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Abstract

The coefficients of a polynomial of a degree n can be expressed via the power sums of its
zeros by means of a polynomial equation known as the key equation for decoding the BCH
error-correcting codes. Berlekamp’s algorithm of 1968 solves this equation by using order of
n? field operations in a fixed. Several algorithms of 1975-1980 rely on the extended Euclidean
algorithm and computing Padé approximation, which yields solution in O(n(logn)? loglogn)
operations, though a considerable overhead constant is hidden in the ”O” notation. We show
algorithms (depending on the characteristic ¢ of the ground field of the allowed constants)
that simplify the solution and lead to further improvements of the latter bound, by factors
ranging from order of logn, for ¢ = 0 and ¢ > n (in which case the overhead constant drops
dramatically), to order of min(c,logn), for 2 < ¢ < n; the algorithms use Las Vegas type

randomization in the case of 2 < ¢ < n.
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1 Introduction.

The main topic of this paper is the solution of the key equation for decoding the BCH error-
correcting codes (cf. [Be68], pp. 178-188, and [M69]). This problem is equivalent to the
problem I- POWER - SUMS(min) of the recovery of the coefficients of the minimum degree
polynomial from a given sequence of 2n power sums of its zeros and is a major problem of
algebraic coding theory and practice. The solution of the key equation is one of the main stages
of decoding, and here the improvement of the known solution algorithms is theoretiate (as well
as practical) research chalenge. Besides, the . POWER. SUM (point) as some applications to
matrix computations (see [?]).

In [Be68], E. R. Berlekamp has proposed a solution algorithm for the key equation (a
KEY - SOLVER) that uses order of n? operations in a fixed field F of constants, hereafter
referred to as ops. Various KEY - SOLVERs based on the reduction to the extended Euclidean
algorithm for polynomials (hereafter referred to as eEa) have been proposed in [SKHNT75],
[Mi75], [Man77] and [BGY80] (see also [Pat74], [S75] and [Sa77]). By using a fast version of
the eEa (based on the construction of [Mo73] and completed in [BGY80]), one may decrease
the asymptotic cost bound n? dramatically, almost by factor n. The resulting KEY - SOLVERs
require O(u(n) logn) ops provided that u(n) ops suffice in order to multiply modulo z" a pair
of polynomials in z. Since

p(n) = O((nlogn)loglogn) (1.1)

over any field of constants [CK91], the bound O(u(n)logn) means O(n(logn)?loglogn). (Over
the fields of constants supporting FFT, we have p(n) = O(nlogn), and then the factor log logn
can be dropped.) Such an asymptotic improvement, however, is purely theoretical. In partic-
ular, the cited KEY - SOLVERS supporting the latter nearly linear asymptotic cost bound rely
on application of the fast version of the eEa; consequently, they share its major deficiencies:
these KEY - SOLVERSs are not well-structured and imply a considerable overhead constant
hidden in the above ”O” notation of O(u(n)logn), which is a too high price for the decrease of
the ops bound, taking into account that in practice n is not large. The alternative reduction to
fast Toeplitz matrix computations yields the same asymptotic cost bound for the key equation
[BGY80], [BP94], but similar problems arise here too. As a result, the users are not happy
about the known asymptotically fast solution algorithms, and the present day hardware for

solving the key equation relies on Berlekamp-like KEY - SOLVERS, using order of n? ops.



In section 3, we will show that over the fields of constants of characteristics ¢ = 0 and ¢ > n,
Newton’s iteration solves the key equation asymptotically faster, in O(u(n)) = O((nlogn) loglogn)
ops, and in this case the overhead constant is much smaller. The algorithm is a simple chain
of v — 1 recursive steps, v = [logy(n + 1)]; the computational cost of performing the i-th
step, i = 1,...,7 — 1, essentially amounts to a few polynomial multiplications modulo z” for
h < 21 which can be performed fast the straightforward classical algorithm, by means of
FFT or binary segmentation (cf. [BP94], pages 276-279). In particular, our KEY. SOLVER
based on the straightforward algorithm in values a total of at most (8/3)n2 + O(n) ops where
c=0or ¢c>n,and n+ 1 is a power of 2. Assuming fast polynomial arithmetic where 2¢+3-th
roots of 1 are available and FFT is applied, the overall cost of performing the i-th step of
our algorithim of section 3 is roughly the cost of performing FFT three times on the 2:*2-th
roots of 1 and four times on the 2'73-th roots of 1 which gives us the overall cost bounf of
66n logy n+ O(n) ops (see appendix A). Our algorithm is reduced essentially to a rather short
sequence of polynomial multiplications, which allows its simple and effective parallelization
yielding here advantage versus both Berlekamp’s and eEa’s approaches. It is interesting that
the Read-Solomon codes, which are the most popolar BCH codes, allow their natural con-
struction over a field of characteristic n 4+ 1, in which case our algorithm of section 3 applies.
The transitim to such a field, however, would require to change the current practical routine
of builoing the codes in the field of characteristic 2. Clearly our present progress is not strong
enough to motivate such a dramatic change. Moreover, practically n is rather small, and
Berlekamp’s approach should remain the method of choice in practic, whreas our approach
seems to be of purely theoretical interest so far. We hope that our algorithm of section 3
does give new insight into the solution of the key equation. The some can be said about our
other algorithims, which handle the cases where 2 < ¢ < n. In these cases, our algorithm
of section 3 does not apply directly. More refined techniques of sections 4-10 enable us to
extend Newton’s iteration (at the cost O(u(n)) = O((nlogn)loglogn) ops) in order to reduce
the key equation to Padé approximation problem. Our progress versus the known reduction
of this kind [BGY80] is in the decrease by factor ¢ of the size of the resulting Padé problem
and, therefore, of the cost of its fastest known solution. The asymptotically slower solutions,
using order of n? ops with small overhead constants, are accelerated by factor c?. For ¢ of the
order of \/n2?/u(n), say, this means the cost order decrease from n? to u(n); for larger c the

computational cost of solving the Padé problem becomes negligible versus the reduction cost



of O(u(n)).
More precisely, we present two KEY - SOLVERSs in the case where 0 < ¢ < n. One of

them, that is, our deterministic algorithm 8.1, reduces KEY - SOLVE(n) to at most ¢ — 1 Padé
problems of smaller sizes, of at most (n/c,n/c) each. All these ¢c—1 problems can be effectively
solved concurrently; such a solution requires no data exchange among the processors. Even
without using parallelism, this means acceleration by factor ¢ Compared to the reduction of
the KEY - SOLVE(n) to a single Padé problem of the size (n,n) shown in [BGY80], provided
that one uses Padé solvers that have quadratic cost; the new reduction supports the same
asymptotic cost bound as [BGY80] does if the Padé solvers rely on the fast eEa. For a large
class of inputs, we only need to solve a single Padé problem of the smaller size, which means
further acceleration by factor c—1. Moreover, we may achieve this effect for any input by means
of randomization of Las Vegas type. Namely, our algorithm 9.1 uses ¢ — 1 random parameters
and either solves the key equation correctly by reducing it, at the cost of performing O(u(n))
ops, to a single Padé problem of a size at most (n/c,n/c) or fails with a small probability, but
never outputs wrong answer. Furthermore, in the unlikely case of the failure, we may reuse
the results of the computations and the random parameters, so as to yield an extension to
deterministic solution (cf. our algorithm 9.2 and remark 10.1).

In addition to application to decoding the error-correcting codes, our algorithms can be
applied to parallel computation of the characteristic polynomial of a matrix over finite fields
(cf.[?]), which is a fundamental linear algebra computation.

Remark 1.1. Technically, the present paper extends [P96], whose technical origin can
be further traced back to [V900], [K25], [K27], [N27], [Sc93], and [BP94]. It should be noted,
however, that even the upper estimates of [P96] for the computational complexity of . POWER-
SUMS, which improve ones of [Sc93] and [BP94], still exceed the order of n? ops, that is, the
upper estimates of the present paper are smaller by order of magnitude than ones of [Sc93],
[BP94] and [P96].

We will organize our paper as follows. In section 2, we define the inverse power sums
problem and the key equation for the BCH decoding. In section 3, we show how to compute
the coefficients of P(z) rapidly, provided that ¢ > n or ¢ = 0. In section 4, we state some
auxiliary facts and definitions. In section 5, we consider the case of the computations over the
fields of characteristic 2. In sections 7-10, we extend these considerations to devise and analyze

now asymptotically faster KEY. SOLVERS over any field.



In the appendix, we estimate the cost of computations by the algorithim of section 3 (in
the case where ¢ = Qorc > n) assuming at first classical polynomial arithmetic and then fast
FFT based polynomial arithmetic.
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2 The problem I- POWER - SUMS(min) and the key equation
for BCH decoding

The inverse power sum problem (which we will denote by I-POWER -SUMS(n)) is the problem

of computing the coefficients p1,...,p, of a polynomial of a degree at most 7,

P@) =Y pa = [[(1-22). po=1, (2.1

se=3 2F, k=12,...,2n. (2.2)

The converse problem of computing the first 2n power sums from given coefficients of p(z)
is simpler: it amounts to computing modulo z?" at first the reciprocal 1/P(z) and then its
product by P'(z) (cf. equation (2.3) below).

We will assume computations over a field F of a characteristic ¢; to ensure uniqueness of the
solution, we will additionally require that the output polynomial has the minimum degree (not
exceeding n). In the above form, the problem will be referred to as I- POWER - SUMS(min).
Without the minimization requirement, the problem would not be well defined for positive c,
as can be seen from the following simple observation:

Fact 2.1. If equations (2.1) and (2.2) hold over a field F of a characteristic ¢ for some
polynomial P(x), then they also hold for any scalar z and for P(zx) replaced by the polynomial
P(z)(1 — z2)°.

Proof. The impact of the c-fold zero z = 1/z of P(z)(1 — z2)¢ on the power sum s

amounts to adding cz*, which is 0 mod ¢, that is, such an impact is nil over F, for all k. O



Next, we will restate the problem I- POWER - SUMS(min) in the form closely reduced to

decoding the BCH error-correcting codes. At first, recall that
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Substitute 1—=— = >7°((x7;)" and obtain that
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Substitute (2.2) on the right-hand side and express the above ratio via generating function for

the power sums as follows:

|

(z) = - i Sp1z” . (2.3)
() k=0

Multiply both sides by xP(z), then add P(x) on both sides, reduce the right-hand side modulo

21 and obtain that

2n
W(z) = —P(x) Z spzt mod 21, (2.4)
k=0
where we write
W(z) = P(x) + zP'(z), so=—1. (2.5)
Note that
P(0) = W(0) =1, (2.6)

due to (2.1). After Berlekamp [Be68], (2.4) is called the key equation for decoding the BCH
error-correcting codes. We will cite the problem of computing the pair of polynomials P(z)
and W (z) that have the minimum degrees (not exceeding n) and satisfy the equations (2.4)—
(2.6), for some fixed s1,..., Son, as the problem KEY - SOLVE(n), which is clearly equivalent
to I. POWER - SUMS(min).

Remark 2.1. Assuming that the zeros z1, ..., z, are indeterminates in (2.1), one may prove
that there are exactly n algebraically independent power sums sy of (2.2) among s1, ..., Symin,
where m = 0if ¢ = 0, m = |(n — 1)/(c — 1)| otherwise [Ka25], [Ka27], [Sc93]. Note that

sci = s§ for all 7 and c.



