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Abstract

Certified computation of the sign of a matrix determinant
is a central problem in computational geometry. The cer-
tification by the known methods is practically difficult
because the magnitude of the determinant of an integer
input matrix A may vary dramatically, from 1 to ||A]||",
and the roundoff error bound of the determinant compu-
tation varies proportionally. Because of such a variation,
high precision computation is required to ensure that the
error bound is smaller than the magnitude of the deter-
minant. We observe, however, that our certification task
of determining only a single bit of det A, that is, the bit
carrying the sign, does not require to estimate the latter
roundoff error. Instead, we solve a much simpler task of
estimating the minimum distance N = 1/||A7!|| from A
to a singular matrix. This gives us a desired range for the
invariance of the sign of det A, and we show the resulting
simplified methods for the certified computation of the
sign, compare them with other approaches, observe the
possibility of effective combination of our methods with
some known symbolic methods for this problem, and con-
firm the efficiency of our techniques by some numerical
tests.

*Supported by NSF Grant CCR 9625344 and PSC CUNY
Award 668365.
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1 Introduction.

1.1 The problem and the background.

The classical problem of computing det A, the de-
terminant of an n X n matrix A, has long history (see
e.g. [31], [29], [13], [20], [35], [14], [3], [32], [7])- Re-
cently, it turned out that some of the most fundamen-
tal problems of computational geometry (such as the
computation of convex hulls and Voronoi diagrams)
are reduced to the computation of det A or, more
precisely, its sign, that is, testing whether det A = 0,
det A > 0, or det A < 0 [4], [5], [6], [15], [16], [22],
[36], [37].

In many areas of computational geometry, lower
dimensional problems must be solved, and then n
ranges between 2 and 10, usually staying below 5.
In this class of applications, the matrix A is filled
with ”long” numbers, representing the real data with
a high precision (and thus allowing to treat the im-
portant case of a nearly singular input). In another
major class of applications [11], [12], [18], [2], [21],
[30], n is large (say, in the range from 100 to 500),
whereas the matrix A is filled with relatively short
integers (say, represented with 5 to 10 bits). Such
applications include the computation of the orien-
tation of a polyhedron or an algebraic variety in a
high-dimensional space (for instance, such computa-
tions are required in the area of convex optimization
in statistical physics and chemistry).



In both cases we may apply the well known
methods to compute det A based on the triangular
(PLU Py) or orthogonal (QR) factorization of the ma-
trix A. High speed of these computations is ensured
as they are performed numerically, with a fixed (sin-
gle or double) precision, which currently has much
faster computer implementation than rational, inte-
ger, and multiple precision arithmetics. The major
problem, however, is to certify that the output is cor-
rect in the presence of roundoff errors.

Substantial advance in this area was the paper
[8], though the correctness certification of the out-
put of the proposed algorithm (based on the modi-
fied Gram-Schmidt method) complicated and slowed
down the computation. The algorithm of [1] com-
petes with one of [8] for n < 4 but does not work well
for larger n.

Recent progress reported in [4], [5] relies on us-
ing symbolic algorithm that computes det A mod-
ulo several primes pi,...,pr such that their prod-
uct exceeds | det A|. The papers propose effective al-
gorithms for the recovery of the sign of det A from
these data, based on some novel application and ex-
tensions of the Chinese remainder algorithm, which
[4] and [5] reduce to single or double precision com-
putation. The algorithms of [4] and [5] seem to be
among the currently best ones for the problem. Their
bottleneck is the relatively expensive computation
of (det A) mod m;, for i = 1,...,k. The number k
of the pairwise relatively prime moduli m; involved
and, consequently, the computational cost decrease if
| det A| is shown to be smaller.

The algorithms of [34] complement ones of [4], [5]
by computing det A numerically. The correctness of
the output is certified unless the algorithm estab-
lishes a relatively small upper bound on | det A|. This
would be an ideal example of effective combination
of symbolic and numerical techniques, but numeri-
cal experiments show that the techniques of [34] give
too rough bounds, greatly exceeding the actual value
of |det A]. Such a phenomenon occurs because the
range for the values of |det A| is huge (from 0 to
Dt with Dt on the level of Hadamard’s determi-
nant bound, which can be as large as ||A||"), and
the known techniques of error analysis only guaran-
tee roundoff error bounds of order Dtn%e, € being

the machine epsilon (allso called unit roundoff). Such
bounds can be large even where |det A| is actually
small (cf. section 7.3). Therefore, the roundoff error
bounds for computing det A may exceed the value
| det A| substantially.

1.2 Our results.

Our main goal in the present paper was to improve
the algorithms and the estimates of [34] to yield ef-
fective practical solution of the cited central problem
of geometric computations. Our algorithm 3.1 uses
some novel techniques to compute det A numerically.
The techniques lead to much sharper estimates than
in [34]. The algorithm either certifies that the sign
of det A has been computed correctly or shows which
increase of the precision of computing should yield
the certified output. If a very large increase of the
precision is required, then | det A| must be relatively
small, and the transition to the symbolic approach is
appropriate. Motivated by this observation, we also
compute or estimate from above the value of | det A|
in section 6. The computations involve order of n®
(single precision) flops and essentially amount to the
invocation of some widely available subroutines for
matrix computations, which we just combine in an
appropriate order (cf. sections 3, 5 and 6). Numeri-
cal experiments reported in Appendix B confirm the
efficiency of our approach. A major step of our al-
gorithm is the estimation of the distance to a clos-
est singular matrix, and here one may choose among
several known techniques, depending, in particular,
on allowing or not allowing randomization. We de-
scribe several of these techniques in section 5. We
also briefly examine some other techniques as well as
modifications of our approach in section 7.

The major technical novelty behind our improve-
ment versus [34] is the certification of the sign of det A
without estimating the roundoff error of computing
det A. Instead, we estimate the minimum distance N
from the matrix LU to a singular matrix, Land U
being the computed approximations to the factors L
and U in the triangular (PLU Py) factorization of A.
The idea is that det(A + E) does not change its sign
when E ranges in the ball of radius IV centered in the
origin. On the other hand, since N = 1/||U~1L~||



and since the matrices L and U are the two avail-
able triangular matrices, it is not hard to obtain a
certified and quite tight upper bound on N at the
cost of performing O(n3) arithmetic operations and
comparisons. The combination of numerical and al-
gebraic (residue) computation in section 7.5 also has
some technical novelty.

1.3 The order of our presentation.

We present our results in the following order. In
the next section, we recall some known estimates for
the errors of Gaussian elimination due to roundoff.
In section 3, we relate the certification of the sign of
det A in the presence of roundoff errors to the mini-
mum distance from A to a singular matrix. Then we
propose an algorithm for computing and certifying
the sign of det A based on this relation. In section 4,
we show how to use the computed information in the
case where the algorithm does not produce a certi-
fied correct output. In section 5, we elaborate the
stage of estimating the minimum distance to a singu-
lar matrix, which is a major block of our algorithm of
section 3. In section 6, we complement the algorithm
by presenting some techniques for computing or esti-
mating from above | det A|. In section 7, we comment
on some variations of our approach and some alter-
natives. In particular, we indicate some reasons for
the deficiency of an approach of [34] and of one based
on the Barrlund and Sun theorem; we also point out
the modifications of our approach that use Gauss-
Jordan, PLDMTP,, QR (rather than PLUP,) fac-
torizations of A or the LDL” factorization of AT A.
In the appendix, we recall some techniques for com-
puting UL~ and present the results of our numer-
ical experiments.

Sections 1-7 and Appendix A are due to the first
author, Appendix B on numerical tests is due to both
authors. (Without numerical tests, this paper was
unsuccessfully submitted in July 1997 to SODA98
and J. of Symbolic Computation.)

1.4 Some definitions.

Hereafter, A denotes the k-th column vector of A.
w;,j denote the (i, j)-th entry of a matrix W = (w;;).

Il = ||-ll» denotes a fixed operator matrix norm,
in particular we will use the 2-norm ||.||2, the row
norm ||W{|e = max; }°; [w;,;|, and the column norm
[Wlli = max; ), |w;;| for a matrix W = (w;;)
(cf. [24] or [25] ). The transpose of W is de-
noted W? = (w,;), whereas |W| denotes the ma-
trix (|w;;|). We write |W| < |V|iff V = (v;;) and
|ws,;| < |vi,;| for all ¢ and j. I denotes the n xn iden-
tity matrix. diag(w;;) denotes the diagonal matrix
with the diagonal entries w;;, 4 = 1,...,n. detW
and sign(det W) denote the determinant of a square
matrix W and its sign, respectively. A triangular
matrix will be called unit (respectively, proper) trian-
gular if its diagonal is filled with ones (respectively,
7€eros).

Acknowledgement. Victor Pan thanks Dario Bini
for the preliminary discussions on some alternative
approaches to certified numerical computation of the
sign of matrix determinant.

2 Roundoff errors of matrix
factorization by Gaussian
elimination.

det A and its sign for a given matrix A can be imme-
diately obtained from the triangular (PLUP;) fac-
torization of A, but the problem is to analyze the
effect of the roundoff errors when the factorization is
computed numerically. In this analysis we will apply
some known estimates, which we will recall in this
section.
(cf. [25], Theorem 9.3, page 175). Let

(1) A=PA'P, A=A +E=1U,

where A, A', A, E, P, P,, L, and U are nxn matrices,
P and P, are permutation matrices, L = (I;;) is a
unit lower triangular matrix (so that det L = 1), and
U= (;,5) is an upper triangular matrix, Land U are
computed numerically, by means of Gaussian elimi-
nation (with complete pivoting) applied to the matrix
A with unit roundoff € (machine epsilon). Then

|E| < va|L| - |U|, 7 = ne/(1 - ne).



Two special cases of this result cover Gaussian
elimination with partial pivoting (for P, = I) and
with no pivoting (for P, = P =I).

By (1) we have

(2) det A = (det P)(det A") det P, ,

(3) det/I = det [7 = 17,1’1112,2 s ﬁn,n .

Since det P and det P, are readily available (they
equal 1 or —1), the equations (2) and (3) define
sign(det A) provided that the diagonal entries of U
are available and that € is sufficiently small to guar-
antee that

(4) sign(det A') = sign(det A) .
In the next section we will show how to verify (4) by

using the following corollary of theorem 2.1.
Under the assumptions of theorem 2, we have

(5) 1Bl < e =Ll - [Tl

for any fixed operator matrix norm.

The computation of the row and column norms
of |L| - |U] involves only O(n?®) arithmetic opera-
tions because ||(|L] - [U])lloo = [[(|L(wi))lloo II(I1L] -
[UDII = [I()TIUD]1, where (I;) and (u;) are two
vectors with the components I; = 3", |I; ;| and u; =
> a4l

By corollary 2, the rounding error of the computa-
tion of the PLU P; factorization of A is bounded in
terms of v, and the norm of the matrix |L| - |U|. It
is known that in the case of using complete pivoting,
the (k, j)-th entries ag,;,lx,; and @, ; of the matrices
A, L and U of (1), respectively, satisfy the bounds

sl <1 | < prmaxfag,nl,

for all k and j, where p, < kY22 -
/2. /(N2 < 1 8R4 (cf. [24], p.119).
The same bounds are known in the case of partial
pivoting, but theoretically only for p, < 2F-1.
In practice, however, p, = O(k) even in the case
of using partial pivoting (cf. [24], p.116). Some
improvement of the worst case error bound (even
versus the case of complete pivoting) can be obtained
by means of symmetrization (see section 7.5).

3 Certification of the sign in
terms of the smallest distance
to a singular matrix.

The following sufficient condition for (4),
|det U| = | det A| > |(det A) — det(PAP))| = eg,

can be verified based on the straightforward crude
estimate :
eq <n’eyDy,

where e denotes the maximum absolute value of the
entries of E, and Dy = [[,_, (||Ax||2 + nes). This
estimate is based on Hadamard’s bound,

|det A] < T l1Akl2

k=1

(1)

(cf. [25], p.287). It is not easy to compute ey,
but we may replace e; by its upper bound e* =
Yn max; ;(|L| - |U])s,; implied by theorem 2.1. Here
(IL| - |U])i,; denotes the (i, j)-th entry of the matrix
|L| - |U|. Then we obtain the following estimate:

n
(2) eq < e} =D*n’e*, Dt = H(||Ak||2 + ne*).
k=1

Our more refined techniques for the verification of
equation (4) will rely on the next two results.
For two given matrices W and W + A, for a fixed

matrix norm ||.|| and for all singular matrices S, let
3)  max{[|[W -S|, [W+A =S|} > |A]l.

Then

4) sign(det W) = sign(det(W + A)) .

Unless (3) holds, S = W + tA is a singular matrix
for some real ¢, 0 < t < 1. Clearly,

W =Sl =tlAll < [lAll;
W+ A =5[] =1 =dlAl <[A]l,



and (4) is violated. Q. E. D.
The next theorem is due to Eckart and Young,
1939, [19], in the case of the norm || - || = ||.||2 and to
Gastinel, 1966, [26], for the general norm || - ||.
For any fixed nonsingular matrix W and any fixed
operator matrix norm ||.||, we have

1
i [W=5T
|[W 1|, where the minimum is over all singular ma-
trices S.
Combining proposition 3.1 and theorem 3.1 implies
the next result.
Under the assumptions of theorem 3 , if
1 min{[W 1, W + &)} > [|All, then (4)
holds.
Apply corollary 3to W = A’ and A = A — 4’ to
obtain the next result.
The equation (4)
1/ min{[|(4") I, 1A~}
Now we are ready to propose an algorithm for com-
puting sign(det A), where at stage 2 we rely on simple
bound (2), which suffices for a large class of inputs,
and at the next stage we rely on corollary 3.2.
Algorithm 3.1:
Input: an n x n matrix A, a fixed matrix norm (|| -
[loo or || - ||2), and a unit roundoff e.
Output: either the certified value of sign(det A) or
FAILURE (cf. section 4).
Computations.

holds if || E| <

1. Apply Gaussian elimination (with complete, par-
tial, or no pivoting) using the unit roundoff ¢, to
compute the matrices L and U of (1).

2. Compute an upper bound on ey (in particular,
we may use the simple crude bound e} of (2))
and check if | det U| exceeds this bound. If so,
compute and output sign (det A) based on (2)-

(4).

3. Otherwise, estimate the norm N = |A
[U L1 from above and/or below (see sec-
tion 5) to decide whether

(5)

If the latter inequality is verified, compute and
output sign (det A) based on (2)-(4). Otherwise
output FAILURE.

=

eN < 1.

The complexity of the computations by the algo-
rithm is dominated by the complexity of its stages 1
and 3. We refer the reader to [24] and [7] on the com-
plexity of stage 1 and to section 5 on the complexity
of stage 3. In both cases we need O(n?®) arithmetic
operations. At stage 1, we may also need O(n®) or
O(n?) comparisons for complete or partial pivoting,
respectively.

4 Some recipes in the case of
FAILURE.

Suppose that algorithm 3.1 has output FAILURE and
that an upper bound Nt on N and the value f =
eNT are available. Then we have several options:

1. Repeat the computation but with the unit
roundoff €,,¢,, = cegq/ f for some heuristic choice
of ¢ < 1. The value ¢ can be adapted dynami-
cally, depending on the resulting change of the
value eN*t. If the latter value changes propor-
tionally to €ne (as can be expected unless A is
a very ill-conditioned matrix), then (5) holds for
€ = €new = Ceqiq/f and for any ¢ < 1. Recom-
putation of L and U for €., can be simplified
because several leading digits in the representa-
tion of the computed values stay invariant, and
only the remaining trailing digits must be recom-
puted (compare [17]).

2. Unless it is known already that N~ > 1/e, try
to improve the upper estimate Nt for N =
[[UTL1|| at stage 3 (see the next section).

3. If the value f is too large so that numerical com-
putations with a unit roundoff €,¢ < €514/ f be-
come too expensive, shift to the symbolic algo-
rithms of [4] and [5]. In this case, one needs an
a priori upper bound on |det A|. Hadamard’s
inequality, | det A| < TTy_, [|Ak||2, or the bound
|det A| < e} + |detU| can be used, but it may
pay to refine these bounds by performing some
additional computations (see sections 6 and 7.5).



5 Estimating the minimum dis-
tance to a singular matrix.

5.1 Estimating the distance from

above.

To estimate from above the minimum distance from
the matrix A to a singular matrix or, equivalently, to
estimate N = ||[U~'L~!|| from below, we may apply
the simple iterative algorithm of [9], which, according
to [24], ”produces a good order-of-magnitude ” lower
bound N~ on N at the cost of performing O(jn?)
arithmetic operations in j iterations (practically, j is
much smaller than n). If (5) does not hold even for
N replaced by N, then we may apply the recipes of
section 4, for some heuristic choice of N*.

5.2 Two-sided estimates with ran-
domization.

Recall that N = A~ Y, = (UL Y =
o1 (UL = 1/o,(LU) = 1/o,(4), op(W) de-
noting the k-th largest singular value of a matrix
W. This reduces our probem to estimating the
smallest singular value o, (A) > 0, which is a well
known problem of matrix computations whose so-
lution does not require full computation of the sin-
gular value decomposition (SVD) of A. The prob-
lem can be solved by using the inverse power iter-
ation or, better, Lanczos algorithm ([24], sect 8.2.2
and ch.9). Both require an initial vector, which
can be chosen at random. Both use O(n?) flops
per iteration, but Lanczos algorithm converges faster
(cf. [24], p.477). (The cost of each iteration in our
case is dominated by the cost of the solution of four
linear systems of equations with the already avail-
able triangular coefficient matrices LT,UT, U and
V.) The probability of obtaining accurate approxi-
mation to o, (A) depends on the number of iterative
steps. Dixon in [10] shows that, with a probability
at least PI-POWER(k; (‘)) =1- 0.8@719/2’111/2, the
lower bound N~ = (xT(AAT)1x)1/2k < ||A7Y|, =
1/0,(A) is also an upper bound on N within the fac-
tor © > 1, that is, ON, > ||[A7!||5, for k > 1 and
a random choice of a vector x on the unit sphere

S, = {x : xI'x = 1}, under the uniform probabil-
ity distribution on S,,. Dixon deduced this estimate
for the inverse power method applied to approxima-
tion of the smallest eigenvalue of AAT, which is the
smallest singular value of A.

An alternative approach produces two-sided esti-
mates for N by means of Lanczos algorithm. Lanczos
algorithm computes o7 satisfying o7 > 0,,(LU). The
estimates for the probability Pranczos(l,©) that
ok Jon(LU) < 1/0, for a fixed positive © > 1 and for
nonsingular L and U, can be expressed as functions
in the number [ of Lanczos iterations for a random
choice of the initial vector (cf. [27], [28]).

5.3 Deterministic lower estimates for

the distance.

Section 8.3 of [25], pages 159-161, shows some
techniques for rapid computation of some crude up-
per bounds on |[T'|| for triangular matrices T,
and this can be immediately translated into rapid
computation of some crude upper bounds on N =
NO-TL=Y < |U7Y] - ||L7Y. To yield more refined
upper bounds on N, one may actually compute the
inverses U~! and L1, then their product X and fi-
nally (an upper bound on) the norm N = [|[U—1L~!||.
Detailed presentation of such computations can be
found in [25], sections 13.2-13.3, pages 265-275. For
reader’s convenience, we sketch some of these algo-
rithms in the appendix.

Assumming the computations with unit roundoff
€, [25] presents the estimates for the residual norms
|AX — I|| = r(X), || XA = I|| = r*(X), and the
error norms ||[A~! — X|| = e(X) for the computed
approximations X to U 'L~!' = A~!. The estimates
are given in the form

r(X) < enel LI| - [T]] - 11X,
r(X) < crellLIl - [1U]]- 11X 1,
e(X) < chel Ll - O] - | X]] - [[ A1),

Here ¢,,c and c|, are constants independent of e

and A, which can be elaborated by using the error
analysis techniques of [25].



Instead of applying these estimates, we may di-
rectly compute AX — I or XA — I (in O(n®) op-
erations) and arrive at the residual norms 7(X) or
7*(X) within the roundoff error bound v,||4|| - || X]|[,
Yo = en/(1 —en) (cf. [25], page 78). For computing
the row and column norms of the matrix, we may
apply recursive pairwise summation, whose relative
roundoff error is at most Y[iog, n) (cf. [25], page 92).
If r = min{r(X),r*(X)} < 1, we immediately esti-
mate that e(X) < r||X||/(1-7).

Remark 5.1. One may try to improve the ap-
proximation to A~' by X = X, by applying New-
ton’s iteration, X;1+1 = X;(2I — AX;), whose i-th
iterative step for every i squares the residual matri-
ces AX; — I and X;A — I and consequently squares
the upper bounds on their norms (cf. [33]).

6 Estimating the magnitude of
the determinant.

One may refine the upper bounds of section 4 on
| det A| by relying on the following well known fact
(cf. section 7.5 for an alternative way to the refine-
ment):

| det A|

k
=l
i=1

where o1,...,0, are the singular values of A, o1 >
o3 220, >0,0,43=0fori=1,...,n—r,
r = rankA.

Consequently, d* =[], oj” > |det 4] if o > o3,
1 =1,...,n, and our problem is reduced to approx-
imating o1, ...,0, from above. The known SVD al-
gorithms ([24], section 8.6 and p.254) for the latter
task use Tn3/3+ O(n?) flops. A faster though cruder
solution may rely on approximating from above a
few smallest singular values o,,,0,_1, ... by means of
Lanczos algorithm and applying the readily available
upper bound ¢ = min{|| 4|1, ||A||sc }|| on all other o;.

7 Some modifications and al-
ternative approaches.

7.1 LDMT-factorization.

Instead of LU-factorization of A’, one may rely on
its LDMT-factorization, where L and M are unit
lower triangular matrices and D is a diagonal matrix.
To obtain LDMT factorization, one may compute the
matrices D = diag(u;;) and MT = D~'U and then
substitute U = DM into the LU-factorization. Al-
ternatively one may compute the LDM” factoriza-
tion directly, by the Gauss-Jordan transformation.
In both cases our analysis can be easily extended (cf.
[25], pp.275-281).

7.2 Solution by estimating the magni-
tude of the diagonal perturbation.

Consider the relative roundoff errors of the diagonal
entries of the factor U of A’ = LU. To prove that
equation (4) holds, it suffices to verify that all these
errors are less than 1. The theorem of Barrlund and
Sun (see [25], page 194) gives the following sufficient
condition: ||G||2 < 1 and 51mu1taneously d1ag(|G |(I —
|G~ T|) < diag(|U|) for G = L~'(A — A\UT

This approach has some similarity to one of sec-
tions 3-5 (in particular ||G|| can be estimated simi-
larly to N1 of section 5 and appendix) but requires
stronger assumptions and involves a more compli-
cated expression, |G|(I —|G|)|U|, whose computation
has larger roundoff errors.

7.3 The straightforward approach of
[34].

Unlike our approach, the paper [34] relies on the
following equations:

(1) S=det(A'+E)—detA'=> e;;D;;,

i,
where EE = (ei,j) = 1‘1 — AI, Di, = detA”, Azj is
the (n—1) x (n— 1) matrix obtained by replacing the

first j —1 columns of A’ by ones of A and by deleting
the i-th row and the j-th column of the resulting



matrix, for 4,j = 1,...,n. Then the relations |§] <
ney max; ;| D; ;| < n?ey(||A]l + ney)™ ! for a fixed
matrix norm are deduced. This upper estimate for
|0], however, is overly pessimistic because it relies on
the rough bound |D; ;| < (||A]| + ne;)™ ! (which
could be only slightly improved by using Hadamard’s
bound (1)) and on ignoring possible cancellation in
the summation in (1). Generally, it is hard to obtain
a sharp estimate for 4, and our approach benefits of
proposing a solution that avoids estimating d.

7.4 QR factorization versus PLUP,

factorization.

The proposed algorithms and their analysis can
be immediately extended based on the QQR rather
than PLU P, factorization of A. Some estimates for
the cost of computing the factorization and for the
perturbation of the input, which would accomodate
the roundoff errors, can be taken from [34] but
refined by carefully estimating from above the norm
[|[R1QT|| (cf. [25], chapter 18). The analysis gives
preference to relying on the Householder transfor-
mation in order to compute the QR factorization.
(Actually, we only need the diagonal entries of R
for our purpose of the sign computation.) Relying
on the QR factorization has advantage over using
triangular factorizations when the sign of det A must
be computed for a dynamically updated matrix A
(see [23], [34]). To decrease the roundoff errors,
one may apply a scaled version of ()R factorization,
making it free of square root computation (cf. [8]).

7.5 Sign determination via LDL? fac-
torization of AT A.

Computation of the LDLT-factorization of the sym-
metric matrix ATA is simple and has very good
numerical stability (cf. [24], pp.138-139, and [25],
pp-207-209). Namely, the 2 matrices of the round-
off errors of computing ATA and the LDLT fac-
tors of ATA have norms bounded from above by
Ynl|All - []AT]] and {2237 a?,, respectively ([25],

1—Yn41
p.78). Thus, such a factorization may serve as a ba-

sis for good numerical approximation of (det A)? =
det(AT A) =[], D;,; and then of | det A|.

Let |d| denote the approximation to |det A| com-
puted in this way and let A be a strict upper bound
on the approximation error, so that d = det A lies in
the ranges (—|d| — A, —|d| + A) and/or (|d| — A, |d| +
A). Now if [d| < A, then we arrive at an upper bound
|det A| < 2A (cf. section 4). Otherwise |d| > A,
and in this case, we choose a prime p > 4A and let
a mod p (for a real a) denote a unique real number in
the semi-open interval [-p/2,p/2). Then we compute
the values |d|, = |d| mod p and d, = (det A) mod
p- (To obtain dp, we first compute (modulo p) a
PLU factorization of A and sign(det P) and then
compute d, = ((I];(ui,; mod p))sign(det P)) mod p.
Note that the computation modulo p only requires
2[log, p]-bit precision.) Clearly, we have either

—A < det A—|d| = (dp — |d|,) mod p < A
or
—A < det A+|d| = (dp +|d|,) mod p < A.

These two cases cannot occur simultaneausly since
(2|d|) modp = (2|d|,) modp > 2A, and we may
easily test which of them actually occurs. In the
former case, det A > |d| — A > 0, and we output
sign(det A) = 1. Otherwise, det A < |d|— A < 0, and
we output sign(det A) = —1.
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Appendix A. Computation of the in-
verse.

To compute the inverse A~! = U~'L~!, we may

rely on the following simple observations (cf. [25],
pp-170-174).
Proposition A.1 Let T = (t1,...,t,) be ann X n
proper lower (respectively, upper) triangular matriz
(with zeros on its diagonal). Let T; denote the matriz
obtained by zeroing all the columns of T except for its
i-th (respectively, (n+1—1)-th) column, i =1,...,n.
Then

I+T=I+T)I+T2) I +Tn1),

(I+T) '=I-T;, i=1,....,n—1.

Corollary A.1
tion A.1, we have

Under the assumptions of proposi-
(A1) (I+T) ' =(I-Ty_1)(I~Tp_2)--- (I-Ty).

Based on corollary A.1, we may compute L~! and
U~! where U is a unit triangular matrix obtained
from U by scaling the rows and/or columns of /. The
overall roundoff error estimate for computing = de-
pends on the order in which we multiply the matrices



I—T;in (A1) for T = L —I (e.g. from left to right,
from right to left or by some mixed policy) and simi-
larly for T = U — I. (In the latter stage the variation
also depends on the choice of the scaling of U, which
defines the transition to the matrix U.)

Appendix B. Numerical Experiments.

In this section, we compare the results of the nu-
merical experiments performed in [34] with those
based on algorithm 3.1. The comparison clearly fa-
vors the latter algorithm.

In the experiments, we compute numerically the
determinants of n x n matrices A for 2 < n < 12,
based on computing the LU, PLU, and PLU P, fac-
torizations of A. The input matrices A have been
composed by using the following steps to produce
random non-singular matrices either with determi-
nants 1 or with relatively small known determinants:

1. For an auxiliary pair of lower and upper triangu-

lar matrices L(®) and U(©), respectively, let their
non-zero off-diagonal entries be random integers
in the interval (—10, 10).
. Either let the diagonal entries l@(’oi) and “E?i) be
also chosen at random in the same way (see table
1) or set l§f? = ug?i) =1 for all 7 (see table 2). In
the former case, if lg,oi) =0or ug?i) = 0, for some
i, 1 < i > n, then set the entry to 1 to avoid
arriving at a singular matrix.

Compute A = LOU©),
Swap a random pair of rows in the matrix A.

m times repeat step 4, where m is a random
integer in the range [0, n).

The algorithms have been implemented with C++
and built as a console application with Microsoft Vi-
sual C++ 5.0 compiler and linker. All numerical op-
erations have been performed with double precision
floating point arithmetic. The double precision rep-
resentation of a number uses 64 bits: 1 for the sign,
11 for the exponent, and 52 for the mantissa. Its

11

range is +1.7 x 10%%® with at least 15 decimal dig-
its of precision. The test results have been collected
on a Pentium-100MHz PC, running under Windows
95’s DOS session. The system pseudo-random num-
ber generator functions srand() and rand () have
been used to generate input matrices.

Tables 1 and 2 present the results of our experi-
ments. 1000 random matrices of each size (from 2 to
12 in the case of small determinants and from 2 to

10 in the case of determinants 1) have been tested.

. det A—det A’ 2ot
The relative errors eg = %, €pys = Tast A7

det A’
and e, = €N have been evaluated in each cage, ancll
their average values have been presented in the tables.
The values of |det A| and Hﬁl—lll = Hff—llf/—lll (aver-
age over the results of both approaches [34] and al-
gorithm 3.1) have also been computed and presented
in tables 1 and 2. Two integer counters Vs and
Vnew have been used to keep track of the number of
cases where the [34] algorithm and our new algorithm
failed to verify the computation results, respectively.
More specifically, whenever division by zero occured
in the [34] algorithm or whenever we observed that
epys > 1, the counter V,,, was incremented by one,
and this case was excluded from the average count
of the data represented in the first five columns of
the tables. Likewise, whenever division by zero oc-
cured in algorithm 3.1 or whenever we observed that
€new > 1, the counter V., was incremented by one
and the case was similarly excluded from the average
count of the data.

The tables show that the number of cases rejected
by the new algorithm are consistently smaller than
that of the [34] algorithm. For the accepted cases,
the relative error estimates obtained by the new al-
gorithm are much closer to but no smaller than the
“true” relative errors.




Algorithm €o €pys Enew ‘ |det A] T Al—lll ‘ NVpys | NView
Size 2
LU 1.958e-016 | 1.707e-013 | 5.906e-014 | 8.781e+002 | 9.036e+000 102 102
PLU 2.625e-016 | 4.454e-014 | 6.266e-014 | 8.845e+002 | 9.262¢+000 3 3
PLUP, 1.935e-016 | 3.189e-014 | 5.084e-014 | 8.834e+002 | 9.253e+000 0 0
Size 3
LU 2.636e-015 | 2.322e-010 | 4.828e-012 | 2.400e+004 | 3.360e+000 76 72
PLU 2.404e-015 | 4.011e-011 | 1.705e-012 | 2.408e+004 | 3.438e+000 3 3
PLUP, 2.184e-015 | 1.077e-011 | 1.160e-012 | 2.402e+004 | 3.441e+000 0 0
Size 4
LU 2.265e-014 | 4.030e-004 | 3.705e-010 | 6.943e+005 | 1.483e+000 62 64
PLU 1.363e-014 | 1.756e-009 | 4.177e-011 | 6.991e+005 | 1.481e+000 1 1
PLUP, 1.041e-014 | 1.678e-009 | 1.525e-011 | 6.984e+005 | 1.480e+000 0 0
Size 5
LU 1.797e-013 | 3.935e-003 | 3.761e-009 | 1.563e+007 | 5.724e-001 56 40
PLU 8.941e-014 | 5.184e-006 | 2.116e-010 | 1.530e+007 | 5.652e-001 0 0
PLUP 7.952e-014 | 6.080e-007 | 1.437e-010 | 1.530e+007 | 5.652e-001 0 0
Size 6
LU 9.590e-013 | 1.980e-002 | 1.255e-008 | 4.585e+008 | 2.615e-001 134 37
PLU 1.078e-012 | 5.420e-005 | 2.438¢-009 | 4.097e+008 | 2.395e-001 0 0
PLUP, 9.341e-013 | 1.005e-005 | 1.132e-009 | 4.097e+008 | 2.395e-001 0 0
Size 7
LU 7.345¢-013 | 5.393¢-002 | 4.752¢-008 | 3.433e¢+010 | 1.802¢-001 317 37
PLU 9.060e-012 | 5.940e-003 | 3.327e-008 | 2.473e+010 | 1.423e-001 4 0
PLUP; 1.046e-011 | 7.431e-004 | 1.502e-008 | 2.463e+010 | 1.417e-001 0 0
Size 8
LU 4.674e-012 | 1.175e-001 | 1.751e-005 | 6.615e+011 | 8.039e-002 619 29
PLU 3.221e-011 | 2.448e-002 | 1.061e-006 | 5.662e+011 | 6.086e-002 37 0
PLUP, 2.304e-011 | 1.404e-002 | 5.653e-008 | 5.541e+011 | 5.957e-002 16 0
Size 9
LU 9.134e-013 | 2.053e-001 | 1.586e-008 | 2.701e+013 | 6.165e-002 839 19
PLU 1.055e-011 | 6.904e-002 | 5.593e-008 | 1.201e+013 | 2.812e-002 160 0
PLUP; 1.356e-011 | 3.917e-002 | 6.251e-008 | 1.108e+013 | 2.596e-002 89 0
Size 10
LU 9.726e-013 | 2.240e-001 | 7.454e-009 | 1.963e+015 | 6.443e-002 964 21
PLU 5.562¢-012 | 1.304e-001 | 2.899e-008 | 8.986e+014 | 1.949e-002 425 0
PLUP, 9.713e-012 | 1.013e-001 | 5.244e-008 | 7.089e+014 | 1.551e-002 271 0
Size 11
LU 4.879e-013 | 4.320e-001 | 9.386e-009 | 5.658e+016 | 7.637e-002 995 32
PLU 4.061e-012 | 2.047e-001 | 1.454e-008 | 1.308e+016 | 1.431e-002 740 0
PLUP; 1.578e-011 | 1.700e-001 | 5.002¢-008 | 8.611e+015 | 9.995e-003 595 0
Size 12
LU NA NA NA NA NA 1000 24
PLU 6.190e-012 | 2.802e-001 | 5.254e-008 | 3.347e+018 | 3.118e-002 912 0
PLUP, 4.520e-012 | 2.429e-001 | 2.767e-008 | 1.494e+018 | 1.581e-002 802 0

Table 1: Average estimated errors of 1,000 random matrices.
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Algorithm eo €pys Enecw ‘ |det Al T L T ‘ NViys | NView
Size 2
LU 7.904e-016 | 1.809¢-012 | 1.656e-013 | 1.000e+000 | 1.000e+000 92 92
PLU 9.345e-016 | 1.036e-013 | 5.165e-013 | 1.000e+000 | 1.000e+000 2 2
PLUP, 9.268¢-016 | 1.034e-013 | 5.155e-013 | 1.000e+000 | 1.000e+000 0 0
Size 3
LU 2.326e-014 | 2.800e-008 | 3.315e-010 | 1.000e+000 | 1.000e+000 85 76
PLU 3.583e-014 | 1.064e-009 | 4.950e-011 | 1.000e+000 | 1.000e+000 4 3
PLUP, 2.828e-014 | 6.154e-010 | 3.819e-011 | 1.000e+000 | 1.000e+000 1 0
Size 4
LU 1.004e-012 | 1.924e-003 | 5.165e-008 | 1.000e+000 | 1.000e+000 54 53
PLU 7.900e-013 | 1.285e-005 | 5.243e-009 | 1.000e+000 | 1.000e+000 0 0
PLUP, 6.655e-013 | 4.342e-007 | 2.049¢-009 | 1.000e+000 | 1.000e+000 0 0
Size 5
LU 2.608e-011 | 3.990e-002 | 1.504e-005 | 1.000e+000 | 1.000e+000 152 52
PLU 2.507e-011 | 9.849¢-004 | 3.504e-007 | 1.000e+000 | 1.000e+000 1 0
PLUP, 2.143e-011 | 2.059e-004 | 1.021e-007 | 1.000e+000 | 1.000e+000 0 0
Size 6
LU 2.809e-010 | 2.083e-001 | 3.227e-005 | 1.000e+000 | 1.000e+000 626 41
PLU 4.969e-010 | 1.319e-001 | 1.051e-005 | 1.000e+000 | 1.000e+000 104 0
PLUP, 4.670e-010 | 8.723e-002 | 3.762e-006 | 1.000e+000 | 1.000e+000 21 0
Size 7
LU 2.245e-009 | 3.712e-001 | 4.674e-004 | 1.000e+000 | 1.000e+000 992 41
PLU 4.464e-009 | 4.782e-001 | 1.818e-003 | 1.000e+000 | 1.000e+000 937 0
PLUP, 2.534e-009 | 4.393e-001 | 3.227e-005 | 1.000e+000 | 1.000e+000 885 0
Size 8
LU NA NA NA NA NA 1000 114
PLU NA NA NA NA NA 1000 8
PLUP, NA NA NA NA NA 1000 0
Size 9
LU NA NA NA NA NA 1000 349
PLU NA NA NA NA NA 1000 54
PLUP, NA NA NA NA NA 1000 34
Size 10
LU NA NA NA NA NA 1000 713
PLU NA NA NA NA NA 1000 281
PLUP, NA NA NA NA NA 1000 242

Table 2: Average estimated errors of 1,000 random matrices with +1 determinants. (NA stands for ”not
available” in the case where computation of det A by the algorithm of [34] failed in all cases.)
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