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Abstract

Computation of approximate polynomial geds is important both theoretically and
due to applications, inparticular to linear control systems. We study two approaches to
the solution so far omitted by theresearchers, in spite of intensive recent work in this
area. Correlation to numerical Padé approximation enabled us toimprove computations
for both problems (gcds and Padé). Reduction to approximating polynomial zeros en-
abled us to obtaina new insight into the ged problem and to devise effectivesolution
algorithms. In particular, unlike the known algorithms,we compute an upper bound on
the degree of approximate geds at a lowcomputational cost, and this enables us to certify
the correctness ofthe solution. We also argue in favor of restating the problem interms
of the perturbation of the zeros (rather than coefficients) of theinput polynomials, which
leads us to the solution via the computation ofmaximum matchings or connected com-

ponents in the associated bipartitegraphs. Key words: polynomial gcds,approximate

geds, Padé approximation, Hankelmatrices, polynomial zeros, root neighborhoods, bi-

partite graphs. 1991 Mathematics Subject Classification: 68Q40, 65D99, 65Y20.



1 Introduction.

Computation of polynomial greatest common divisors (geds) is afundamental problem of
algebraic computing and has important widespread applications in network theory and
control linear systems (see [?], [?], [?], and [[?]), which require numerical solution of the
problem, where the input is givenapproximately, within some fixed error bounds. On the
other hand,computation of polynomial gcds is an excellent example of numericallyill-posed
problems. For instance, let v(z) be a non-constant divisor of a polynomial u(z). Then
ged (u(z),v(z)) = v(z), but ged (u(z) + d,v(z)) = 1 for any constant § # 0. Thus, a
small perturbation ofu(z) may cause a dramatic decrease of the degree of the ged.[?], [?],
[?1,[?], [?], [?], and [?] define approximate gcds soas to avoid the latter deficiency. Namely,
for two polynomialsu(z) and v(z), a fixed polynomial norm, and a positive ¢, one may
non-uniquely define an approximate ged or, we say e-ged d*(x), as ged (u*(z),v*(z)) whose
degree d* is maximized over allpolynomialsu*(z) and v*(z) in an e-neighborhood of u(x)

and v(z), satisfying
deg u*(z) < m = deg u(z), deg v*(z) < n= degwv(z), (1.1)

| u*(z) —u(z) [< el u(z) |, parallelv”(z) —v(z) ||< e(z) || - (1.2)

In spite of extensive work and substantial progress, there remain several open problems with
the computation of e-gcds. The pioneering paper [?] studies only the asymptoticcomplexity
of computing the e-gcds where ¢ — 0. The results of [?] rely on extremely tedious anal-
ysis but donot apply to the most realistic and practically important case, where theinput
errors can be relatively large, and the precision of computing issufficiently high to ignore
rounding errors of the computation. The latterassumptions imply the model of study with
inexact input and infinite precision computations. In our paper, we will assume thismodel,
following all papers cited above except for [?]. On the other hand, all these papers, except
for [?], presentheuristic solution algorithms, whereas the arithmetic complexityestimates for
the solution presented in [?] are quite large(that is, unspecified polynomial in m + n and
exponential in d*), thus implying the need for further study. Furthermore, neither of theso
far presented algorithms allows its effective parallelization. Technically, there is another

major omission. Several approaches havebeen studied or at least listed so far. They rely



on Euclideanalgorithm [?], [?], [?], computations with subresultant matrices [?], [?], various
techniques of least-squares computations,optimization, and quadratic programming [?], [?],
and a version of Lazard’s algorithm [L81], which is equivalent to the matrix pencil algorithm
of [KM94] (described in [KM94] by using the terminology of automatic control). At least
two important approaches are missing, however, from all these papers, that is, ones based on
Padé approximation and approzimating polynomial zeros. In our present study, wedemon-
strate several methodological and computational advantages of thesetwo approaches over
the cited ones. Padé approximation is an important and well developed subjectwith appli-
cations to algebraic computing, signal processing, and thestudy of analytic functions [?], [?],
[?]. We show some computational benefits of reducing theapproximate gcd problem to the
computation of Padé approximations for an inexact input, versus the subresultant approach,
intensivelystudied in [?], [?]. (In particular, the formerapproach involves better structured
matrices of smaller size.) On the other hand, the reduction into the opposit direction, from
Padé computations to the gcd computations, enables us tosolve both problems by our sec-
ond approach, which, as weshow, is quite effective. Namely, we reduce the gcd problem
to approximating the zerosof the input polynomials, where highly effective algorithmsare
available [?], [?], [?]. With such a reduction, we explain the numerically unstablebehavior
of approximate gcds and restate the problem in terms of theconcept of the polynomial root
neighborhoods of [?]. This enables us to choose a proper class of theinput perturbations
for the geds and also to associate bipartite graphs with the geds. Then the solution of
theapproximate gcd problem is reduced to computing mazimummatchings in such graphs.
In particular this enables us to computeeasily a non-trivial upper bound on the degree of
the approximate gcdsand to certify correctness of the solution, which was the bottleneck
ofthe known approaches. We made this progress assuming the customary formulation of
theged problem, based on the perturbation of the inputcoefficients. In sections ??7 and 77
we study theproblem based on the perturbation of the zeros of the inputpolynomials and
argue that this is a more appropriate basicassumption. We also show its computational
advantages: it alwaysenables us to compute an approximate ged itself (rather than acan-
didate polynomial, which may have a lower or higher degree) andto simplify the stage of

the computations in bipartite graphs, byreplacing the matching stage by the computation



of the components. The proposed algorithms have lower computational complexity (which
rangesbetween linear and quadratic in terms of arithmetic operations andcomparisons in-
volved, except forO(n??) comparisons used for matching), and their parallelization enables
NC (or RNC) and work efficient solution of theapproximate ged problem (cf. e.g. [?] or [?],
ch. 4, onthe definitions of NC, RNC and work efficiency). We organize our presentation as
follows. After some preliminatires insection ??, we study the Padé approximation approach
insections?? and 7?. In sections ?77-?7 westudy the e-gcds problem based on the concept
ofa polynomial root neighborhood. In sections ?? and??, we study thed-gcd problem, where
the perturbation is applied to the zerosof the input polynomials. In section ?? we comment
on theextension of our approach to Padé approximation for an inexactinput. Section?? is
left for a short discussion. In the appendix we brieflyrecall some major known methods for

e-geds and prove anauxiliary result for testing e-divisibility. Acknowledgements. I grate-

fully acknowledgereceiving reprints of [CGTW95]from André Galligo and Erich Kaltofen,
a preprint of [HS95] fromthe former, and a reprint of [HZ96] from Uri Zwick.My present
work was substantially motivated by André Galligo’s comments on [CGTWY95], delivered
in [G95], and partly by Erich Kaltofen’s interest to thecomputaton of numerical rank of
a Toeplitz matrix. This paper was written and submitted for publication in 1995, turned
intoa research report[?] in 1996, and substantially revised in 1997, based on thevaluable

suggestions by the referees.

2 Polynomial and vector norms,e-divisibility and e-gcds (some

definitions and preliminaries).

Hereafter, we will refer to arithmetic operations as to ops.A polynomial p(x) = Ei’c:o izt
can be identified with its coefficient vector 5 = [po, ..., px]’. (We write w’ for the transpose
of a vector or a matrix w.) The same norms will be used for both vectors and polynomials,

in particular to measure the distances, dist(s(z),t(x)) = ||s(z) — t(z)|| = ||5 — £]|. We recall



the customary norms
1811n = 11> piz’lln = 3 Ipil ™)™, (2.1)
i i

which for h = oo turn into the mazimum norm,
Illoo = Il - piallo = max|pil.
g

In some cases, the weighted h-norms, ||pllps = || X piz'|na = (X [pil w:)'/? for a fixed
vector W = (w;), are also useful in the study of e-gcds [?]. When our study applies to any
fixed norm, we will write||.||. The next two defintions re-introducethe e-geds of (77),(?7),

based on the concept of an e-divisor.

Definition 2.1 A polynomiald(z) is an e-divisor of a polynomial p(x) (under afized norm
IIl) if there ezists a perturbation of p(xz) by a polynomial A(z) such that d(z) divides
p(z) + A(z), deg A(z) < N, and ||A(z)|| < ellp(z)]-

Definition 2.2 For two polynomials,

m n

u(z) = Zuiwi, v(z) = Zvixi, Uy, 0, m <mn, (2.2)

every their monic e-divisor g(z) that has the mazimum degree, d. = d(u,v,€), is called their

e-ged.

Using the 2-norm, ||.||2, often leads to some computational advantages.

Proposition 2.1 [?/. Given two polynomials p(x) and d(z) of degrees kand [, respectively,
k> 1, and a positive €, it sufficesto use O(klog(k — 1) +min{(k — 1) log?(k — 1), kl}) ops to

decide if d(z) is an e-divisor of p(z) (under the 2-norm).

The algorithm of [?] supporting this proposition actuallycomputes two polynomials ¢(z) and
A(z) = p(z) — d(z)q(z) suchthat ||A(z)[|2 is minimum, and deg A(z) < degp(z). Having
A(z) available, we may check immediately if ||A(z)||s < €||lp(x)||n forh = 1 or h = oo; the
values ||A(z)||p for h = 1 arewithin factors n or v/n from the minimum ||p(z) — d(z)q(z)||x,

due to the following useful relations:

1Tl < [13ll2 < [|1F]1 < Vnl[#ll2 < nl@]ls,



which hold for any vector ¢ of dimension n. Furthermore, we can prove the following

extension ofproposition ?? (see appendix ?7?).

Proposition 2.2 The e-divisibility under aweighted 2-norm can be decided at the cost of

performing O(N?log N) ops.

Remark 2.1 Our study can be easily extended to (ez,€z)-geds where g(x) is an ez-divisor
for u(z) and anez-divisor for v(z), for fized ezand ez, or more generally, where a distinc-

tupper bound may be imposed on the allowed perturbation of eachcoefficient of u(x) and

v(z).

3 Padé approximation approach to computing a polynomial

gcd or e-ged.

A pair of polynomials w(z) and z(z) of the smallestdegree that satisfy the equation w(z)v(z) =
z(z)u(z) immediately defines the ged, g(z) = ged (v(z),u(z)), as the polynomial

gla) = U2 _ 20,

w(z)  z(z)
The problem of the computation of w(z) and z(x) can be appropriately re-phrazed by using

the important classical concept of Padé approximation (cf. [?], [?],[?]).

Definition 3.1 For any formal power series a(z) = Y2y a;x’ and for two non-negative
integers k and £, a pair of polynomials s(z) and t(x) is a (k,l)-th Padé approzimation of
a(z) if degs(x) <k, degt(x) <1, and s(z) — a(z)t(z) = 0 mod V1, N =k +1.

Proposition 3.1 [?/. The pair of polynomials q(x) and t(z) of definition 7?7 is defined

uniquely, up to its scaling by common factors or common divisors.

Given the polynomials u(z) and v(z) of (??), we mayassume that v(0) # 0 and define the

formal power series

ha) =3 bt = 20 (3.1)

x) = = ——. .
= v(z)

(The restriction v(0) # 0 can be removed by removing the maximum degree factors z* and

#J from u(z) and v(z), respectively, andadding the factor z™*{J} to their ged. Alterna-

tively, one maywork with the reverse polynomials U(z) = z™u(1/z), V(z) = z"v(1l/x),



W(z) = 2™ %w(1/z), Z(z) = 2" %2(1/z).) The computation of h(z) mod zV*! amounts
to the computationmodulo 2V of a polynomial reciprocal and a polynomial product and-
costs O(nlogn) ops, [?], p. 22. The (k,!)-th Padéapproximation can be computed by means
of the extended Euclideanalgorithm at the cost O(N log? N) ops for N =k +1, [?], [?], pp-
38-39. These considerations give us a gcd algorithm, and we may extend it to computing

an e-gcd as follows.

a) For each d, d =0,1,...,m, successively orconcurrently compute wq(z), z4(x), the (m —
d,n — d)-th Padéapproximation to h(z); then apply proposition ?? to test ifwg(x) is
an e-divisor of u(z). If "not”, discard sucha value d. Otherwise compute a polynomial
ga,c(z) (an e-quotient) such that ||wg(z)ga.c(x) —u(z)|| < e. Then applyproposition 7?7
again, to test if g4 (x) is ane-divisor ofv(z) too. If "not”, discard this d. Otherwise,

store such a d and gq () .

b) If the set of d’s is empty, output FAILURE; otherwiseselect the largest remaining d = d*

and output d* and ¢g*(z) = gg4~ () -

By construction, gg« () is a common e-divisor ofu(z) and v(z), though some e-perturbations
of u(xz) and v(xz) may have a common e-divisor of a larger degree. The algorithm is per-
formed at quite a low computational cost of O(mn log? n) ops. Furthermore, the stage of
computing the (m —d,n —d) Padé approximations of h(z) for all d requires only O(n log?n)
ops, except for some cases of degeneration|?], sect. 5. On the other hand, this approach, like
the Euclidean and subresultant approaches, gives us no effective general means for detecting

degeneration or verifyingthat the output polynomial is an e-gcd.

4 The Hankel/Bezout techniques for Padéapproximation.

In the algorithms of the previous sections, one may compute Padéapproximations by relying
on computations with Hankel matrices, rather than on the extended Euclidean algorithm.
This approach may require a little more ops but enables better numerical control of the
computations and provides an additional insight into the behavior of e-gcds. The basic
idea is to associate the formal power series h(z) of (??) with the infinite Hankel matrix

H = H(u,v) = (hij), hij = hitj4+m—n+1, 1,5 = 0,1,.... For readers’ convenience, we recall

7



that a matrix (h; ;) is called a Hankel matriz if all its entries are invariant intheir shift into
antidiagonal direction, that is, if h; ; = hj;1 ;1 for all pairs ¢, for which h; ; and h;y1; 1
are defined. A general n x n matrix may have n? distinct entries, but an n x n Hankel matrix
is symmetric (h;; = h;;), has at most 2n — 1 distinct entries, and is completely defined
by the pair of its first and last rows orcolumns. Computations with Hankel matrices are
also dramatically simplifiedversus the case of general matrices. In particular we have the

following results [?].

Proposition 4.1 The multiplication of an N X N Hankel matriz by a vectorcan be reduced

to multiplication of two polynomials of degree O(N)and performed in O(N log N) ops.

Proposition 4.2 O(N log? N) ops suffice to solve a non-singular linearsystem of N equa-

tions with a Hankel coefficient matriz.

Now let Hj denote the k x k leading principal submatrix of H, that is, one where ¢ and j

range from 0 tok — 1. (Clearly, Hy is a Hankel matrix.) We have the following results ([?],
[?1,[7], pp. 140).

Proposition 4.3 Let r = rank H,, d = gcd g(z). Then the matrizH, is non-singular, and
d+r=n.

Proposition 4.4 The computation of the (m,n) Padé approzimationof the formal power
series h(x) of (??)can be reduced to the solution of a consistent linearsystem of equations
with the coefficient matrizH,, multiplication of an m X miriangular Hankel matriz by a

vector, and asubstraction of a pair of m-dimensional vectors from each other.

The harder part of the latter computation is the solution of the linear system. It can be

performed in three steps:
a) compute the rank r of the matrix Hy,

b) solve a non-singular linear system of equations with thecoefficient matrix H, (non-

singularity is byproposition ??, the solution cost is O(rlog? r) byproposition ?7).

c) recover the solution of the original consistent linear systemwith the matrix H, (in

O(nlogn) ops by proposition ?7).



Remark 4.1 At stage b), one may substantially improve numerical stability of the com-
putations by means of a simple transitionfrom the Hankel to Bezout linear systems ([?],

p.162).

In the context of the computation of e-gcds, the matrix H,should be allowed to vary with

the input polynomials u(z) and v(z).The e-perturbations of u(z) by d,(z) and v(z) by d,(z),

|6 ()]l < &|65(z) < €, cause the perturbations of the polynomial (u(z)/v(z)) mod z™+"+!
within §, ¢ + d,  where

bue = €]|(1/v(x)) mod z™ 1|, (4.1)

Gv,e = ell(u(z) + 8u(2))/ (v(2) (v(z) + 8y(2))) mod &™FH1| (4.2)

(for any fixed norm). To estimate the resulting perturbation of the matrix H,, we recall

the defintion and some properties of the operator matriz norms ||.||n, which are also called

subordinate to and consistent with the vector norms ||.||5, of (??) (cf. [?], pp.55-57). For a

matrix A = (a; ), we have

|Al|l = sup||A7|[n/||7]l, h = 1,2,00,
7£0

1Al = AT |00 = m;’.ixz |ais1, (4.3)
i
14113 < ATl Allco,

so that
[All2 < [|Allx = [[Alloo (4.4)

for a symmetric matrix A, in particular for A = H,,. (??) implies that the perturbation A,

of Acaused by the e-perturbations of u(z) and v(z) satisfies

1Al = [ Aclloo < Gue + du.e

for 6, and 6, of (77), (?7). (The equation in the above follows from (?7?)since A, is a

Hankel and therefore symmetric matrix.) Due to (??), we also obtain that
”AC”Q < 6u,6 + 51},6' (45)

To control the resulting impact of thee-perturbations ofu(z) andv(z) on the e-geds and in
particular on their degree d., onemay apply some known results on the eigendecomposition

of a real symmetric matrix (see [?], Theorems 8.1.1, 8.1.13).



