p(l−1)(x) for l =

b(3a− 2)nc, of (4.1).
Stage 1. Substitute nv = deg v(x) for n, ψv for ψ,

and ψ∗v for ψ∗ in (3.1) and (3.3) to define ψv and ψ∗v , ap-
ply the subroutine DISC(v(x), a, 2B log s, c) for c of (3.1)
and (3.3), which outputs an (a, ψv)- or an (a, 2B log s, ψv)-
splitting disc for v(x); denote this disc by D = D(Cv, Rv).
Shift the origin into its center Cv and go to Stage 2.

Stage 2. Apply Algorithm 3.2 to the input polynomial
p(x). Stop if it outputs an (a,B, ψ)- or an (a, ψ)-splitting
disc for p(x). Otherwise stop in i recursive steps for the
minimal i such that the algorithm produces a covering disc
D(Xi, ri) with radius ri less than (ψv−1)Rv/s, where (ψv−
1)Rv is the width of the annulus produced at Stage 1; in this
case invoke the Subroutine Split(v(x), Bv, A(Cv, Rv, ψRv))
with

Bv = C∗B log s, (6.3)

for a sufficiently large constant C∗, and go to Stage 3.
Stage 3. Suppose that at Stage 2 Algorithm 3.2 outputs

a covering disc D(Xi, ri). Write either v(x) = f∗(x), if the
dilation D(Xi, sri) intersects the disc D, or v(x) = g∗(x),
otherwise. Then go to Stage 1.

To see the correctness of Algorithm 6.1, observe that
according to our policy, at Stage 3, we discard the “wrong”
factor of v(x) and stay with the “right” one – we keep a
(t, s)-center for p(x) among its zeros. (If we compute an
(a, 2B log s, ψν)-splitting disc for v(x), then a (t, s)-center
must lie in this disc, and we compute the desired splitting
disc for p(x) based on Proposition 5.2.) The degree of each
computed factor of v(x) is bounded from above by a fixed
fraction of deg v(x). Therefore, Algorithm 6.1 must termi-
nate in O(log(n − l)) passes through Stage 3. At termi-
nation, it must output an (a,B, ψ)- or an (a, ψ)-splitting
disc for p(x). By estimate (19.3) in [39], our bounds (6.1)–
(6.3) ensure the relative bounds of order B log s on the error
norms of the computed approximations f∗(x) and g∗(x) to
the factors of v(x). Together with the known perturbation
theorems (cf., e.g., [40, Theorem 2.7]), this implies that the

(t, s)-center for p(x) is closely approximated by the zeros
of the selected factors. Furthermore, by Corollary 4.5 and
Proposition 5.2, the center C of an (a, 2B log s, ψ)-splitting
disc for v(x) computed by Algorithm 6.1 closely approxi-
mates a (t, s)-center for p(x), so C itself is a (t, s∗)-center
for p(x) where s∗ = s+ 1, say.

To estimate the cost of the computation by the algo-
rithm, observe that the entire computation is reduced to the
application of Subroutine Split to the auxiliary polynomials
v(x) of rapidly decreasing degree, the shifts of the variable x,
and the approximation within relative error bound O(1/n)
of all root radii of the polynomials p(x) and v(x). The shifts
and the root-radii approximation require only O(n log2 n)
ops performed with O(n logn)-bit precision per recursive
step, that is, O(n log3 n) ops with O(n logn)-bit precision
at all O(lognv) recursive steps. This is dominated by the
computational cost of all applications of Subroutine Split.
By Theorem 2.4 and Remark 2.5, each application involves
O((nν lognν)(log2 nν +logBν)) ops performed with O(Bν)-
bit precision.

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. By the above argument, the
cost of the computation of an (a, ψ)- or (a,B, ψ)-splitting
disc for the polynomial p(x) is dominated by the cost of
the subsequent balanced splitting of this polynomial, that
is, O((n logn)(log2 n + log b)) ops performed with O(b)-bit
precision where we choose b = B ≥ n logn. Recursive ex-
tension of the balanced splitting has depth O(logn) due to
its balancing. The above cost bound applies at every level,
and we arrive at Theorem 1.1.

Remark 6.2. As we mentioned, application of recursive
Algorithm 3.2 as a block of Algorithm 6.1 can be replaced
by a single step of root radii approximation but with ψ = 1+
c/nd and ψ∗ = 1+ c/nd+1 for p(x) and with ψv = 1+ c/ndv

v

and ψ∗v = 1 + c/ndv+1
v for v(x), for a positive c and larger

d > 1 and dv > 1. In this case, however, we must have
nd ≥ sndv

v to ensure the bounds of (5.1)–(5.3). For nv = l of

(4.1), this means nd ≥ d(3a−2)nedvs > Θndv+1/3 for a fixed

positive Θ and for s = O(n1/3) (cf. Remark 4.2). To com-

pute a splitting disc for the polynomial p(l)(x), we have to

apply Algorithm 6.1 to the polynomials p(li)(x) where l0 = l,
li+1 = d(3a − 2)lie, i = 0, 1, . . . (cf. (4.1)). This would in-

volve ψi-isolated discs for p(li)(x) with ψi − 1 of the order

of 1/nd−i/3. We must generally deal with the number of re-
cursive steps i of the order of logn, which means that the
exponent d must also be of this order. That is, the consid-
ered modification of Algorithms 3.2 and 6.1 required split-
ting p(x) over an annulus with a relative width of the order
of 1/nlog n. To yield this splitting, we must extend Theorem
2.4 and the lifting/descending construction in [33]. Then
the resulting estimated arithmetic time-cost of factorization
and rootfinding would have increased a little (at least by the
factor of logn), but what is much worse, the computation of
the required splitting would have involved unreasonably long
bit-precision, of the order of nlog n, and, therefore, dramat-
icly blowing up of the Boolean (bit-operation) cost.
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APPENDIX
A. EXTENSION TO SPLITTING OVER ANY

CIRCLE
By the initial scaling of the variable, we may move the zeros
of a given polynomial into the unit disc D(0, 1). Therefore,
it is sufficient to consider splitting of a polynomial p of (1.1)
(within a fixed error tolerance ε) over any disc D(X, r), with
X and r satisfying the bounds r > 0 and

r + |X| ≤ 1. (A.1)

To extend the splitting respectively, we shift and scale the
variable x and estimate the new relative error norm bound
ε̃ as a function in ε,X and r. The following result relates ε
and ε̃.

Proposition A.1. Let relations (1.11) and (A.1) hold. Write

y = rx+X, (A.2)

p̃(y) =
n∑

i=0

p̃iy
i = p̃(rx+X) = q(x),

p(x) = q(x)/‖q(x)‖,
(A.3)

F̃ ∗(y) = F̃ ∗(rx+X) = F ∗(x)rk,

G̃∗(y) = G̃∗(rx+X) = G∗(x)/(‖q(x)‖rk),

∆(x) = p(x)− F ∗(x)G∗(x),

∆̃(y) = p̃(y)− F̃ ∗(y)G̃∗(y).

Then (A.2) maps the disc D(0, 1) = {x : |x| ≤ 1} onto the
disc D(X, r) = {y : |y −X| ≤ r}; moreover,

‖∆̃(y)‖ ≤ ‖∆(x)‖ · ((1 + |X|)/r)n · ‖p̃(y)‖
≤ ‖∆(x)‖ · ((2− r)/r)n · ‖p̃(y)‖.

(A.4)

Proof. Clearly, (A.2) maps the disc D(X, r) as stated. To

prove (A.4), first note that ∆(x) = ∆( y−X
r

) = ∆̃(y)/‖q(x)‖.
Therefore,

‖∆̃(y)‖ = ‖∆( y−X
r

)‖ · ‖q(x)‖. (A.5)

Combine the relations 1 ≤ ‖(y − X)i/ri‖ = (1 + |X|)i/ri,
for i = 0, 1, . . ., with (A.1) and deduce that

‖∆
(

y−X
r

)
‖ ≤ ‖∆(x)‖ ·max

i

(
‖(y−X)i‖

ri

)
= ‖∆(x)‖

(
1+|X|

r

)n

≤ ‖∆(x)‖
(

2−r
r

)n
.

(A.6)

On the other hand, having q(x) = p̃(rx+X) and ‖(rx+
X)i‖ = (r + |X|)i for i = 0, 1, . . ., we deduce that

‖q(x)‖ = ‖p̃(rx+X)‖ =

∥∥∥∥∥
n∑

i=0

p̃i(rx+X)i

∥∥∥∥∥ ≤
n∑

i=0

|p̃i|(r+|X|)i.

Due to (A.1), it follows that

‖q(x)‖ ≤
n∑

i=0

|p̃i| = ‖p̃(y)‖.

Combine the latter bound with (A.5) and (A.6) to obtain
(A.4).

B. ERROR ESTIMATES FOR RECURSIVE
SPLITTING

Suppose that we recursively split each approximate factor
of p over the boundary circle of some well-isolated disc until
we arrive at the factors of the form (ux+ v)d. This gives us
an approximate factorization

p∗ = p∗(x) =
n∏

j=1

(ujx+ vj). (B.1)

Let us estimate the norm of the residual polynomial ∆∗ =
p∗ − p. We start with an auxiliary result.

Proposition B.1. [39, §5]. Let

∆k = |p− f1 . . . fk| ≤ kε|p|/n, (B.2)

∆ = |f1 − fg| ≤ εk|f1|, (B.3)

for some nonconstant polynomials f1, . . . , fk, f and g and
for

εk ≤ ε|p|/(n
k∏

i=1

|fi|). (B.4)

Then

|∆k+1| = |p− fgf2 . . . fk| ≤ (k + 1)ε|p|/n. (B.5)
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Proof. ∆k+1 = |p − f1 . . . fk + (f1 − fg)f2 . . . fk| ≤ ∆k +
∆|f2 . . . fk|. Substitute (B.2)–(B.4) and deduce (B.5).

Write f1 = f , fk+1 = g. Then (B.5) turns into (B.2) for k
replaced by k+1. Now split one of the factors fi as in (B.3),
apply Proposition B.1, and recursively split p into factors of
smaller degrees until we arrive at (B.1), where

|∆∗| = |p∗ − p| ≤ ε|p|. (B.6)

Let us call this computation Recursive Splitting Process
provided that it starts with k = 1 and f1 = p and ends with
k = n.

Proposition B.2. [39]. Performing Recursive Splitting Process
for a positive ε ≤ 1, it is sufficient to choose εk in (B.3) sat-
isfying

εk ≤ ε/(n2n+1) (B.7)

for all k to support (B.2) for all k = 1, 2, . . . , n.

Proof. We prove (B.2) for all k by induction on k. Clearly,
the bound holds for k = 1. Therefore, it remains to deduce
(B.5) from (B.2) and (B.7) for any k. By first applying
Proposition 4.1 and then (B.2), we obtain that

k∏
i=1

|fi| ≤ 2n

∣∣∣∣∣
k∏

i=1

fi

∣∣∣∣∣ ≤ 2n(1 + kε/n)|p| ≤ 2n+1|p|

for k ≤ n, ε ≤ 1. Consequently, (B.7) ensures (B.4), and
then (B.5) follows by Proposition B.1.

C. MODIFICATIONS OF THE DESCEND-
ING PROCESS

Consider modifications of the descending stage of Algorithm
2.1 of Part I based on either or both of the two following
equations applied for all j:

Fu−j(x) = gcd(qu−j(x), Fu−j+1(x
2)),

Gu−j(x) = gcd(qu−j(x), Gu−j+1(x
2)), j = 1, . . . , u.

Here and hereafter, gcd(u(x), v(x)) denotes the monic greatest
common divisor (gcd) of the two polynomials u(x) and v(x).

In this modification of Algorithm 2.1, Padé computation is
replaced by the polynomial gcd computation. This produces
the same output as in Algorithm 2.1 if we assume infinite
precision of computing. The approach was originally intro-
duced in the proceedings paper [26] but in its journal version
[28] was replaced by the one based on Padé computation.
The replacement enabled more direct control over the prop-
agation of the perturbation errors (cf. Theorem 3.4 in Part
I), although both approaches can be made computationally
equivalent because both Padé and gcd computations can be
reduced to the same Toeplitz linear system of equations (cf.
[3], [4], [32]).

The gcd approach, however, may lead into a trap if one
tries to solve the gcd problems based on the fast Euclidean
algorithm (cf. Algorithm 5.1a in [4, chapter 1] or Algorithm
2 in [32]). In this case, each descending step (2.4) in Part
I is replaced by a recursive Euclidean process, prone to the
severe problems of numerical stability (cf. [9], [10], and [40])
and to blowing up the precision of the computations and the

Boolean cost. In particular, the paper [24] has fallen into
this trap. The authors apply the fast Euclidean algorithm in
the gcd version of the descending process, reproduced from
[26], but unfortunately, the analysis hinges on the invalid
assumption that the value δ = ψ−1 exceeds a fixed positive
constant (ψ2 being the relative width of the basic annulus
for splitting a polynomial qu−j). This assumption is satisfied
only for the polynomials qu−j computed at a few last lifting
steps, that is, for j = u−O(1) but not for j = 0, 1, . . . , u/2
(say). Thus, the analysis presented in [24] applies to only few
first descending steps, and the Boolean cost of performing
all other steps remains unbounded. Furthermore, this flaw
is not easy to fix; clearly it cannot be fixed based on the
techniques in [24].

D. SOME RELATED WORKS
The study of polynomial rootfinding is related to various
areas of pure and applied mathematics as well as the theory
and practice of computing and has huge bibliography [5],
[17], [18], [29]. We focus on one important aspect of this
study, that is, the computational complexity of the solution
under the arithmetic and Boolean (bit-operation) models.
The modern interest to this aspect of the study is due to
[39], [41], and [42], and major progress was obtained quite
recently. Nearly optimal solution algorithms appeared in
[26], [28]. They rely on the recursive balanced splitting of
an input polynomial p = p(x) into the product of two factors
of balanced degrees (that is, neither the ratio of the degrees
nor its reciprocal can exceed a fixed constant).

[17], [18] is a good source for the bibliography on the preced-
ing works; the unpublished manuscript [39] is an important
landmark work but is sparse in citations.

In [15] and [39] algorithms for splitting were studied exten-
sively, assuming a sufficiently high relative width of the basic
zero-free annulus, that is, assuming higher isolation of the
zeros of the factors from each other. No balancing of the de-
grees of the factors was achieved. Further improvements by
the order of magnitude were due to relaxing the assumption
of the isolation (by reversing Graeffe’s lifting process with
using Padé approximation) [26], [28], and to achieving bal-
anced splitting [7], [11], [23], [26]. The techniques of the pa-
pers [15], [23] and [39] are more important and lasting longer
than the computational complexity estimates. [15] reached
the same bound on the Boolean (bit-operation) cost as [26],
[28] but only under the weird requirement of blowing up the
precision of computing to the order of (1 + 1

r log n
)n2 bits,

r being the minimum distance between the distinct roots.
Otherwise the algorithms in [15] and [39] support the arith-
metic and Boolean cost bounds that exceed the bounds in
[26], [28] by roughly the factors of n2 and n, respectively.

Theorems in [7], [11], and [23] contributed highly important
advanced technique for balancing the degrees of the factors
produced by splittings, but contrary to the claim in [23], de-
fined no construction that would have supported nearly op-
timal complexity estimates. Theorems in [7] and [11] are on
the complexification of Rolle’s theorem, not on rootfinding,
whereas the construction in [23] is quite preliminary. [23]
relies on a more straightforward recursive splitting of higher
order derivatives of p(x), avoided in [26], [28], and this al-
ready means a waste of the factor of nδ for a positive δ in

266



the parallel and sequential time bounds. Furthermore, the
construction in [23] does not include the recursive process of
Algorithm 3.2 and relies on the approximation of the root
radii with a higher precision. In our Remark 6.2 of Part II
we note the resulting dramatic increase of the precision and
the Boolean computational cost. The algorithm in [23] was
also “simplified” by ignoring the problem of massive clus-
ters, in particular neither (a,B, ψ)-splitting discs nor any
alternative for them were introduced.

The algorithms in [26] and [28] rely on the constructions
similar to those presented here and in particular involve the
computation of a single factor of a higher order derivative
p(l)(x) in each recursive step. The algorithms, however, as-
sume a higher precision of computation, to ensure that all
the zeros of p(l) are perturbed very little. Now we relax
this excessively strong requirement. We only bound the er-
rors of the recursive factorization, which is a much weaker
requirement and which we found sufficient for our goal of
computing an (a, ψ)- or an (a,B, ψ)-splitting disc for p(x).
The construction in [26], [28] is also more complicated apart
from its reliance on a less effective splitting algorithm. All
this resulted in the requirement of a higher computational
precision and in the estimates of the order of (b + n)n2 for
the Boolean cost of the complete factorization versus the or-
der of (b+ n)n in Theorem 1.1 (in both cases up to polylog
factors).

The Boolean cost bound in [26], [28] is still optimal for the
rootfinding for the worst case input polynomial because of
the precision growth required for the worst case rootfinding
versus factorization, and our present algorithm also yields
this bound. The bound, however, is by the factor n infe-
rior to ours in the case of polynomials with well-conditioned
zeros and also for the auxiliary stage of computing numeri-
cal factorization into linear factors, which is of independent
interest.

The paper [24] very closely follows the earlier work [26]
(which Neff refereed for the ACM STOC in December 1994)
but complements it with the Boolean complexity analysis of
the descending process. The analysis, however, falls apart
because of an irreparable flaw (see Appendix C).
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