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Abstract

We propose a new algorithm for the classical and still practically important problem of approxi-
mating zeros z; of an n-th degree polynomial p(z) within error bound 2~% max; |z;|. The algorithm
uses O((n?logn) log(bn)) arithmetic operations and comparisons for approximating all the n zeros
and O((knlogn)log(bn)) for approximating the k zeros lying in a fixed domain (disc or square) and
isolated from the other zeros. Unlike the previous fast algorithms of this kind, the new algorithm
has its simple elementary description, is convenient for practical implementation, and allows the
users to adapt the computational precision to the current level of approximation achieved in the
process of computing and ultimately to the requirements to the output precision for each zero of
p(z). The algorithm relies on our novel versions of Weyl’s quadtree construction and Newton’s
iteration.
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1 Introduction

1.1 The Problem and Our Results

Our subject is the classical problem of the approximation of the zeros of a given polynomial p(x),
n ) n
p(@) =) _pic' =p [[(—2), pn#0, (1.1)
=0 j=1

within error bound e max; |z;| for a fixed positive e. We will refer to this problem as Problem 1.1.
The problem is stated numerically, its solution treats equally clusters of the zeros and multiple zeros
of p(z). Numerical truncation of input coefficients routinely turns multiple zeros into clusters of zeros,
so the clusters and even the chains of nested clusters are not a rare phenomenon in computational
practice. Problem 1.1, also known as the problem of solving a polynomial equation p(z) = 0, has

*The results of this paper have been presented at the 5th Annual ACM-SIAM Symposium on Discrete Algorithms,
Arlington, Virginia, January 1994.



nistory o1 over 1our miliennia. but Stil rémalns a major subjeCt oI practiCal signilncance and active
research, attracting dozens of research publications every year [MN93], [P97].

Most important are applications to computer algebra, where the solution of multivariate polynomial
systems of equations typically requires to approximate the zeros of high degree univariate polynomials.
The approximations are needed with a high precision and very frequently in the presence of clusters of
the zeros. There are also other important areas of computing where application of advanced polynomial
rootfinders promises to be highly effective. In particular such is a major subject of approximating
matrix eigenvalues, and we refer the reader to [PL93], [P95a], [P99], and [PC99] on application to the
latter problem of the algorithms and the techniques developed for polynomial rootfinding.

Polynomial rootfinding is also a well established research problem in computer science or, more
precisely, a set of problems, depending on various special restrictions on the input and requirements to
the output. For example, the users may wish to solve Problem 1.2 of approximating only those &k < n
zeros of p(z) that lie in a fixed disc D. In another typical example, the users may wish to approximate
the ill-conditioned (clustered) zeros of p(z) with a higher precision. (To see the motivation, examine
a dramatic jump of the zero of the polynomial p(z) = x°° when the z-free term changes slightly, so
that p(x) turns, say, into z°° — (0.5)%°; in this example, the high multiplicity of the unique zero z = 0
of p(z) is obvious already from the first glance, but it is not as obvious in similar examples of the
form (z —a)®® where, say, a = 5/7, and where the polynomial is represented by its coefficients given in
binary or decimal forms.) Formally, we may include this requirement by restating Problems 1.1 and
1.2 as Problems 1.3 and 1.4 where each output approximation is required to be given by the pair
of a disc Dy, of a small radius ¢, < € and the index 7, showing the number of the zeros of p(z) in Dy;
all the discs Dy, must be disjoint, and ¢, should decrease as ¢, grows. Surely, the users also wish to
have numerically stable algorithms, easily accessible by a programmer and adaptive to various further
requirements.

The main result of our paper is a new algorithm that solves Problem 1.2 for ¢ = 27° by using
O((knlogn)log(bn)) arithmetic operations and comparisons and O(n log(bn)) evaluations of the h-th
roots of positive numbers for natural h = O(n). (Hereafter, we will refer to all these elementary
operations as to ops and will write Oa(f(n)) to denote O(f(n)) ops.) We require that the input
disc D be (1 + c¢)-isolated from the outside zeros for a fixed positive ¢, say, for ¢ = 0.01 or ¢ =
0.01/n, so that its (1 4+ ¢)-dilation should contain only the same k zeros of p(z) as D. At the cost
Oa((nlogn)log logz%), we may verify whether this assumption holds. If it does not hold, then
within the same cost bound we may compute an integer k™ satisfying n > k* > k and a disc Dy,
the é-dilation of D for 1 < § < (1 4 2¢)*" %, containing exactly k' zeros of p(z) and satisfying the
(1 + ¢)-isolation assumption for Dy and k™ replacing D and k. Then we may solve Problem 1.2 for
D, at the cost Oa((k*tnlogn)log(bn)).

The same algorithm solves Problems 1.1, 1.3 and 1.4, and the same cost bounds apply except that
we write k = n for Problems 1.1 and 1.3 and 27° = miny, ¢;, (rather than 27° = ¢) for Problems 1.3
and 1.4 (see Remark 7.1 in section 7). Moreover, a simple extension of our algorithm works if the
input disc is replaced by a square (see Remark 9.3 in section 9). Furthermore, the algorithm can be
implemented with variable precision, which is set low initially and increases only when a computed
approximation approaches a zero of p(x) or a cluster of the zeros. The number of more costly ops,
which we have to perform with a higher precision, decreases in such an implementation (see Remark
7.1 in section 7).

The proofs of the correctness of the algorithm and of the cited complexity bounds are mostly
elementary, although some of them are long and non-trivial. The description of the algorithm is much
simpler and is supposed to be accessible easily by a programmer. The algorithm essentially amounts
to recursive application of the following operations: evaluation of p(z) and p'(z), shift of the variable
z (that is, computing the coefficients of the polynomial ¢(z) = p(x + X) for a fixed complex value X),
the root-squaring algorithm usually called Graeffe’s, computation of the number of the zeros of p(z)
in a fixed isolated complex disc, and approximation of the distance from X to the closest or the A-th
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though numerical stability of shifts, root-squaring and their combinations requires further study.

The cited asymptotic complexity estimates ultimately rely on performing the most costly blocks of
our algorithm ( such as proximity tests, shifts of the variable and root-squaring) via fast polynomial
multiplication, based on using FFT. In practical implementation for polynomials p(x) of small and
moderately large degrees, application of the classical algorithm or the one of [KO63] for polynomial
multiplication can be more effective. A promising practical tool for polynomial multiplication (thought
still more popular among the researchers than among the users) is the techniques of binary segmen-
tation (see [BP94], section 3.3; [Sc82]). In all cases, polynomial multiplication as well as polynomial
evaluation can be accelerated dramatically by using parallelism. It follows that our algorithm can be
performed on p processors, with the acceleration by roughly the factor p, provided that p < n.

Our algorithm can be effectively combined with other known algorithms for polynomial zeros to
improve their performance (see our comments in subsections 1.3 and 1.5). Further modification of the
algorithm will be motivated if any better subalgorithms for its blocks appear. For instance, we applied
Turan’s efficient proximity test, which in principle can be replaced by any other successful proximity
test and was selected simply because it currently has the lowest asymptotic computational cost.

With some simplifications, our algorithm can be applied to approximating only the real zeros
of p(z) (in a fixed line interval) [PKSHZ96]. For approximating a single non-isolated zero of p(zx),
the factor kT of the complexity estimate for our algorithm may generally be large, so that better
complexity estimates can be achieved based on an algorithm of [P87], whose geometric construction
incorporates the one of [L61].

Our techniques can be extended to approximating a finite set of the zeros of an analytic function in
a disc if these zeros are isolated from all other zeros of the function and if effective algorithms known
for proximity test and root radii computation for polynomials are extended respectively.

Technically, our algorithm amounts to an iterative process, which recursively invokes its two main
blocks, one after another. The two blocks are Weyl’s quadtree construction and Newton’s iteration.
We modified both of them and coordinated their combined recursive application based on our special
concepts of isolation and rigidity ratios.

Our analysis of the resulting algorithm (which gave us the stated complexity estimates) also largely
relies on using the latter powerful concepts. In particular this applies to our proof of quadratic
convergence of our modification of Newton’s iteration. Quadratic convergence is proved under a
certain lower bound on the initial isolation ratio, and we also prove that our modification of Weyl’s
construction insures such a lower bound after a few steps. These results may be of independent interest
for the study of Newton’s iteration and Weyl’s construction.

Our construction and analysis also include some more minor novel features, such as application
of the theory of analytic functions and conformal maps to the analysis of Newton’s iteration (cf. the
proof of Lemma 10.1), our one-sided version of Turan’s proximity test (cf. Remark 3.2), and our
modification of Schonhage’s root-radii algorithm (cf. Algorithm 4.3).

1.2 Outline of Our Algorithm

Our algorithm combines and extends two known techniques, that is, Weyl’s quadtree construction and
Newton’s iteration.

The former construction is an extension to the complex plane of the classical bisection algorithm
for the approximation of a real root of a real function. Weyl starts with a fixed square S (on the
complex plane) containing exactly & zeros of the polynomial p(z) of (1.1). Such a square is partitioned
into four congruent subsquares. Each of them is tested for containing at least one zero of p(z) ( this
is done by means of a proximity test that consists in estimating the distance from the center of the
subsquare to a closest zero of p(z)) and is discarded if it fails the test, that is, if the estimated distance
exceeds the half-length of the diagonal of the subsquare. The same process is applied recursively to
the remaining squares, called suspect squares. Their centers approximate the zeros of p(z) within
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linear, as in the case of the classical real bisection.

The number of suspect squares tested in each recursive stage is at most 4k; the proximity test
for a square reduces to a few FFTs and costs Oa(nlogn) ops. At the overall cost of performing
O (bknlogn) ops, the errors of the computed approximations to all the k zeros of p(z) lying in the
square S are decreased below the bound I /25193 where L is the length of the side of S.

The weak point of such an estimate is the factor b, which is large where high accuracy of the output
approximations is required. Our remedy is to apply Newton’s iteration to accelerate the convergence
from linear to quadratic and, therefore, to replace the factor b by log(bn) in the above estimate.
(Some similar features can be found in the papers [R87] and [P87], on which we will comment in the
subsection 1.4.) To achieve this goal, we had to ensure good initial isolation of the zeros and to modify
Newton’s iteration to handle clusters of the zeros.

It could be too expensive to isolate from each other the zeros forming a cluster, so our policy is
to isolate the clusters from each other (treating them like multiple zeros) and to modify Newton’s
process to direct it to the isolated clusters. The isolation is achieved by appropriate modification of
Weyl’s construction, where the clusters are covered by the components of the union of all the smallest
suspect squares that are not discarded after sufficiently many Weyl’s recursive steps. Each component
is superscribed by a single square, isolated from other suspect squares.

A certain complication arises because in general (and frequently in practical computations) one
must treat various chains of nested clusters of various diameters. Thus our construction is also nested.
We recursively interchange Newton’s approximation and Weyl’s process, with a local goal to achieve
either approximation of a fixed set of the zeros of p(z) within a required error bound or to yield the
partition of this set into at least two nonempty subsets of the the zeros isolated from each other. In the
latter case, we apply the same process to each isolated subset of the zeros. In at most k£ — 1 isolation
steps, we approximate all the &k zeros of p(x).

The construction requires to measure quantitatively the isolation (in order to signal the transition
from Weyl’s process to Newton’s) and to determine some quantity that enables us to find out when
Newton’s process has already brought us close enough to a cluster of the zeros, so that any further
progress requires transition to Weyl’s (modified) algorithm. The basic quantities for these two mea-
surements are the isolation and rigidity ratios for the zeros lying in a fixed disc or in a fixed square on
the complex plane. Such ratios are given by the maximum relative increase or decrease of the diameter
of a disc (a square) in its dilation or contraction, respectively, provided that such a disc (square) keeps
covering exactly the same set of the zeros of p(z) throughout the dilation or contraction process. For
all squares we keep their sides parallel to the coordinate axes, and in dilation, we require that the
discs and squares remain concentric. We make our Weyl-Newton’s construction work by directing our
recursive process according to the dynamically updated estimates for these two ratios. In particular,
this enables us to bound by O(k) the overall number of suspect squares processed in our modification
of Weyl’s algorithm at its each iterative isolation stage and by a total of O(klog(bn)) in the entire re-
cursive computation. (The proof of these bounds is elementary but intrinsically nontrivial (see section
8). Likewise, our two modifications of Newton’s iteration (see equations (9.5) and (11.1) in sections 9
and 11) were not easy to analyze, but we proved their quadratic convergence under milder assumptions
on the initial isolation.)

To place our results into a proper prospective, we will also briefly recall in the next two subsections
two other major approaches to polynomial rootfinding as well as some history of Weyl’s classical
approach. We refer the reader to [P97] and [MN93] on further bibliography.

1.3 The Functional Iteration Approach

Practical approximation of the zeros of p(z) usually relies on iterative algorithms based on the New-
ton, Laguerre, Jenkins-Traub, and Weierstrass (Durand-Kerner’s) iteration processes [M73], [MR75],

[HPR77], [F81], [JT70], [JT72], [W903], [D60], [Ke66], [NAGSS] (rootfinder C022AGF), [NAG- FRISCO96],
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zip1 = i — p(z:)/p'(zi), i=0,1,...,
which starts with some initial zy and is supposed to converge to a zero z; of p(z). If it does, the same
process can be recursively applied to the deflated polynomial p(z)/(z — 2;). (Historians attribute the
discovery of this iteration to the times long preceding I. Newton [Be40], [Bo68].)

Theoretically, the weak point of these algorithms is their heuristic character. They do not converge
right form the start for the worst case input. Moreover, in spite of intensive effort of many researchers,
convergence of these algorithms has been proved only in the cases where the initial point is already
close to a zero or where another similar condition is satisfied. Nonetheless, the cited algorithms work
satisfactory as heuristic algorithms for input polynomials of smaller degree (say, less than 50) having
no clusters of their zeros, but fail for the larger degree polynomials p(z), particularly for ones with
multiple and/or clustered zeros [Go94].

The need for better algorithms has been accentuated by major applications to the thriving modern
area of algebraic and symbolic computing, where dealing with a polynomial equation of degree over
200 (say) with many clusters of the zeros is a typical case.

Most of the numerous algorithms proposed for polynomial rootfinding are, like Newton’s, functional
iterations of the form

Ti+1 Zf(.’l}i), 1 :0,1,..., (1.2)
for a fixed function f(z) and an initial z(, where z; can be scalars or n-tuples. The functional iterations
usually share the heuristic character of their special cases cited above (due to Newton, Laguerre, and
Jenkins and Traub). We wish to cite the celebrated subclass based on the Weierstrass method [W903],
also called Durand-Kerner’s [D60], [Ke66] and sometimes Dochev’s method and having numerous
variations (their representative list is long; we refer the reader to the bibliography in ( [MN93], [P97],
[BP,a]). This method is a multivariate version of Newton’s iteration, which converges simultaneously
to all the n zeros of p(z) by using order of n? ops in each iteration. According to numerical experiments,
average case convergence of the algorithms based on this method is good, but the averaging misses
the important case of polynomials with clustered zeros. As in the case of the univariate version of
Newton’s method, all these algorithms apparently diverge for the worst case input, or at least no proof
of the opposit result is known. The proofs of quadratic convergence are available, however, in the case
where the initial approximations are already close to the zeros of p(z). Such initial approximations
can be effectively supplied by our algorithm, which makes it a natural ally of the functional iterations.

For the sake of completeness, we will cite the so-called path following version of Newton’s iteration of
[KS94]. The paper [KS94] presents an algorithm, its convergence proof, and the worst case complexity
estimate O A (n2b log? n) for computing approximations to all the n zeros of p(z). In spite of the inferior
complexity bound, the algorithm of [KS94] is technically interesting, and path following methods are
quite successful for multivariate polynomial computations [RS92], [SS93], [SS93a], [SS93b], [SS94],
[SS96]. Strictly speaking, the algorithm of [KS94] is not a pure functional iteration of the form (1.2),
but it amounts to recursive iterative application of such an iteration.

In the next two subsections, we will briefly recall two other major approaches, that is, Weyl’s and
the divide-and-conquer approaches, both combining computational geometry constructions for search
and exclusion on the complex plane with analytical tools, such as Newton’s iteration and numerical
integration [?], [?], [?], [?], [?], [?], [?], [?], [P95], [P96]. Together with Lehmer’s approach of [L61] (cf.
also [MN93]) (which has some technical similarity to Weyl’s), these are the two directions to devising
the most effective known algorithms supported by the proofs of the worst case estimates for their
computational complexity.

1.4 Weyl’s Quadtree Approach

H. Weyl proposed his ingenious algorithm in [We24] as an iterative process of search and exclusion
on the complex plane directed towards simultaneous approximation of all the n zeros of p(z). The
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Under the name of the gquadtree algorithm, this algorithm has been successfully applied to various
areas of practical importance, such as image processing, n-particle simulation, template matching,
and computational geometry [Sa84], [Gre88], [Se94].

The elaboration of Weyl’s approach in [GHT72] leads to the solution of Problems 1.1 and 1.2 at the
cost bounded by O (n3blogn) and Oa (n?ktblogn), respectively, assuming the incorporation of the
modern fast polynomial arithmetic based on FFT. Lehmer, in [L61], modified the geometric search
towards approximating a single zero. With deflation, this algorithm also solves Problem 1.1 within
the above cost bound.

The algorithms of [Sc82] and [R87] supported the decrease by roughly factor b/ log b of the above up-
per estimates, based on some analytic techniques. [R87] relied on Weyl’s construction, whereas [Sc82]
used a distinct (divide-and-conquer) approach. The unpublished manuscript of [Sc82] incorporated
many useful techniques, auxiliary algorithms, and asymptotic estimates for the Boolean complexity
of these algorithms but has been remaining uncompleted since 1982. J. Renegar, in [R87], combined
Weyl’s construction with a distinct modification of Newton’s process and with Schur-Cohn’s proximity
test. His work was very interesting technically, but his complexity estimate exceeds ours by roughly
factor n, his version of Newton’s process requires a little higher initial isolation, and his modification
of Wey!l’s construction was not fully elaborated.

[P87] uses a distinct modification of Weyl’s construction and numerical integration to push Weyl’s
approach to its best, in terms of the record asymptotic complexity estimates, that is, to yield the
bounds O ((n?logn)(log(bn)) and O ((kTnlogn)(log(bn)), which are asymptotically the same as
the ones of our present paper. The algorithm of [P87], however, is non-practical because:

a) its analytic part relies on some sophisticated techniques of numerical integration in the complex
domains, where the basic parameters are defined as a part of a recursive construction and are hardly
accessible for their optimization by the user, and

b) the recursive merging of Weyl’s geometric construction with the numerical integration stage of
[P87] is complicated and hard to program on computers.

These difficulties are inherent in the approach of [P87]. To avoid them in our present paper, we had
to develop a distinct construction with a different recursive process using modified Newton’s iteration
instead of numerical integration.

1.5 The Divide-and-Conquer Approach

The divide-and-conquer approach to approximating polynomial zeros relies on the recursive splitting
of p(z) into the product of smaller degree factors (ultimately linear), can be traced more than half-
century back (cf. e.g. [SeS41]), involves many major technical contributions (see [Schr57], [DL67],
[DH69], [H70], [Sc82], and [K98] as well as several items listed in [MN93]), and has recently culminated
in the algorithms of [P95], [P96] that support optimal (up to a polylogarithmic factor) asymptotic
complexity estimate Op ((log®n + logb)nlog?n) for the approximation of all the zeros of p(z) (cf.
Problems 1.1 and 1.3) and also allow their efficient parallel acceleration.

A variant of the algorithm of [Sc82] was implemented by X. Gourdon and included in PARI and
MAGMA. More recent and advanced algorithms of [P95], [P96] have not been implemented so far.
Although the complexity estimates supported by these algorithms are nearly optimal for Problems
1.1 and 1.3, they may very well be not the last final word of the study of the algorithmic complexity
of polynomial rootfinding, particularly, regarding practical implementation. For instance, even for
simpler Problems 1.2 and 1.4, the algorithms support essentially the same complexity bounds as for
Problems 1.1 and 1.3. For smaller k, this bound is not better than the one of the present paper.
Furthermore, even for £k = n, that is, for Problems 1.1 and 1.3, the superior asymptotic complexity
estimates supported by the algorithms of [P95], [P96] do not guarantee yet uniform practical superiority
of these algorithms. Here, the main difficulty is nontriviality of the construction of [P95], [P96], which
complicates and delays the implementation and testing of the algorithms. Besides, the recursive
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well-conditioned zeros with a lower precision.

To enhance practical efficacy of this approach, it could be efficient to combine it with Weyl’s
construction: splitting algorithms can serve as an alternative to Newton’s iteration where a high
output precision is required and vice versa where a lower precision output suffices.

1.6 Organization of Our Paper

Sections 2—6 are devoted to some auxiliary material. This includes several simple facts, basic defini-
tions and complexity estimates for fast polynomial arithmetic in section 2, Turan’s proximity test and
the root-squaring (so-called Graeffe’s) iteration in section 3, the root radii algorithms in section 4, the
results on computing the number of the zeros of p(x) in a fixed disc in section 5, and the classical
version of Weyl’s algorithm (incorporating Turan’s test) in section 6. In section 7, we outline our
iterative algorithm consisting of two blocks recursively invoked one after another. In section 8, we
describe and analyze the block representing our modification of Weyl’s construction. In section 9 we
present our main algorithm, which combines our construction of section 8 and our modification of
Newton’s iteration. In section 10 we analyze it and estimate the complexity of its performance. In
section 11 we sketch another variant of Newton’s iteration. The appendix contains figures and our
comments on some minor simplification of our algorithms.

Our presentation is mostly self-contained, though the following results and algorithms are cited
with some source references but with no proofs or derivations:

(a) estimates for the cost of fast polynomial arithmetic (section 2),

(b) Turan’s theorem (section 3),

(c) the reduction of the solution of a triangular Toeplitz linear system of equations to polynomial
division (section 3),

(d) a proposition on winding number algorithms (section 5),

(e) a result from analytic function theory (section 10).

We also cited but have not reproduced the algorithms for computing the convex hull of a set on
the plane and for approximating logarithms (section 4), as well as the correctness proof for Weyl’s
classical construction, but these subjects are not needed for our main algorithm and proofs. The
result cited in (e) is needed for the correctness proof in section 10 but not for the presentation of
our algorithms. Furthermore, by applying the algorithms of section 4, we could have avoided using
the results cited in (b)—(d) at the price of the increase of our cost estimates by at most factor log logn.

Acknowledgments Referee’s several comments were most helpful. Akimou Sadikou and Gabriel
Dos Reis also made some useful comments on the original draft of this paper. Olivier Devillers pointed
me out the reference [Gra72].

2 Definitions and an Auxiliary Algorithm.

In this section, we will list some basic definitions and simple facts that are immediate consequences of
these definitions.

As before, we will write O (t) to denote a total of O(t) ops, that is, operations of the following
classes: arithmetic operations with complex numbers, pairwise comparisons of positive numbers, and
the evaluation of the h-th roots of positive numbers, for natural h.

log will denote logarithms to the base 2.

In complex domains we will usually count the polynomial zeros together with their multiplicity, not
distinguishing between clustered and multiple zeros. ” Computing a polynomial” will mean ” computing
its coefficients” (unless we explicitly specify otherwise).

p(x) will denote a fixed polynomial of (1.1), of degree n.
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plane; S = S(X, R) denotes the square with the side length 2p(S) = 2R and with the vertices X +

R1++V-1), X —R(1++/-1), X + R(1 —v/-1), X — R(1 — V/-1).

Remark 2.1 Hereafter, we will only consider rectangles and squares on the complex plane that have
their sides parallel to the coordinate axes.

Definition 2.2 Two complex sets U and V are called equivalent if they contain exactly the same
zeros of p(x). Transformation of a set U into its equivalent subset is called shrinking or contraction.
If F denotes a square or a disc, we define its rigidity ratio, r.r.(F'), and its isolation ratio, i.r.(F),
as follows (see Figure 1 ): r.r.(F) = inf(p(F~)/p(F)), i.r.(F) = sup(p(F*)/p(F)). Here, p(F) is
defined in Definition ??, and the infimum and the supremum are over all squares (or discs) F~ and
F* that are equivalent to the square (respectively, disc) F and such that F~ C F C F* and F™ and F
are concentric. A disc or a square F are f-isolated if i.r.(F) > f. All the concepts are defined above
relative to the polynomial p(x) of (1.1) but can be immediately extended to any other fized polynomial.

Definition 2.3 d(U) = max,, ., |2y — 21|, d*(U) = max,, ,, max{|Re zy — Re z|,|Im zy—Im z|},
where max,, ,, denotes the mazimum over all the pairs zy, z, of the zeros of p(x) in a complez set U.

Algorithm 2.1 (superscription of the smallest rectangle about a finite set on the complex
plane).
Input: a finite set U on the complex plane.
Output: the side lengths and the real and imaginary coordinates of the center X of the smallest
rectangle containing the set U (and having its sides parallel to the coordinate axes).
Computations: Compute the maximum M and the minimum m of the real parts of the points of U.
Output M —m and & ‘2”” Repeat the same computations for the set of the imaginary parts of the
points of U.

The next proposition immediately follows by inspection.

Proposition 2.1 The two half-sums in the output of Algorithm 2.1 equal the real and imaginary
parts of the center X of the smallest rectangle containing the set U and having its sides parallel to the
coordinate azes. The two differences equal the lengths | and I, of the sides of this rectangle. The
larger length It > 1™ is also the side length of a smallest square S(X,1"/2) (having its sides parallel
to the coordinate azes) superscribing the rectangle, and 2pmin = ((17)% + (11)2)Y2 is the diameter of
the smallest disc superscribing this rectangle. Furthermore, I = d*(U) ({7 : p(z) = 0}), IT < d*(U)

for d*(U) of Definition 2.3.

Proposition 2.2
a) r.r.(S) = d*(S)/(2p(S)) for a square S;
b) r.r.(D) = d*(D)/(cp(D)), V2 <c<2, for a disc D.

Proof: Observe that the side length of a smallest square equivalent to S is equal to d*(S) and
immediately obtain part a) of the proposition. Now, denote by U the set of the zeros of p(z) lying in
the disc D and let [T and 2p,,;, be defined as in Proposition 2.1. Denote by D~ the minimum disc
equivalent to D and observe that It = d*(U), IT < 2p(D7) < 2pmin < IT+/2. This implies part b) of
Proposition 2.2. O

Definition 2.4 For a complex X, for an f > 1 and for a non-negative €, the disc D(X,¢) is called
an f-isolated e-cover of a zero z; of p(x) if this disc contains z; and is f-isolated.

Definition 2.5 i(p(x),U), the index of p(x) in U, is the number of the zeros of p(x) lying in a
complex set U and counted with their multiplicity.
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are called the root radii of p(z) at X; in particular r4(X) is called the s-th root radius of p(z) at
X, and we will write rs(X) = oo for s <0, rs(X) =0 for s > n.

Proposition 2.3 1/r4(0) for p(z) equals the (n+ 1 — s)-th root radius at 0 of the reverse polynomial

Prev(z) = 2"p(1/x). T5(X) for p(z) equals r5(0) for t(y) = p(y + X). r5(0) for p(x) equals ars(0) for
p(z/a) for any scalar a > 0.

Proof. Compare the zero z; of p(x) with the zeros 1/z; of prey (), 2j—X of t(y), and az; of p(z/a). O

In this paper, we will use the known algorithms for some basic operations with polynomials, which
support the following known complexity estimates (cf. e.g. [?], sections 1.2 and 1.3):

Proposition 2.4 Multiplication and division with a remainder of two polynomials of degrees at most
n can be performed at the cost Oa(nlogn).

Proposition 2.5 A shift of the variable x for a polynomial p(x) of (1.1), that is, the transition from
the coefficients of p(x) to the coefficients of the polynomial t(y) = p(y+ X) for a fixzed complex X, can
be performed at the cost Oa(nlogn).

For completeness, we also recall two trivial transformations of p(z).

Proposition 2.6 Scaling of the variable for p(x) of (1.1), that is, the transition to q(z) = p(azx) =
" o(piat)xt, costs Oa(n), whereas the reversion (of the order of the coefficients ) of p(x), that is,
the transition to the polynomial x"p(1/x) = >y pix™ ™" , is cost-free.

Remark 2.2 Due to Propositions 2.5 and 2.6, the study of the properties and behavior of a polynomial
p(z) over the disc D(X,r), for any complex X and positive r, can be reduced to the similar study of
the polynomial q(y) = p((y — X)r) over the unit disc D(0,1); indeed it suffices to shift and to scale
the variable.

3 Squaring Polynomial Zeros and Isolation Ratio. Turan’s Proxim-
ity Test.

In this section, we recall Turan’s proximity test, which, at the cost Oa ((1 + log N)nlogn), enables us
to compute the distance from a complex point X to the closest zero of p(z), with a relative error at
most 5/V — 1. Turan’s algorithm relies on the following theorem that he proved (see [?], p. 299) by
using some sophisticated tools from number theory:

Theorem 3.1 Under the notation of (1.1), let sy, denote the power sums 377, z;?, k=0,1,.... Then
we have 1 <r{(0)/ maxy_q, . .n |sgN/n|1/(9N) < 5YN for all natural N.

By Theorem 3.1, we may closely approximate r1(0) via the computation of the power sums sy
for a large N. Proposition 2.3 enables us to extend this computation to the approximation of r,(X),
that is, to a proximity test at a point X.

Algorithm 3.1 (Turan’s proximity test)

Input: Natural N and n, the coefficients of the polynomial p(z) of (1.1), and a complex number X
that is not a zero of p(z).

Output: Two positive numbers r and r*, r = 7(X), r* = r*(X) = 5'"/Vr, such that

1< )/r(X) < 5N, 1 <rp(X))r <5V rp(X) = min |z — X]|. (3.1)
J=1,...,n



cvomputarions:
Stage 1. Compute the values of the power sums,

n
N .
son =2 Y0y =1/(z = X); g5 =1,...,n

Stage 2. Compute and output r* = [maxgzl,_“,n |i’;1ﬂ\1/(9N)] ' and r = r*/51/N.

Correctness of Algorithm 3.1 follows from Theorem ?7.

The error factor 5!/ of approximation to 7 (X) converges to 1 as N — oo. For our purpose in
this paper, it suffices to choose N = 32; then

1.051581 < 5/ < 1.051582. (3.2)

Stage 2 is immediately performed at the cost Oa(n). Turan’s algorithm for Stage 1 includes the
following root-squaring operator:

a:p(2?) = (=1)"p(2)p(—2)

or, equivalently,
a:p(y) = (1) "p(V)p(—vY), y = 2°.

The latter representation (with /) shows that the output still has degree n. The former representation
shows that we compute the output coefficients of the image polynomials a(p(2?)) = a(p(y)) simply by
performing polynomial multiplication, with no computation of square roots.

Recalling (1.1), we obtain that

a(p(z?)) = Hz—z] —z — 2j) p?LHz —z

This explains the nomenclature ”"root-squaring”. The operator was introduced by Dandelin and redis-
covered first by Lobachevsky and then by Graeffe [H70]. The computation of a(p(y)) is usually called
Graeffe’s algorithm and is widely used for polynomial rootfinding [MN93]. This operator will be much
used in our paper too.

Now we are ready to specify stage 1 of Turan’s proximity test, where we let N = 2" be a power of
2 ( to simplify the notation):
Subalgorithm 3.2.
Stage (a). Shift the variable by setting y = x — X and compute the coefficients of the n - th degree
polynomial q(y) with the zeros y; = 1/(z; — X), j =1,...,n, such that

p(z) =p(X +y) = Zpi(X)yi,

) = " (X +1/5) = Y- pu( XYy f[ (v 1)

Stage (b), (root-squaring iteration). Write go(y) = q(y)/po(X) and successively compute the coeffi-
cients of the polynomials

gi+1(y) = (—1)"¢i(vv)ai(—vYy), i =0,1,...,h—1; h =logN. (3.3)

10
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Stage (c). Compute the power sums syn of the zeros of the polynomial qn(y) = Yo giny" for g =
1,...,n, by solving the triangular Toeplitz system of Newton’s identities in the variables sy, SaN, - - -, SnN,
which relate the coefficients of qx(y) to the power sums sgn (cf. [?]) :

qn,hSN t qn-1,n = 0,

Gn,hS52N + Gn—1,pSN + 2¢n—2p = 0,

An,hSnN + dn—1,AS(n—-1)N + -+ ngon = 0.

At Stage (a), we shift the variable z and reverse the polynomial; every iteration i of Stage (b) is

a polynomial multiplication; Stage (c) of solving a triangular Toeplitz system amounts to polynomial

division (see e.g. [P92al]). Due to Propositions ??—??, the overall cost of performing Algorithm 3.1 is
bounded by

Oa(n(1+ h)logn), h =1logN. (3.4)

Remark 3.1 The recursive root-squaring algorithm (?7) will be used also in the next sections. Clearly,
each step i of (??7) squares the zeros of the polynomial q;(y). In particular, for i = 0, we have
a0(y) =11y —y;),
() = -,
J

and similarly for i = 1,2,.... It follows that the polynomials qn(y) = 3o qiny’ satisfy

n
Hy yN), N =2" (3.5)

The logarithm of the ratio |y] JyN| grows linearly in N if |y;| > |yi|. Since the transition from the
polynomial qn(y) to qni1(y) squares the input polynomial zeros, each root-squaring step (77) also
squares i.r.(D(0,1)) for any positive r. This enables us to increase i.r.(D(0,7)) from f > 1 to f2" at
the cost Oa(hnlogn).

Remark 3.2 In some experimental computations by Algorithm 3.1, numerical stability problems fre-
quently arose at the stage of the computation of the power sums Sy, SoN,-..,SpN. In some cases we
may counter such problems by computing only a few first power sums sy, san, ..., SN for some fixed
Il < m. Only the first | linear equations of Stage(c) are needed to compute the | latter power sums.
Theorem 3.1 cannot be applied if | < n, but frequently, it suffices to apply the following trivial bounds:

(ra(X)IN < |sgnl/n, g+1,...,1.

These bounds yield a one-sided test for the prozimity of the zero of p(x) to a fized complex point X.
The reader is referred to [He7}] and [BP,a] on some other one-sided tests. The proximity tests are
also important parts of some other algorithms for polynomial zeros (cf. [Ha87] on their major role in
the Jenkins- Traub algorithm) and, therefore, are of some independent interest.

11
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In this section, we will approximate the root radii r4(X), for s = 1,...,n, by initially following the
line of [?], section 14, and at the end, in Proposition ?? and Algorithm 4.3, simplifying slightly the
algorithms of [?]. We will assume that X = 0 (otherwise, we would have shifted the variable by letting
y =z — X) and will write r; = 75(X),

ro = 00, Tpt1 = 0. (4.1)

Consider the two following tasks (note some redundancy in their statements).
Task r. Given positive r and A, find a (generally non-unique) integer s such that

Ter1/(1+A) <r < (14 A)rs.
Task s. Given a positive integer s, 1 < s <mn, and a positive A, find a positive r such that
r/(1+A) <rs < (1+A)r

It is sufficient to solve Tasks r and s for 1 + A = 2n or 1 + A = +/2n because the extension to an
arbitrary positive A is immediate, by means of at most

log(2n)

g=g(A) = ﬂog(m

)] (4.2)
root-squaring steps (?7?). Indeed, such a step amounts to squaring 1+ A in the context of Tasks r and
s (see Remark ?7?), and we have (1 + A)¥ > 2n, under (4.2). The computational cost of performing
these iteration steps (as well as the cost of shifting the variable z, if needed) should be added to the
overall cost of the solution, of course. Note that

g(A)=04if 1+ A >2n; g(A) =O(loglogn) if 1/A = 0O(1),
g(A) = O(logn) if 1/A =nOW),
Most frequently, we will need to solve Task s for s = n, and we have the following corollary of

bounds (3.4) and (4.2) and Theorem ??:

Corollary 4.1 (a) For s =1 and s = n, Task s can be solved by means of the application of Algorithm
3.1 at the cost Oa((1 + g)nlogn), where g is defined by (4.2). (b) Moreover, the cost decreases to
Oa(nlogn) if 1/A < O(1/n).

For part (a), we have a simpler alternative proof (compare [?], pp. 451, 452 and 457, and [?]).
Recall the well-known inequalities (cf. [He74], section 6.4; [Mar49], section 30):

t1/n <rp <2t], 1] = Hklg())( |pn—k/pn|1/k' (4.3)

Apply Proposition ?? for X = 0 and extend the bounds (4.3) as follows:
£2/2 < 1 <t £ = minpo/pil /¥ (4.4
>

Here, the minimization process ignores those k for which p; = 0.

Therefore, if 14+ A > v/2n, then r = t{/2/n is a solution to Task s, for s = 1, whereas r = t1/n/2
is a solution to Task s for s = n. At the cost Oa(nglogn) of performing g root-squaring steps (?7?),
the solution can be extended to the solution of Task s for s = 1 and s = n, for an arbitrary positive
A, and for g of (4.2). This implies the cost bound of part (a) of Corollary ?7. |

We will also need to solve Task s for 1 < s < n (see Remark 7.2 and Stage 4 of Algorithm ??) and
Task r (see Remark ??). Next, we will show solution algorithms relying on the following useful and
elegant result:

12



neorem a.1 jrie/4f, pp. 490-40<; [</. 1] 1L S~ M =~ N ana i |Pn+l1—-m—i/Pn+1-m| > QU JOoTr t =
1,...,n+1—m, then rp, < m(a+ 1)v.

Proof. Due to Van Vleck’s theorem ( [He74] , p. 459), we have

_ n n—1 m _
|pn+1_m|7“?n+1 m< ( ntl—m ) |p0|+ ( n—m ) |p1|7"m+"'+< 1 )'pn—mh’rnn .

Divide both sides by |ppi1_m|r™t1~™, apply the assumed bound on the ratios

|Pr+1—m—i/Pn+1-m|, and deduce for x = v/ry, that

1 < agti-m " +az"™™ n-l + -+ az? mt 1 + azx mn . (4.5)
m—1 m—1 m— 1 m—1

If > 1, then 7, < v, and Theorem ?? follows. Otherwise (4.5) implies that
l+a<a(l+zc+z®+23+-- )" =a/(1 —2z)™.

By applying the Lagrange formula to y¢ for y = 1 + a, we obtain that y? — a¢ = du’""! for some u,
a < u < y. Substitute this expression and deduce that

(a+1)4
1 —— d=1
/x<(a—|—1)d—ad’ /m,
so that r,,,/v =1/xz < (a + 1)/d, and then again Theorem ?? follows. O

Theorem ?? and Proposition 2.3 also imply a similar upper bound on 1/7,,, which is the (n+1—m)-
th root radius of the reverse polynomial z"p(1/z). The latter bound and one of Theorem 4.1 together
immediately imply the solution of Task r for r = 1 and 1 + A = 2n. Indeed, compute a natural m
such that |pp41-m| = maxo<i<yn [pi|. If m = n + 1, then ¢ > 1, and, consequently, r, > 1/2 by (4.4),
whereas r, 11 = 0 by (4.1). Therefore, s = n is a desired solution to Task r for r = 1 and any A > 1.
Otherwise, 1 < m < n. Then we apply Theorem ?? (for a = v = 1) to p(z) and ¢(z) = z"p(1/z)
and deduce that m < T < 2m. Tt follows that 1/(2n) < rp, < 11 and 7, < 2n. Therefore,
s = m — 1 is a solution to Task r where r = 1 and 1 + A = 2n (take into account (4.1) where
m =1, s =0). The extension to arbitrary r is by means of scaling the variable z and to arbitrary A

is by means of the root-squaring iteration (??). We arrive at

Proposition 4.1 Task r can be solved at the cost Oa(n(1+ g)logn) where g is defined by (4.2); the
cost bound can be decreased to Oa(n) if 1 + A > 2n.

We could have solved Task s by recursively applying Proposition ?? in a binary search algorithm,
but we will prefer a more direct approach outlined in [?] and based on the concept of Newton’s polygon.
We will start with a high level description of this approach.

Pre-algorithm 4.1 Given the coefficients py,...,pn of the polynomial p(x) of (1.1) and an integer
s, 1 < s < n, choose two integers t and h that satisfy the following inequalities:

t<n+l—s<t+h<n (4.6)

and the following convexity property: there ezists no integer u in the range from 0 to n such that
the point (u,w(u)) on the plane {(u,w)} lies above the straight line passing through the two points
(t,w(t)) and (t+h,w(t+h)) (which are two vertices of Newton’s polygon), where w(u) denotes log |py/,

log 0 = —o0, and we assume that no point (u, —o0) lie above any straight line on the plane {(u,w)},
thus discarding the points (u,w(u)) where p, = 0. Compute and output 1/r where
r= |pt+h/pt|1/h- (4.7)

13



For r of (4.7) the relations (4.6) and the above convexity property combined can be equivalently
rewritten as follows:
|pt+g/pt| <rd, for g=1,...,n-1, (48)

|pt+hfg/pt+h‘ < 1/7"95 for g = 17 .. at + h. (49)
Proposition 4.2 The output 1/r of Pre-algorithm 4.1 is a solution to Task s for 1+ A = 2n.

Proof. Due to inequalities (4.8) and (4.9), we may apply Theorem ?? to p(y) witha =1, v=1/r, i =
g,m=n+1—1t—handtoy"p(l/y) witha=1,v=r, i =g, m =1+ 1, respectively, and arrive at
the desired bounds,

Tntl—t—h <2(n+1—t—h)/r, 1)rp_s <2(t+ 1)r.

Due to (4.6) and the bounds 1 < s < n, it follows that

1/(2nr) < rp—t <75 < Tpii—t—h < 2n/T. (4.10)

Let us further specify the computations by Pre-algorithm 4.1 as follows:

Algorithm 4.2 Compute the values log |py|, v =0,1,...,n, with a prescribed precision; then compute
the convex hull CH of the set {(u,log |pyu|), u = 0,1,...,n} on the two-dimensional real plane, and
then find the edge in the upper part of the boundary of CH whose orthogonal projection onto the u-axis
18 an interval including the point n + 1 — s. Choose t and t + h to be the end points of this interval
and, finally, compute r by using (4.7).

Note that we compute the convex hull CH of the same set when we solve Task s for all s. Due to
Graham’s algorithm, the cost of this computation is O (n) (see [?] or [?], pages 100-104).

By using the known fast algorithms (cf. [Al85]), we may rapidly approximate log |p,|, within the
error bound § > 0 at the cost Oa(loglog(1/d)); for our purpose of solving Task s with 1 + A > 2n,
it suffices to choose § satisfying log(1/6) = O(n), due to the well known perturbation theorems by
Ostrowski and Schonhage (cf. [BP,a]), which bound the dependence of r on the coefficients of p(z). It
follows that the cost of computing sufficiently close approximation of log |p,| for all u is O (nlogn).

The next proposition summarizes our estimates.

Proposition 4.3 Task s for all s can be solved at the cost Oa(gnlogn), g = g(A) defined by (4.2).

In the applications to our main algorithms (Algorithms 9.1 and 11.1), we will need to solve Task
s under some slightly simplified assumptions, that is, for a fixed s, for 1 + A > 2n, and for a disc D,
with the center 0, such that

i(p(z),D) =n+1—s, ir(D) > (14 A)% (4.11)

In this case, the solution of Task s and, consequently, the computations of our main algorithms can
be simplified a little, that is, we do not need to approximate the logarithms or to compute the convex
hull, and the overall cost of the solution is O (n) with a small overhead constant. This follows form
our next result.

Proposition 4.4 Let the relations (4.11) hold for a fized integer s (such that 0 < s < n), for 1+ A >
2n, and for a disc D having the center 0 and an unknown radius. Then Task s for 1+ A > 2n can be
solved at the cost Oa(n).

14



Irooi. Let v and N aenote tne two 1miegers deuned 11 rre-algoritnm 4.1 and tnus satistying (<+.0) and
(4.10). Let us first deduce that t +h < n+ 1 —s. (4.11) implies that r,_1/rs > (1 + A)? > 4n?.
On the other hand, the first inequality of (4.6) implies that rs > r,_;. Consequently 75_1/rp_¢ >
(1 +A)? > 4n?. Tt follows that either rs_1 > 7,41 ¢ p or, otherwise, T 1 ¢+ p/Tn_t > Ts—1/Tnt >
(1 4+ A)?2 > 4n%. The latter inequalities imply that 7, 1_s_p > 4n’r,_;, which contradicts (4.10).
Consequently, rs_1 > 7414 p, and thenn+1—¢—h > s—1, and the desired bound t+h <n+1-s
follows. This bound and (4.6) together imply that t + h = n 4+ 1 — s. Since ¢ + h has been defined,
it remains to choose an integer h, satisfying n+ 1 — s > h > 1 and such that the convexity property
of Pre-algorithm 4.1 holds or, equivalently, relations (4.7)-(4.9) hold. By (4.7) and (4.9), the values
(1/g)log |pﬁ—ﬁg\ = log(|pﬁ—ﬁg 1/9) and, therefore, also |pi—ﬁg|1/9 reach their maximums where g = h,
provided that g is the integer parameter ranging from 1 to n + 1 — s. For any such a maximum h,
(4.8) and the convexity property must also hold. (If h is not defined uniquely, and hg is one of the
maximums, then there exists an infinitesimal perturbation of the coefficients of p(x) that turns hg into
a unique maximum, and (4.8) and the desired convexity property follow immediately.) Since t + h is

fixed, the integer ¢ = h maximizing |ptpi—‘;h|1/9 forg=1,...,n+1— s and the value r of (4.7) can be
-9
computed at the cost Oa(n), and we arrive at Proposition ?7. O

To extend Proposition 4.4 to any disc D and any positive A, we shift the variable, apply root-
squaring iteration (3.3), and recall Proposition 2.5 and Remark 3.1. The resulting algorithm will be
referred to as Algorithm 4.3. The computational costs of its performance is estimated in the next
corollary, which includes the bound O (n) of Proposition 4.4, the cost of the shift of the variable (if
needed) and the cost of performing iteration (3.3) to lift the i.r.(D) and 1 + A to or above 4n? and
2n, respectively.

Corollary 4.2 Let a disc D contain exactly k zeros of p(x), that is, i(p(x),D) = k, and let I be
f-isolated for f > 1. A > 0. Then Task s for a disc D, a positive A, and s=n+1—k can be solved
at the cost Oa(n(1+ (g + 6)logn)), where

log(2n)

=1
g Og(log min{f,1+ A}

);

0 = 0 if the disc D has center 0 and 6 = 1 otherwise. In particular the cost bound is Oa(nlogn) if
1/log min{f,1+ A} = O(1/logn) and Oa((nlogn)loglogn) if 1/logmin{f,1+ A} = O(1).

5 Computing the Number of Polynomial Zeros in a Disc.

Proposition 5.1 Let i.r.(D) = f for a given f > 1 and for a disc D = D(X,r). Then the index
i(p(z), D), showing the number of the zeros of p(x) in D (cf. Definition ??), can be computed at the
cost Oa(hnlogn), where

(5.1)

h=1+ [log[logg]-‘ .

log f

Proof. The well known winding number algorithms (see [?], pp. 239-241, or [?]) compute the index
i(p(z), D) of p(x) in a disc D at the cost Oa (nlogn), provided that all the zeros of p(z) lie far enough
from the boundary of such a disc; namely, it suffices if f = 4.7.(D) > 9 [R87]. If f < 9, we first shift
the variable z to transform the input disc into the disc D(0,r), this changes neither the index nor
the isolation ratio. Then we apply h — 1 root-squaring steps (3.3) to increase the isolation ratio to or
above 9 (cf. Remark 3.1) and then apply the winding number algorithms. The claimed cost bound
follows from Proposition 2.5 and the estimate of Remark ?7. O

Remark 5.1 Given a disc D = D(0,p) such that i.r.(D) = f > (1 +v)?, we may compute s =
n+1—1i(p(z), D) by solving Task r of section ?? for r = (14 v)p and for any A < v. The cost of the
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sowution 18 YA \N\11g)logn), where g is agyninea 0Y (4.</, so that g = U\ 1+ 108108 N ), jcompare (4.<)
with (5.1)]. This implies an alternative proof of Proposition 17, with the cost bound in its statement
changed into Oa(gnlogn).

6 Weyl’s Exclusion Algorithm (with Turan’s Proximity Test).

In this section, we will recall Weyl’s exclusion algorithm ([?], pp. 517-521) for approximating the zeros
of p(z). In the next sections, we will modify this algorithm to isolate the (clusters of the) zeros from
each other.

Algorithm 6.1 (Weyl’s quadtree algorithm) (see Figure 2).

Input: positive integers k, G, n >k, and N > 32, the coefficients of the polynomial p(z) of (1.1), a
complex X and a positive R such that the square S(X, R) contains ezxactly k (not necessarily distinct)
zeros of p(x) and is f-isolated, for f > (1 +5YN/2)/2 (c¢f. (3.1), (3.2), and Remark 7?).

Output: a positive integer H < 4n and compler values Xp, h = 1,..., H, such that the union
UM, S(Xp, R/2€) lies in S(X,R) and contains the k zeros of p(x).

Stage 0 (initialization): Call the square S(X, R) suspect in Stage 0 or simply the 0-square.
Computations:

Stage g, g =1,...,G. At the beginning of Stage g, a set of squares suspect in Stage g — 1 (simply
called (g — 1)-squares and having sides of length 2R/2971) is available, supplied by Stage g — 1. At
Stage g, divide each (g — 1)-square into four subsquares, with the side length 2R/29. Then test each
subsquare for containing a zero of p(x) as follows: within the factor 5'/N [which is less than 1.052 for
N > 32, by (??)], approzimate the distance from the center of the subsquare to a closest zero of p(x).
Do this by applying Algorithm 3.1 at the center of the subsquare, which plays the role of the input
value X of Algorithm 3.1, whose other input values, N, n, pg,...,ppn, are shared with Algorithm 77.
Call the subsquare suspect in Stage g, or simply a g- square, unless the latter proximity test proves
that the square contains no zeros of p(x). Output the centers Xy of all the G-squares S(Xp,, R/2%)
and their overall number H < 4k.

Correctness proof for this well-known algorithm is simple and can be found e.g. in [?] or [?]. The
two key-observations are that the side-length of the suspect squares decreases by factor 2 in each stage
of their recursive subdivision and that the union of all squares that are suspect in each recursive stage
contains all the & zeros of p(z) lying in S(X, R), so that the centers of all the G-squares may serve as
approximations to all the k zeros of p(z) in S(X, R) within the error bound R/2¢-03,

The asymptotic cost of performing Algorithm 6.1 is dominated by the cost of all applications
of Algorithm 3.1 involved. The cost of the single application is Oa(nlogn), due to (??) for a fixed
constant N. The total number of applications is at most 4kG, due to Remark ?? below, and this yields
the overall cost estimate Oa (knGlogn), which turns into Oa (knhlogn) if we require to bound by
V2R/2" the errors of the approximations to the zeros of p(z) by the centers of the output G-squares.

In the next sections, we will yield the cost bound Oa (log k) in terms of h, which is a substantial
improvement for large h.

Remark 6.1 Each zero of p(x) may make at most four squares suspect in Stage g, for any g [note
that our prozimity test computes r,(X) within 6% error, due to relations (??), (??7) and N > 32].

Remark 6.2 To apply Algorithm ?? to approzimate all the n zeros of p(x), we need an initial square
S(X,R) containing all these zeros. We may compute such a square for X = 0 either at the cost
Oa(n), by applying the bound (4.3), or at the cost Oa(nlogn), by applying part (b) of Corollary 4.1.

Remark 6.3 The input lower bound on f insures that the zeros of p(x) lying outside the input suspect
square S(X, R) do not influence the outcome of the proxzimity tests, at the first stage and consequently
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at att stages of Atgorithm < <. 1f tne oouna on J were Smacler, tne injiuence of tne outsiac 2eros (ying
near S(X, R) would not lead to any error in the output but could have caused processing some extra
suspect squares. We will come back to this issue in Remark 7.2 in the next section.

Remark 6.4 Instead of Algorithm 3.1, one may apply an alternative proximity test, based on (4.8)
and root-squaring iteration (3.3). Furthermore, in many cases, a simpler test may detect that a given
square S(X, R) contains a zero of p(x) and, therefore, is suspect. In particular if

R > () = n|p(X)/p' (X)| or, more generally, R > r¥) = noglggl(k!p(X)/p(k) (X)) fora fizedl < n,

then the square S(X, R) and even the disc D(X, R) contain a zero of p(z) (cf. (4.4)). If R < W, then
by this simple one-sided test, we cannot decide if the square S(X, R) is suspect or should be discarded.

Remark 6.5 The computations of Algorithm 6.1 essentially amount to the computation of the shifts
of the variable z and subsequent proximity tests. The computation of the shifts can be reduced to
polynomial multiplications, some of which we may reuse to decrease a little the overall computational
cost (see Appendix A).

7 Combining Approximation and Isolation of Polynomial Zeros.

Our next goal is the description of our main algorithm for polynomial zeros, which starts with an
input disc D = D(Xy, R) containing exactly k zeros of p(z) and consists in recursive solution of the
following problem:

Problem 7.1.

Input: two real constants f > 10 and £ = 27° > 0, complex coefficients of a polynomial p(z) of (1.1),
a natural k, 2 < k <mn, and an f-isolated disc D = D(Xj, R) that contains exactly k zeros of p(z).
Output: an integer ko, 0 < ko < k, f-isolated ej-covers Doy, of ko zeros zjp) of p(x) in S for
en <€ h=1,...,ko (cf. Definition 2.4), an integer [ > 0 (I > 2 if kp = 0), [ discs D1,...,D; that
are disjoint, f-isolated, and such that D; C D, i; =i(p(z),D;) > 1, j = 1,...,1 (cf. Definition 2.5),
Zé’:o i; = k, and the indices of p(z) in all discs Dy, and D;, for h =1,2,...,ky; j=1,...,L

The following algorithm computes the desired approximations to the k zeros in a fixed disc by

recursively solving Problem 7.1.

Algorithm 7.1

Input: as for Problem 7.1.

Output: f-isolated ep-covers of all the k zeros zp, of p(x) in D(Xo, R), where e, < e, h=1,...,k,
and the indices of p(x) in all these ep-covers.

Computations: Initially solve Problem 7.1 for the input disc D. Then, for each output disc Dj,
J = 1,...,1, solve Problems 7.1 with D; made its input disc. Recursively repeat this process until
f-isolated ep-covers of all the zeros zp of p(z) in D have been computed together with the respective
indices of p(x), where g, < €.

Since k;j < k, for j = 1,...,1, we will arrive at the desired e,-covers of all the k zeros of p(z) lying
in D in at most k — 1 recursive steps of solving Problem 7.1. It remains to specify the solution of
Problem 7.1 and to estimate its complexity.

We will partition the solution of Problem 7.1 into two stages.

Problem 7.1a.

Input: as for Problem 7.1 and, in addition, a value e > 1.

Output: either a common f-isolated ep,-cover of all the k zeros zy, of p(z) in the disc D for some e, <
/3 or else an (f/\/2)-isolated square S* = S(X*, R*) that lies in the smallest square S = S(Xo, R)
superscribing the input disc D, is equivalent to D, and satisfies the inequality

r.r.(S*) > 1/e. (7.1)
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Problem 7.1 b.
Input: f, ¢, p(z) and k as for Problem 7.1a and, in addition, the (f/\/2)-isolated output square S*
of Problem 7.1a, satisfying (7.1) for the fized e > 1.
Output: as for Problem 7.1.

We will consider Problem 7.1b in the next section and Problem 7.1a in sections 9-11.
Remark 7.2 With some additional work, we may relax the assumption that the input disc D =
D(X, R) for Problem 7.1 is f-isolated for a fixzed f > 10. Indeed, suppose that r.r.(D) and i.r.(D) are
unknown and apply Algorithm 4.2 to approximate a mazimal zero-free annulus A with center X and
the boundary circles of radii R~ and R™, satisfying

R"/R">f, R'>R,

for the smallest R~ (which may exceed R, be equal to R or be less than R). (By a mazimal annulus
A, we mean one not contained in any larger annulus of the same class.) Then D~ = D(X,R™), the
internal disc of A, would serve as an f-isolated input disc for Problem 7.1. If R~ < R, this disc is
equivalent to D; otherwise we have k < k™ where k = i(p(z), D), k* = i(p(z),D") (cf. Definition
2.5), and the complexity of the approzimation of the k zeros of p(z) lying in D will grow by factor
k* /k. If we wish to avoid such a growth, here is the sketch of our tentative recipe. Linearly transform
the wvariable to turn the disc D into the unit disc D(0,1) and apply | root-squaring steps (3.3), for
the minimum | = I(f, D), to make the disc D(0,1) f-isolated. Approzimate the zeros (a(z; — X))?
of the resulting polynomial. Recursively recover the values (a(z; — X))QH fori=1,2,...,1 and then
obtain zj — X and z;. In each descending step, from (a(z; — X))QH+1 to (a(z; — X))QH, j=1,...,1,
avoid ambiguity by applying Algorithms 3.1 or 4.2 at each of the 2k candidate points +a(a; — X)QH,
to discard the k extraneous candidate points.

8 Isolation of the Zeros.

In this section we will specify Algorithm 8.1, which solves Problem 7.1b, and will estimate the
computational cost of its applications within Algorithm 7.1. When we are solving Problem 7.1 b, our
goal is to compute some small discs containing all the k zeros of p(z) and islolated from each others,
but technically our reliance on Weyl’s construction pushes us to operate with some suspect squares on
the complex plane. To resolve this contradiction, we will compute well isolated components formed
by the squares and then will superscribe the desired isolated discs about these components.

We will proceed as in Weyl’s Algorithm ?? applied to the input square S* = S(X*, R*), except
that we will add a block that verifies if for some g some set of g-squares forms a connected component
which is not equivalent to S* and is sufficiently well isolated from all the zeros of p(z) lying outside
this component; if so, we will stop partitioning these g-squares, keep them invariant and output the
smallest discs superscribing such components at the end of the computations.

Specifically, let m denote the number of all distinct zeros of p(x) in S*. Furthermore, for every g,
let w(g) denote the number of all g-squares processed by the algorithm, connect each pair of adjacent
g-squares, that is, of g-squares sharing a common vertex, and partition their union into connected

components, C£g)’ o CTE?.;)’

S* = Cfl), 1<v(g) <m,g=12,....
Let the (1 + go)-th stage be the first separation stage of Algorithm 8.1, that is, let

where each component contains at least one zero of p(z), so that v(1) =1,

v(g) =1forg=1,2,...,g0; v(go+1) > 1. (8.1)

For every g > go and for each u, u = 1,...,v(g), apply Algorithm 2.1 at Stage g to the set of all

)

the vertices of all the g-squares of the component C&g , and arrive at the smallest rectangle covering
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Cy ", as well as at the smallest disc Uy~ = U(Ay ", Ly’ ") and a smallest square oy = — oAy ', Lw ")
covering this rectangle, where R&g) < R&g) < R&g )\/5 (compare Remark ?? and Proposition 2.1). For
u=1,...,v(g), compute 49 = min,, z,, (max{| Re( (2 _Xq(]g))l, |Im(X1(Lg) —ng))|} —Rq(,g)) and check
if

di9) > fRY), (8.2)

that is, if the disc Dq(;q ) is f-isolated. If so, stop the recursive process of dividing the g-squares lying
in this disc into 4-tuples of subsquares, call the component Cqsg) invariant, and add the disc D,(Lg ) to
the list of the output discs of Problem 7.1b, either as Dy, (for an appropriate h) if

RY < ¢ (8.3)

or as D; (for an appropriate j) otherwise. Stop the computation by Algorithm 8.1 when all the
components become invariant, compute and output their superscribing discs by using Algorithm 2.1,
and apply the algorithm of section 5 to compute and to output the indices of p(z) in these discs. This
completes our description of the algorithm.

The remainder of the section will be devoted to the computational complexity analysis. We will
start with some definitions and auxiliary results.

Hereafter w( z(f’ )) denotes the number of the g-squares lying in the component z(f’ ), so that

v(g)
w(g) = > w(CP), g=1,2,...,G
u=1

Also, for any fixed g, let w;,(g) denote the number of g-squares each having at least one zero of p(z)

in its closure.

Lemma 8.1 9w;,(g) > w(g) for all g.

Proof. By definition, if a g-square contains no zeros of p(z), then at least one of its g-neighbors (that

is, a g-square sharing one or two vertices with it) must contain a zero of p(z). On the other hand,

every g-square has at most eight g- neighbors, and Lemma 8.1 follows. O
We will next define a tree T" with G + 1 — go levels of nodes, where gy is defined by (??). For

g = go,90+1,..., that is, starting with the first separation stage of the algorithm, the v(g) components

Cfg), e ,CT(]“‘(’;) are identified with the v(g) nodes forming the (g — go)-th level of the tree. The compo-

nent quo) is identified with the root of the tree, which lies at the 0-th level. The leaves are identified

with the invariant output components ol ), such that (??) holds for the values XY ), RY ), RY. The

edges of the tree go from each component ég) to all the components [of the (g + 1 — go)-th level]

formed by the (g + 1)-squares that lie in Cz(,g). (The tree does not reflect the connections between the
(9)

adjacent g-squares in the same component Cy”’.)
Now let w denote Y w( ég)), where the sum is over all the leaves C$Y). Since i.r.( ,(,-")) >f>10

for every leaf- component Cz(,g ), all the g-squares lying in such a component are affected only by the
zeros of p(x) lying in this component. Therefore, by the argument used in Remark ?? we deduce that

w < 4m. (8.4)

Next, we recall that the squares &g) superscribing the components q(f ) for g > go are f-isolated
only if these components are leaves, and then we deduce the following result.

)

Lemma 8.2 Every component C&g , g > go for go of (8.1), has an ancestor-fork (that is, an ancestor
with at least two children) at level g1, g1 > g — go — log (fw(CTSg))) + 6, where f is the input value of

Problem 7.1 and Algorithm 7.1, § =0 if C&g) is a leaf (that is, an invariant output component), and
0 =1 otherwise.
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Frooi. Let Uy’ have 1tS closest ancestor-1ork Cy~ " at some level g;. lhen the distance irom Xq, °
to the closest zero of p(x) lying outside Cz(bg) is at least R*/29 + 2R*/290%91 because such a zero

of p(z) is separated from x% by both a g-square lying in cy and, therefore, having side length
2R, = 2R*/2Y and some square S(X, R*/2979) discarded in Stage go + g1 and, therefore, having

side length 2Ry, 14, = 2R*/290791 . On the other hand, observe that RY <R qw(C @), R* = 29R,.
Consequently, i.r.(S(g)) > L429790°9%0 - Therefore, log(i.T.(qug))w( (g))) >g—go— g1+ 1 On the

= w(cl?)
other hand, if C(g) is a leaf of T, then i.r.( 1(,971)) < f for the parent Cq(, R of C&g), and otherwise
z.r.(Sq(f] )) < f. Combining the above relations completes the proof of the lemma. O

Lemma 8.3 Fvery component C&g), foru=1,...,v(9), g =3,...,G, is covered by

s(g,u) <2+ [(w(CP))/2]

squares that are suspect in Stage g — 2.
Proof (cf. Figures 3 and 4). Let the component C(g) consist of g-squares S (9) ...,Sgi (with side

1,u°

length 2R*/29), L = w( (g)), and let it be covered by (g — 2)-squares 8(9_2), e Sé;qu—Z) (with side

1,u
length 8R*/29), where each (g — 2)-square Sgif ) contains at least one g-square S(?)) , so that £ =
s(g,u) < L. Furthermore, £ = L is possible only for L < 4. Indeed, otherwise the connected component
ngg) = U; SZ-("Z) must contain some pair of g-squares that lie in a pair of (¢ — 2)-squares having no
common vertices. Any chain of g-squares connecting such a pair of g-squares must contain a pair of
g-squares adjacent to each other and lying in the same (g — 2)-square, which implies that L > [. To
relate L and ¢ more precisely, let us assume that the squares S (g) have their upper and right edges
deleted, let us represent each g-square by its southwestern vertex and let a line interval connect each
pair of such vertices representing a pair of adjacent squares. Then the edges of the resulting graph
G should cross or at least touch all the squares S](-ﬁ;Q), j=1,...,£4. Four edges of G are sufficient to
cross or to touch four squares Sj(-it_m that form a single (g — 3)-square but at least 4 edges are needed
to meet any other (g — 2)-square or any pair of such squares, respectively (see Figures 3 and 4 ). This
gives us the desired estimates, | <4+ |(L —4)/2| =2+ |L/2]. O

Corollary 8.1 s(g,u) < 5w( @(Lg))/7 if w(Cqsg)) > 6.

Our next goal is to prove the following result.
Proposition 8.1 Let us denote Zf:goﬂ w(g) by Wi. Then
Wi = O((1 + log f)m). (8.5)

(Later on, we will deduce a similar estimate for the value Zg"zl w(g), which we will denote by Wj.)
Proof. Due to Lemma 8.1, it suffices to prove Proposition 8.1 under the assumption that for any g
the closure of any g-square contains a zero of p(z). In particular this assumption implies that each

node C&g ) that is not a leaf represents a component containing not more suspect squares than all its
children do together, that is,

1
w(CF) < > w(C ), (8.6)
r(u)
where the summation is over all the children C(“E] +)1) of the node C(g).
Write wg = 3=, , w( q(ﬂ)), wg = D o W( (g)) where > and >_* denote the sums in all the pairs g

u,g
and u such that g > g, 1 < u < v(g), w(C( )) < 6, provided that >_* is the sum where C9) are forks

and leaves, that is, includes no pairs (g, u) such that the node C(g ) of the tree T has exactly one child.
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lgnoring the components Cy ° With w((y ) < 0, we obtaln that, like the leaves themselves, all thelr
parents together contain at most w suspect squares (by(8.6)), all the grandparents of all the leaves
together contain at most (5/7)w (by Corollary 8.1), and so on, so that

o
Wi —we < 2w _(5/7)" = Tw < 28m (8.7)
i=0
(cf. (8.4)), and it remains to estimate wg in order to prove (8.5).

Lemma 8.2 implies that in the tree T' every node C$9 such that w( T(Lg)) < 6 has less than log(6f)
its successive predecessors with a single child. Due to the bound (8.6), each of these predecessors

contributes at most w( (9 )) to the sum wg. It follows that
ws < (1+ log(6))w; = wj log(12f). (53)

Let us estimate wg to complete the proof of Proposition 8.1. We observe that the tree T' has at
most m leaves; therefore, it has at most m — 1 forks (the nodes with more than one child). Therefore,

the sum }* consists of at most 2m — 1 summands, w( ,Sg)) < 6. Consequently,

wg < 6(2m — 1) = 12m — 6.

Combining this bound on w§ with (8.7) and (8.8) implies the bound (8.5) of Proposition 8.1. O
Proposition 8.2 Denote Egozl w(g) by Woy. Then

Wy = O(m + loge).

Proof. At first, similarly to (8.4), we obtain that
w(g) <4m, g=1,2,...,G. (8.9)
(9)

Let us next estimate the overall number wg of the g-squares in the components C}”’ where

w(C{?) <6, g<g. (8.10)
We combine (7.1) and (8.10) to deduce that

we < 6(log(6e) + 1). (8.11)

Indeed, as g increases, r.r.(S§g )) never decreases, whereas it grows by factor at least 27 /6 in h successive

steps. This follows because S§g) and S§g+h) are equivalent to each other, R§g) > 2hR§g ) Jw(g + h)
and w(g + h) < 6 by (8.10). Now the bound 2"/6 < e, or equivalently, h < log(6e), follows since
r.r.(S%g)) never exceeds 1 and since we initially have (??). The latter inequality and (8.10) combined
imply (8.11).
Combine (8.9), (8.11), Lemma 8.3, and Corollary 8.1 and deduce Proposition 8.2. a
We have deduced Propositions 8.1 and 8.2 for a single application of Algorithm 8.1, which we
actually invoke O(k) times in the process of performing Algorithm 7.1. Let us extend these propositions

to bound the sum W = Z?Zl w(g), considered over all applications of Algorithm 8.1. (In fact, there

are at most k£ — 1 such applications.) In every application every output disc D&g ) satisfying the relation

(?7) but not (??) (that is, f-isolated but not embedded into an equivalent and f-isolated disc of a
radius at most €) serves as the input disc in the subsequent application of Algorithm ?? of the next
section. This algorithm solves Problem 7.1a and, in turn, outputs either a final (€/3)-cover of all the

zeros of p(z) lying in D or an input square for Problem 7.1b and Algorithm 8.1. In the latter case
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we substitute the€ new tree generated 1n tne latter appliication oI Algoritnm o.1 10r the€ réspective l€al
of the tree T' defined in the preceding application of Algorithm 8.1. In this way, we construct a single
tree associated with all the O(k) applications of Algorithm 8.1 within Algorithm 7.1 and having at
most k leaves. (8.9) and Proposition 8.1 (with m replaced by k) are immediately extended to the
entire computational process represented by the latter tree, whereas the bound (8.11) is applied k£ — 1
times, so that the bound O(k + kloge) replaces O(m + loge) of Proposition 8.2. Summarizing, we
arrive at the following result, which bounds the overall number W of the g-squares in all components
ngg) for u and g.

Proposition 8.3 Let (7.1) hold for a fized e > 1 and let W denote the overall number of the g-squares
processed in all applications of Weyl’s Algorithm 77?7 within Algorithm 7.1. Then

W = O(k + klog(ef)).

We now recall that each proximity test in Algorithm 6.1 (one for each suspect square) is performed
by means of Algorithm 3.1 at the cost bounded by Oa(nlogn). Therefore, Proposition 8.3 implies
the following estimate.

Proposition 8.4 The computational cost of all applications of Algorithm 8.1 within Algorithm 7.1 is
bounded by OA((1 + log(ef))knlogn). In particular, for log(ef) = O(logn) the latter bound turns
into Oa((logn)?kn), whereas for e = O(1) and f = O(1) it turns into O (knlogn).

9 Contraction of a Complex Square.

Our next Algorithm 9.1 solves Problem 7.1a, but we will start with three remarks on some cases where
the solution can be obtained immediately and on the possibility to start with an input square rather
than a disc.

Remark 9.1 The input disc for our Algorithm 9.1 for Problem 7.1a is assumed to be either given from
outside (initially) or supplied by the solution of Problem 7.1b produced by Algorithm 8.1. Application

of Algorithm 9.1 to the invariant output components Cz(tg ) of Algorithm 8.1, however, is motivated only

if a g-square has sides of length 2Ry = R* /2971 which is at least as large as the half-length R&g) of a

longer side of the smallest rectangle superscribing C,Sg), that s, if

2R} > RY). (9.1)
(9)

Indeed, otherwise the component Cy’’ contains a pair of g-squares S(Xi,Rj) and S(X», Rj) with
| X1 — Xo| > 4R;. Now recall the definitions of d*(U) and p(S) (cf. Definitions 2.1 and 2.3) and, as

before, let Sq(f) = S(X&g),R,(Lg)) denote a smallest square superscribing Cqsg). Then, by Proposition 2.1,
by the definition of S&g) and g-squares, and by (3.1), we have

d*(ngg)) - d*(C’,(ﬂ)) > | X, — Xo| — 51/N2\@R; > (4 — 51/N2\/§)R;’

& (5P)) > 20(59) — 2R)(1 +5VV3).
It follows that

3

2p(SE)/'(SP) <1+ (14 5D/ (2 - 5YNVE) = T

«( g(9)
Consequently, r.r.( &g)) = ;lg?z)i > Z_SIQN‘& > 0.17 for N > 32 (c¢f. Proposition 2.2 and (3.2)),
o(S4

which means that the requirements to the solution of Problem 7.1a are satisfied for the square S* = S@(Lg)

22



ana ]07‘ e = J./U.J.'( . 'l'/lUS, we may S’mely continue tne recursive process 0] parmtzomng act tne g-
(9)

squares that lie in the component Cy’, instead of application of Algorithm 9.1. Furthermore, since a
few steps of Algorithm 8.1 are usually less costly than the application of Algorithm 9.1, we may extend
Algorithm 8.1 by applying a few such additional steps g and shift to Algorithm 9.1 only if (9.1) holds
in all these steps.

Remark 9.2 If k = n, then we do not have to apply Algorithm ??, since we may first compute and
output X = —pp_1/(npn) = 3 j—1 zj/n and then apply a simple modification of Algorithm 3.1 to
compute and to output a desired approzimation R* to rpi1_r(X) = r1(X) from above.

Remark 9.3 Suppose that initially one is given an f-isolated square S = S(Xgy, R) (rather than disc
D) containing k zeros of p(z). Then one may apply two stages of Algorithm 8.1. If the union of all
2-squares is covered by a single square S(W, R/2) with side length R, then |W — Xo| = R/+/2, and the
smallest disc covering the latter square is equivalent to S, has a radius at most R/\/2, and, therefore,
is f-isolated since |W —zj| > | Xo —z;| — R/V/2 > (f —1/v/2)R for all the zeros z; of p(x) lying outside
the input square S and since fR/V2 < (f —1/v/2)R for f > 10. In this case we may apply Algorithm
9.1 with such an input disc. Otherwise, based on the argument of Remark 9.1, we may define a square
S* equivalent to S with r.r.(S*) > 0.17. Then S* satisfies the requirements to the input square of
Algorithm 8.1 for any e > 5.9, and we may apply this algorithm to S* or, even simpler, we may just
continue its recursive application to the available 2- squares.

We will next describe the algorithm, estimate the computational cost of its performance, and show
its extension. Its correctness proof in the next section will exploit the relations (9.2)-(9.4) below
imposed on the input. The algorithm consists of Newton’s iteration (see (9.5) below) and application
of the techniques of sections 2—4 in order to check after each iteration step if the requirements to the
solution of Problem 7.1a can already be satisfied.

Algorithm 9.1

Input and Output as for Problem 7.1a, plus two input values, A > 0 and an integer N > 32, where
e, f, A, N satisfy the following relations:

e>4V2(1+A)?/(2 - 5N | (9.2)
(f —2)k/(n—k) > 6, f>maz{10,(1+ A)?)}, (9.3)
1/60 = (1 —2/e)((f —2)k/(n — k) —3) > 18(1 + 4(1 + A)?). (9.4)

Computations:
1. For the f-isolated input disc D = D(Xy, R), compute the complex values
Y = Xo+ 2R exp (2nhv/—1/2%), h=0,1,...,2" — 1; v = [logn].

Then compute the values p'(Y), h =0,1,...,v — 1. Choose the smallest h such that p'(Y}) # 0
and write t =Y},

2. Compute the value

(9.5)
3. If p(X) =0, write r = r(X) = r* = r*(X) = 0. Otherwise, fiz a natural N > 32 and apply

Algorithm 3.1 (Turan’s prozimity test), which outputs 7 = r(X) and r* = r*(X) = 5/Nr. (Note
that r*(X) > r(X) > r(X).)
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4. APPLY ALGoOTINM 4.0 10 COMpute e vatues v, r¢ \A) ana rg\A ), WHRETE Ty \A) = T/{1 T
A), rH(X) = min{r(1 + A),I(X, D) + 2R}, (X, D) is the distance from X to the input disc
D, (X,D)=04iXeD,r;(X)<rs(X)<rf(X),s=n—k+1, A is an input value of the
algorithm, and r4(X) is the s-th root radius of p(x) at X (cf. Definition 2.6).

(a) If ri (X) < €/3, output the disc D3 = D(X,r{ (X)) as a common f-isolated r (X)-cover
of all the k zeros of p(x) lying in the input disc D and stop.
(b) Otherwise if

ry (X) = (X)) > 2V2r (X) e, (9.6)

define the intersection I = ST NS of the square ST = S(X,rf (X)) ( which contains all the k
zeros of p(x) lying in the disc D = D(Xy, R) ) with the square S = S(Xo, R) (containing D). T
is a rectangle (lying in S and equivalent to D). Output a smallest square S* containing I and

lying in S and go to Algorithm 8.1. (We will show in the next section that in this case S* is an
(f /V/2)-isolated square equivalent to D and satisfying (7.1).)

(c) Otherwise write
t=X +2rf(X) (9.7)

and go to Stage 2.

Remark 9.4 Our Algorithm 7.1 can be immediately extended to compute a solution to Problem 7.1
under the additional requirement that e, < € for a fized set of positive €5, h =1,...,ky. In particular
each €} can be defined as a fized function in € and in the index i(p(x), Do), to adapt the output
precision to the condition of the zeros. Also the precision of computing may (and should in practical
implementations) be adapted respectively, to avoid the expense of performing excessively accurate in-
termediate computations. In particular performing the g-th step of Weyl’s quadtree process for solving
Problem 7.1b one should not drive to error bounds much below the level of 2R* /29 of the side length
of the g-squares, whereas the computational precision used in the process of solving Problem 7.1a (by
Newton’s iteration) should be tuned to the level of the upper bound r;+1_k(X) on the (n + 1 — k)-th
root radius at X, which we compute in Stage 4 of Algorithm 9.1.

10 Analysis of Algorithm 9.1

We will next analyze Algorithm 9.1 to prove its correctness and to estimate the computational com-
plexity of Problem 7.1.

Let us start with proving correctness. We will consider separately cases (a), (b) and (c) of Stage
4.

Case (a). Let rf(X) < ¢/3. Then the disc D3 = D(X,r{ (X)) is an (¢/3)-neighborhood of all
the k zeros of p(z) lying in the input disc D = D(Xo, R). It remains to prove that i.r.(D./3) > f. We
have R > € > 3rT(X), for otherwise already the input disc D would have been an f-isolated e-cover
of all the k zeros of p(z) lying in this disc, and then we would not have invoked Algorithm 9.1. On
the other hand, the discs D, /3 and D have common points (the k zeros of p(z)). Therefore,

|Xo — X| <7 (X) + R < 4R/3,
so that
min |X - z| > (f - 4/3)R > (3f - 4)r] (X).
J

Consequently, i.r.(D,/3) > 3f —4 > f since f > 10 (cf. (9.3)). This proves correctness in case (a).

Case (b). We need to show that (7.1) holds for the input value e of Algorithm 9.1 and that the
square S* is (f/+/2)- isolated. By the definition of r}(X), the disc D* = D(X,r} (X)) is equivalent
to the input disc D, and we obtain that

d*(8T) = d*(D) 2 (ry (X) = r*(X)/V2 , p(8%) =7 (X)

S
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\CL. Denniions 4.1 anda z.9). 10€ 1latter relations togetner with Froposition 4.4 1mply that r7.7.(o ° ) =

d*(ST)/(2p(ST)) > % Apply (9.6) and obtain that r.r.(ST) > 1/e. On the other hand,

2p(S*) is the length of the longer side of I, and I C S*, so p(S*) > p(S*), whereas d*(S*) = d*(S™)
since S* and ST are equivalent. Therefore, r.r.(S*) > r.r.(ST) > 1/e, and (7.1) is verified. On
the other hand, §* C S, and consequently, i.r.(S*) > i.r.(S) > i.r.(D)/v/2 > f/+/2. This proves
correctness in case (b).

Case (c). Correctness of the algorithm will follow when we prove quadratic convergence of Algo-
rithm 9.1 under the following assumption.

Assumption 10.1. In Algorithm 9.1, a series of J successive recursive applications of Stage 4 has
not been interrupted by cases (a) or (b).

Our first goal (to be reached in Lemma 10.6) is an upper estimate on 75(X)/R (in terms of r5(¢)/R)
at each recursive application of Stage 4, where X and ¢ satisfy (9.5), s =n+1—k, and r5(z) denotes
the distance from z to the k-th closest zero of p(z), (cf. Definition 2.6). With no loss of generality,
we will assume that Xy = 0 and an f-isolated input disc D = D(0, R) contains exactly k zeros of
p(z), z1,...,28, 1 <k < mn, R being an upper bound on r,1_(0). [Indeed, we may re-enumerate
the zeros of p(z) and shift from any input disc on the complex plane to the disc D by shifting the
variable z.] Thus we have our initial relations:

t| = 2R, |z| <R, j=1,...,k

|zj| > fR, j=k+1,...,n. (10.1)
We write
k n 1
Z = (10.2)
Sz jek1 T T F
and deduce the equation
p'(z)/p(z) = Q(z) + V(z). (10.3)

We will simplify our analysis by assuming (with no loss of generality) that |¢| < 2R. This bound
holds for our initial ¢ and is maintained inductively, as we will prove later on in this section (after the
proof of Corollary 10.1).

We let D,,;, denote the smallest disc that is equivalent to the disc D,

Dpyin = D(XminaRmin)a Rypin = (’I‘.T‘.(D))R, Xmin € D.

Let us also write

q(z) =z —k/Q(z), ¢ =q(), (10.4)
V(z) = (z — q(=))V(2)/k = V(2)/Q(z), V=V(). (10.5)

We will next prove some auxiliary results.

Lemma 10.1 Let z lie outside the closed disc Dyip. Then Q(x) # 0, and the complex point q(z) of
(10.4) lies in the closed disc Dpp,.

Proof. With no loss of generality, let X,;, = 0 and let z be positive. Then the real parts of z — z;
and 1/(z — z;) are positive for all j. Therefore, Q(z) # 0. It remains to prove that ¢(z) € Duin.
Write y,(z) = 1/(z — z) and let y;(Dpin) denote the image of the disc Dy, in the map z — y,(2),
that is, Yz (Dmin) = {yz(2) : 2 € Dpin}. Since y(z) is the reciprocal of a linear function in z and
since £ € Dy,in, we apply a known result from the theory of conformal maps and analytic functions
[?] and deduce that y;(Dpn) is a disc. On the other hand, y;(2;) € yz(Dmin), for j = 1,2,...,k,
since zj € Dpp, for j = 1,2,...,k. Therefore, the average value Q(z)/k = (1/k) Z?Zl Yz(2;) lies in
Yz (Dimin). The inverse map, y, ' (w) = z—1/w, transforms y, (D) into the disc Dy, and therefore,
q(z) = yz*(Q()/k) € Drin. O
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Lemma 1lV.a A —g=\t—q)v/{L+ V), where A, g, L ana V satisjy tne equations (J.9/, (1U.4/) ana
(10.5).

Proof. Due to (9.5) and (10.3) we have
X =t—k/(Q(t) + V(t)).

Deduce from (10.4) that Q(t)/k = 1/(t — q), substitute this expression into the above expression for
X and deduce that

X=t- = —t- -4
1/(t—q)+V(t)/k 1+ @ —qV(t)/k
Substitute (10.5) and obtain that
t—gq tV+gq
X=t- - .
t 14V 1+V
Therefore,
__tV4g
Tarv 17

tV—qV _(t—qV
14V 14V~

Lemma 10.3 Under the assumptions of Lemma 10.2 we have

Vom0V

TV S Fenovaer

Proof. Apply the equations (10.5) for z = ¢, recall that |t — g| < rs(t), and deduce that
VI =1t —ql [V®)|/k <rs @)V (8)|/E,

1+ V] <11 =|V[| <1/]1 =7 @)V (2)[/E]-

Combine these bounds on |V| and 1/(1 + |V|) and obtain Lemma 10.3. O
Hereafter we will write

D, = D(z,rs(z)), fors=n+1—-k, z=1t, z =X, (10.6)
for r5(x) denoting the s-th root radius of p(z) at z (cf. Definition 2.6).
Lemma 10.4 Under the assumptions of Lemmas 10.2 and 10.3, we have | X| < 4R.
Proof. Combine Lemmas 10.2 and 10.3 and obtain that
|X —ql <t —ql/(k/~(t) - 1),
where y(t) = r5(t)|V(t)|- The relations |t| < 2R, (10.1) and (10.2) together imply that r4(¢) < 3R,
V() =)V ()] < 3RV (H)] < 3(n —k)/(f —2).

Combine this bound with (9.3) and obtain that

kjy() > L2k o

~ 3(n—k)

Therefore, | X — ¢g| < |t — ¢| < 3R, and since g € Dyip, we have |g| < R, and consequently |X| < 4R.
O
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Lemma 1V.o0 LEel T &€ Umin- LNEN

(r,(8)/ R) 10

OIS 2lmin B [ ) RO

where s=n+1—k and

4= R|V(t). (10.8)

Proof. Recall that |t| < 2R < 4R, |X| < 4R, f > 10. Therefore, by (10.1) and by the definition of
D, given in (10.6), we have z; € Dy, j =1,...,k, for z =t and x = X. Consequently, for z = ¢ and
z = X we have Dy,;, C Dg; furthermore, the discs D, and Dy, have a common point z; for some
j < k on their boundary circles. Therefore, r4(z) — 2R < |z —a| < r4(z) if @ € Dy, for z = ¢ and
z = X. On the other hand, ¢ € Dy, due to Lemma ?? and since ¢ = ¢(t), t € Dpin (cf. (10.4)).
Therefore, 75(x) — 2Rmin < |z — q| < r5(z). Combine the former of these inequalities for z = X with
the equation of Lemma ?7, then apply the latter of them for £ = ¢ and obtain that

rs(X) = 2Rumin < |X — g = [t — | [V/(L+ V)| < 7 ()IV/(L + V)].

Combine the latter inequality with one of Lemma 10.3 and obtain that

o @AV
o) = 2R < 4 OV I

This bound and (10.8) together immediately imply (10.7). O
The next lemma extends Lemma 10.5.

Lemma 10.6 Let s=n+1—-k, e > 2, t & Dpin, and

TS(X) > eRmin- (10'9)
Let f satisfy (9.3) and (9.4). Then
rs(X)/R < (rs(t)/R)?0, (10.10)
for
09— 1
(1—2/e)((f —2)k/(n — k) =3)
of (9.4).

Proof. From (10.7) and (10.9), obtain that

—9/e)r (rs()/R)?n _  |(rs(t)/R)
(1-2/e)rs(X)/R < OB~ 10T — TR (10.11)

Next obtain from the equations (10.2) and (10.8) that

The relations (10.1) and |t| < 2R imply that |t — z;| > (f — 2)R, for j > k. Therefore,

p<



QubSstItute tnis bounda imto (1U.11) and obtaln tihat

(rs(t)/R)”
(f = 2)k/(n — k) — (rs(t)/R)|

We have rs(t) < 3R, since |t| < 2R. We also note that (f —2)k/(n — k) > 3 due to (9.3). Hence we
deduce that )
(rs(t)/R)

1-2 X < .
Substitute the expression for @ from (9.4) and obtain that rs(X)/R < (rs(t)/R)%6. This completes

the proof of (10.10). O
Lemma 10.7. Suppose that (9.6) does not hold at Stage 4 of Algorithm 9.1. Then

(1-2/e)rs(X)/R <

rs(X) > 0.5r; (X) > 0.5r1(X)/(14+A)?, s=n+1—k.
Proof. Unless (9.6) holds, we have
r(X) — (X)) < 2v2rf (X) /e < 2v2(1 + A)*r; (X)/e.

Consequently,

r(X) > (1 2V3(1 + AR/e)r ().
Recall that, 7*(X) < 5'/Nry(X). Therefore,
rs(X) > (1 - 2v2(1 + A)*/e)ry (X) /51N,

Substitute (9.2) and obtain that

rs(X) > 0.5r, (X) > 0.5rF(X)/(1 + A)>.

a
Now recall Assumption 10.1 and let ¢;_1, ¢; and X; denote the input value ¢ and the output values
t and X, respectively, at the j-th recursive application of Stage 4 of Algorithm 9.1 in the series of J
uninterrupted recursive applications of this stage, 7 = 1,...,J. Note that in Lemma 10.6 we have
t=t;_1, X = Xj, whereas in (9.7) we have t =t¢;, X = Xj.
Corollary 10.1. Under Assumption 10.1 and for s =n+ 1 —k, we have

ro(t)/R < (1+ 4L+ AP)(ry(t1)/ R0 < (ru(t 1) /R)/18, j=1,...,7
Proof. By the virtue of (9.7), we have
rs(t) <rs(X)+2rf(X), s=n+1-k, t=t;, X=X;, j=1,...,J,
Substitute the bounds of Lemmas 10.6 and 10.7 and obtain that
ra(t;) < (1+4(1+ 8)")ry(X;),

ro(t) /R < (L4 4(1+ A)?)(ry (X)/R) < (1+4(1 + A)2)(ry(t;_1)/R)%0
Substitute the inequality of (9.4) to complete the proof of Corollary 10.1. O
At the first application of Stage 4, we have |ty] < 2R, 75(tg) < 3R. Recursively substitute the
upper estimates for rs(¢;)/R, j =0,1,...,J, on the right-hand side of the inequalities of Corollary
10.1 and obtain that ,
ro(t;)/R < 18/36% ", j=1,...,J.
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1he latter bounds 1mply that |t5] S fimin T Tsilj) S (L — 16/007 )l = l.of Ior 3 = L,...,dJ.
Thus the initial bound |¢;| < 2R for j = 0 has been inductively extended to all j. We also note
that & < 1/90 under (9.4) and deduce from the above bound on r(t;)/R and Lemma 10.6 that
rs(X;)/R < 3.6/3627", j = 1,...,J. Recall that rj (X) < (1 4+ A)%r,(X) for all X and deduce the
next result.

Proposition 10.1. Under Assumption 10.1, we have

ri(X;)/R < 3.6(1+A)2/36Y ", s=n+1—Fk j=1,...,.J
It follows that unless Algorithm 9.1 stops earlier, its J-th iteration step for

J =1+ [log((2log(1 4+ A) + log(10.8R/¢))/ log 36)] (10.12)

outputs r¥(X) = rf (X) < €/3; then case (a) occurs, and the algorithm stops. This argument together
with the next remark completes the proof of correctness and quadratic convergence of Algorithm 9.1.
a

Remark 10.1 it The j-th successive application of Stage 4 of Algorithm 4.3 may have to include some
root-squaring steps (3.3) in order to lift the isolation ratios of the discs D(t,r5(y)), s =n—k+1,t=1;
to the level (1 + A)?. By (9.3), we have f > (1 + A)2. Since |tj| < 2R and r4(t;) < 3R for all j, we
have i.r.(D(t,rs(t)) > (f —2)/3. By (9.8), f > 10, so that ((f —2)/3)* > f > (1 + A)?, and two
root-squaring steps (3.8) will always guarantee the desired lifting of the isolation ratio. If we assumed
that f > 13, then even a single root-squaring step (3.3) would have always sufficed.

Let us next estimate the computational cost of recursive application of Algorithm ??, in combi-
nation with Algorithm 8.1, where all the @ = O(n) input discs in all @ calls for Algorithm ?? are
arranged in the form of a tree with () nodes. In each recursive step, one may successively or concur-
rently apply Algorithm ?? to all the discs (nodes) of the current level of the tree starting with the
root, at the first step.

The computational cost of performing Algorithm ?? is estimated as follows:

Stages 1, 2: Oa(nlogn) [dominated by the cost of computing the values of p'(Y},) for all hl;
Stage 3: Oa(nlogn) (the cost of the applications of Algorithm 3.1);

Stage 4: Oa(nlogn), for shifting to the polynomial ¢(y) = p(y + X) and for each single step of
iteration (3.3) (if needed); O (n) for application of other steps of Algorithm 4.3.

According to Remark 10.1, we need at most two root-squaring steps (3.3) in each application of
Algorithm 4.3 at Stage 4 of Algorithm 9.1. The cost of performing each iteration loop of Algorithm
9.1, consisting of its Stages 2-4, is thus Oa (nlogn). Together with the bound (10.12) on the number
of loops, this gives us the estimate

Oa((nlogn)loglog((1+ A)(R/e)))

for the overall computational cost of performing Algorithm 9.1. Substitute b = log(R/e), log(1 +
A) = O(logn) ( we always choose A satisfying the latter relation) and obtain the overall bound
OAa((nlogn)log(blogn)).

In terms of b, the cost bound is cumulative since the size of the output square of Algorithm 9.1
bounds from above the size of its input discs in all subsequent calls for this algorithm (if they are
needed). Thus the overall cost of performing Algorithm 9.1 within Algorithm 7.1 is bounded from
above by Oa((nlogn)log(blogn)) times the maximum number of its concurrent applications, which
is at most k. The resulting estimate Oa ((knlogn)log(blogn)) and the estimate of Proposition 8.4
together give us the overall cost bound for our solution of Problem 7.1. To specify this bound, it
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remailns 1o SpecClly tn€ parameters A, € and jJ satlsiying (J.z2)-\J.x). (J.4)-{J.2) N0l4, 1II we Choose,
say, e = 16n2v/2/(2 — 5'/N), f = maz{4n?,2 + (n — k)(3 + 18(1 + 16n2)/(1 — 2/e))/k}, 1 + A = 2n.
Then Proposition 8.4 gives us the cost bound Oa((logn)?n). Adding the cost bound for performing
Algorithm 9.1, we arrive at the claimed estimate Oa ((nlogn)log(bn)) for the overall cost of our
solution of Problem 7.1.

Remark 10.2 We may decrease the computational cost of performing Algorithm 8.1 by choosing the
values e and A constant (that is, independent of n), say, A =1 and e = 16v/2/(2 — 5'/V). However,
(9.3) for k = 1 implies the bound f > 6n — 4, and we still arrive at the same asymptotic cost bound
for Problem 7.1.

11 Another Variant of Newtion’s Iteration

In this section, we will show a modification of Algorithm ??, where the expression (9.5) is replaced by
the following ones:
(t

.,k P 1
X =t q(t),q(t) p(t)+zj:z;_t. (11.1)

Here zj denotes the current approximation to the zero z; of p(x), whereas X*: denotes the sum in j
over all the natural j corresponding to the zeros z; of p(z) that lie outside the input disc D. Instead
of avoiding the points = and ¢ that annihilate p'(z), we shall now similarly avoid the points ¢ that
annihilate ¢(t). Such a modification of Algorithm ?? will be called Algorithm 11.1 and at every
Stage g will be applied to the largest of the currently unprocessed g-squares. This choice should insure
faster convergence to the disc D,,;,. Below we will show that the quadratic convergence of Algorithm
9.1 will be preserved for Algorithm 11.1 even if we replace the relations (9.3) and (9.4) by the following

o f>2+4/6(n—k)/k, f>maz{10, (14 A)?}, (11.2)
1/60 = (1 —2/e)((f —2)%k/(n — k) —3) > 18(1 + 4(1 + A)?) . (11.3)

If n — k > k/3, that is, if n > 4k/3, then these restrictions on f are weaker than (9.3) and (9.4).
To arrive at such a smaller initial isolation ratio, we may need roughly by twice fewer iterations of
Algorithm 8.1. This saving however, should be weighted against the additional arithmetic operations
required in order to compute the value X via (11.1) [rather than via (9.5)]; for each such an evaluation,
we need 3(n — k) additional ops.

Let us next briefly analyze the convergence of the computed values X to the disc D,,;, where we
apply Algorithm 11.1. The transition from (9.5) to (11.1) amounts to subtracting the value V*(z),
V¥ (z) =37 ki1 L —, from both sides of the equation (10.3), which implies that

*7
Zj

q(z) = p'(z)/p(z) = V() = Q(z) + V(z) - V" ().

The analysis of Algorithm ?? is extended, with the replacement of V(z) = 37714 ﬁ by

V@ -V = Y o) = Y meit oy
j=k+1 J j= J J

The resulting increase of the estimated convergence rate is quantitatively expressed by the following
equation for the main parameter 6 of Lemma 10.6:

1

= U2/ — 2%k k) —3)’
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and the bouna \j — 4)F/\n — ~) =2 0 1s r€placed Dy (J — 4)"~F/\n — k) 2 0. 1n other words, tne
statement of this basis lemma remains unchanged, except that in the expressions for € the quantity
f — 2 should be replaced by (f —2)2. For f > 3, the replacement of f —2 by (f — 2)? decreases 6 and,
therefore, increases the convergence rate defined by (10.10). Furthermore, this replacement enables us
to preserve the quadratic convergence of the algorithm provided that the upper bound on the initial
isolation ratio f for the disc D satisfies the relations (11.2) and (11.3) instead of (9.3) and (9.4).
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Appendix.

A. Economical Computation of the Shifts of the Variable
in Weyl’s Algorithm.

Let us first recall a well-known algorithm [ASU75] that reduces the shift of the variable to poly-
nomial multiplication. Let t(z) = S o tiz%, p(z) = St piz’, t(y) = p(y + A). Then we have t, =
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and obtain that w; = 7% _gu;vi—j, i =0,...,n.
This reduces the computation of g, ..., %, to the computation of the coefficients wy, .. wn of the
polynomial product, w(z) = u(z)v(z) where u(z) = 31 o uiz’,v(z) = Y7o vj2?, w(z) = Ek o WrTk.

The computation can be reduced to the evaluation of u(xz) and v(z) at the 2™-th roots of 1 for
m = [logs(2n + 2)] (via two forward FFTs), pairwise multiplication of the computed values, and
inverse FFT.

In all shifts used in Weyl’s algorithm, we may choose the same polynomial u(z) = Y F_, pphlz",
and then a single FFT will suffice for the evaluation of such a polynomial at the 2™-th roots of 1.

As this was pointed out to us by G. Dos Reis, some evaluations of the polynomials v(x) can be
saved too. Indeed, observe that in some cases we need to shift the variable by both A and —A. This
can be reduced to the evaluation of a pair of polynomials v(x) and v(—z) at the same 2™-th roots of
1, and both such evaluations amount to a single FFT.
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Figure 1: Isolation and rigidity ratios for squares.
ir.(S(X,r)) > R/r, ror.(S(X,R)) >r/R.

The dots show all the zeros of p(z) lying in the larger square. They also lie in the smaller square.
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Figure 2: Weyl’s algorithm.
The dots show all the zeros of p(z) lying in the large square.
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Figure 3:
14 smaller g-squares represented by their southwestern vertices (shown by black circles) are covered
by 8 larger (g — 2)-squares.
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Figure 4:
16 smaller (g + 2)-squares versus 10 larger g-squares of Weyl’s algorithm, with diagonal connections
allowed.

40



