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The classical bisection method is a reliable approach to the solution of the symmetric eigenvalue prob-
lem [Par], pp. 53-54; [GL], pp. 437-443, particularly effective for approximating a few eigenvalues
confined to a fixed interval. Successful acceleration of the convergence of this method usually attracts
a lot of interest; celebrated examples are given in [B], [LPS], and [PR]. In this paper, we propose new
acceleration techniques, extending the ones of [P87], [P89], [P94], originally developed for approximat-
ing polynomial zeros (also compare [DP], [P92]). The presented analysis of our algorithms and the
formal rigorous proofs of all the complexity estimates are quite involved, but the implementation and
coding of our algorithms are sufficiently simple, and the results of our numerical experiments, pre-
sented in section 13, confirm the expected behavior of the algorithms, which substantially accelerate
bisection for higher precision approximation of the eigenvalues.

Our bisection acceleration relies on some general techniques of convergence acceleration, already
proved to be effective for approximating polynomial zeros [P87], [P94] and matrix eigenvalues [BP91],
[BP92]. These techniques are less known in the numerical linear algebra community but have some
attractive features, such as global quadratic or cubic convergence of iterations (right from the start). In
particular, such a convergence is guaranteed if we have a real symmetric input matrix A whose invariant
subspace associated with the eigenvalues of A from a fixed real interval J is well-conditioned. The
condition of such a subspace is quantitatively measured by ir(J), the isolation ratio of J (according to
our definition 4.1, which we borrow from [P87]), and we supply some effective techniques, which either
define an interval associated with a well-conditioned subspace or enable us to partition the original
problem for approximating k eigenvalues of A into 2 subproblems of smaller sizes. The techniques of
this paper can be also used in order to accentuate the power o known methods, in particular, of the
divide-and-conquer method for the symmetric eigenproblem ( see our remark 9.1 ).

Our paper is organized as follows: We recall some fast methods for the evaluation of the charac-
teristic polynomial of A and its derivative, in section 2, and the bisection algorithm, in section 3. In
section 4, we outline our main algorithm and define the two basic concepts, of a splitting point and an
isolation ratio. To ensure stronger isolation of the eigenvalues, we use bisection in section 5 and the
double exponential sieve process of [BOT] in section 6. Our algorithm 7.1 of section 7 approximates
well-isolated (clusters of) eigenvalues of A. In section 8, we summarize our first eigenvalue algorithm,
which combines the 2 stages: of isolation (via the algorithms of sections 5 and 6) and subsequent
rapid approximation (via algorithm 7.1). The algorithms of sections 7 and 8 are further accelerated in

section 9. In sections 10 and 11, we analyze the 2 algorithms of sections 7-9 and prove their global su-
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In section 13, we show the results of numerical experiments.
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2 Definitions and auxiliary results

Hereafter, A = (a;j, i, j = 1,---,n) denotes an n x n real symmetric tridiagonal (rst) matrix, with
n real eigenvalues A\ > Ao > -+ > Ay o4 = a4, Bj = aj_1,j = aj;—1, A; denotes the i x 7 leading
principal submatrix of A = A,,, p;(z) = det( zI; — A; ) denotes the characteristic polynomial of A;,
p(z) = pp(x) = det( zI, — A ). We have

po(z) =1, pi(z)=z—01, pjlz)=(z—a))pj-1(z) - Bipj—2(z), j=2,...,n. (2.1)

We may precompute the values ﬁ,% for all A in n— 1 multiplications and then apply (2.1) in order to
evaluate the sequence p1(z),...,pn(z), for any fixed z, in 2n — 3 multiplications and 2n — 1 additions.
The number of sign agreements in this sequence (provided that sign(p;())) =sign(p;—1(})) if p;(A) = 0)
equals the number n_(z) of the eigenvalues of A that are less than z ( [GL], p. 438; [Par], p. 131 ).

We will employ a nonlinear recurrence ( [PS], [BP92], p. 120 ) to speed-up the computation and
to avoid overflow. Write R; = R;(z) = p;(z)/pi—1(z), precompute 32 for all i ( this stage does not

depend on z ), compute «; — z for all 4, and then recursively compute
Rj_|_1 =T —0j41 —,3]2-+1/Rj if Rj 7é 0, Rj+2 =T — 0j42 if Rj :0, ] = 1,...,’)’L— 1.

By the definition of R;, n_(z) equals the number of indices j with R; > 0. In 3n & O(1) arithmetic
operations, we obtain all z — «; and all R; for each z, and then n_(z) is recovered in n comparisons
of R; with 0, that is, we need a total of 4n & O(1) operations. If we only need to evaluate R;, for
J=1,...,n, and if we ignore the tests that determine if R; # 0, then the total number of operations
used decrea to 3n £ O(1).

We also extend this approach to the computation of p/(z)/p(z), by recursively computing the ratios

R} = Rj(z) = pj(z)/p;j(z) as follows ( [PS], [BP92], p.120 ):

R; =0, R =1/(z — a1) ,

Ry =R} 5+~ o) (R} 1~ R ) +D/R;, j=23,....n.
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computation of n_(z), the latter evaluation involves no comparisons.

We will measure the computational complexity by the number of operations involved and also by
the number of the evaluations of n_(z), p(z), and p'(z)/p(z).

Hereafter, all logarithms are to the base 2.

3 Bisection algorithm

Algorithm 3.1, bisection algorithm.

Input: an n x n rst matrix A, 3 real numbers a, b, and ¢, 0 < 2t < b — a.

Output: approximations ( within the absolute error bound ¢ ) to all the eigenvalues of A in the
semi-open interval [a,b) = { z: a <z < b}.

Initialize: call the interval [a,b) suspect.

Recursive step: for every suspect interval [¢,7) such that r — ¢ > 2¢, compute n_(q2i); call the
subinterval [2X7, r) suspect if n_(r) > n_((q+7)/2); call the subinterval [g, Z*) suspect if n_(Z*) >
n_(gq); remove the label “suspect” for the interval [g,r).

Stopping criterion: end the computation when all the suspect intervals have length at most 2¢; for

each of them, output its midpoint and the number of the eigenvalues of A lying in it.

Let Aj41,...,Aj+, denote the eigenvalues of A in [a, b),
Aj—l—k-l—l <a< Aj—l—k <...< )\j—f—l <b< >‘j . (31)

By definition, a suspect interval contains at least one eigenvalue. Therefore, at each recursive step,
there are at most k suspect intervals, and at most & evaluations of n_(x) are required, at the midpoints
of all the suspect intervals. In the s-th recursive step, each suspect interval has length (b — a)/2°%, so
that in [H| steps, for

H =log((b—a)/(2t)) , (3.2)

we output the solution. Therefore, the bisection algorithm outputs desired approximations to the k

eigenvalues of A in [a,b) by using 4kn|[H | + O(k) arithmetic operations and comparisons.

4 Accelerated Algorithms ( Outline )

We next outline 2 algorithms that converge with nearly quadratic or cubic rates and support the

complexity bounds of order knlog® H | versus 4kn[H] + O(k) above ]. We need 2 basic definitions.
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distance from the midpoint p to the closest eigenvalue of A lying outside J. Then we write |J| = 24
and define ( cf. [P87], [P89] ) the isolation ratio of J, ir(J)=2D/|J| =D/t .

Definition 4.2 z € J is called a splitting point of J = [u — £, uf) if

n_(p—20) <n_(z)<n_(p+42) .

Whenever our algorithm applied to J = [p — £, 4 + £) computes a splitting point x, we interrupt the
computations and restart them separately for each of the two subintervals [ — ¢, z) and [z, u+£), each
of them containing fewer eigenvalues of A. Since [a,b) contains k eigenvalues, we encounter at most
k — 1 splitting points and need at most k — 1 such interruptions. We may restate our task as follows:
Problem 4.1.

Input: an n X n rst matrix A, real a, b, ¢, and the integers k, n_(a), n_(b) such that ¢ > 0, a < b,
k=mn_(b) —n_(a) > 0.

Output: a splitting point z satisfying the relations of definition 4.2 or an approximation g, within ¢,

to all the eigenvalues of A lying in [a, b).
We will solve problem 4.1 in 2 stages.

Stage 1, lifting an isolation ratio ( see sections 5 and 6 ). Fix a sufficiently large N = N(n) [ cf.

(4.2), (4.3) below | and compute and output a splitting point of J = [a,b) or compute a subinterval

J* of J sharing all its k eigenvalues with J and satisfying the bound
ir(J*) > N . (4.1)

Stage 2, Newton’s iteration (see sections 7 and 9 ). Assume (4.1) and apply one of the 2 variants of
Newton’s iteration specified in sections 7 or 9 and converging with quadratic or, respectively, cubic

rate ( right from the start of stage 2 ) provided that

N > 6n (4.2)
or, respectively, K = n and
N >+Vb6n+2. (4.3)

Stop the iteration when it solves problem 4.1.

5 Linear increase of an isolation ratio via bisection

The next result is immediately verified.
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3.1. Then the bisection of Jg either outputs two suspect intervals of half length ( and then the midpoint

of Jg is a splitting point ) or defines a single suspect subinterval Jgi1 of Jg such that
2 |Jg+1| = |Jal , ir(Ja+1) > 14 2u .

If h bisection steps have been applied to the interval Jg of fact 5.1 such that ir(Jg) > 1+ u and
if neither of them computes a splitting point for Jg, then their output suspect subinterval Jgp has

length |Jg|/2" and has an isolation ratio of at least 1 + 2"u. If
ir(Jg) >3, u>2, (5.1)

then 1+ 2Pu > 1+ 21 5o that ir(Jg) > N for @ = G+ h, h = [log(N —1)] — 1 [ cf. (4.1) for
T =g |-

6 Double exponential sieve for increasing an isolation ratio

In this section, we will yield an interval Jg with its isolation ratio of at least 3 [ satisfying (5.1) |,
by applying the double ezponential sieve algorithm of [BOT], originally proposed for approximating
polynomial zeros. For simplicity, let 4 = £ = 1, let A have a unique ( single or multiple ) eigenvalue
A in the interval J = [0,2), and see our comments on the extension to the general case at the end of
this section.

One bisection step specifies if A lies in [0, 1) or [1,2). Without loss of generality, let 0 < A < 1; then
A has no eigenvalues in [1,2). Now, the idea is to compute n_(z;) not for z; = 2% but for z; = 2~ 2,
1 =1,2,..., which is clearly more effective if A lies near 0. Formally, for a fixed ¢ > 0, we seek 2 real

values @ and b such that

and either

b—a<2t, (6.1)

(in which case | A= (@+b)/2 | <t) or else

SH
IA
Do
S]]

(6.2)
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n_(x;) for z; = 22 §i=1,..., g1, where

g1 = min{floglog(1/(2t))],  min{i, n—(z:) <n—(1)}} .

If g1 = [loglog(1/(2t))], then 0 < A < 27" < 2¢, and we satisfy (6.1) for @ = 0, b = z,,. Otherwise,
A lies in the interval Jg, = { A\, @1 = 24, < X < 24,1 = by }. If g1 = 1, then we write 79 = 1,
Jg, = [1/4,1), so that ir(Jy,) > 5/3, and we increase this ratio to at least 11/3 in at most 2 applications
of fact 5.1. Otherwise, if gy > 1, we apply the same ( double exponential sieve ) procedure to the
interval Jy,. Let go denote the number of the evaluations of n_ () in this application. Then we either

9—292

satisfy (6.1) by setting @ = @1, b =a = a1 + (by — @1) or else obtain that

as = a1 + (51 — 51)27292 <A<a + ([_)1 — 61)2729271 =by .

If go > g1, then by — @y < @1 since by — @1 < by — @y = 1, and we satisfy (6.2) for @ = @, b = by. If
g2 = g1, we argue as follows: According to the definition of @; and b; we have 0 < b; < 1 and @; = Ef.
This yields (for g1 = g2):
by —a@2= (b —a@) 2% —27%) = (b —a1)?
= (b1 —b7)> = b1 (1 - b1)? < b; = ar.

It remains to consider the case where go < gi. Recursively, we arrive at a decreasing sequence of
positive integers {g1,92,...,9u}, such that (6.1) and/or (6.2) are satisfied for @ = @, , b = b,. Then
u < g1 and the overall number of the evaluations of n_(z) in the entire process, including the initial
evaluation of n_(1), is at most

u

G=1+ gi<1l+(g+1)g1/2, g1 =/loglog(1/(2t))] . (6.3)

i=1
Extension. We may immediately extend the above process from the input interval [0, 2) to any interval
J of length 2[, which may contain several eigenvalues of A, so that, in at most G* = (g7 +1)g7/2+ 1
evaluations of n_(z), for g = [loglog(l/(2t))], we either compute a splitting point z in J or output
a subinterval J = Jg- of J containing exactly the same eigenvalues of A as J and such that \j | <2t
and/or ir(J) > 3.
Remark 6.1. The equation (6.3) gives us overly pessimistic estimates. Indeed, under the uniform
probability distribution of random A on [0,1), one may easily deduce that Probability{g; > i} = 2-2"

and similarly, Probability{gy > i} rapidly decreases to 0 as ¢ grows, for all k.
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The algorithms of sections 5 and 6 enable us to reduce problem 4.1 to the following problem:
Problem 7.1

Input: real a*, b*, N, ¢t and integers j, k, n_(a*), n_(b*) such that
t>0, b >a", >0, k>1, j+k<n,

>\j+k+1§a*—0<a/* SA]+kSS)\J+1<b*<b*+CS>\J, (71)

where C = (b* —a*)(N —1)/2, Ao = 400, App1 = —00. ( The interval J* = [a*, b*) contains exactly k
eigenvalues of A, and ir([a*,b*)) > N.)
Output: a real p such that

Ak —t << A1+t (7.2)

and the integers n_(u —t), n_(u + t).

Once these output values are available, we have either
n(p+t)=n_(b%), n(u-1t)=n_(a’)
(in which case p —t < A\jyp < ... <Ay <p+t)or
n_(p+1t) <n_(b")
[ and then p + ¢ is a splitting point, A\j1x < p+1 < Ajpq ] or
n_(u—1t)>n_(a")

[ and then p — ¢ is a splitting point, A\j1x < p —1 < Ajy1 .

For large N and C, the k eigenvalues of A in [a,b) can be viewed as a cluster well isolated from the
other eigenvalues of A. Newton’s iteration for computing the k-fold zero of p(z) rapidly converges to
such a cluster ( cf. (7.4) and section 10 ). Here is a recursive algorithm for problem 7.1 that elaborates
the details, where we will assume that Ny = N is large enough to allow the choice of nonnegative hg
in remark 7.1 below. (We will show later on that N; grows as i grows.)

Algorithm 7.1
Initialization: set ap = a*, by = b*, No = N, t9 = (by — ag)/2.
Recursive step i, i = 0,1,.... Choose a nonnegative h; ( according to remark 7.1 below ) and

compute

c;i = b + (b —a;)h; , (7.3)
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Ni+1+2hi’ Ni—l—th}’ (75)
tiv1 = 2(b; — a;)(hi + 1)2M; / (k — 2(h; + 1) M;) . (7.6)

M; = max {

If t;41 < t, then output u = p;, compute and output n_(u —t), n_(u +t), and end the computation.
Otherwise, compute a;+1 = pi — ti+1, bit1 = pi + tit1, n—(air1) and n_(biy1). ff n_(a*) < n_(ai+1) ,
output g = a;y1, n— (0 —t), n_(p + t) and stop. Otherwise, if n_(bj+1) < n_(b*) , output g = bj41,

n_(p —1t), n—(u +t) and stop. Otherwise, set

Ni — 1)(k — 2(hi + 1) M;)

Nyyy = 1, (7.7)

where M; is defined by (7.5), and go to step i + 1.
Remark 7.1. In our algorithms 7.1 and 9.1, we may choose any sufficiently small nonnegative h;. In
particular, h; should be less than

Ni—-1 (Ni—1)k+2—-2n _ Ni—2 (N;—1)(N; — 2)k — 2(n — k)
R Ter B S 7 Gy i Ty e

min{

respectively. (By our initial choice of N = Ny, these minima are positive for ¢ = 0, and this property
is recursively maintained for all 5.) Due to the symmetry, we may alternatively try h; < —1 [ with
respective adjustment of the expressions (7.5) and (7.6) for M; and ¢; |. To present our algorithms
in a more general form, we include h; as parameters, but the reader may simplify further reading by
assuming h; = 0 for all 5. In particular, in our experiments, reported in section 13, we have let N = 8n
and h; = 0 for all 4; actually we have also performed tests with h; = 1 for all 7; in both cases, we

observed convergence with about the same running time.

8 Summary of an eigenvalue algorithm

By combining our algorithms of sections 4-7, we specify our first algorithm for problem 4.1.
Algorithm 8.1

1) Apply the double exponential sieve process of section 6 to the interval J = [a,b). The process
either solves problem 4.1 or outputs a subinterval J of [a,b) containing the same eigenvalues as the
input interval [a,b) and having an isolation ratio of at least 3.

2) In the latter case, apply h = [log((N —1)/2)]| bisection steps ( supporting Fact 5.1 ) to the interval
J. This either solves problem 4.1 or outputs a subinterval Jg of J sharing all the eigenvalues with J

and having an isolation ratio of at least N.
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interval Jg = [a*, ).

There can be at most k — 1 splitting points of J; therefore, approximating all the k eigenvalues of
A in [a,b) requires at most 2k — 1 calls for algorithm 8.1.

Remark 8.1. The latter ( worst case ) estimate of 2k — 1 is overly pessimistic on the average case,

according to our experiments and some theoretical consideration.

9 Acceleration of algorithms 7.1 and 8.1

If some approximations A} to the eigenvalues A, of A for all r < j and r > j + k are available when we
apply algorithm 7.1 at stage 3 of algorithm 8.1, then we may subtract the reciprocals 1/( A} —¢; ) for
all 7 < j and all r > j + k from the value —p'(¢;)/p(c;) in (7.4), thus decreasing the influence of these
remote eigenvalues on the sum of the reciprocals, —p'(c;)/p(c;). Our further analysis in section 11
and our experiments show that this accelerates the convergence and enables us to decrease the lower
bound on N from (4.2) to (4.3). Next, we will specify the first recursive step of the modified algorithm
( accelerating step 0 of algorithm 7.1 ) assuming for simplicity that the available approximations A}

to all the eigenvalues A, of A, for r =1,...,n, satisfy the bound
AE— A <t = (b—a)/2. (9.1)

In fact, we may ensure this assumption by arranging the steps of algorithm 7.1 so as to work always
with the largest of the available suspect intervals output at stage 2.

We now modify algorithm 7.1 by replacing the values p; [ of (7.4) | by the values

/ J
* PG )
pi =citklg, ¢=-— (_Z)—Z 1=01..

[ This requires 3(n — k) extra arithmetic operations for each i.] We will cite this modification of
algorithm 7.1 as algorithm 9.1 and the respective modification of algorithm 8.1 as algorithm 8.1a.

We may set h; = 0 for all ¢ in algorithms 8.1a and 9.1, which would imply faster convergence but
would leave the value 7(c;) = —p'(¢;)/p(c;) unbounded. We have 2 good options for avoiding overflow.
In one approach, we first compute the reciprocal 1/r(c;). If it is close to 0, we end the computation
by detecting some eigenvalues of A in the interval [b; —t , b;) = [ ¢; —t, ¢;). Another option is to

choose a small positive h;, thus preventing the computer from overflow since

" 1 k n—k

1o A v,
p'(ci) /p(ci) rz::l A — ¢ < h + C — h’

C =@ —a)(N-1)/2, h=b—a)h.

10
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that for large V' and C the latter fraction is positive but close to 0.) In fact, in our numerical

V', which follows from the above inequality for any small positive h} exceeding k/(V — ) (Note
experiments, we experienced no overflow problem even when we simply set h; = 0 for all 4 and choose

ti+1 ( in algorithms 9.1 and 8.1a ) according to the formula

_ 2(hi +1)*(n — k) (b — as) _ 2(n — k)(b; — a;)
B = mmax ( O N =1 = ahg) (N — 2 — 2h)k(1 1 p;f)> - (O'Qt’ (N; — D(N; — 2)k(1 + p2)> ’

Pi = ¢ (9.2)

[ cf. (11.4) ]. In section 11, we show rapid convergence of algorithm 9.1 already for N = On'/2 4 2,
© > 4, and indicate an extension to any © > v/6.

Remark 9.1. [BP91], [BP92] use Newton’s iteration to ensure faster convergence of the divide-and-
conquer (d.-c.) eigenvalue algorithms [C], [DS]. We may further improve this iteration, by using our
algorithm 9.1. [Its power is accentuated in the case of the d.-c. algorithms, which readily furnish us

with splitting points for the eigenvalues of A ( cf. [BP91], [BP92] ).

10 Analysis of algorithm 7.1

Analyzing algorithm 7.1, we simplify the notation by replacing a* by a and b* by b, assume that
2h; < N; — 1, and recall that
n
/(@) /p(z) = trace( (A —2)™) = 3 1/(\ — ) ,

r=1

a< A <b, r=j5+1,....54+k,
M<a—-C, r=j+k+1,...,n,
Ar>b+C r=1,...,7,

where C = (b—a)(N —1)/2 [as in (7.1) ].

For large C and N and small positive hg, the reciprocals of the eigenvalues of A — zI from the
interval [a — z,b — ) dominate in the sum —p'(z)/p(z) = >r—11/(A\ — z) if a < 2 < b. Therefore,
—p'(z)/(kp(z)) closely approximates the average value Sy/k of these k largest reciprocals. On the
other hand, k/Sy lies between \;; — and ;41 —z, and consequently, the value —kp(z)/p'(z) lies in
or near the interval [\jx — =, A\j11 — ). Knowing —kp(z)/p'(z) for = ¢y, we may cover the latter

unknown interval by a small interval lying about g of (7.4) and having a higher isolation ratio than

11
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of the isolation ratio and rapid decrease of the interval length in this recursive process.

Let us examine step 4, for ¢ = 0. Write h = hg, M = M ( to simplify the notation ).

co =b+ (b—a)h [ see (7.3) ], the inequalities listed in the beginning of this section imply that

(@a—b)(h+1) <A —co<(@a—bh, r=j+1,....5+k,
Ar—cog <(N+1+42h)(a—0b)/2, r=j+k+1,....,n,
AM—c>(N—-1-2h)(b—a)/2, r=1,...,7.
Therefore,
j+k
1 k
S(): S )
T:ng_l A —co ~ (a=0b)(h+1)

k
|SO|ZW>

2(n—j—k) - 1
SSIZ Z <Oa
(N +1+2h)(a —b) itk Ar —Co

O<S—i ! < 2
2T - (N-1-2h)(b—a)’

|51+ S| <2M/(b—a) ,

n—j—k 7 n—1

M= <
max{ S oh N l—2h S N—1-2h

[ compare (7.5) |. It follows that

Cplle) 1L 1 S Si+8, S
kp(co)_k;)\r—co_ Pt )=t

_kplew) Kk

Plco)  (1+p)S

consequently,
2(h+1)(n —1)

lo| = |81 + Sa|/[So] < 2(h+1) M/k <

We deduce from (7.1) that

<

1 So 1% o1
Aj_|_1—C() k kT:j_H)\r_CO_)\j—{—k_CO.

Therefore,

Ntk < (k/So) +co < Ayt -

On the other hand, we recall from (7.4) and (7.6), for ¢ = 0, that
po = co — kp(co) /p'(co) ;

12

S1+ S,
p:

So

k(N —1-2h)

Since

(10.1)

(10.2)

(10.3)

(10.4)

(10.5)
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Later on we will show that under the latter choice of t; we have 2¢; < b — a. Our choice of h and N

guarantees that p’(cg) # 0 (since h was chosen less than %) and |p| <1 (cf. (10.2) and

remark 7.1 ), and we deduce from (10.3) that

2(h +1)M 2h+1)M  2h+1)M
k(L= lp]) ~ k(-2 +1)MJk)  k—2(h+1)M "

lp/(1+p)| <

By combining the latter inequality with the bound k/|Sp| < (b — a)(h + 1), of (10.1) and with the

equations (10.6) and

ol __ | 2, L
|(1+ p)So p'(co)  So
[ implied by (10.2) ], we obtain that
k|pl ‘ p(co)
> n 10.7
LTS " o) T So (10.7)

(From (10.4) and (10.7), we deduce that

plco) 1
P(c) 5o

and due to (10.5), we conclude that Aj; 1 +t1 > po . Similarly, we deduce from (10.4), (10.5) and

A+ (B/S0) + o+ | > ¢o — kpleo) /7 (co)

(10.7) that Xjyk —t1 < po -

If t1 < t, we satisfy (7.2) by choosing p = pg. Otherwise, we have 3 cases:
Case a). n_(uo —t1) > n_(a). Then \j 1 < po —t1 < Ajy1 , and pu = pp — 1y satisfies (7.2).
Case b). n_(ug —t1) =n_(a), n_(uo +t1) <n_(b). Then A\j 1 < po+t1 < Ajy1,and p = po + 14
satisfies (7.2).
Case c). n_(uo —t1) = n_(a), n—(uo +t1) = n_(b). Then pg — t1 < Xjpx < Ajp1 < po + t1 , and by
setting

ar = po —t1 , by = po + 11,

we bracket the eigenvalues \j i, ..., Aj41 in the interval [ay,b1) of length 2¢;. The distance from pg to
the closest eigenvalue of A lying outside the interval [a1, b1) is at least C'—t; [for C of (7.1)]. Therefore,

the isolation ratio of this interval is at least

b—a (N =1)(k—2(h + 1)M)
o, oD -L= A(h+ 1)°M

Ny = (C/t)) —1= -1, (10.8)

which is (7.7) for i = 0. We choose N so as to ensure that Ny +1 > N — 1 (c¢f. (7.5)). Then
2t1 =by —a1 <b—a [cf (10.6), (10.8) ], and the first step of algorithm 7.1 either solves problem 7.1
or reduces it to the same problem, but with a, b, N replaced by a1, b1, N1, respectively. We recursively

repeat the i-th step of algorithm 7.1, for i =1,2,... .

13



Substitute the bound M; < m , Implied by (7.5), into (7.6) and (7.7) and deduce that

k —2(h; + 1) M;
4(hz + 1)2(n - 1)
-1 < 4(bi — G,Z)(hz + 1)2(7’1, — 1)
Nz—|—1 +1 = (]\/vZ —1- 2}?,1)(]{: — Z(hi + 1)Mz) ’

for i =0,1,.... For larger N, quadratic growth of N; and 1/¢; follows as i — oc:

Niy1 > (N; — 1)(N; — 1 —2h;)

_1,

biv1 — air1 = 2tip1 = 21

tiv1  biy1 —ain1 n )
t h—a = OGn) Ni/Niww=0(n/k)

(Note that by (7.5) and (7.6), t;+1N; = O((b; — a;)n).)

If h; = 0 for all ¢, the above lower bound on N;;; implies that

(4n —4)(Nip1 +1) > (N; = 1)*(k — 2M;)
> (N; = 1)*(k = (20— 2)/(N; — 1))
— (Vi = 1)(kNi — 20—k +2)
> (Ni—1)(N;i—2n+1) .

Remark 10.1 Note that the latter inequality becomes stronger for £ > 1, and so is the estimate
(10.10) below.
Assume that N = yyn, 7 > 6, and recursively deduce that
Niy1 >%irin, Yipr = (v —2)7/4>6, i=0,1,....

Set v; = 4v; +2,i=0,1,..., and obtain that v, , > (fy;j)Qi for all integers ¢ > 0 and u > 0. It follows

that, for any fixed u > 0,

% t; 1 Ni+u -1 4n — 4 _9i
Nitw > (4(75)% +2)n, 25— < < ()%,
i+1 .
tivur1 < (V)Y b, i=0,1,... . (10.9)

1- 2l+1( _

In particular, for v = 0, we obtain that ¢;11 < (75) a)/2 ( and in fact, a little stronger

bound can be obtained for u > 0 ). Therefore,
e . b—a .
t; <t if i>log(l +log(2—t)/log70)'| ,
or, equivalently, if 7 > f(fya‘), for
T(v5) = [log(1 + H/log7;)] (10.10)

and for H of (3.2). Thus, T('yf)“) recursive steps of algorithm 7.1 suffice in order to solve problem 7.1,

assuming that N = ~ygn, v > 6 [ cf. (4.2) ], 7§ > 1, and h; = 0 for all i. In particular, we have
T(2) = [log(H +1)], for N =10n,

T(16) = [log(H +4)] —2, for N =66n .

14
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We will analyze algorithm 9.1 by extending our analysis from section 10 and specifying N; for all 7.

; 1
For Sy = Zii?—i—l pY—— we have
T
J n
Q0=S+Y d+ > d, (11.1)
r=1 r=jtk+1
1 1 A=A
d, = -7 for all r . (11.2)

- Ar —Co _)\:—Co (Ar —co)(Ax —cp)

We recall that
1 2

<
D —co] ~(N—1-2h)(b—a)’

for r < j and for r > j + k, which we extend to the bound

1 2
<
el SN -2-2m)(—a)’

due to (9.1). Combine these bounds with (9.1), (11.1), and (11.2) and obtain that
190 — S0l < (n— k)/((N = 1= 2B)(N — 2 — 2h)t") .

Write p = (go — So)/So , so that gy = (1 + p)Sp. Deduce from the latter relations and from (10.1) and
(9.1) that
k/|Sol < (b—a)(h+1),

p<Ip’l, p=2h+1)(n—k)/((N—1—2R)(N —2—2h)k) . (11.3)

Our choice of ( small ) h and ( large ) N will guarantee that |[p| < 1 ( cf. remark 7.1 ), and we will

obtain the following bound:
|k/So — k/qol = |p(k/So) /(1 + p)| < 1,
t1:=2(h+1)%(n —k)(b—a)/( (N—1=2h)(N —2—2h)k(1+p")) . (11.4)
We deduce from (10.4) that
Njrk —t1 < pg=co+k/go < Ajp1+ 1t

Thus, step 0 of algorithm 9.1 either solves problem 4.1 or, else, brackets the eigenvalues Aj x, ..., A\j11
in the interval [ai, b1) of length 2¢;, where a1 = p§ — t1, b1 = p§ + t1, and t1 is defined by (11.4).

The isolation ratio of this interval is at least

N = (b-a)(N—-1)/(2t) -1

= [14+p*|(N—=1)(N —1-2h)(N —2—2h)k/(4(h +1)%(n — k)) — 1,

(11.5)

15
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Replacing a, b, N by ai, by, N1, we may recursively repeat the computations. For N = © n0->+v,

© > 1, we have

On5t3V /N =0(1) , as v — o0,

which shows a nearly cubic growth of the isolation ratio in the transition from [a,b) to [a1,b1). b—a

decreases at a similar rate.

Let us set h = 0, denote N = Ny, and obtain from (11.3) and (11.5) that
(4n — 4)(N1 +1) > (No — D)[(No — 1)(No — 2) = 2(n — 1)] = (No — 1)[(No)® = 38No — 2n + 4] .

Similarly, we may bound the isolation ratios N;;; in terms of N; at the next recursive steps, for
i = 1,2,..., provided that h; = 0 for all i. Setting N = Ny = Ogn'/2 4+ 2, for ©g > 4, we may

recursively deduce from these bounds that
Nig1 > 0,402 +2, 0,41 =(02-2)0;/4, i=0,1,....
Denote ©F = (0;/2) — 1 and obtain that
©; =207 +2, Nii> (205, +2)n'2+2, ©5,>(©1)%, i=0,1,....
Therefore, for all integers ¢ > 0, u > 0, we have
Ofru > (0¥ . Niju > (205)* +2)n'/2 +2.

For any fixed u > 0, we have

4n — 14 _ai
titur1/tivy = (Nigy — 1)/ (Nigut1 +1) < (M) — 8Ny —2n 1 4 < ()7,
1TU 1TU
1=20,1,..., and consequently,
oy (1=31T1y/2 )
tigut+1 < (®u) ty, ©1=0,1,.... (11.6)

In particular, for u = 0, we obtain that

(-3itly/n
tit1 < (0p)

(b—a)/2.
Therefore, for H of (3.2), denoting log((b — a)/(2t)), we obtain that

T(©}) = [(log(1 + 2H/ log ©F))/ log 3] (11.7)

16
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N = (205 +2)n'/?2 +2, 05 > 1, ©g = 20} +2 > 4 [ cf. (11.3) ]. In particular, we obtain that
T(2) = [(log(1 + 2H))/log3] , for N =6n"/212,

T(16) = [(log(2 + H) —1)/log3] , for N =34n'/2 42,

1/2

Remark 11.1. By choosing © > 1 and writing N = ©O¢n'/* + 2, we may extend (11.7) to similar

bounds for any O} > /3/2 — 1 or, equivalently, for any ©¢ > /6 [ cf. (4.3) ].

Remark 11.2. To accelerate convergence at the expense of performing a little more work per iteration,

we may generalize algorithms 7.1 and 9.1 by replacing (7.4) by more general expressions, such as

fis = ci — (k/G)"*
- ~ 1 J 1 n 1
q9i = - * - . )
Z Z:l (Ar — ) Z:l (AF — i) ,:J;m (A — i)

for some fixed natural d > 1, say, for d = 3. Note that the value

; m = trace <(A — cZ-I)_d)

can be computed by extending the techniques of section 2. ( In the extension of the same approach
to approximating polynomial zeros, cited in the introduction, the latter value can be easily obtained
from the d leading coefficients of the input polynomial p(z), by using either Newton’s identities or a

simpler known algorithm, cf. pp. 34—35 of [BP94]. )

12 Summary of the complexity estimates

We are ready to summarize our previous analysis so as to estimate the arithmetic complexity of
approximating the k eigenvalues X\jij,...,Aj41, assuming (3.1). We recall that approximating all
the k eigenvalues in the input interval J = [a,b) requires at most 2k — 1 calls for algorithms 8.1
or 8.1a, that is, at most (2k — 1)(Tp + T1(NV)) evaluations of n_(z), for k& < n, and (2k — 1)T5(N)
evaluations of p(z)/p'(z), where [ compare (3.2) and (6.3) | To =1+ (g1 + 1)91/2, g1 = [log(H — 1)],
and T1(N) = [log((N — 1)/2)] are the numbers of the evaluations of n_(z) in each application of
the algorithms of sections 5 and 6, respectively, and T5(N) = [log(cH + d)] is the number of the
evaluations of p(z)/p'(z) in each application of one of algorithms 8.1 or 8.1a. The constants ¢ and
d depend on the choice between algorithms 8.1 and 8.1a and on the choice of the values N and h;.

In particular, by choosing algorithm 8.1 and setting N = (45 + 2)n, h; = 0, for all i, we arrive at

17
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need for 3n extra arithmetic operations in every iteration. By using the worst case operation count

for the evaluation of p(z) and R (z) = p'(z)/p(z) from section 2, we obtain that
(2k — 1)(n + O(1))(4Tp + 4T1(N) + vTo(N)) +n — 1 (12.1)

arithmetic operations and comparisons suffice for approximating ( within an error tolerance ¢ ) the k
eigenvalues of A in J = [a,b) [ cf. (3.1) ] ( for any choice of N satisfying (4.2) or (4.3) for k = n )
provided that either N > 6n and vT5(N) = 81/;(76“) [ compare (4.2) and (10.10) ] or N > 1/6n + 2 and
vTy(N) = 11T(0}) [ compare (11.7) and remark 11.1 ], depending on which of algorithms 8.1 or 8.1a
we apply. (12.1) implies the 2 following estimates for the numbers of arithmetic operations involved

when our 2 algorithms are applied in order to approximate the k eigenvalues of (3.1), respectively:
(2k —1)(n £ O(1))[2[log(H — 1)](1 + [log(H — 1)]) + 4logn + 8log H + O(1)], (12.2)

(2k — 1)(n + O(1)) [2[log(H — 1)T(1 + [log(H — 1)]) + 2logn + 11log H/log3 + O(1)],  (12.3)

where 11/log 3 ~ 6.94. The bound (12.3) is superior to (12.2), thus suggesting a lower complexity of
our second algorithm, which, however, requires some additional assumptions and also is built on the

top of the first one. The operation count above includes
(2k = 1)(n £ O(1))(To + Ta(N)) = (2k — 1)(n £ O1))(1 + (91 + 1)g1/2 + [log((N —1)/2)] )

comparisons needed for calculation of the sign agreements ( see section 2 ), where g1 = [log(H — 1)]
and N is defined by (4.2) or (4.3). This count, however, does not include the cost of the (2k—1)nT2(N)
tests determining whether R; = 0 or R; # 0 and involved in the computation of p'(z)/p(z) . The
estimates (12.1)—(12.3) are the worst case estimates, which tend to be overly pessimistic for the

average input ( cf. remarks 6.1, 8.1 and 10.1 ).

13 Numerical Experiments

Two sets of numerical experiments have been performed to compare the bisection algorithm with
algorithms 8.1 and 8.1a. In the first set of experiments we computed all of the eigenvalues of symmetric
tridiagonal matrices, and in the second set we computed a single eigenvalue.

For algorithm 8.1 we set N = 8n, and for algorithm 8.1a we set N = 4,/n + 2. (Even though the
latter choice of N corresponds to the choice of ®g = 4, ©f = 1, the cubic convergence was expected

and actually observed due to the strict inequality Nj.1 > (20,41 42)n!/2+2.) In both cases we always

18
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using the Gershgorin circle theorem [GL]. The experiments were performed in standard IEEE double
precision arithmetic.

Even though in this paper we described our algorithms performed with infinite precision, they
turned out to be robust enough so that their implementation with finite (double) precision only
required a single and very minor change and only in the case of algorithm 8.1a. The analysis in
section 11 allows us to choose t;1 according to

b 2(h; + 1)*(n — k) (b; — ai)
TNy — 1= 2h)(N; — 2 — 2h)k(1 + p})

However, with such a choice of t;11 the numerical value of n_(u; + t;11) was often equal to the
numerical value of n_(u; —t;+1). We, therefore, computed ¢;1 according to (9.2), which did not allow
the suspect intervals to get too small. This was, of course, just a translation of the above stopping
criteria into a language understood by a computer: when ;1 is set to 0.9t the algorithm should
terminate.

In order to improve the performance of our algorithms in practice, we made some small changes
versus sections 7-12 when we implemented algorithms 8.1 and 8.1a. These changes do not affect the
worst case complexity bounds for those algorithms.

For convenience, we stored the suspect intervals in an ordered doubly linked list. This allowed us
to quickly compute a lower bound for the isolation ratio of a suspect interval from the length of the
interval and the distance between the interval and its neighbors.

We used this approach instead of relying on (7.7) when we computed N;;; (lower bounds on the
isolation ratios) in algorithms 7.1 and 9.1. Because these calculated lower bounds were at least as
strong as (7.7), we did not make the worst case performance bounds any worse, and in practice we
improved the performance.

Secondly, if during the double exponential sieve process we could bound the isolation ratio of the
suspect interval by 2, we stopped the double exponential sieve process and then performed a single
bisection step to bring the isolation ratio to at least 3. Because the double exponential sieve process
would have had to use at least one additional evaluation of n_(x) to increase the isolation ratio to 3,
we again did not affect the worst case bounds.

Thirdly, in step 2 of algorithm 8.1 (or its modification), we stopped the bisection steps when we
computed a lower bound on the isolation ratio that was greater than N; this clearly never required
more, and in fact sometimes used fewer, bisection steps than the [log((N — 1)/2)] steps that would

otherwise be required for step 2 of Algorithm 8.1.
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an interval J = [a,b). If we know that there are no eigenvalues in [a — (b — a),a), or that there
are no eigenvalues in [a,b + (b — a)), then the actual purpose of performing the bisection step at
the beginning of the double exponential sieve process is already achieved, and we can skip this step.
Because we stored the suspect intervals in an ordered doubly linked list, we could sometimes make that
determination and skip the bisection step at the beginning of the double exponential sieve process.

For the numerical experiments, we have chosen ¢ by setting the relative error, t/(A1 — A,), equal to
10715, 107, and 10~7. We computed ¢ by first computing A\; and ), with the LAPACK subroutine
dstev [A], these eigenvalues could have been alternatively estimated with Gershgorin’s circle theorem.

We compared the results computed with the bisection algorithm and algorithms 8.1 and 8.1a with
those computed by the LAPACK subroutine. The differences between the eigenvalues computed with
algorithms 8.1 and 8.1a and the eigenvalues computed with the LAPACK subroutine were always
smaller than the requested precision. The differences between the eigenvalues computed with the
bisection algorithm and the eigenvalues computed with the LAPACK subroutine were smaller than

0~'3 or larger, but they were sometimes up

the requested precision when the relative error was set to 1
to 44% larger than the requested precision when the relative error was set to 10~ 2. This discrepancy
can be explained by the fact that the LAPACK subroutine does not, of course, compute the exact
eigenvalues.

We measured the costs of using the various algorithms both by the actual running time of the
algorithms (on an IBM RISC System / 6000 model 530) and by the number of computations of n_(z)
[ 4n—O(1) operations | and equivalents. The advantage of the first method is that it takes all overheads
into account, while the second method is machine and code independent. ( The code we wrote was
not highly optimized. The timings for all algorithms would clearly improve with hand tuning. ) We

counted computing p(z)/p'(z) [8n — O(1) arithmetic operations] as equivalent to 2 computations of

n_(z), and we counted computing

J 1 n
_;A:—Cz‘_ Z

r=j+k+1

1
A;‘—Ci

[ in 3n — O(k + 1) operations | as equivalent to 3/4 of the cost of computing n_(x).

We ran the numerical experiments described in this section on the ten matrices discussed in [PS].
In Tables 13.1-13.3 we give the costs (both in terms of computations of n_(z) and equivalents and
in milliseconds) of computing all the eigenvalues of these ten matrices with the bisection algorithm,
algorithm 8.1 and algorithm 8.1a.

When we measured the cost of performing the algorithms by the number of computations of n_(z)
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error of 10715, algorithm 8.1a required only about 57% of the computations of n_(z) and equivalents
used by the bisection algorithm for all ten matrices. The improvement over the bisection algorithm
became smaller as the requested precision was made larger, until for a requested relative precision of
10~7 the bisection algorithm used fewer computations of n_(z) and equivalents than algorithm 8.1a.

When we used actual timings, we have found out that algorithm 8.1 was overall more efficient
than algorithm 8.1a. For all ten matrices, algorithm 8.1 used 68% of the time used by the bisection
algorithm when the requested relative error was 10~ °. The improvement over the bisection algorithm
became smaller as the requested precision was made larger, until for a requested relative precision of
1077 the bisection algorithm used less time than algorithm 8.1 for all ten matrices.

These experimental results do not show the quadratic or cubic convergence in the Newton iteration
stage of algorithms 8.1 and 8.1a, of course, since besides this stage the algorithms generally include
the slower bisection stages ( needed for increasing the isolation ratios ) and splitting steps. However,
the high-order convergence of the new algorithms ( O((log H)?) operations, as compared to O(H)
for the bisection algorithm ) can be seen from the relatively slow increase of the cost of performing
these algorithms — when compared to the cost of performing the classical bisection algorithm — as the
allowed tolerance to the errors is reduced and higher output precision is required; in fact, for matrix 1
the cost of performing algorithm 8.1a was the same for relative tolerances of 10~7, and 10~!!. Indeed,
the numerical experiments presented in this section do suggest that algorithms 8.1 and 8.1a can give
a significant improvement over bisection when the desired output precision is high, but that this
improvement disappears for low output precision. This is consistent with the high order convergence
properties of algorithms 8.1 and 8.1a.

In order to judge the performance of algorithm 8.1 for finding a subset of the set of all the eigen-
values of a symmetric tridiagonal matrix, we used both algorithm 8.1 and the bisection algorithm to
find A; for the ten test matrices discussed in this paper. (Algorithm 8.1a can only be used to find a
proper subset of the eigenvalues without actually computing all of the eigenvalues if those eigenvalues
not in the subset are already known.) Let i be the smallest integer for which A\; — \; > 1071%x | Ay |.
For both algorithms, we began with a suspect interval with the left endpoint set to (A1 + A;)/2. The
right endpoint was set by calculating an upper bound on \; with Gershgorin’s circle theorem.

For the same values for requested relative tolerances that we used in the previous set of experiments,
neither of the two tested algorithms had any splitting steps with this choice for an initial suspect
interval. Thus the number of iterations that the bisection algorithm used varied little from matrix

to matrix — it depended only on the ratio of the size of the initial suspect interval to the requested
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The method that we used to set the endpoints of the initial suspect interval could be used to give
an a-priori bound on the isolation ratio of the initial suspect interval, and this bound could be used
to speed up algorithm 8.1. However, we did not use this knowledge in implementing algorithm 8.1;
we assumed that there could be eigenvalues anywhere in (—o0, (A1 + A;)/2).

The results of this second set of experiments are shown in Tables 13.4-13.6. From these tables, we
can see that the story is much the same as when we were computing all of the eigenvalues: implementing
algorithm 8.1 has a lower cost than implementing the bisection algorithm when the requested precision
is high, while the opposite occurs when the requested output precision is low. However, algorithm 8.1
performed even better in this set of experiments than in the previous set of experiments; we see a
greater decrease in the cost of using algorithm 8.1 to find only a single eigenvalue (over finding all the
eigenvalues) than we do with the bisection algorithm.

For desired relative tolerances of 10~!! and larger, algorithm 8.1 used significantly fewer itera-
tion to caluclate A; for matrix 7 than for the other matrices. The reason why so few iterations were
needed is that the largest two eigenvalues of matrix 7 are closely clustered, so the suspect interval with
which we began algorithm 8.1 (as well as the bisection algorithm) had its left endpoint very close to

A1. This resulted in the double exponential sieve algorithm converging quickly to a fairly small interval.
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1

relative error of 10712, The cost is given in the number of computations of n_(z) or equivalents and

in milliseconds. The timing results were obtained by averaging over 10,000 runs.

Matrix Bisection Alg 8.1 Alg 8.1a

Comp n_(x) ms. Comp n_(x) ms. Comp n_(z) ms.

1 194 1.277 103 0.912 86.25 1.062
2 1347 59.507 884 35.248 682 38.077
3 1923 142.080 1412 92.526 1096.25 97.389
4 1246 75.144 972 54.444 769.75 52.542
) 691 30.997 569 24.542 474.25 26.276
6 240 1.935 135 1.395 110.5 1.594
7 201 1.934 233 3.491 175.75 2.918
8 626 19.541 512 16.372 391 15.282
9 1292 57.205 879 35.516 677.75 37.606
10 99 4.350 53 2.562 33.75 1.984
All 7859 393.970 5752 267.007 4497.25 274.730

Table 13.2: Cost of symmetric tridiagonal eigenvalue solvers with relative error of 10~11.

Matrix Bisection Alg 8.1 Alg 8.1a

Comp n_(z) ms. Comp n_(x) ms. Comp n_(z) ms.

1 138 0.924 91 0.845 72 0.945
2 927 40.860 796 32.553 620.25 34.785
3 1223 89.655 1240 81.778 1010.75 89.604
4 853 51.019 793 44.096 649.75 43.953
) 372 16.792 371 16.416 320.75 17.225
6 170 1.383 123 1.305 96.25 1.431
7 117 1.153 150 2.781 116.75 2.181
8 429 13.415 395 12.333 308 11.635
9 902 39.838 787 32.255 620.75 34.417
10 71 3.183 49 2.400 33.75 1.977
All 5202 258.221 4795 226.761 3849 238.154
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Matrix Bisection Alg 8.1 Alg 8.1a
Comp n_(z) ms. Comp n_(x) ms. Comp n_(z) ms.

1 86 0.598 79 0.781 72 0.944
2 537 23.824 656 27.486 539.5 30.373
3 573 42.274 695 50.999 729.5 65.533
4 487 29.482 555 32.027 500.5 33.941
) 163 7.532 194 9.019 174 9.133
6 105 0.881 107 1.202 91.5 1.387
7 65 0.667 o6 0.756 42.5 0.736
8 248 7.851 270 8.802 224 8.763
9 512 22.811 602 26.102 521 29.280
10 45 2.136 45 2.243 33.75 1.978

All 2821 138.056 3259 159.418 2928.25 182.068

Table 13.4: Cost of computing one eigenvalue with two symmetric tridiagonal eigenvalue solvers for the
test matrices from [PS] with relative error of 10715, The cost is given in the number of computations

of n_(x) or equivalents and in milliseconds. The timing results were obtained by averaging over 10000

runs.

Matrix Bisection Alg 8.1
Comp n_(z) | ms. | Compn_(z) | ms.
1 48 0.347 27 0.275
2 47 2.182 32 1.454
3 48 3.675 30 2.092
4 45 2.837 29 1.677
5 48 2.225 29 1.261
6 48 0.423 27 0.305
7 46 0.479 32 0.571
8 45 1.482 28 0.890
9 45 2.085 29 1.263
10 49 2.087 30 1.422
All 469 17.823 293 11.210
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relative error of 10~ 1L,

Matrix Bisection Alg 8.1
Comp n_(z) | ms. | Compn_(z) | ms.
1 35 0.265 23 0.251
2 34 1.593 28 1.317
3 35 2.693 30 2.089
4 32 2.035 25 1.491
5 35 1.636 29 1.262
6 35 0.320 27 0.306
7 33 0.357 16 0.445
8 32 1.069 24 0.796
9 32 1.499 25 1.131
10 35 1.504 26 1.267
All 338 12.971 253 10.355

Table 13.6: Cost of computing one eigenvalue with two symmetric tridiagonal eigenvalue solvers with

relative error of 10~7.

Matrix Bisection Alg 8.1
Comp n_(z) | ms. | Comp n_(z) | ms.
1 22 0.183 23 0.251
2 20 0.961 24 1.180
3 22 1.721 26 1.865
4 18 1.175 21 1.310
5 22 1.050 25 1.127
6 22 0.217 23 0.280
7 20 0.234 7 0.250
8 19 0.656 20 0.699
9 19 0.917 21 0.995
10 22 0.971 26 1.265
All 206 8.084 216 9.221
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