Lifting /descending processes for polynomial zeros

Bernard Mourrain
SAGA, INRIA, 06902, Sophia Antipolis, Cedex, France
internet: mourrain@sophia.inria.fr

Victor Y. Pan*
Mathematics and Computer Science Department
Lehman College, CUNY, Bronx, NY 10468
internet: vpan@alpha.lehman.cuny.edu

Abstract

The recently proposed Chebyshev-like lifting map for the zeros of a univariate poly-
nomial (cf. [BP96]) was motivated by its applications to splitting a univariate polyno-
mial p(z) numerically into factors, which is a major step of some most efficient algo-
rithms for approximating polynomial zeros. We complement the Chebyshev-like lifting
process by a descending process, decrease the estimated computational cost of perform-
ing the algorithm, demonstrate its correlation to Graeffe’s lifting/descending process
and generalize lifting from Graeffe’s and Chebyshev-like maps to any fixed rational
map of the zeros of the input polynomial.

Key words: polynomial zeros, numerical splitting a polynomial into factors, lifting poly-
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1 Introduction and background.

Graeffe’s map squares the zeros of a fixed univariate polynomial

p(z) = pir' =pn [[ (2= %), pa#0, (1.1)
=0 j=1
that is, transforms p(z) into the polynomial
p(z) =P, [[ (@ — 27) = (~1)"p(2)p(=2) [pn, = 2°, P, = (=1)"pn. (1.2)
j=1

Such a squaring, applied recursively as repeated squaring of polynomial zeros, is used in
various algorithms for polynomial rootfinding (cf. e.g. [Sc82], [P96], [P97]). Actually,
?Graeffe’s map” was first discovered by Dandelin and soon thereafter independently by
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Lobachevsky [H70]. The transformation (1.2) is simple (it essentially amounts to polyno-
mial multiplication and costs O(nlogn) operations). Hereafter, we will write "ops” as our
abbreviation for ”arithmetic operations”.

In [BP96] map (1.2) was extended to the transformation of p(z) into the polynomial

B(z) = pn [[ (2 = (2 + 2;1)/2) = p(2)p(z1)), 2= (2 +27")/2, Pn =popn,  (1.3)

J

with the zeros (z; + z]-_l) /2, provided that pop, # 0, and some applications were shown
to splitting p(z) numerically into factors, which is the basic step of some of the most
efficient known polynomial rootfinders [P95], [P96]. In [BP96], this transformation was
called Chebyshev-like lifting and the estimate O(n log?n) ops was shown for performing it.

In this paper we show that the actual cost is O(nlogn) (cf. sections 2 and 3), com-
plement Chebyshev-like lifting by the converse descending process (section 2), demonstrate
correlation between Chebyshev-like and Graeffe’s maps (section 3), and generalize Graeffe’s
and Chebychev-like maps to computing a polynomial p,(z) = p, [[j_i(z — r(z;)) for any
fixed rational function r(z) (section 4).
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2 Chebyshev-like lifting/descending maps.

The Chebyshev-like lifting algorithm was introduced in [BP96] as means of the transition
from the polynomial p(z) of (1.1) with the zeros z; to the polynomial p(z) of (1.3), with

4z . .

the zeros 2 ;J . For the sake of completeness of our presentation, we will next recall
this algorithm, based on the equations of (1.3), and we will refine its computational cost
estimate, versus the pessimistic one claimed in [BP96).

Algorithm 2.1, Chebyshev-like lifting.
Input. Degree n and the coefficients pg, p1,-- ., pn of the polynomial p(z) of (1.1) having
2eT08 21, . ., 2p, where popy 7 0.
Output. The coefficients pg,p1,---,Pn of the polynomial p(z) of (1.8), with the zeros
gtel L
s, 7=1...,n.
Computations.

1. Compute the values o; = p(w'), i =0,...,2n + 1, where

2/ —1
2n—+2

w = exp( ) is a primitive (2n + 2)-nd root of 1.

2. Compute the values B; = o;onia—i, i = 0,...,n, which the function p(z)p(z 1)
takes on at the (2n + 2)-nd roots of 1. These values coincide with the values that
the polynomial p(z) takes on at the (Chebyshev-like) points z; = (W' + w™?)/2 =
cos(mif(n+1)),4=0,...,n.

3. Recover the coefficients of p(x) by interpolating to the n-th degree polynomial having
the values of B; at the points cos(mi/(n + 1)), 1 =0,...,n.

Correctness of this algorithm immediately follows from the observations that p(z) is
a polynomial of a degree at most n and that the values of p(z)p(z~!) at the (2n + 2)-
nd roots of 1 coincide with the values of the polynomial p(z) at the points z; = (w* +



w1 /2 = cos(ni/(n+1)),i=0,...,n. Algorithm 2.1 belongs to the class of the evaluation-
interpolation algorithms (cf. [BP94], ch. 1). It requires O(nlogn), n + 1, and O(nlogn)
ops at its stages 1, 2, and 3, respectively.

Stage 1 is handled by FFT, and the known algorithms of [CHQZS87], [For95], and [P98]
for Chebyshev-like interpolation in O(nlogn) ops can be used at stage 3; [BP96] relied
on the pessimistic cost bound, O(nlog?n), and extended it to the Chebyshev-like lifting
algorithm. Now, with the refinement of the Chebyshev interpolation cost, the estimated
overall cost of Chebyshev-like lifting immediatley goes down to O(nlogn), versus the one
claimed in [BP96], and in the next section, we will describe an alternative algorithm that
yields the some goal by studying the correlation between Chebyshev-like and Graeffe’s
processes. Thus, in various ways we arrive at the next result:

Proposition 2.1 O(nlogn) ops suffice to perform Chebysheuv-like lifting algorithm 2.1.

Recursive application of algorithm 2.1 enables us to isolate from each other two groups
of the zeros of a polynomial. Namely, such an application moves towards 1 the zeros of
p(z) having positive real parts and moves towards —1 the zeros of p(z) having negative
real parts. When the isolation is achieved, we will apply the known splitting algorithms of
[BP96], [C96] or [Sc82], in order to split the resulting polynomial into two factors whose
zeros are separated by the imaginary coordinate line L. We will use such a factorization
as a springboard in order to yield a similar factorization of the original polynomial p(z),
that is, to split it over the line L. To simplify the notation, let us assume that already the
polynomial p(z) has been split into two factors,

B(z) = F(2)G(x), (2.1)

where all the zeros of F'(z) [respectively, G(z)] have positive (respectively, negative) real
parts. Then we will split p(z) into two factors as follows:

Algorithm 2.2, Chebyshev-like descending.

Input. Polynomials p(z) of (1.1), F(z) and G(z)of (2.1), of degrees n, k, and n — k,
respectively.

Output. Two polynomials, F(z) of degree k and G(z) of degree n — k, satisfying
p(2) = F(z)G(z) where the real parts of all the zeros of F(z) are positive and of all the
zeros of G(z) are negative.

Computation. Compute and output F(z) being the greatest common divisor (gcd)
of F*(z) = zkﬁ(%) and p(z). Then compute and output G(z) = p(z)/F(z), so that
G(2) = ged(p(2), G (2), G*(2) = 2" G (245).

To show correctness of the algorithm, recall that ﬁ’(”g_l)é’(%) = F(z)G(z) =
p(z) = p(2)p(z~!); therefore, zkﬁ’(%)(zn_ké(%)) = F*(2)G*(z). It remains to
observe that the real parts of all the zeros of the polynomials F(z) and F*(z) are positive,
whereas the real parts of all the zeros of G(z) and G*(z) are negative. 0

We may obtain the polynomial F'(z) by computing the (k, n—k) entry (F(z), G*(z)/G(z))
of the Padé approximation table for the polynomial (p(z)/G*(z)) mod z"*1.

Computation of F(z), both as the ged and from the entry of the Padé table, can be
done in O(nlog?n) ops, by means of the Euclidean algorithm [BGY80]. The computation
of F(z) from the Padé table can be also reduced to solving a Toeplitz linear system of k or
n — k equations; the solution of such a system costs O(klog? k) or O((n — k)log?(n — k))
ops, respectively [BGY80].



Remark 2.1 It is realistic to assume that the coefficients of the factors F(z) and G(z)
of (2.1) are known with a high but finite precision, which implies some small but nonzero
perturbation of the input (p(z)/G(z)) mod 2"*! of the Padé approzimation problem. How
would such an input perturbation affect the output polynomial F(z)? Let A(z) and f(x)
be the perturbations of the input and output polynomials, respectively, and let || 3, u;zt|| =
>i|ui| be the Li-norm of a polynomial. It is proved in [P96], Fact 12.1, that ||f(2)|| <
[|A(z)]](2 + ﬁ)cm provided that ||A(2)Col| < (2 + 1/¢)" ", Cy and Cy are two fized
constants, and ¢ is the isolation ratio of the mazimal zero-free annulus on the complex
plane {w} that separates the zeros of F(L__—z) from those of G(i—g) (The isolation ratio
is defined as the ratio of the radii of the two boundary circles of the annulus (cf. [P95],
[P96]).) An interesting open question is how to extend this result to estimate the output
errors of such a computation of Padé entries where they are computed numerically, with

rounding to a fixed finite precision.

3 Correlation between Chebyshev-like and Graeffe’s maps.

Chebyshev-like lifting of (1.3) is quite similar to Graeffe’s lifting of (1.2). Let us formalize
this similarity. Recall that the map (1.2) squares the zeros z; of p(z), whereas the map
(1.3) transforms z; into (z; + z;l)/Z, j=1,...,n. Let us map z into a variable w (not to
be mixed with w denoting a root of 1) according to the next map:

1—w _1—z
1+w T 142

(3.1)

and let us similarly map z into y:

1+y z—1
7= _

=1, Y=oi1

(3.2)

Then the map of z; into zj2 can be obtained as a composition of the three maps, (3.1), (3.2),

and z = ¥+ ;"_1. Namely, we may write
1+y;
iL‘j:—,
1 -y,
1_.
wj = zj,
1+zj
-1
x.:wj—l—w]- :(1—zj 1—|—zj)/2:1+z]2-
! 2 14z 1-—z 1—2%

which implies that y; = zj2
Likewise, the map of z; into (z; + z;l) /2 can be obtained as a composition of the three
maps, (3.1), (3.2), and y = w?. Indeed, we write

1ty o 1wy
Ty T T T,
zj-+z._1

and similarly deduce that z; = —5*—.



Let us rewrite the maps (3.1) and (3.2) as follows:
1—w 2 1-2 2

z 1+w 14w » W 142 14z ’
1+y 2 z—1 2
x:—:——, = :]_— )

-y 11—y z+1 z+1

reducing them to scaling, shifts and inversion of the variable. For the respective transforma-
tions of a fixed polynomial p(z), (implied by scaling, shift and inversion of the variable), we
need O(n), O(nlogn) (cf. e. g. [BP94], page 15), and 0 ops, respectively (the inversion of
the variable amounts to the reversion of the order of the polynomial coefficients). Squaring
of the polynomial zeros is supported by (1.2), at the cost of performing O(nlogn) ops. This
enables us to achieve lifting (1.3) in O(nlogn) ops, which is an alternative derivation of
proposition 2.1.

4 Generalization of lifting process.

Graeffe’s and Chebyshev-like maps can be generalized to define a polynomial p(z) :=
Pr(z) = pu[lj=1(z — r(z))) of degree n with the zeros z; = r(z;), j = 1,...,n, for any
fixed rational function z = r(z) = v(z)/d(z), v(z) and 6(z) being two given relatively prime
polynomials, §(z) is monic, so that 7(z) is a polynomial if and only if §(z) = 1. In particular
Pr(z) turns into (—1)"p(z) of (1.2) for 7(z) = 2? and into pop(x) of (1.3) for r(z) = %
We will specify two expressions for p(z) = p,(z) via p(z) and r(z):

p(z) = R(p(2), 8(2)x —v(2)), (4.1)
p(z) = det(z I — r(Fp)). (4.2)

Here, R(u(z),v(z)) is the resultant of two polynomials u(z) and v(z) (cf. e.g. [BP94], page
149, for the definition of resultants), whereas F), is the Frobenius (companion) matrix of
the monic polynomial p(z)/p,,, that is,

0 1 0
0 0
Fp: ) p;:p’t/pﬂd ZZO,].,,TI,—].
0 1
-0 -+ “Pha

It is immediately verifed that in both cases (defined by (4.1) and (4.2)) we have p(z) =
[T5=1(z — (%)) .

We may evaluate the (resultant) polynomial p(x) of (4.1) at the points z; = aw’, i =
0,1,...,n, where a is any fixed (complex) scalar and w is a primitive 2"-th root of 1, for
h = [logs(n+1)]. Then we may compute the coefficients of p(z) by applying the inverse of
the FFT. The cost of the entire computation is dominated by the cost O((d+n)nlog?(d+n))
of the 2" evaluations of the resultant $(z), where

d = max{deg(v(z)), deg(d(z))}- (4.3)

An alternative algorithm relies on (4.2). We first compute the matrix r(F,) (which
belongs to the matrix algebra A, generated by the matrix F},) and then compute its char-
acteristic polynomial, p(z) of (4.2). An addition, a subtraction and a multiplication in A,



require O(nlogn) ops, the inversion of a matrix in A, takes O(nlog?n) ops [C96]. There-
fore, the computation of the matrix r(F,) involves O((d+ plog n)nlogn) ops, for d of (4.3),
where y =0 if §(z) = 1, p(z) = 1 otherwise.

Since every matrix of A, has a displacement rank at most 2 [C96], the computation of
the characteristic polynomial of such a matrix can be performed with O(n?logn) ops (cf.
[P92] or [BP94], pages 189-190). In particular, this cost estimate applies to the matrix
r(Fp) € Ap, so that O((n+d)nlogn) ops suffice for computing the coeflicients of (z) based
on (4.2).

The descending process, from the factorization of p(z) of (4.1), (4.2) to the factorization
of p(z) of (1.1), is more involved in the case of the general rational function r(z) than the
descending process of algorithm 2.2, from factorization of p(z) of (2.1) to the one of p(z).
There is an important special case where d is small relative to n and all the n zeros z; = r(z;)
of p(z) have been approximated. In this case the descending is much simpler because we
have the n additional polynomial equations in z;, that is, §(z;)z; = v(z;) for j = 1,...,n.
For each j, such an equation has at most d roots zJ(-Z), 1=1,...,dj, d; <d, and we may test
and/or refine them as the candidates for the approximation of the zeros of p(z), by using
the known techniques for multipoint polynomial evaluation and polynomial rootfinding (cf.
[BP94], [P97], [BP,a]). This direction leads us to various interesting open problems of error
analysis, numerical stability and the trade-off between stability and complexity of numerical
computations. We postpone the study of this topic to a subsequent paper.
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