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executing O(nr?log® n) arithmetic operations, where r is the scaling rank of the input Cauchy-
like matrix C' (r = 1 if C is a Cauchy matrix). Consequently, the same cost bound applies to
the computation of the determinant of C, a short scaling generator of C !, and the solution
to a nonsingular linear system of n equations with such a matrix C. (Our algorithm does
not use the reduction to Toeplitz-like computations.) We also relax the assumptions of strong
nonsingularity and even nonsingularity of the input not only for the computations in the field of
complex or real numbers but even where the algorithm runs in an arbitrary field. We achieve this
by using randomization, and we also show a certain improvement of the respective algorithm by
Kaltofen for Toeplitz-like computations in an arbitrary field. Our subject has close correlation
to rational tangential (matrix) interpolation under passivity condition (e.g., to Nevanlinna-Pick
tangential interpolation problems) and has further impact on the decoding of algebraic codes.

Key words:  Cauchy-like matrices, displacement rank, scaling rank, fast algorithms,
matrix factorization, finite fields, rational interpolation.
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1 Introduction

There are several important classes of dense matrices whose entries ( as well as the entries of
their inverses) have simple expressions via a few parameters (O(n) for n xn matrices) and whose
special structure is used in order to accelerate computations with such matrices dramatically.
For example, for an n x n Toeplitz matrix T = [t,_;], its product by a vector can be computed
in

Trs(n) = O(n log n) (1.1)
arithmetic operations by using FFT, versus 2n? —n such operations for general matrices. (Here-
after, we refer to arithmetic operations as to ops; for numerical computations we could have
used the customary nomenclature of flops, but we prefer “ops” to cover also exact computations
in finite fields.) Furthermore, the well-known algorithm of [M74], [M80], and [BA80] (hereafter,
we refer to it as to the MBA algorithm) rapidly computes recursive triangular factorization of
T, as well as T~!, det T, and the solution ¥ = T-'b to a linear system 17 = b or its least-

squares (normal equations) solution (T#T) ™ 'T#b, for TH denoting the Hermitian transpose of
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Trr(n) = O(Tan(n)log n) = O(n log®n) (1.2)

ops. Furthermore, the algorithm and the latter complexity bound can be applied to the wider
class of Toeplitz-like matrices, having structure of Toeplitz type, which is formally defined
in terms of the associated displacement operators [KKMT79], and the power of the algorithm
hinges of exploiting the fundamental concept of the displacement rank of matrices introduced
in the seminal paper [KKM79]. It became a natural technical challenge to extend such an
algorithm for the cited Toeplitz-like matrix computations to other classes of dense structured
matrices, in particular, to Cauchy-like matrices (also called generalized Cauchy matrices [H95]).
Such matrices appear, for example, in applications to rational interpolation [D74], [OP99] and
rational matrix (tangential) interpolation under the passivity conditions (e.g., to Nevanlinna-
Pick and Nehari matrix interpolation problems) [GO94c]|, [OP98], conformal mapping [T86],
and numerical solution of integral equations [Rok85], [Re90] and have special structure naturally
defined in terms of the associated scaling operators.

Due to the difference from Toeplitz-like structure, the Cauchy-like extension of the MBA
algorithm is not straightforward. In particular, the treatment of the associated scaling op-
erators (versus displacement operators) requires distinct techniques. Furthermore, additional
techniques (not available in [M74], [M80], and [BA80]) are needed to ensure nonsingularity of
the auxiliary block matrices that ought to be inverted, particularly, in the cases of computa-
tions in finite fields and/or with singular input matrices. We elaborate such an extension in

our present paper, thus meeting the cited technical challenge. We use

ops, where Cyr,(n) denotes the complexity of multiplication of an n x n Cauchy matrix by a
vector, well known as Trummer’s problem. With application of FFT, Trummer’s problem can
be solved in

Cio(n) = O(nlog?n) (1.4)

ops [Ger87], [GO94a], [GO94b], which is off by factor log n from the bound (1.1). Substitution
of (1.4) into (1.3) yields the complexity bound of Crr(n) = O(nlog®n) ops for Cauchy-like

recursive triangular factorization and, consequently, for the related Cauchy-like computations
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The complexity bound is slightly inferior to the Toeplitz-like case bound (1.2), leaving some
room for further improvement, but still keeps our algorithms in the class of the so called superfast
algorithms, that is, running in nearly linear time, versus the straightforward algorithms using
order of n? ops and various well known fast algorithms running in quardratic time.

If we only wished to extend the asymptotic bound O(nlog?n) of (1.2) to the Cauchy and
Cauchy-like matrix inversion and linear system solving, then it would have been sufficient to
apply either the algorithm of [Gast60] in the Cauchy case or (in the more general Cauchy-like
case) the techniques of [P89/90] for the reduction (at the cost of O(nlog®n)) from Cauchy-
like to Toeplitz-like computations. In fact, the techniques of [P89/90] can be also applied to
make the converse transition from Toeplitz-like to Cauchy-like computations, and here these
techniques can be simplified [H95], [GKO95, Sec.3|, [P99], [P2000], to yield the FFT based
transition in O(nlog n) time, which implies fundamental role of Cauchy-like computations. In
particular, based on this transition, practically effective Toeplitz and Toeplitz-like solvers have
been devised in [GKO95] and further studied in subsequent papers by M. Gu.

The transition from Cauchy-like to Toeplitz-like computations, however, has not been re-
fined since [P89/90]; it requires order of nlog® n ops and involves the solution of a Vandermonde
linear system, which generally leads to some additional numerical problems. (In spite of sev-
eral advanced Vandermonde solvers available [BP70], [H88|, [H90], [L94], [L95], [GO96], [L96],
Vandermonde linear systems are well-known for being ili-conditioned [Ga75], [Ga90].) Our algo-
rithm may also lead to numerical difficulties at the stage of the solution of Trummer’s problem,
but here one at least has an option of applying Rokhlin’s approximation algorithm of [Rok85]
or Fast Multipole Algorithms [GR87], which substantially improve the known exact solution
algorithms for Trummer’s problem for a large class of inputs, in terms of both numerical sta-
bility and the ops count. It is an open problem how much Rokhlin’s and Fast Multipole’s
restrictions on the input are restrictive in the context of solving Trummer’s problem within
our algorithm. Some techniques were proposed recently in [PACLS98], [PACPS98]| in order to
relax such restrictions. On the other hand, in some applications of Cauchy and Cauchy-like
matrices (e.g., to Goppa codes ), the computations are performed over the finite fields, where
no numerical problems arise. In particular, numerical problems do not arise in sections 5, 6,

and 7 of our paper, where we elaborate extension of our algorithm to computations in finite
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blocks, in particular, randomization techniques, which replace symmetrization, applied in the
real and complex cases. We cannot generally apply FF'T over any field, so in sections 5 — 7 we
rely on polynomial multiplication as our basic operation, instead of FFT. Then bounds (1.1)

and (1.4) turn into the bounds
Tuo(n) = O(Pu(n)), (1.5)

Cuv(n) = O(Py(n) log n) (1.6)

provided that Pps(n) ops suffice for computing the product of two polynomials of degree at

most n ( or computing a polynomial product modulo z*"*! ). We have
Py(n) = O(nlog n) (1.7)
if the ground field of constants (assumed for the computations ) supports FFT and the bound
Py (n) = O((nlog n)loglog n), (1.8)

over any field of constants [CK91]. Thus, allowing computations over any field increases our
cost estimates only by factor O(loglog n). To simlify the expressions for the cost estimates,
we will state them ignoring the latter factor.

Like MBA and the algorithms of [H95], [L94], [L95], and [L96], our algorithms include the
divide-and-conquer techniques. In fact, some n x n Cauchy-like matrix inversion algorithms
and a nonsingular Cauchy-like linear solver using O(n log® n) ops were presented in [H95] based
on the known rational interpolation interpretation of these computations (cf. [BGR90] on the
background and many details of this topic and cf. [OP98] for extensive bibliography). Further-
more, an improvement to using only O(n log? n) ops via transformation to rational interpolation
at the roots of 1 was also shown in [H95]. Then again, the latter step is the straightforward
interpolation interpretation of the transformations from Cauchy-like to Toeplitz-like matrices
introduced in [P89/90]. Recall that Cauchy-like matrices whose basic pair of vectors is formed
by the roots of 1 can be immediately transformed by means of FFT into Toeplitz-like matrices
and vice versa (cf. [H95], [GKO95]). We believe that both approaches (that is, the matrix
and interpolation ones) are important and may enrich each other. Conceptually, we are closer
to MBA than to the latter cited algorithms because we do not use operations with the asso-

ciated polynomials (e.g., such as their interpolation) but directly partition the input matrix
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us to apply the known matrix computation techniques in order to improve our computations
further, for instance, to use symmetrization, randomization and other tools in order to handle
singularity and degeneracy.

Furthermore, the matrix approach seems to be more universal, that is, more easily extend-
able to various classes of matrix structure, as this was demonstrated by the more recent study,
covered in our section 8 (Conclusions and Further Progress), which briefly surveys some devel-
opment during several years followed the submission of the present paper. In particular, this
development showed interesting correlation of the directions proposed in this paper to the study
of some celebrated problems of rational tangential (matrix) interpolation, whose numerically
stable solutions requires recursive triangular factorization (and not just inversion) of Cauchy-
like matrices, and to the decoding of algebraic codes, reduced to computations in finite fields
with singular structured matrices.

Apart from section 8, we organize our paper as follows. In section 2, we recall some def-
initions and auxiliary facts. In sections 3 and 4, we present and analyze our main algorithm
assuming strong nonsingularity of the input matrix. In section 5, we show how to apply
symmetrization and/or randomization in order to ensure nonsingularity when we perform this
algorithm in the real or complex fields and in arbitrary fields, respectively. In sections 6 and
7, we consider the extension of our Cauchy-like solvers to the case of a singular input as well
as the related problem of the design of Toeplitz-like singular solvers. In Appendix A, we recall
some algorithms for Trummer’s problem of multiplication of a Cauchy matrix by a vector and
for solving Cauchy linear systems of equations.

Acknowledgements. We are grateful to the area editor Dr. G. Heinig and both referees for
their valuable comments on the original draft of our paper and to the managing editor Dr.
R. A. Brualdi, whose energy saved the paper from remaining under consideration for a much

longer period.

2 Some Definitions and Basic Facts

Definition 2.1. Hereafter we will write D(¥) = diag(vo, v1,++,Vn_1) for ¥ = (vg, v1, -+, Vp_1)".

W7T and ©° will denote the transposes of a matriz W and a vector ¥, respectively.
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for a pair of n-dimensional vectors § = (¢;) and t = (t;), ¢ #t;, 4,7 =0,---,n—1, ann xn

matric A € F™*" is called a Cauchy-like matriz if
Fip@,n@)(A) = D@A - AD(#) = GHT, (2.1)

G, H € F™", and the integer r is bounded by a constant independent of n or, more generally, if
according to a certain fixed measure, r is small relatively to n. Furthermore, the pair of matrices
(G, HT) of (2.1) is called a [D(q), D(t)]-generator (or a scaling generator) of a length ( at most
) r for A and is hereafter denoted s.g.,(A). The minimum r allowing the above representation
(2.1) is equal to rank Fypg py(A) and is called the [D(g), D(t)]-rank (or the scaling rank) of
A.

We will next recall some known properties of Cauchy-like matrices.

Lemma 2.1 [GO%a]. Let A, ¢, &, G = [§1,-+,5,] = @)1y € F¥", H = [hy,--, h,] =

(v'J'T)n "€ F™ be as in Definition 2.2, such that (2.1) holds. Then

4 aTa M

A= Y diag(Gu)C(@ Diiag i) = (-0) (2.2
m=1 i 1) =0

where C(q,1) is a Cauchy matriz. Conversely, (2.2) implies (2.1).

It follows from (2.2) that (2.1) is satisfied by matrices A of the form (q”‘ :J’ )nj y , where u; and
v; are r-dimentional vectors for 4,57 = 0,1,---,n — 1. A Cauchy matriz and a Loewner matriz
(ﬁ)?:o are two important special cases of Cauchy-like matrices; they have [D(q), D(t)]-ranks
1 and (at most) 2, respectively.
Lemma 2.2 (see appendix A, [Ger87], or [OP99]). Given an n x n Cauchy matriz A and an
n-dimensional vector ¥, the product A¥ can be computed in O(n log®n) ops. Consequently, if

A is an n x n Cauchy-like matriz given with an s.g..(A), then the product AT can be computed

in O(nrlog®n) ops.

Lemma 2.3. Let A; € F™", i = 1,2, be two Cauchy-like matrices such that Fip(g,),0(g.,.)(4i) =
G:H}', G;, H; € F™"i { =1,2; ¢; € F™', j=1,2,3, and all components of the vector ¢, are
distinct from all components of the vector ¢3. Then the matriz A = A1 A, is a Cauchy-like ma-
triz with Fip, @) (4) = GHT, G = [G1, A1Gs], H = [ATH\, Hs], G, H € F™", r =11 + 5.

Furthermore, O(nriry log? n) ops suffice to compute its scaling generator of a length at most r.
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Fin@),n@)(A1As) = GiH] Ay + A1GyHy = GH,

G =[G, A1G,), H = [ATH,, H,]. To deduce the desired complexity bound of O(nrirylog® n)
ops for obtaining G and H, apply Lemmas 2.1 and 2.2. O
Remark 2.1. Lemma 2.3 can be easily extended to the computation of the product of k
Cauchy-like matrices for any fixed integer k > 2.
Lemma 2.4 [H95]. Let A denote an nxn nonsingular Cauchy-like matriz with Fip ) pay(A) =
GH”, G = [§,---,§,] € F*", H = [hy,---,h,] € F™". Then A~ is also a Cauchy-like
matriz such that Fipg pay(A™") = —UVT, where the matrices U = [dy, - - -, d,] € F™7, V =
[T, -, U] € F™" satisfy AU =G, V'A=HT.

Proof. Pre- and post-multiply equation (2.1) by A~ O
Corollary 2.1. Under the assumptions of Lemma 2.4, we have rank F[D@,D@] (A7) <r.
Lemma 2.5.  Let I = [iy,---, i), J = [j1,---,jal, D(@) = diag(qi,, - q,), D(t;) =
diag(tj,,---,t;,). Let a Cauchy-like matrix A satisfy (2.1) and let By ; be a k x d submatrix of
A, 1< k,d <n. Then By is a Cauchy-like matrix with a [D(g;), D(f7)]-generator of a length
at most 7.

Proof. Deduce from (2.1) that

ST =~ b Jd

;v
Bry=(—)

@Y i=i,i=h0

and recall (2.2). O

Lemma 2.6. Let A and B denote a pair of n x n Cauchy-like matrices. Let A satisfy (2.2)
and let
Fip@,p@(B) = D(@)B — BD(f) = XW,
g — 1 i,j:O,
where XT = [Ty, -+, Tn_1] € FX", WT = [y, -, W, 1] € F"**". Then the matrices A + B

B=

and A — B are Cauchy-like matrices associated with a [D(7), D(t)]-generator of length at most

r—+ ri.
Proof. We have .
T = n—
A-B= ( %Y ) )
%=1, -0



where ; =\u; , ¥; ),Y; =\v; , —wj; ),thatls, z;,y; c > ~~/77, WIICN proves the Iemina
for the matrix A — B (the proof for the matrix A + B is similar). a

Lemma 2.7 (cf. [C841]). An n x n Cauchy matriz C(q,1) is well-defined and nonsingular if
and only if all the 2n components of the vectors ¢ and t are distinct. Furthermore, every square

submatriz of a nonsingular Cauchy matriz is nonsingular.

3 Recursive factorization of a strongly nonsingular ma-
trix

Definition 3.1. A matriz W is strongly nonsingular if all its leading principal submatrices
are nonsingular.

Hereafter I (or I, ) denotes the s x s identity matrix, O denotes a null matrix of appropriate
size.

For an n x n strongly nonsingular matrix A, we have the following identities:

I O B O I B'C
A= : (3.1)
EB7' I 0O S 0o I
I -B'C B!l 0O I 0
ATl = : (3.2)
0 I 0o S —~EB™t I

B C
A= , S=J—-EB7C, (3.3)
E J

where

B is a k x k matrix, and S is an (n — k) X (n — k) matrix, called the Schur complement of B
in A. Factorization (3.1) represents block Gauss-Jordan elimination applied to the 2 x 2 block
matrix A of (3.3). If the matrix A is strongly nonsingular, then the Schur complement matrix
S can be obtained in n — k steps of Gaussian elimination.

We have the following simple results (see, e.g., [BP94], Exercise 2.4 on page 212 and Propo-
sition 2.2.3):
Lemma 3.1. If A is strongly nonsingular, so are B and S.
Lemma 3.2. Let A be an n x n strongly nonsingular matriz and let S be defined by (3.3).
Let Ay be a leading principal submatriz of S and let Sy denote the Schur complement of Ay in
S. Then S™' and S7' form the respective southeastern blocks of AL,
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Due to Lemma 3.1, we may extend the factorization (3.1) of a strongly nonsingular matrix
A to the submatrix B and to its Schur complement S, and we may recursively continue this
decomposition process until we complete it by arriving at 1 x 1 matrices ( compare [St69],
[M80], [BA80]). In this process, we descend from A to the matrices B, C, E, and S, and then
we similarly descend recursively from B and S to their submatrices and Schur complements.
At these descending stages, we only identify the matrices involved in the recursion but do not
compute them. For their actual computation, we recursively proceed bottom up, that is, we
first invert the 1 x 1 leading principal submatrix A; of A, then use AT' to compute the Schur
complement S; of A; in the 2 x 2 leading principal submatrix Ay of A, then invert the 1 x 1
matrix S; and the 2 X 2 matrix Ay. In the latter case, we rely on the factorization of Aj in
the form (3.2), where the inverses A7 and S;' have already been computed. We recursively
continue this lifting process until we arrive at A~'. As a by-product, we compute all the
matrices defined in the recursive descending process. The entire computation will be called the
CRF ( or complete recursive factorization ) of A. Besides the inversion of 1 x 1 matrices, the
CRF only requires matrix multiplications and subtractions.

Hereafter, we will always assume balanced CRFs, that is, we will balance the factorization
(3.1) in its first step, such that B is the |5 ] x [§] submatrix of A, and we will maintain the
similar balancing property in all the subsequent recursive steps. The balanced CRF has depth
at most d = [log, n].

Let us summarize and formalize our description in the form of a recursive algorithm.
Algorithm 3.1. Recursive triangular factorization and inversion of a strongly monsingular
malriz.

Input: a strongly nonsingular n x n matrix A of (2.2).
Output: balanced CRF of A, including the matrix A~
Computations:

1. Apply Algorithm 3.1 to the matrix B (replacing A as its input) in order to compute the
balanced CRF of B (including B™1).

2. Compute the Schur complement S = .J — EB~C.

3. Apply Algorithm 3.1 to the matrix S (replacing A as its input) to compute the balanced
CRF of S (including S71).

10



. vollpute A - 1Ol (9.4).
Clearly, given A~! and a vector 5, we may immediately compute the vector & = A-1b. If
we also seek det A, then it suffices to add the request for computing det B, det S, and det A

at stages 1, 3, and 4, respectively.

4 Recursive factorization of a strongly nonsingular Cauchy-
like matrix

Hereafter, we will assume for simplicity that n = 27 is an integer power of 2. We write

. _ . n_q _ 5 _ 5 n_{1 _
7= @)z, @V =(w)io, TP =(a)iTs, t= )i, TV =)o, T =(t)is

We will start with some auxiliary results.
Lemma 4.1. Let A be an n xn strongly nonsingular Cauchy-like matriz with Fip s pay(A) =

GH", G, He F"*". Let A, B, C, E, J, and S satisfy (5.3). Then

rankFip@, pay A hH<r, rankFipi )y, pg )y (BH<r, (4.1)
rankFipg @), pi @y(S) <, (4.2)

rankFip i @) pg (2))](,5'_1) <r, (4.3)

rankFpg wy, pi @y(C) <, rankFip; o), pg my(E) <. (4.4)

Proof. Deduce (4.4) from Lemma 2.5. By applying Corollary 2.1, obtain (4.1). Now, due
to Lemmas 3.2 and 2.5, we have (4.3). Then we apply Corollary 2.1 to the matrix S = (S~1)~!
and obtain (4.2). a
Fact 4.1 (cf. Proposition A.6 of [P92b], [P93a], [BP94], Problem 2.2.11b, G-COMPRESS
). Given an s.g..«(A) = (G, H) and the scaling rank r of A, r < r* < n, one can compute an
5.9.+(A) by using O(r’n) ops.

Now we are ready to present the computational complexity estimates.

Theorem 4.1. Let A denote an n x n strongly nonsingular Cauchy-like matriz with its F-
generator of a length r for the operator F = F[D@’D(E)]. Then the respective F'-generators of all
the matrices encountered in the balanced CRF of A (including an s.g..(A™"')) can be computed

in O(nr? log® n) ops and can be stored by using O(nrlog n) words of storage space; furthermore,

11
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det A.

Proof. Let us apply the fast version of Algorithm 3.1 to the matrix A of Theorem 4.1,
that is, instead of slower computations with more numerous entries of the matrices involved
in the CRF, let us perform faster computations with much fewer entries of their short scaling
generators. Let ¢.(n) ops be involved in computing the balanced CRF of A ( including the
computation of an s.g.,(A™!)). Furthermore, let o,(n) ops be used for computing an s.g.,(.9)
from given s.g.,(B™'), 5.9..(C), 5.9..(=E), and s.¢..(J) (cf. (3.3)), and let p,(n) ops be required
for computing an s.g.,(A™!) from given s.g.,(B™1), 5.9..(C), 5.9.-(E), and s.9.,(S™!) (cf. (3.2)).

This is summarized in the table 1.

Table 1
Input | s.9-(4) | s.9.(B™),59..(C), | s.9.(B7"), s.9.(C),=
S.Q.T(—E),S.Q.T(J) S.Q.T(E),S.Q.T(S)
Output | CRF of A | 5.9..(5) 5.9..(A7Y)
ops ¢r(n) ar(n) pr ()

Let ¢.(k), o,(k), and p, (k) denote the similar estimates where the input matrix A is replaced
by a strongly nonsingular k£ x k£ matrix W given with an s.g.,(W). For simplicity, let n be even.

Then, in view of Lemma 4.1, the examination of Algorithm 3.1 gives us the bound

& (n) < 2¢T(g) +0,(n) + iy (n). (4.5)

By expanding (3.2), we deduce that

B!+ B 1CS~'EB! —-B-'1CS™!
Al = : (4.6)
-S~'EB! St
Now we apply Lemmas 2.3, 2.5, 2.6, 4.1, and Fact 4.1 and deduce that
or(n) = O(nr?log’n), p.(n) = O(nr?log?n). (4.7)

Substitute (4.7) into (4.5), recursively extend (4.5), and deduce that

¢r(n) = O(nr?log® n),

12
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similarly when we inspect Algorithm 3.1 applied to the matrix A and apply Lemmas 2.3, 2.5,
2.6, and 4.1. 0

Remark 4.1. The proof of Theorem 4.1 actually gives us the bound O(r?>Ci,(n)log n) on the
number of ops involved in Algorithm 3.1 applied to an n xn strongly nonsingular matriz A given
with an s.9..(A) (cf. (1.8), (1.4)). A similar argument leads to the bound O(r*Ty,(n)log n)
for the MBA algorithm applied to an n x n Toeplitz-like matriz A given with its displacement
generator of length at most r.

The computations by the algorithm supporting Theorem 4.1 can be a little simplified at the
stage of computing Schur complements, based on the following simple but helpful result (this
does not change the asymptotic complexity estimates of the theorem).

Proposition 4.2 [GO9/c|. Let A be a Cauchy-like matriz of Lemma 2.4, partitioned into
blocks according to (3.1). Let (Go, Hy), (Go, H1), (G1, Ho), (G1,Hi) and (Gs, Hg) denote the
five induced scaling generators of the blocks B, C, E, J of A and of the Schur complement S
of (3.3), respectively. Then Gs =G, — EB™'Gy, H: = H' — HI B~'C.

Remark 4.2 The latter result appeared in [GO94c] in the context of a particular problem of
rational interpolation, not as a tool for recursive factorization or superfast matriz computa-
tion. [P99] and [P2000] show some further extensions of this result to various other classes of

structured matrices.

5 Ensuring strong nonsingularity of a nonsingular Cauchy-
like matrix by means of symmetrization or randomiza-
tion

We have showed how to compute det A and the balanced CRF of A (including an s.g.,(A™')),
assuming strong nonsingularity of the matrix A. To extend this solution to the case of any
nonsingular matrix A, we will seek a strongly nonsingular n x n preconditioner matrix X, such
that the matrix AX is strongly nonsingular. Then we may apply our machinery to the matrices
X and AX or XA, compute (AX) ' =X"1A"or (XA) ™' = A 1X! det (AX)=det (XA),
and det X, and obtain A™' = X(AX)™! = (XA)™'X and det A = det (AX)/det X. Further-

13



INore, 11 vie Casc WICIE A 15 a slligulal ITlalllx, LHE 5allle algOLIuIIn Wil 1IVOIVE a4 AIVISION DYy U
and thus will show us that det A = 0. In fact, we will also extend our algorithm to computing
the rank of A, in Remark 5.2.

If our computation is performed in the field of real numbers (or in its subfield), then we
can choose X = A”. Indeed, the matrix XA = AT A is positive definite and consequently
strongly nonsingular provided that A is nonsingular. Moreover, suppose that the matrix A is
replaced by (AT A) in (3.1)—(3.3). In this case, the condition numbers of the northwestern block
B of AT A, of the Schur complement S of the block B in AT A (cf.(3.3)), and consequently of
the similar matrices of smaller sizes computed in all subsequent steps of CRF do not exceed
the condition number of AT A (cf. [GL89/96] or [BP94], Fact 2.1.4 and page 237 ). As a by-
product, we immediately arrive at a least-squares (normal equations) solution (ATA)"*ATb to
a Cauchy-like linear system AZ = b for a Cauchy-like m X n rectangular matrix A having full
rank n, n < m.

A problem arises, however, when we apply Lemma 2.1 to the matrices A”A and AAT.
Indeed, if we replace the matrix A in (2.1) by these matrices, then we also ought to replace
F[D@,D(;)] by F[D(i),D(f)] or Fip(g),p(q), respectively, and the assumption g; # t; of Definition 2.2
is not extended. To exploit Cauchy-like structure of matrices W associated with the operators
of the form Fip@,p@, we may operate with W represented as the product C (g, f)Y, where
Y = C(g,t)W and C (g, %) are Cauchy-like matrices.

Symmetrization is easily extended to the case of computations in the field of complex num-
bers (use Hermitian transpose of A instead of AT) but does not work for computations in
finite fields. Over any field, however, we will solve our problem based on a distinct approach.
Namely, we will obtain a desired preconditioner matrix X by using randomization based on the
following simple but fundamental result ( note that the estimate involved in this result is sharp

and depends only on the total degree but not on the number m of variables):

Lemma 5.1 [DL78], [Sch80], [Z79]. Let p(z) = p(x1,Z2, -, %m) be a nonzero m-variate
polynomial of a total degree d. Let S be a finite set in the domain of the definition of p(x).
Let Z * = (x%,5,---,x}) be a point in S™, where the random values z7,- - -,z are chosen in

S independently of each other and under the uniform probability distribution on S. Then

probability(p(Z *) = 0) < %,

14
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Hereafter, we will fix a sufficiently large finite set S from which we will choose all random
values that we need. We will always choose them from S independently of each other and
assuming the uniform probability distribution of S, to be able to apply Lemma 5.1. Then
application of Lemma 5.1 will ensure (with a high probability) that, for an n x n nonsingular
Cauchy-like matrix A given with its Fip 5 npy-generator of a length r and for an n x n matrix X
defined by its F; (D@8, p(s)-8enerator with random entries, the matrix AX is strongly nonsingular.
Namely, we will arrive at the following result ( see an alternative approach in the next section
):

Theorem 5.1. Let A be an n X n nonsingular Cauchy-like matrixz satisfying the equation
(2.2). Let X be a matriz satisfying X =Y C({, 5),
r —
Y= mZ_:l diag(g3,)C(F, ) diag(hy,) | (5.1)
where C(q,5) = (== )?;:10 is a fized nonsingular Cauchy matriz, § € C™*1, t € C™', § e O™,

gi—8j

7 and t are as in Lemma 2.4, ¢; # sj, 8i # tj for all pairs of ¢ and j, gfn e C™L, E;‘n e C™L,

m =1,---,r, and the 2nr components of the 2r latter vectors are random values from a fized

finite set S. Then, with a probability at least 1 — n(r;‘rl), AX s a strongly nonsingular Cauchy-
like matriz having an Fipg),p)-rank of at most 2r+1.

Proof.  First consider matrix Y of (5.1), where the random vectors g7, and h, are
replaced by generic vectors whose components are indeterminates. Recall that the Fip pig)-
rank of A~! is at most r, due to Lemma 2.4. Therefore, there exists an assignment of values
to the components of the vectors g_;*'n, l_i;‘n, for which we have AY = I, and then the matrix
AX = C(q,5) is strongly nonsingular (cf. Lemma 2.7). On the other hand, the determinants of
the k£ x k leading principal submatrices (AX), of AX are polynomials of degrees at most 2k in
the coordinates of g7, ﬁ;‘n Since AX = C(q, 5) for a particular assignment, these polynomials
are not identically 0 if the components are indeterminates. Therefore, by Lemma 5.1, we obtain
that

n(n + 1)

B

L 2
probability(det(AX), #0,k=1,---,n) > [[(1 — é) >1-—
k=1

By combining Theorems 4.1 and 5.1 with Lemma 5.1, we obtain the following result:

15
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of a length r for the operator F = Fip,p@y- Then an Fipgy,pg-generator of a length at most

r for A7! can be computed by means of a randomized algorithm using 2nr random parameters

and O(nr?log®n) ops and failing with a probability at most %

Proof. Let us define X as above, by using 2nr random parameters. By the virtue of

n(n+1)

Theorem 5.1, with a probability at least 1 — E

, the Cauchy-like matrix AX is strongly
nonsingular. If it is strongly nonsingular, then by the virtue of Theorem 4.1, we may compute
the matrices (AX)~' and A~ = X (AX)~" by using a total of O(nr?log® n) ops. Finally, we will
decrease to r the length of the computed F-generator of A~! by applying Fact 4.1. O
Remark 5.1. Note that C(£,q) is a ( strongly ) nonsingular Cauchy matriz and easily deduce

from Lemma 5.1 that the matriz X s strongly nonsingular as well, with a probability at least

1— "(Hl). On the other hand, if X is a strongly nonsingular matriz, then by Theorem 4.1, we

may compute det (AX), det X, and then det A = de;ef‘g() at the randomized cost O(nr?log®n).

Remark 5.2. As we have already mentioned, we may extend the computation of det A to the
case where A is singular. (Our algorithm either correctly computes det A or fails to compute
the CRF of the matriz AX, that is, requires a division by 0 at some point, but in the latter case
det A = 0 with a probability at least (1 —n(n+1)/|S|)(1 —n/|S|).) Furthermore, the algorithm

can be easily extended to the computation of p = rank A. Indeed, with a probability at least

plp+1)
K

, p X pis equal to the maximum size of a nonsingular leading principal submatriz of the
matriz AX where X is the matriz X of Theorem 5.1. Such a maximum size is computed as
by-product of our algorithm (of section 4) supporting Theorem 4.1 and applied to the matriz
AX. This computation still has the same randomized cost of O(np? log® n) ops.

Remark 5.3. Our algorithms and complexity estimates can be applied in any algebraic field
in which a nonsingular n x n Cauchy-like matriz is defined. The definition of such a matrix
requires at least 2n distinct components of ¢ and t. To apply Theorem 5.1, we need at least
3n distinct components of ¢, §, and t. The extra elements (up to n) can be added by means of
algebraic extension of the original field. This entails minor increase of the computational cost

( by a constant factor ).

16
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Studying the solution of a singular Cauchy-like linear system, we will use the next result and
definition.
Lemma 6.1 [K94]. Let A be an n x n matriz of rank p with entries from a fized field F and

with the nonsingular p X p leading principal submatriz A,. Then for any vector i from F" the

A,
Z= B — 7
0

15 a solution to the linear system AZ = 5, where the vector b consists of the first p coordinates

vector

0f5—|— A and O denotes the null vector of dimension n — p-

Definition 6.1. Let A; be the i X i leading principal submatriz of A, where 1 <1i < n. We say
that A has generic rank profile if the submatrices A; are nonsingular for all integers j in the
range 1 < j <rank A.

The next theorem extends the results known in the Toeplitz-like case (cf. [KS91] or [BP94],
p-206) to the Cauchy-like case and may also be applied as an alternative to Theorem 5.1 in the
case where the input Cauchy-like matrix is nonsingular ( see Remark 6.1 of this section ).
Theorem 6.1. For an n X n Cauchy-like matriz A of rank p represented by an s.g..(A) and
satisfying (2.1) and (2.2), consider the matriz product A = LAM, where L and M are also

Cauchy-like matrices with scaling generators of length 1. Assume the following relations:
Fip,p@(L) =Y 2,

_ T
Fip@,ne (M) = XW7,

gT:[yla'“ayn]ana ZT:[Zla"'azn]ana

fT:[mla"':xn] ana wT:[wl,"'awn] EFn,

n—1 n—1

I = (yi+12j+1) M= (-Ti+1wj+1)

Si =45 =0 ti —pj i,j:O,

where the entries of the vectors §, Z, Z, and W are random and are selected independently of each
other from a fized finite subset S of the field F assuming the uniform probability distribution on
S, where S does not contain 0. Let s;,q;,pr be all pairwise different for i,j,k =0,---,n — 1.
Then

(1) L and M are strongly nonsingular matrices and

17
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2p(p+1)

1 —
B

A has generic rank profile.

Proof: Part (1) follows from (2.2) and Lemma 2.7 since S does not contain 0. Let us
prove part (2). For an n x n matrix D, denote by D; ; the determinant of the submatrix of D
formed by removing from D all rows not contained in the set I and all columns not contained
in the set J. First, let ¥, Z, Z, and & be generic vectors. For I = [1,2,---,i], J = [j1, 72, ", Jil,

K = [ki, ko, ki], i =1,2,---, p, we have from the Cauchy-Binet formula that

Arr= ZJZKLI,JAJ,KMK,I-

Let us prove that
Arp#0 fori=1,2, -+, p. (6.1)

Observe that, for a fixed pair of J = [j1,j2, -+, %] and K = [k1, ks, - -+, k;|, the determinant

Lt ; has the unique term
ay1Y2: - "YiZj - ~Zj;s

where a # 0 is a constant. Likewise, Mg ; has the unique term
bxkl- . .‘rklwl- . -wi,

where b # 0 is a constant. Therefore, A7 ; # 0 provided that there exists a pair J, K such that
Ajr # 0. This is true for all i < p, since A has rank p, and we arrive at (6.1).

Now we are ready to deduce part (2) of Theorem 6.1. Indeed, Ay ; is a polynomial of degree
at most 47 in the coordinates of the variables v, Zm, Tm, W,. Therefore, under the random
choice of the values of these variables specified in Theorem 6.1, we apply Lemma 5.1 and

obtain that
i 2p(p+1)

p
probability(Ar; #0,i=1,---,p) > [[(1 - o

=1

)>1-

This proves part (2) of Theorem 6.1. O
Remark 6.1. If the input Cauchy-like matrix s nonsingular, we may apply Theorem 6.1 as an

alternative to Theorem 5.1. The application of Theorem 6.1 rather than Theorem 5.1, requires

18
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2n(n+1)
S|

1
versus Mt ).

half length (42 versus 2r+1 ), but doubles the probability of errors ( 9]

To prove Theorem 6.1, we devised an algorithm that for an n x n Cauchy-like matrix A of
rank p given with an s.g..(A4), computes a random pair s.g.;(L) and s.g.;(M), where L and M
are n X n Cauchy-like matrices having scaling rank 1 and such that, with a probability no less
than 1 — %, the matrix A = LAM has generic rank profile. Furthermore, by using Lemma,
2.3, we compute s.g.,42(A) at the cost of performing at most O(r?nlog®n) ops.

Now, we assume that we have been already given s.g.;(L), s.g.1(M), and s.¢.,,42(A) for a
pair of nonsingular matrices L and M and an n x n matrix A = LAM having generic rank
profile and propose the following algorithm:

Algorithm 6.1. Computing the largest nonsingular leading principal inverse.
Input: wvectors§= (¢;)"=, T = (t )] 0, G #tj,4,5=0,1,---,n—1, and g1, - - - A SRR
such that the Cauchy-like matrix

r+2
A= Z dzag(gj’m)C((j', E)dlag(hm)
m=1
has generic rank profile.
Output: An integer p < n and vectors w,- - -, iy, U1, -, Vs, Um,Tm € Y, m=1,2,---,F,

7 <1+ 2, such that p = rank A and

T

Z iag(i,)C (j)dzag(vm)

B C

E
B of A is singular if and only if £ > p ( since A has generic rank profile ). Apply Algorithm

1. Represent A as A = ( ), cf. (3.3), where k = [2], and the k X k submatrix

6.1 recursively to the input matrix B replacing A. ( Note that we are given an s.g..(B). ) If
p < k, the output of this stage is the desired output of the algorithm. Otherwise, the matrix
B is nonsingular, and then we obtain s.g.,(Fﬁl).

2. Apply Algorithm 3.1 to compute an s.g.,(S) for the matrix S=J — E B_'C.

3. Apply the algorithm recursively to the Cauchy-like input matrix S, replacing A. Output
p=rank A=k +rank S.

4. By using the definitions and the results of section 2, compute an s.g.5,14(A4,") (see our

further comments below ).
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Let us specify stage 4. Consider the p x p leading principal submatrix, 4, = (

G, = Ckxe=k) | e Olo=R)*(p—k),

A

Write $ = R — D B 'G. Note that at the preceding stages we have computed s.g.,,2(G),
$.9r32(D), 8.9412(B ), 5.9:r12(DB ), 5.g.42(B G), and $.g.42(5 1) (cf. Theorem 4.1).

_ Bii Bip
A, = 1 ,
By, S

where BLQ = —F_lé g_l, Bg,l = —E_IE E_l, Bl,l = E_l — Bl’gﬁ E_l (Cf (46)) Due

Represent Zp_l as follows:

to Lemma 2.5 and Corollary 2.1, the matrices By, Bi2, By, and 3_1 have scaling rank at
most 7 + 2, and we may apply Fact 4.1, Algorithm 3.1, and the results of section 2 in order to
compute the respective short scaling generators of these matrices. Let us specify the operators
defining these generators. Write § ¥ = (¢,)¥=0, ¢ @ = ()20, T = (t)5), £ @ = (1),
7 (1) £
q o t
q_'(o) = and t (0) = N
7@ @
Now obtain that

o diag(t) O L diag (g O
F[D(ﬂo)) D((T(O))}(AP 1) - ) Ay l_Ap ' ) =
’ 0 diag(t™) o) diag(@®)

( Fipg oy, pig oy(Bi1)  Fipg my, pe @y (Bi2) )
Fipg @), p@ y(Bar)  Fpg ey, pgeoyS™) /)
which gives us an s.g.gr+4(Z;l). a
To solve a singular Cauchy-like linear system A7 = 5, first compute a vector ¢ that satisfies
LAMYy = Lb and then recover the vector & = M ¥/ that satisfies A¥ = b. Since L and M are

nonsingular, rank A =rank (LAM). By using O(rnlog®n) ops we may verify if AZ = b.

7 Extension to Solving Singular Toeplitz-like Linear
Systems

If we need to solve a singular Toeplitz-like linear system, which is a major operation in signal

processing and computing Padé approximation, we may reduce the problem to Cauchy-like

20
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however, to extend the techniques of section 6 directly to solving singular Toeplitz-like system,
and we will next do this, improving the previous best randomized algorithm of [K94]. (We use
fewer ops and random parameters and yield lower failure probability. In particular, we use 2n
parameters versus order of nlogn used in [K94]; we achieve this improvement based on a tool
from [P92], cf. our Lemma 7.4.)

Definition 7.1 (cf., e.g., [BP94], Definition 2.11.1 ). For an n X n matriz T, define the two

displacement operators,

F.(T)=T-2"TZ, F.(T)=T-Z2TZ", (7.1)
where
0 0
10
Z = 1
0 10

s a down shift n x n matriz. If for F = F, or FF = F _, we have
F(T)=G"H, (7.2)

where G*, H* € F™*" for a fized field F ( say, for F = C ), then the pair of matrices (G*, H*) is
called an F-generator or a displacement generator of T' of length r and will be denoted d.g..(T).
The minimum r allowing the above representation (7.2) is called the F-rank or the displacement
rank of T'. T 1is called a Toeplitz-like matriz if v is small relative to n.

Next, we will recall some known properties of Toeplitz-like matrices.

Lemma 7.1 [BA80]. For any n X n matriz A,
rank F_(A) — 2 <rank F (A) <rank F_(A) + 2.

Furthermore, given a d.g..(T) under F = F (resp. F' = F_ ), it suffices to use O(rTy,(n))
ops ( for Tare(n) of (1.5), (1.7), (1.8)) in order to compute a d.g.,1o(T) under F = F_ ( resp.
F=F )

Lemma 7.2 [KKM79|. Let F_,F.,T,G*, H*, and r be as in (7.1) and (7.2). Then F(T) =
G*H*' =¥, g_;'*(l_z';‘)T if and only if

T =Y LG for F=F., T=3 LG () for F = F,, (73)
=1

=1

21
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the first column v.

Lemma 7.3 ( cf., e.g., [BP94], Corollary 12.1). Let T and Ty be two Toeplitz-like matrices,
given with their F'-generators of lengths r1 and ro, respectively, for ' = F, or F'=F_. Then an
F-generator of length at most 1 + 1o+ 1 for the matriz Ti\Ty can be computed by using O(rirs)
polynomial multiplications modulo z°™ and O(r1 + r9) summations of O(r1 + re) vectors of
dimension n, at the overall cost of O((r1+12)2Pyr(n)) ops, where Py p(n) denotes the cost of
polynomial multiplication modulo z°™ in F (cf. (1.7), (1.8)). Furthermore, a d.g..(UTL) for
a given d.g..(T) and a given pair of lower triangular Toeplitz matrices L and U can be computed
at the cost 2r? Py p(n), provided that F = F_.

Lemma 7.4 ( cf. Proposition A.6 of [P92], [P93], or [BP94], Problem 2.2.11b, G-:COMPRESS
). Given an d.g..-(A) = (G, H) and the displacement rank r of A, r < r* < n, one can compute
d.g.-(A) by using O(r’n) ops.

Lemma 7.5 [KKM79]. Let T be a nonsingular Toeplitz-like matriz. Then

rank F, (T~')=rank F_(T).

Lemma 7.6 (cf. [M80], [BA80], [BP94]). Let T be an n X n strongly nonsingular Toeplitz-like

B C
T = , S=J-EB™'C,

matriz such that

E J
B is a k x k matriz, and S is the (n — k) X (n — k) Schur complement of B in T (c¢f. (5.3)).

Let r =rank F.(T). Then
rank F_(S™') =rank F(S) <,

rank F_(B™') =rank F,(B) <,
rank F, (S7') = rank F_(S) <r +2,

rank F (B ') =rank F_(B) <r+2.

Proof. Definition 7.1 implies that rank F';(B) < r and, together with Lemma 3.2, that
rank F (S7!) <rank F_(T~'). The lemma now follows from Lemmas 7.1 and 7.5. 0
Theorem 7.1 (cf. [K94]).  For an n x n matriz T of rank p, consider the matriz product

T = UTL, where UT and L are two unit lower triangular Toeplitz matrices whose 2n — 2

22
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containing the entries of T, under the uniform probability distribution on S. ThenT has generic

rank profile with a probability no less than

L Plo+1)

|5

Now, suppose that in Theorem 7.1 we have a Toeplitz-like matrix T represented by its
s.9.-(T) satisfying (7.1) and (7.2) for FF = F;. Then, due to Lemma 7.3, we may compute
d.g.,(T) at the cost of performing at most 2r2Py g (n) ops.

Now, we assume that we have been already given a d.g.,(T) for an n x n matrix T having
generic rank profile. We propose the following algorithm:

Algorithm 7.1. Computing the largest nonsingular leading principal inverse.

Input: « field F and vectors 51, e ﬁr, ﬁl, cee ZT from F™ such that the Toeplitz-like matriz
T= Z LT(gz)L(ﬁz)
i=1

has generic rank profile.
Output: An integer p < n and vectors ﬁl, e ,ﬁr, 51, . --,5“ such that ﬁm,ﬁm e F", m =
1,2,---,r, p=rank T, and

T, =" L) L (V).
m=1
B C

E J
B of T is singular if and only if £ > p ( since T has generic rank profile ). Apply Algorithm 7.1

1. Represent T as T = ( ) ,asin (3.3), for k = [7], where the k x k submatrix

recursively to the input matrix B replacing T. ( Note that the first & components of the given
vectors §; and l:lz define a d.g..(B).) If p > k, the output of this stage is the desired output of
the algorithm. Otherwise, the matrix B is nonsingular, and then we obtain a d.g.r+2(B_1) for
F=F andad.g.. (B for F=F,.

2.  Apply Lemma 7.3 to compute a d.g..(S) for the matrix S = J — E B~'C and for
F=F,.

3. Apply the algorithm recursively to the Toeplitz-like input matrix S, replacing 7. Output

p:rankT:k—l—rank S,

23
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some further comments below ).

3 B G
Let us specify stage 4. Consider the p x p leading principal submatrix, T, = ( L ) ,
D R

G, DT € CkX(p*k), R e ¢r—k)x(p—k)

Write S = R — D B~'G. Note that at the preceding stages we have computed d.g.r(é) and
d.g..(D) for F = F_, d.g..(B™"), d.g.2r41(=B~'@), d.g.0p11(~DB™"), and d.g.,(S7") for F =

F,. We obtain the following block representation:

~ 1 Ml,l M1,2
T - =
P S_1 ’
M21 S
where MLZ = —Bilé 5171, M2,1 = —gilﬁ Bil, M171 = Bil - M172D Bil. By applylng

Lemmas 7.1-7.6, we compute d.g..(T, ") for F = F,. O

8 Conclusions and Further Progress

Our superfast algorithms for recursive factorization of a Cauchy-like matrix were motivated
by a natural technical challenge of extending the superfast MBA algorithm of [M74], [M80],
and [BA80] from the case of a Toeplitz-like input. We completed this task and also included
the extension and improvement of the known techniques for the treatment of a singular in-
put and/or for the computations over finite fields. Our work turned out to lead much farther
than the authors originally thought. In [OP98], it was shown that exactly the same algorithm
yields superfast solution (in nearly linear time) for some highly important problems of ratio-
nal tangential (matrix) interpolation (including the tangential and the tangential boundary
Nevanlinna-Pick problems and the matrix Nehari problem), thus improving dramatically the
known quadratic bounds on the running time of their solution. It is interesting also that the
numerical stability requirements dictated that the computation of the cascade solution to the
rational matrix interpolation problems be represented by the entire recursive decomposition of
the input Cauchy-like matrix, and not only by its inverse. In particular, this means that the
original MBA algorithm for the Toeplitz-like matrices would not suffice even if we apply matrix

transformations suggested in [P89/90].
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ality, that is, the same algorithm covered simultaneously various rational matrix interpolation
problems. This also motivated further extension of the algorithm to other classes of structured
input matrices, covering the input matrices of Vandermonde, Cauchy, Toeplitz, Hankel, and
Hankel+Toeplitz types as its particular cases [PACPZ98|, [OP98], [PZACP99], [P99], [P2000].
In particular, [OP98] focused on correlation between the matrix version and the rational inter-
polation version of the algorithm and described the matrix factorization algorithm by following
the line of the present paper though with much more sparse elaboration of operations with
structured matrices. The rational matrix interpolation applications deal with positive definite
input matrices, so the issues of singularities do not arise there and were not treated in [OP98]. A
unified superfast algorithm covering simultaneously recursive factorization of structured matri-
ces of various classes (including all classes cited above) was first presented (and fully elaborated)
in [P99] and [P2000]. This automatically implied superfast solution of various other problems
of rational matrix interpolation and apparently of all such major problems reducible to the
computations with structured matrices along the line of [OP98].

The presentation in [P99] and [P2000] includes some novel extensions of our techniques, in
particular, of Proposition 4.2, transformations among various classes of structured matrices as
a means of algorithm design (cf. [P89/90]), and our randomization techniques. This enabled
superfast randomized computation in finite fields of a generator for a matrix whose columns
formed a basis for the null space of a structured singular matrix. The latter result immediately
implied superfast list decoding of algebraic and algebraic-geometric codes, versus the recent
fast (quadratic time) list decoding algorithm proposed in [S99], where the problem was reduced
to the computation in finite fields of a vector from the null space of a given matrix of a
Vandermonde type, and versus cubic time decoding algorithms known earlier.

Appendix A. Computations with Cauchy Matrices.

Our algorithms of sections 3-5 ultimately reduce Cauchy-like computations to multiplica-
tions of Cauchy matrices by vectors (Trummer’s problem). For the computation of the solution
T = C_l(§,f)f to a nonsingular Cauchy linear system C’(§',{):E' = f, the reduction is much
simplified due to the following formula (cf., e.g., [Gast60] ):

[s(t;)
7 (t:)

Vi O (5, D diag (1) . (41)

0_1(5’7{) = _dia’g( F-" (S)

.1
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n—1 n—1 )
I (w—2) =u"+ > ra,
i=0 =0
for a vector & = [ x,,++,2,_1]7, and where ” ' ” denotes the derivative. On the other hand,

we have the following well-known matrix equation (cf. [FHR93], [GO94b], and [Ger87]):
C(3,1) = diag(1/T; (s:)iss V(3 )V (T )diag (L7 (tx))is, (4.2)

where V(%) is a Vandermonde matrix.

The latter equation reduces the computation of the product C(E’,f )7, for any vector 7,
to the computation of the product of the Vandermonde matrix V( §) by a vector and to the
solution of a Vandermonde linear system of n equations. These two operations are equivalent to
multipoint polynomial evaluation and to polynomial interpolation, respectively. ( Note that the
computation of the values of the polynomial I'z (s;), for i = 0,---,n — 1 and for a given vector
of the coefficients of this polynomial, is also the problem of multipoint polynomial evaluation.)
Since the known fast algorithms (cf. [BP94]) perform the latter operations, as well as the
computation of the coefficients of I'; (x) for a given vector £, in O(n log?n) ops, we arrive at
Lemma 2.2. O

Furthermore, we immediately obtain from (A4.2) that
CH(5,T) = diag(1/T7 (t:))i=V()V 1§ )diag(Ty (s:))i-

Based on this formula, we deduce the following result.
Fact A.1 [Gast60]. A nonsingular Cauchy linear system of n equations can be solved by using
O(nlog?n) ops.

Alternatively, we may immediately deduce Fact A.1 from the formula (A.1), which has an
advantage of reducing the solution of a Cauchy linear system to the multiplication of a Cauchy
matrix by a vector (Trummer’s problem). ( Recall that our algorithms of sections 3-6 show a

similar reduction of Cauchy-like computations.)
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